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Abstract 

The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small 

Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project 

demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design 

included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as 

straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning 

methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability 

to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto 

GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware 

configuration for use in either the ground control station or on board the test aircraft. Finally, compression 

of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. 

The SUAV Auto GCAS project demonstrated that together these methods and technologies have the 

potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of 

aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and 

model aircraft.   

Nomenclature 

ACAT   Automatic Collision Avoidance Technology 

AFRC  Armstrong Flight Research Center 

AGL  above ground level 

ART  available reaction time 

Auto GCAS    Automatic Ground Collision Avoidance System 

CFIT  controlled flight into terrain 

CDTM  Compressed Digital Terrain Maps 

CONUS contiguous United States 

COTS  commercial off-the-shelf 

DEM  digital elevation model 

DR  Discrepancy Report 

DROID  Dryden Remotely Operated Integrated Drone 

DSOC   Defense Safety Oversight Council 

DTED  Digital Terrain Elevation Data 

EGI  embedded GPS/INS 

EAFB  Edwards Air Force Base 

FRRP  Fighter Risk Reduction Project 

GCAS  Ground Collision Avoidance System 

GCO  ground control operator 

GEDACS    Global Elevation Data Adaptive Compression System 

GPS  global positioning system 

HIL  hardware-in-the-loop 

HOTAS Hands On Throttle-And-Stick 

HUD  head-up display 

HWY  highway 

INS  inertial navigation system 

KIAS  knots indicated airspeed 

KTAS  knots true airspeed 

MSL  mean sea level 
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NASA  National Aeronautics and Space Administration 

NAV  buffer to account for GPS navigation accuracy 

NED  National Elevation Dataset 

NGA  National Geospatial-Intelligence Agency 

PARS  Pilot Activated Recovery System 

PCC  Piccolo II autopilot command center 

PVI  pilot-vehicle interface 

RPV  remotely piloted vehicle 

SD  secure digital 

SRTM  Shuttle Radar Topography Mission 

SUAV  small unmanned aerial vehicle 

TCB  terrain clearance buffer 

TM  telemetry 

TPA  trajectory prediction algorithm 

UAS   unmanned aircraft system 

UAV  unmanned aerial vehicle 

UI  user interface 

UIO   user interface operator 

WGS84  World Geodetic System 1984 

WP  waypoint 

α  half angle 

β  half width 

В  base width 

Introduction 

Automatic Ground Collision Avoidance Systems (Auto GCAS) have been demonstrated in research 

and development flight-testing on multiple projects for over 25 years. Most early Auto GCAS development 

took place during the Advanced Fighter Technology Integration (AFTI) F-16 airplane (General Dynamics, 

now Lockheed Martin, Bethesda, Maryland) project in the late 1990s (ref. 1). The F-16 Fighter Risk 

Reduction Project (FRRP) was completed in 2010 and matured Auto GCAS technology to the point where 

it was ready to be integrated with production F-16 hardware and software (ref. 2). A production version of 

Auto GCAS was recently flight-tested on United States Air Force (USAF) F-16 airplanes with deployment 

to operational squadrons beginning in 2014 (ref. 3). A derivative implementation of Auto GCAS has also 

been flight-tested on the F-22 airplane (Lockheed Martin, Bethesda, Maryland) (ref. 4). An Auto GCAS 

implementation has also been planned for the F-35 airplane (Lockheed Martin, Bethesda, Maryland) after 

initial operational capability. All of these projects were components of the broader Automatic Collision 

Avoidance Technology (ACAT) program under the guidance of the Defense Safety Oversight Council 

(DSOC). 

 

The DSOC has concluded that the comprehensive 75-percent mishap reduction rate mandated by the 

Secretary of Defense (refs. 5 and 6) cannot be achieved without the widespread implementation of Auto 

GCAS. Manual terrain avoidance systems warn the pilot and rely on pilot reactions to avoid terrain. Such 

systems have already been implemented on various platforms with mixed success. However, Controlled 

Flight Into Terrain (CFIT) mishaps continue to occur on many platforms within the Department of Defense 

(DoD). Controlled Flight Into Terrain mishaps also continue to result in an alarming number of general 

aviation fatalities every year.  
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The primary objections to Auto GCAS have been perceived nuisance potential and perceived cost. 

