NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface CharacterizationsAbiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms the hypothesis regarding the reaction pathways of hydrothermal abiotic organic synthesis proposed by Fu et al. (2007, 2008). In this proposed pathway, hydroxymethylene (-CHOH) groups serve as organic intermediaries on mineral surfaces while dissolved H2 serves as a chain terminator/breaker to generate short chain hydrocarbons and oxygenated compounds. This pathway is different from the carbide polymerization theory of Fischer- Tropsch-type (FTT) synthesis in a gas phase. The observed increase of (sigma)C-13 values of C1 and C2 alkanes with carbon number in our hydrothermal experiments can be readily interpreted by hydroxymethylene pathway, and might be used to differentiate between hydroxymethylene and carbide polymerization pathways. Carbon isotope analysis of alcohols on mineral catalyst surfaces is under way to provide further constraints on formation of organic compounds by FTT in hydrothermal systems.
Document ID
20100039624
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Fu, Qi
(Lunar and Planetary Inst. Houston, TX, United States)
Socki, R. A.
(Jacobs Technologies Engineering Science Contract Group Houston, TX, United States)
Niles, P. B.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2010
Subject Category
Inorganic, Organic And Physical Chemistry
Report/Patent Number
JSC-CN-21953
Meeting Information
Meeting: 2011 American Geophysical Union Fall Meeting
Location: San Francisco, CA
Country: United States
Start Date: December 13, 2010
End Date: December 17, 2010
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available