NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Vegetation Correction Methodology for Time Series Based Soil Moisture Retrieval From C-band Radar ObservationsA methodology is presented to correct backscatter (sigma(sup 0)) observations for the effect of vegetation. The proposed methodology is based on the concept that the ratio of the surface scattering over the total amount of scattering (sigma(sup 0)(sub soil)/sigma(sup 0)) is only affected by the vegetation and can be described as a function of the vegetation water content. Backscatter observations sigma(sup 0) from the soil are not influenced by vegetation. Under bare soil conditions (sigma(sup 0)(sub soil)/sigma(sup 0)) equals 1. Under low to moderate biomass and soil moisture conditions, vegetation affects the observed sigma(sup 0) through absorption of the surface scattering and contribution of direct scattering by the vegetation itself. Therefore, the contribution of the surface scattering is smaller than the observed total amount of scattering and decreases as the biomass increases. For dense canopies scattering interactions between the soil surface and vegetation elements (e.g. leaves and stems) also become significant. Because these higher order scattering mechanisms are influenced by the soil surface, an increase in (sigma(sup 0)(sub soil)/sigma(sup 0)) may be observed as the biomass increases under densely vegetated conditions. This methodology is applied within the framework of time series based approach for the retrieval of soil moisture. The data set used for this investigation has been collected during a campaign conducted at USDA's Optimizing Production Inputs for Economic and Environmental Enhancement OPE-3) experimental site in Beltsville, Maryland (USA). This campaign took place during the corn growth cycle from May 10th to 0ctober 2nd, 2002. In this period the corn crops reached a vegetation water content of 5.1 kg m(exp -2) at peak biomass and a soil moisture range varying between 0.00 to 0.26 cubic cm/cubic cm. One of the deployed microwave instruments operated was a multi-frequency (C-band (4.75 GHz) and L-band (1.6 GHz)) quad-polarized (HH, HV, VV, VH) radar which was mounted on a 20 meter long boom. In the OPE-3 field campaign, radar observations were collected once a week at nominal times of 8 am, 10 am, 12 noon and 2 pm. During each data run the radar acquired sixty independent measurements within an azimuth of 120 degrees from a boom height of 12.2 m and at three different incidence angles (15,35, and 55 degrees). The sixty observations were averaged to provide one backscatter value for the study area and its accuracy is estimated to be 51.0 dB. For this investigation the C-band observations have been used. Application of the proposed methodology to the selected data set showed a well-defined relationship between (sigma(sup 0)(sub soil)/sigma(sup 0)) and the vegetation water content. It is found that this relationship can be described with two experimentally determined parameters, which depend on the sensing configuration (e.g. incidence angle and polarization). Through application of the proposed vegetation correction methodology and the obtained parameterizations, the soil moisture retrieval accuracy within the framework of a time series based approach is improved from 0.033 to 0.032 cubic cm/cubic cm, from 0.049 to 0.033 cubic cm/cubic cm and from 0.079 to 0.047 cubic cm/cubic cm for incidence angles of 15,35 and 55 degrees, respectively. Improvement in soil moisture retrieval due to vegetation correction is greater at larger incidence angles (due to the increased path length and larger vegetation effects on the surface signal at the larger angles).
Document ID
20080038044
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Joseph, Alicia T.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
O'Neil, P. E.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
vanderVelde, R.
(International Inst. for Geoinformation Science and Earth Observation Enschedule, Netherlands)
Gish, T.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
July 6, 2008
Subject Category
Geophysics
Meeting Information
Meeting: IEEE Geoscience and Remote Sensing Symposium
Location: Boston, MA
Country: United States
Start Date: July 6, 2008
End Date: July 11, 2008
Sponsors: Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available