Nuisance potential is a valid concern but specific design requirements to minimize nuisance activations can 

be an integral part of any system. Cost is also a valid concern, but on many platforms the cost of fleet-wide 

implementation of Auto GCAS can be recovered by the prevention of a single CFIT mishap (ref. 7).  

 

The DSOC has been highly motivated to find low-cost Auto GCAS alternatives with applications across 

widely varying aircraft types. As a result, the DSOC funded a limited-scope design and flight-test effort to 

transition Auto GCAS technologies from the previous F-16 system to a small unmanned aerial vehicle 

(SUAV). An overall goal of the SUAV Auto GCAS project was to enhance the proven technologies within 

Auto GCAS whenever practical, while at the same time exploring techniques to achieve significant cost 

savings.  

 

This report has two primary goals:  

 Communicate the design concepts and flight-test results from the SUAV Auto GCAS project; 

and 

 Compare SUAV Auto GCAS design concepts to those used on other successful Auto GCAS 

projects (primarily the F-16) with the intent of helping future projects identify tradeoffs and 

determine which concepts can be tailored to best serve a given platform.  

 

One of the most important lessons learned from recent Auto GCAS projects has been that there are 

many design approaches that will work. However, there will always be important tradeoffs that must be 

understood to improve the likelihood that a given design will be successful.  

 

This report identifies a few of the most significant tradeoffs and design choices. Design concepts that 

work on a low-speed UAV may not be best for a high-speed fighter, and vice versa. As Auto GCAS is 

applied to a broader spectrum of platforms, such as transports, general aviation, and helicopters, it is 

expected that design concepts will continue to evolve. In spite of differences in aircraft type, it is also 

expected that a modular Auto GCAS architecture will be applicable regardless of platform.  

 

The SUAV Auto GCAS project successfully demonstrated many important collision avoidance 

technologies. The foremost of these demonstrations included: 

 Auto GCAS testing with multiple avoidance maneuvers including turns to either side; 

 Testing of digital terrain scanning techniques determined directly from the predicted trajectory; 

 In-flight-testing of highly compressed digital elevation maps;  

 In-flight-testing of digital elevation maps that had been customized to reflect tighter tolerances 

in some areas, and relaxed tolerances in other areas;  

 In-flight-testing of Auto GCAS on a UAV; and 

 Auto GCAS algorithms were hosted on a smartphone during flight tests. 

 

Since one of the motivations for this report is to assist design choices on future projects, 

recommendations are introduced as important design aspects are described. The relevant SUAV Auto 

GCAS flight-test results may not be described in detail until later in the report. 

 

The specific implementation techniques used on the SUAV project were accomplished to provide an 

inexpensive test bed for the new Auto GCAS technologies, and were not intended to be a direct path to a 

production UAV implementation. Therefore, any production implementation of Auto GCAS on a UAV 

would still need to be customized for the intended platform.  

 

For example, an appropriate level of redundancy would be essential for production UAV 

implementation. This SUAV project was essentially single-thread, which was practical for this research test 
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bed because a safety pilot was always ready to take control if the Auto GCAS algorithm commanded an 

inappropriate aircraft response. A production UAV implementation of Auto GCAS would require the level 

of redundancy necessary to meet the requirements of that system.  

 

Using the smartphone to host the Auto GCAS algorithm was an implementation technique that was 

specific to this SUAV test bed demonstration. The smartphone posed specific challenges in terms of the 

need to use the Java™ (Oracle Corporation, Redwood Shores, California) programming language, the need 

to address timing aspects for real-time versus background tasks, and the need to utilize particular 

verification and validation techniques. This report does not address the smartphone-specific challenges. 

Although smartphones continue to be used for follow-on Auto GCAS projects, those are also considered 

test bed applications. A production application would require consideration of the host computer reliability 

as well as the abovementioned redundancy aspects. 

 

Note:  This report uses wording consistent with the terminology used on the SUAV Auto GCAS and 

F-16 Auto GCAS projects at the time. An activation on SUAV Auto GCAS is called an “avoidance 

maneuver;” an activation on F-16 Auto GCAS is called a “flyup” maneuver. 

