NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Geometric Effects on the Amplification of First Mode Instability WavesThe effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Document ID
20130000764
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Kirk, Lindsay C.
(NASA Johnson Space Center Houston, TX, United States)
Candler, Graham V.
(Minnesota Univ. Minneapolis, MN, United States)
Date Acquired
August 27, 2013
Publication Date
January 7, 2013
Subject Category
Fluid Mechanics And Thermodynamics
Report/Patent Number
JSC-CN-27644
Meeting Information
Meeting: AIAA 51st Aerospace Sciences Meeting
Location: Grapevine, TX
Country: United States
Start Date: January 7, 2013
End Date: January 10, 2013
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available