NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEOAn imager or sounder on satellites, such as the Geostationary Operational Environmental Satellite (GOES), in geostationary orbit (GEO) has a scan mirror and motor in the scan cavity. The GEO orbit is 24 hours long. During part of the orbit, direct sunlight enters the scan aperture and adds heat to components in the scan cavity. Solar heating also increases the scan motor temperature. Overheating of the scan motor could reduce its reliability. For GOES-N to P, a radiator with a thermal louver rejects the solar heat absorbed to keep the scan cavity cool. A sunshield shields the radiator/louver from the Sun. This innovation uses phase change material (PCM) in the scan cavity to maintain the temperature stability of the scan mirror and motor. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the scan cavity warm. It reduces the heater power required to make up the heat lost by radiation to space through the aperture. This is a major advantage when compared to a radiator/ louver. PCM is compact because it has a high solid-to-liquid enthalpy. Also, it could be spread out in the scan cavity. This is another advantage. Paraffin wax is a good PCM candidate, with high solid-to-liquid enthalpy, which is about 225 kJ/kg. For GOES-N to P, a radiator with a louver rejects the solar heat that enters the aperture to keep the scan cavity cool. For the remainder of the orbit, sunlight does not enter the scan aperture. However, the radiator/louver continues radiating heat to space because the louver effective emittance is about 0.12, even if the louver is fully closed. This requires makeup heater power to maintain the temperature within the stability range.
Document ID
20130013816
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Choi, Michael
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 27, 2013
Publication Date
June 1, 2013
Publication Information
Publication: NASA Tech Briefs, June 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
GSC-16546-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available