Research Objectives 

The original DSOC customer direction was to: 

 “Ensure interoperability between Auto GCAS functions and a small Unmanned Aircraft System 

(UAS);  

 Tailor F-16 Auto-GCAS algorithms to the Dryden Remotely Operated Integrated Drone 

(DROID) UAV platform; 

 Improve the Auto GCAS design where necessary to support UAS-class aircraft; 

 Implement Auto-GCAS algorithms on a palm-sized personal computer; 

 Demonstrate portability of Auto GCAS algorithms; 

 Flight-test auto GCAS on a small UAS; and 

 Provide regression level-of-effort for future platform integration.” 

 

The intent of the last listed item was to minimize the effort required to implement Auto GCAS onto 

future platforms. Most of the items were blended as sub-objectives into the final project objectives. 

Additional discussions with the customer resulted in the following top-level project objectives, as 

documented in reference 8. 

 Demonstrate the portability of the Auto GCAS algorithms; 

 Demonstrate and evaluate the Auto GCAS integrated with a UAS platform mimicking a generic 

medium-to-large UAV hosted in a ground-based implementation; 

 Demonstrate and evaluate the Auto GCAS integrated with a UAS platform mimicking a generic 

medium-to-large UAV hosted in an on-aircraft-based implementation; and 

 Identify attributes of the Auto GCAS design which are not easily ported to other aerial vehicles. 

 

These top-level project objectives provided more explicit focus on generic UAVs as a long-term 

application for this technology demonstration. Generic UAVs were selected for two reasons. First, UAVs 

are prime candidates for incorporation of an Auto GCAS. Second, the National Aeronautics and Space 

Administration (NASA) Armstrong Flight Research Center (AFRC) owned and operated a broad range of 

UAVs, including an MQ-9 Reaper (General Atomics, San Diego, California) and an RQ-4 Global Hawk 

(Northrup Grumman Corporation, Falls Church, Virginia). The NASA UAVs provided logical paths 

forward for future Auto GCAS research projects. 

 



5 

 

The first three top-level objectives were met. The fourth top-level objective was indirectly met; no Auto 

GCAS attributes were identified that would be difficult to port onto other aerial vehicles. 

Design Philosophy and Top-Level Requirements 

An Auto GCAS Requirements Guide has been established by the Air Force Research Laboratory  

(ref. 9). This guide provides a step-by-step process to help any Auto GCAS project develop specific 

requirements based on the mission and maneuvering capability of that platform. The Auto GCAS 

Requirements Guide also enables Auto GCAS developers to make independent decisions regarding each 

design aspect while considering the lessons learned over several decades of Auto GCAS development on 

multiple past projects. To date, this Requirements Guide has been used to influence design decisions on the 

following Auto GCAS projects: 

 F-16 Auto GCAS Fighter Risk Reduction Program;  

 Small UAV Auto GCAS; 

 F-16 production Auto GCAS; 

 F-35 production manual and Auto GCAS; and 

 General Aviation Ground Proximity Warning System (a California Polytechnic State University, 

San Luis Obispo, student design project). 

 

The initial SUAV Auto GCAS project requirements were intentionally kept flexible in order to 

maximize the potential return on investment for this research project. As trade studies were accomplished, 

detailed design requirements for each Auto GCAS subsystem were refined within design documentation 

(ref. 10). The fundamental top-level project requirements for the SUAV project are summarized in the 

following sections so that related projects can identify similarities and differences. 

Test Aircraft Requirements 

It was decided early on that the test aircraft would be a Dryden Remotely Operated Integrated Drone 

(DROID) already owned and operated at AFRC. The project team developed the following fundamental 

aircraft capability requirements that became integral to the project: 

 “Provide for cost effective system integration; 

 Dramatically different platform than an F-16 (in terms of performance, maneuvering capability, 

sophistication, commercial off-the-shelf (COTS) components availability,  and the fact that it 

was unmanned);  

 Maneuvering authority sufficient to mimic a generic medium-to-large UAV (the DROID’s 

slower top speed was judged acceptable for the purpose of this testing); 

 Pre-existing onboard autopilot capable of executing the “generic UAV” terrain avoidance 

maneuvers based on commands from the host computer. This included auto-throttle capability. 

 Aircraft modifiable to install host computer; 

 Onboard GPS/INS; 

 Autonomous control from the ground control van (waypoint tracking); 

 Direct control from a ground cockpit (similar to an RPV); 

 Direct line-of-sight control by a safety pilot (to be located near the prominent terrain features); 

with more maneuvering authority than the generic UAV imitation; and 

 Approximate 1-hr mission length (constrained by fuel and batteries).” 
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See figure 1 for a comparison of the DROID test aircraft and the F-16 used during the Auto GCAS 

FRRP. 

