NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path ComponentsDuring the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.
Document ID
20140000622
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Brown, Andrew M.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Davis, R. Benjamin
(NASA Marshall Space Flight Center Huntsville, AL, United States)
DeHaye, Michael K.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
February 7, 2014
Publication Date
June 3, 2013
Subject Category
Structural Mechanics
Report/Patent Number
GT2013-94890
Meeting Information
Meeting: ASME Turbo Expo 2013: Power for Land, Sea, and Air (GT 2013)
Location: San Antonio, TX
Country: United States
Start Date: June 3, 2013
End Date: June 7, 2013
Sponsors: American Society of Mechanical Engineers
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available