NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Starship Life SupportThe design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to colonize a new planet would have cost similar to that of the Apollo program. Cost is reduced if a small crew travels slowly and lands with minimal equipment. We can go to the stars!
Document ID
20090036320
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Jones, Harry W.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 24, 2013
Publication Date
July 12, 2009
Subject Category
Man/System Technology And Life Support
Report/Patent Number
ARC-E-DAA-TN506
Meeting Information
Meeting: International Conference On Environmental Systems
Location: Savannah, GA
Country: United States
Start Date: July 12, 2009
End Date: July 16, 2009
Sponsors: Society of Automotive Engineers, Inc.
Funding Number(s)
WBS: WBS 439906.02.01
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available