 

 
 

Figure 1. Comparison of F-16 and DROID. 

Ground Control Van Requirements 

The ground control van needed to be capable of supporting all of the test aircraft requirements listed 

above. Another fundamental requirement for the ground control van was that it could be successfully 

deployed to remote desert locations. 

Host Computer Requirements 

It was originally intended that the Auto GCAS algorithms be hosted in their entirety on a palm-sized 

personal computer. The intent was that the host computer could be installed on the SUAV without excessive 

gross weight impacts. 

 

During development it was determined that this requirement could be met using a smartphone based 

on the Android™ platform (Google Inc., Mountain View, California). That decision was made in order to 

demonstrate a low-cost alternative and to maximize portability for future applications on other aircraft, 

especially within general aviation.  

 

The project team also developed the fundamental host computer requirements which were: 

 Commonly available computational device; 

 Provide a growth path for follow-on projects; 

 Capability to interface with on-board autopilot and other system components in either 

“on-aircraft” or “on-ground” configurations; 

 Sufficient storage for all Auto GCAS algorithms including the necessary Digital Elevation Model 

(DEM) data and flight-test data;   

 Sufficient throughput for Auto GCAS algorithms to execute within an acceptable frame time 

while also recording the designated flight test data; and 
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 Develop a method to allow an operator to interface with the host computer to control Auto GCAS 

setup and options from the ground control van. 

 

From project inception, it was understood that these fundamental requirements would be met through 

ongoing design tradeoffs. It was already known that the smartphone storage capacity (32 GB) was more 

than sufficient to store all of the Auto GCAS algorithms and DEM data for the entire Earth at a resolution 

acceptable for aircraft with predominant missions at high altitude, while also including local maps at the 

higher resolution needed for an SUAV test mission. The primary design constraint related to storage 

capacity was that Auto GCAS data were only recorded at the initiation of each avoidance maneuver.  

By comparison, the F-16 had recorded Auto GCAS data throughout the flight, which was much more useful 

for assessing nuisance potential in situations in which flyups did not activate. 

 

It was known that the smartphone throughput capacity was sufficient to complete the basic Auto GCAS 

functions at a rate that was considered adequate. In addition, the requirement could also be met by including 

a forecast for time delay as part of the Auto GCAS algorithm. Therefore, compensation for a slower frame 

rate could be achieved by increasing the time delay within the avoidance maneuver prediction portion of 

the algorithm. In other words, avoidance maneuvers would happen sooner if the frame rate were slower. 

The primary design constraint related to throughput capacity was the rate at which flight-test data could be 

recorded without interfering with the basic Auto GCAS functions.  

 

It was also known that the on-ground configuration would increase the risk of loss of communication 

between the aircraft and the ground control van, as compared to the on-aircraft configuration.  The 

on-ground configuration was implemented to evaluate Auto GCAS applications to future platforms that 

could not accept weight increase. The on-aircraft configuration was recognized as the more robust 

implementation and would be preferred for any future platform that could accept a small weight increase. 

Both configurations were designed and flight-tested in order to obtain a better understanding of the 

real-world performance. 

 

One of the original customer requirements was to “Tailor F-16 Auto-GCAS algorithms to the Dryden 

Remotely Operated Integrated Drone (DROID) UAV platform.” Part of the intent behind that requirement 

was to start with the actual F-16 Auto GCAS C++ code and adapt that code as needed. However, after 

initiating SUAV Auto GCAS design work it became clear that the available documentation was insufficient 

to understand the F-16 approach to modularity and was insufficient for third-party tailoring of the algorithm. 

Once aware of those difficulties, the customer agreed that project goals could be achieved without using 

the F-16 code as a direct basis. 

 

It also became apparent that using C++ code was not the best choice for implementation on a 

smartphone. The C++ code had seemed to be the logical choice because of the F-16 reference model and 

because most of the project programmers were already very familiar with C++ code.  The C++ code required 

a wrapper in order to run on the smartphone, but that interpreter did not include some of the required 

capability, such as trigonometric functions. Therefore it was decided to use Java™ because it was native to 

the smartphone and completely avoided the problems associated with trying to use the C++ code. The skill 

of the main SUAV Auto GCAS programmer facilitated a very smooth transition to Java™. 

