NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Engineering Models Ease and Speed PrototypingNASA astronauts plan to return to the Moon as early as 2015 and establish a lunar base, from which 6-month flights to Mars would be launched by 2030. Essential to this plan is the Ares launch vehicle, NASA s next-generation spacecraft that will, in various iterations, be responsible for transporting all equipment and personnel to the Moon, Mars, and beyond for the foreseeable future. The Ares launch vehicle is powered by the J-2X propulsion system, with what will be the world s largest rocket nozzles. One of the conditions that engineers carefully consider in designing rocket nozzles particularly large ones is called separation phenomenon, which occurs when outside ambient air is sucked into the nozzle rim by the relatively low pressures of rapidly expanding exhaust gasses. This separation of exhaust gasses from the side-wall imparts large asymmetric transverse loads on the nozzle, deforming the shape and thus perturbing exhaust flow to cause even greater separation. The resulting interaction can potentially crack the nozzle or break actuator arms that control thrust direction. Side-wall loads are extremely difficult to measure directly, and, until now, techniques were not available for accurately predicting the magnitude and frequency of the loads. NASA researchers studied separation phenomenon in scale-model rocket nozzles, seeking to use measured vibration on these nozzle replicas to calculate the unknown force causing the vibrations. Key to this approach was the creation of a computer model accurately representing the nozzle as well as the test cell.
Document ID
20090002495
Acquisition Source
Headquarters
Document Type
Other
Date Acquired
August 24, 2013
Publication Date
September 1, 2008
Publication Information
Publication: Spinoff 2008: 50 Years of NASA-Derived Technologies (1958-2008)
Subject Category
Man/System Technology And Life Support
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available