NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Custom Unit Pump Design and Testing for the EVA PLSSThis paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
Document ID
20090038915
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Schuller, Michael
(Texas A&M Univ. United States)
Kurwitz, Cable
(Texas A&M Univ. TX, United States)
Goldman, Jeff
(Honeywell, Inc. United States)
Morris, Kim
(Honeywell, Inc. TX, United States)
Trevino, Luis
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2009
Subject Category
Mechanical Engineering
Report/Patent Number
JSC-CN-19201
Meeting Information
Meeting: 40th International Conference on Environmental Systems
Location: Barcelona
Country: Spain
Start Date: July 11, 2010
End Date: July 15, 2010
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available