Avoidance Maneuver Performance Requirements 

The initial concept for this project was to re-host the previous F-16 flyup maneuver and adapt it to the 

maneuvering capability of the generic medium-to-large UAV. The F-16 flyup maneuver can be most simply 

described as “roll toward wings-level and pull at 5 g until clear of terrain.” The F-16 flyup maneuver was 

basically a maneuver flying straight over terrain after reaching wings-level. That type of maneuver worked 

reasonably well for the F-16, given the large amounts of kinetic energy that could be turned into altitude. 



8 

 

 

Not surprisingly, the simulated medium-to-large UAV had much more limited climb capability than 

did the F-16. Early design studies indicated that if a straight avoidance maneuver analogous to the F-16 

flyup was used with medium-to-large UAV climb performance, the avoidance needed to be initiated many 

thousands of feet prior to reaching tall terrain features. Avoidance maneuvers induced by distant mountains 

would be considered an extreme nuisance if the operator intended to turn away from the mountains long 

before reaching them. 

 

Based on that result, the design philosophy changed to incorporate the option for two turning avoidance 

maneuvers in addition to the straight maneuver. All three avoidance maneuvers were pre-defined to mimic 

typical medium-to-large UAV performance using the following autopilot command targets as requirements: 

 Climb and descent rate: 1000 fpm; 

 Bank angle: 40 deg; 

 Roll rate: 50 deg/s; and 

 Airspeed: 60 knots indicated airspeed (KIAS) (the middle of the DROID speed range). 

 

These values were not selected to precisely model a specific UAV, but were selected to approximate 

the general capabilities of medium-to-large UAVs. The DROID was capable of much higher maneuvering 

levels in each axis. 

 

The target airspeed of 60 KIAS was chosen somewhat higher than the airspeed for optimal turn radius 

of the DROID. This was primarily done to be more representative of the higher airspeeds typical for larger 

UAVs. 

Trajectory Prediction Requirements 

It was recognized early on that the existing simulation of the DROID was not very representative of the 

way the actual airplane flew. Updating the DROID simulation was considered out of scope for the SUAV 

Auto GCAS project, so the DROID simulation could not be used to help design the initial avoidance 

maneuver trajectory predictions. 

  

Since the avoidance maneuvers were constrained to three basic autopilot commands (climb, bank, 

speed), a high-fidelity simulation model of the DROID was not necessary. All of the information necessary 

for trajectory predictions was obtained directly from preliminary flight-testing of the three avoidance 

maneuvers (left, straight, right). That process is described in more detail in the “SUAV Auto GCAS ‘Predict 

Avoidance Trajectories’ Module” section below. 

 

The fundamental requirements for the trajectory prediction were to: 

 Use a trajectory prediction divided into three basic phases: a time-delay phase, a capture phase, 

and a steady-state phase. These phases are discussed in more detail in the “Generic ‘Predict 

Avoidance Trajectories’ Module” section below. 

 Use an adjustable time-delay phase to compensate for communications lag between components, 

and for changes to the basic frame rate. 

 Use adjustable parameters for the capture phase to reflect actual aircraft responses, such as roll 

onset rate and g-onset rate. 

 Use values during the steady-state phase that are sustainable by the aircraft and onboard autopilot. 

 Allow parameters to be functions of other variables so they can be tuned for any flight condition 

dependencies observed during flight-testing.  

 



9 

 

In order to obtain the flight-test data necessary to tune the trajectory prediction, an additional 

fundamental requirement was to:  

 Implement a method to initiate avoidance maneuvers based on a manual command, independent 

of terrain proximity. 

Digital Elevation Model Data Requirements 

Many military Auto GCAS implementations use no active terrain sensors, so no radio frequency 

emissions were required. This differs from many terrain-following systems that often relied on 

forward-looking radar or radar altimeters. The only sensors used for Auto GCAS typically had already been 

installed for other purposes. 

 

The main SUAV Auto GCAS sensor was a standard blended GPS/INS as already installed on the 

DROID.  Similar blended GPS/INS units had already become common on a wide variety of aircraft types. 

A GPS/INS that is already installed for navigation applications does not need to be considered part of the 

cost for an Auto GCAS. The main Auto GCAS utilization of GPS/INS data was to accurately locate  

the aircraft longitude, latitude, and altitude over a matrix of DEM data.  

