NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aircraft System Analysis of Technology Benefits to Civil Transport RotorcraftAn aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was sized for a representative civil passenger transport mission, using current technology. Individual advanced technologies are quantified and applied to resize the aircraft, thereby quantifying the net benefit of that technology to the rotorcraft. Estimates of development cost, production cost and operating and support costs are made with a commercial cost estimating program, calibrated to Boeing products with adjustments for future civil production processes. A cost metric of cash direct operating cost per available seat-mile (DOC ASM) is used to compare the cost benefit of the technologies. The same metric is used to compare results with turboprop operating costs. Reduced engine SFC was the most advantageous advanced technology for both rotorcraft concepts. Structural weight reduction was the second most beneficial technology, followed by advanced drive systems and then by technology for rotorcraft performance. Most of the technologies evaluated in this report should apply similarly to conventional helicopters. The implicit assumption is that resources will become available to mature the technologies for fullscale production aircraft. That assumption is certainly the weak link in any forecast of future possibilities. The analysis serves the purpose of identifying which technologies offer the most potential benefit, and thus the ones that should receive the highest priority for continued development. This study directly addressed the following NASA Subsonic Rotary Wing (SRW) subtopics: SR W.4.8.I.J Establish capability for rotorcraft system analysis and SRW. 4.8.I.4 Conduct limited technology benefit assessment on baseline rotorcraft configurations.
Document ID
20110012988
Acquisition Source
Ames Research Center
Document Type
Contractor Report (CR)
Authors
Wilkerson, Joseph B.
(Boeing Co. Philadelphia, PA, United States)
Smith, Roger L.
(Boeing Co. Mesa, AZ, United States)
Date Acquired
August 25, 2013
Publication Date
December 1, 2008
Subject Category
Aircraft Design, Testing And Performance
Report/Patent Number
NASA/CR-2009-214594
Funding Number(s)
CONTRACT_GRANT: NNA06BC41 C
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available