NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Geomorphology of Ma'adim Vallis, Mars,and Associated Paleolake BasinsMa'adim Vallis, one of the largest valleys in the Martian highlands, appears to have originated by catastrophic overflow of a large paleola ke located south of the valley heads. Ma'adim Vallis debouched to Gus ev crater, 900 km to the north, the landing site for the Spirit Mars Exploration Rover. Support for the paleolake overflow hypothesis come s from the following characteristics: (I) With a channel width of 3 km at its head, Ma'adim Vallis originates at two (eastern and western) gaps incised into the divide of the approximately 1.1 M km(exp 2) enc losed Eridania head basin, which suggests a lake as the water source. (2) The sinuous course of Ma'adim Vallis is consistent with overland flow controlled by preexisting surface topography, and structural con trol is not evident or required to explain the valley course. (3) The nearly constant approximately 5 km width of the inner channel through crater rim breaches, the anastomosing course of the wide western tri butary, the migration of the inner channel to the outer margins of be nds in the valley's lower reach, a medial sedimentary bar approximate ly 200 m in height, and a step-pool" sequence are consistent with modeled flows of 1-5 x l0 (exp 6) m(exp 3)/s. Peak discharges were likely higher but are poorly constrained by the relict channel geometry. (4 ) Small direct tributary valleys to Ma'adim Vallis have convex-up lon gitudinal profiles, suggesting a hanging relationship to a valley that was incised quickly relative to the timescales of tributary developm ent. (5) The Eridania basin had adequate volume between the initial d ivide and the incised gap elevations to carve Ma'adim Vallis during a single flood. (6) The Eridania basin is composed of many overlapping , highly degraded and deeply buried impact craters. The floor materials of the six largest craters have an unusually high internal relief ( approximately 1 km) and slope (approximately 0.5-1.5 degrees) among d egraded Martian craters, which are usually flat-floored. Long-term, fluvial sediment transport appears to have been inhibited within these craters, and the topography is inconsistent with basaltic infilling. (7) Fluvial valleys do not dissect the slopes of these deeper crater floor depressions, unlike similar slopes that are dissected at higher levels in the watershed. These characteristics (6, 7) suggest that wa ter mantled at least the lower parts of the Eridania basin floor thro ughout the period of relatively intense erosion early in Martian hist ory. The lake level increased and an overflow occurred near the close of the Noachian (age determined using >5 km crater counts). Initially , the Eridania basin debouched northward at two locations into the in termediate basin, a highly degraded impact crater approximately 500 k m in diameter. As this intermediate basin was temporarily filled with water, erosion took place first along the lower (northern) reach of Ma'adim Vallis, debouching to Gusev crater. The western overflow point was later abandoned, and erosion of the intermediate basin interior was concentrated along the eastern pathway. Subsequent air fall depos ition, impact gardening, tectonism, and limited fluvial erosion modified the Eridania basin region, so evidence for a paleolake is restrict ed to larger landforms that could survive post-Noachian degradation p rocesses.
Document ID
20080043030
Acquisition Source
Ames Research Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Irwin, Rossman, P., III
(Smithsonian Institution Washington, DC, United States)
Howard, Alan D.
(Virginia Univ. Charlottesville, VA, United States)
Maxwell, Ted A.
(Smithsonian Institution Washington, DC, United States)
Date Acquired
August 24, 2013
Publication Date
December 30, 2004
Publication Information
Publication: Journal of Geophysical Research
Publisher: American Geophysical Union
Volume: 109
Subject Category
Lunar And Planetary Science And Exploration
Funding Number(s)
CONTRACT_GRANT: NAG5-13300
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available