 

The intention from the beginning of this research project was that the project expand the concepts for 

using DEM data beyond the original F-16 implementation (as discussed in references 2 and 3). In particular, 

the intent was to demonstrate and evaluate the DEM data compression and re-rasterization methodology 

developed by NASA in support of early Auto GCAS tradeoff studies for another fighter aircraft. The 

fundamental requirements for using DEM data were to: 

 Demonstrate the use of DEM source data from the National Elevation Dataset (NED).  

A description of the NED is contained in the section “Generic ‘Sense Terrain’ Module” below. 

Data from the NED had not been used on previous Auto GCAS projects. 

 Demonstrate the use of existing NASA DEM data compression techniques to store DEM data for 

the entire Earth with vertical and horizontal accuracy adequate to support air-superiority fighter 

missions. 

 Demonstrate the use of existing NASA DEM data lossless compression techniques to maintain 

high vertical and horizontal accuracy in the specific test areas to be used by the test aircraft. 

 Demonstrate that the compressed DEM data can be used in a real-time aviation environment. 

 Use a basic resolution for the re-rasterized DEM data of 3 arc-s (equivalent to the F-16). 

 Develop appropriate scan techniques for lateral escape terrain avoidance maneuvers. 

Flight-Test Analysis Support Requirements 

In addition to the system requirements for the overall SUAV Auto GCAS design (including data 

recording), two additional features were implemented to support flight-test analysis. These included:  

 Use of an off-the-shelf laser altimeter to provide an alternate source for AGL data; and  

 Use an off-the-shelf high-definition tail camera to capture clear detail of terrain proximity during 

flight tests. 

Flight-Testing as Part of the Design Process 

Several DROID characterization flights and portions of the first SUAV project flights were used as 

inherent elements of the SUAV Auto GCAS design process. Therefore, the design impacts obtained from 

those flights are included in the following system overview descriptions for each module. The remaining 
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SUAV project flights were more focused on the intended Auto GCAS development and evaluation and are 

discussed in the “Test Results” section below.  

Research System Overview 

The SUAV Auto GCAS research project consisted of three primary elements: the DROID, the ground 

control van, and the Android™ platform smartphone hosting the Auto GCAS Algorithms. Additional 

background on the overall design can be found in the SUAV System Design Document (ref. 10). 

Dryden Remotely Operated Integrated Drone (DROID) Test Aircraft 

  The DROID test aircraft was part of a fleet of four similar aircraft owned by NASA AFRC and 

operated by the AFRC Model Shop.  The DROIDs have been used for a variety of purposes including pilot 

training, as research project test beds, and as part of student outreach programs (ref. 11). 

 

The DROID was based on the Bruce Tharpe Engineering (Rogue River, Oregon) Modified Super Flyin’ 

King kit aircraft. The basic specifications were:  

 Wing span: 9 ft 8 in;  

 Total operating weight: 58 lb;  

 Power rating: 11 HP;  

 Maximum maneuvering speed (Vmax): 80 KIAS; and  

 Flight duration: 1.1 hr. 

 

The SUAV Auto GCAS project used DROID 2 (fig. 2) which included the following project-specific 

modifications:  

 Custom mounts for the Android™ platform smartphone;  

 Laser altimeter (built by Latitude Engineering, Tucson, Arizona);  

 High-definition video camera mounted on the tail;  

 Extra batteries;  

 Empennage stabilization support modification (wires were run from the vertical tail to the 

horizontal tail, as can be seen in fig. 2). 

 

 
 

Figure 2. DROID research test aircraft. 
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During the SUAV Auto GCAS project, a pilot with direct line of site was always in control of the 

DROID during takeoff and landing. Once airborne, that pilot normally transferred control to a ground 

control operator (GCO) stationed inside the ground control van. Another aircraft control option was to 

operate the DROID in a manner similar to a remotely piloted vehicle (RPV) from a small cockpit inside the 

ground control van. A safety pilot using a handheld radio controller (fig. 3) had the responsibility of taking 

control if the Auto GCAS algorithms initiated unwarranted maneuvers.  

