NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in ReflectorsThree reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.
Document ID
20130000275
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
External Source(s)
Authors
Bradford, Samuel Case
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Peterson, Lee D.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Ohara, Catherine M.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Shi, Fang
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Agnes, Greg S.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Hoffman, Samuel M.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Wilkie, William Keats
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 27, 2013
Publication Date
April 23, 2012
Subject Category
Optics
Meeting Information
Meeting: AIAA Adaptive Structures Conference (SDM 2012)
Location: Honolulu, HI
Country: United States
Start Date: April 23, 2012
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Other
Keywords
piezoelectric actuation
active reflector systems
thermal loads

Available Downloads

There are no available downloads for this record.
No Preview Available