NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Wear and Tear - MechanicalThe focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for unmanned spacecraft) but do not have backup structure due to the added mass this would impose, and also due to the fact that structural elements can be accurately modeled mathematically and in test. Critical mechanisms or devices may have backups, or alternate work-arounds, since characterization of these systems in a 1g environment is less accurate than structure, and repair in-space is often impossible.
Document ID
20090005236
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Swanson, Theodore
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2008
Subject Category
Mechanical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available