 

On a few test missions during which the avoidance maneuvers were accomplished close to the ground 

control van, takeoff and landing was accomplished by the safety pilot. However, on most test missions the 

avoidance maneuvers were accomplished well away from the ground control van, so the safety pilot  

(with the handheld radio controller) needed to be much closer to the test location. In those situations another 

takeoff and landing pilot used a separate handheld controller that was wired directly to the ground station 

inside the ground control van. Once airborne, the takeoff and landing pilot typically transferred control to 

the GCO, who controlled the aircraft using standard DROID control options (mainly waypoints) to put the 

aircraft into holding patterns and set up the test maneuvers.   

 

All of those control options were processed by the onboard Piccolo II autopilot (Cloud Cap Technology, 

Hood River, Oregon). The Piccolo II autopilot, shown in figure 4, measures 5.6 by 1.8 by 2.4 in and weighs 

7.7 oz. The Piccolo II autopilot was used as an essential component, not just for basic aircraft control, but 

also as the primary source of input data for the Auto GCAS algorithm, the mechanism for responding to 

avoidance maneuver commands, and as a primary instrumentation source for post-flight data analyses. The 

Piccolo II autopilot communicated with a portable ground station located inside the ground control van 

using a 900-MHz, 1-W data link. 

 

  
 

Figure 3. Safety pilot handheld controller. 

 

Figure 4. Piccolo II autopilot. 
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Ground Control Van 

The primary mission control for all SUAV Auto GCAS test missions was from the ground control van 

(fig. 5). A safety pilot (or the takeoff and landing pilot) was always ready to take direct control of the 

DROID for any reason, including loss of the communications link from the ground control van. 

 

 
 

Figure 5. DROID and ground control van. 

 

The interior of the ground control van included the following standard elements: 

 A COTS portable ground station (fig. 6) provided the necessary link to the onboard Piccolo II 

autopilot through antennas set up on the ground control van. 

 A laptop computer with COTS Piccolo command center (PCC) (Cloud Cap Technology, Hood 

River, Oregon) software installed (fig. 7) enabled the GCO to control the DROID. Control inputs 

were accomplished by a combination of keyboard and mouse commands.  

 A small ground cockpit (fig. 8) provided the option for a research pilot to control the DROID as an 

RPV. The ground cockpit was assembled from a combination of COTS and custom components. 

 Ultra-high frequency (UHF) and very high frequency (VHF) radio (for voice communications). 
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Figure 6. Portable ground station. 

 

Figure 7. Piccolo command center (installed on 

laptop). 

 

 
 

Figure 8. Ground cockpit. 

 

 Additional ground control van elements installed in support of the SUAV Auto GCAS project 

included:  

 A laptop computer with Auto GCAS user interface (UI) software installed; and  

 Wind station equipment and laptop display. 
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The ground cockpit is shown in figure 8. The interior setup within the ground control van is shown in 

figures 9 (looking aft) and 10 (looking forward). 

 

 

 
 

Figure 9. Ground control van interior (looking aft). 

 

 

 
 

Figure 10. Ground control van interior (looking forward). 

Physical Components of SUAV Auto GCAS 

A simplified diagram of the essential Auto GCAS components for the smartphone-on-ground 

configuration is shown in figure 11(a). The components shown in blue were standard for the DROID and 
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ground control van. Once the DROID was airborne, the GCO normally entered control commands into the 

PCC laptop. Control commands typically directed the DROID to a series of waypoints in a predefined 

pattern.   

 

The portable ground station provided a two-way command and control link between the PCC laptop 

and the Piccolo II autopilot on board the DROID. 

 

The components shown in gold in figure 11(a) were unique to Auto GCAS. The UI laptop provided 

interaction with the Auto GCAS algorithms hosted on the smartphone. The UI laptop also provided the 

operator with the ability to set up the Auto GCAS mode states and algorithm options, along with displays 

for monitoring Auto GCAS status. The UI laptop implemented Auto GCAS avoidance maneuver 

commands through the portable ground station to the Piccolo II autopilot.  The portable ground station 

basically acted as a pure feed-through in both directions. The UI laptop also provided a way to record data 

independent of the smartphone or the on-board Piccolo II autopilot.   

 

A simplified diagram of the essential Auto GCAS components for the smartphone-on-aircraft 

configuration is shown in figure 11(b). 

