NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Summer Research PaperCertain populations such as chemotherapy patients and atomic bomb survivors have been exposed to ionizing radiation and experience tissue damage and cancer initiation and progression. One cancer that can be initiated from radiation is esophageal squamous cell carcinoma (ESCC), an epithelial cancer that has a survival rate as low as 20%. Researchers have found that when protein tyrosine kinase receptors (RPTK) activate oncogenes, they can create epithelial tumors and cause deadly cancers like ESCC. The RPTK family has one group, MET, that has only two receptors, MET and RON, present in the human body. MET s ligand is the hepatocyte growth factor (HGF) and RON's ligand is the macrophage-stimulating protein (MSP-1). Both HGF and MSP-1 have been shown to activate their receptors and are implicated in certain processes. Since radiation damages cells throughout the biological system, researchers are investigating whether or not HGF and MSP-1 protects or kills certain normal and cancerous cells by being part of cell recovery processes. One research group recently reviewed that the HGF-MET pathway has an important role in the embryonic development in the liver, migration of myogenic precursor cells, regulation of epithelial morphogenesis and growth, and regeneration and protection in tissues. In addition, since the RON receptor is more commonly expressed in cells of epithelial origin, and when activated is part of epithelial cell matrix invasion, dissociation, and migration processes, scientists conclude that RON might be one of the factors causing epithelial cancer initiation in the biological system. In order to examine HGF and MSP-1 s effect on cancer initiation and progression we used two immortalized esophageal epithelial cell lines. One is a normal human cell line (EPC2-hTERT), while the other had a p53 mutation at the 175th amino acid position (EPC2-hTERT-p53(sup R175H)). For this investigation, we used 0(control), 2, and 4 Gray doses of gamma (Cs137) radiation and selected various concentrations from 0-100 ng/mL of HGF and MSP-1 in our assays. Since the HGF and MSP-1 pathways have proliferative roles in epithelial cells, we conducted the MTT proliferation assay to see if either drug enhances or inhibits cell proliferation over time. Also, a MTT cytotoxicity assay was necessary to observe whether the drugs are protecting the cells from radiation and if a trend is occurring depending upon the amount of dose added. In addition, a wound healing assay was done since both drugs have been to known to promote cell motility. Since cell damage occurs when radiation is added, apoptosis and micronuclei assays are vital to see if HGF and MSP-1 increase or decrease cell death and damage in normal and pre-cancerous cells and by how much based on the radiation dosage. Overall, we used the MTT, wound healing, apoptosis and micronuclei assays to investigate the effects ofHGF and MSP-1 on irradiated esophageal epithelial cells.
Document ID
20110020317
Acquisition Source
Johnson Space Center
Document Type
Other
Authors
Patel, Zarana
(Universities Space Research Association Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2011
Subject Category
Aerospace Medicine
Report/Patent Number
JSC-CN-24760
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available