 

In addition to the smartphone installed on the DROID, a Gumstix® (Gumstix, Inc., San Jose, California) 

personal computer was needed to provide an interface between the USB connection on the smartphone and 

the RS-232 connection on the Piccolo II autopilot. The UI Auto GCAS avoidance maneuver processing and 

Piccolo UI software were ported to the Gumstix® personal computer, and a messaging interface was added 

to both components. In this configuration, all Auto GCAS avoidance maneuver decisions were made on 

board the DROID without the need for aircraft state data to be received on the ground and avoidance 

maneuver commands to be sent back up to the aircraft. The UI laptop still communicated with the 

smartphone through the portable ground station and Piccolo II autopilot to set up Auto GCAS mode state 

and algorithm options, and also provided the UI operator with displays by which to monitor Auto GCAS 

status. 

 

  
 

Figure 11(a). Phone-on-ground. 

 

Figure 11(b). Phone-on-aircraft. 

 

Figure 11. System diagrams. 
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Software Components of SUAV Auto GCAS 

One of the key concepts for the overall ACAT program was to develop a modular architecture that 

could be applied to a variety of aircraft platforms. The F-16 FRRP Auto GCAS project began that process, 

and the SUAV Auto GCAS project further developed the modularity of each software component.  

A top-level diagram of the SUAV Auto GCAS modular architecture is show in figure 12. 

 

 
 

Figure 12. Top-level modular architecture. 

 

A general description of the modular architecture is provided in this paragraph and more detailed 

functionality of each of the blocks is described in the following sections. The “Sense Own-State” module 

provided basic aircraft state information to the “Predict Avoidance Trajectories” module, which calculated 

the three-dimensional flightpaths for each of the three options for an avoidance maneuver (left, straight, 

and right). The “Sense Terrain” module generated a local map of digital terrain data from a much larger 

DEM. That process included decompression of the highly compressed data stored within the DEM. The 

“Identify Collision Threats” module scanned the digital terrain near each of the three trajectory predictions 

and converted the results into two-dimensional terrain profiles. The scanning process included uncertainties 

to account for the fact that the actual avoidance maneuver might not follow the predicted trajectory exactly. 

The “Determine Need to Avoid” module compared the three predicted trajectories with the associated 

two-dimensional terrain profiles. When the last of those three trajectories intersected with its terrain profile, 

an avoidance maneuver in that direction was communicated to the “Avoid” module, which then sent the 

appropriate commands to the autopilot. The “Common Interface” modules represent integrity checks that 

were accomplished at various points in the algorithm. 

 

Due to the limited budget and shift to using Java™ as the programming language for the SUAV Auto 

GCAS code, the resulting implementation may not be as portable to other platforms as was originally 

intended. The basic functionality shown in figure 12 was implemented, but the code itself may not be as 
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easy to tailor to future applications as desired. The concurrent iGCAS project has developed a manual 

warning system for general aviation use, hosted on a smartphone, and has further matured the modular 

architecture and portability.   

 

Some of the modules shown in figure 12 are fairly independent of the specific platform; other modules 

must be tailored for the characteristics of the intended platform. However, even the modules that require 

tailoring can use common design techniques and can build on the prior experience of similar platforms 

(fighters, UAVs, helicopters, transports, et cetera).   

 

The following sections describe each module at a generic level and then more specifically as applied 

on the SUAV Auto GCAS project. Some of the generic module descriptions also provide an overview of 

techniques used on the F-16 FRRP (ref. 2) to show that Auto GCAS can be successfully implemented using 

varied methods. 

 

The SUAV-specific modules were generally coded within the smartphone software, but a few elements 

(such as signal conditioning) were coded within the UI software. Future collision avoidance projects may 

choose to implement signal conditioning as part of the “Sense Own-State” module. 

 

Generic “Sense Own-State” Module 

The generic “Sense Own-State” module was a basic part of the modular architecture.  Typically, the 

primary sources for these state values were outputs from a GPS/INS and an air data system, as represented 

by figure 13. The main purpose for this module was to provide enough information about the current state 

of the aircraft to support trajectory estimations far enough into the future to be useful for avoiding collisions. 

 

 
 

Figure 13. “Sense Own-State” module. 

 

For high-performance aircraft, that extrapolation into the future could comprise several miles but might 

only cover 10 or so seconds. For lower-performance aircraft, that extrapolation could also need to be several 

miles (in order to ensure clearance over tall terrain features) but might cover more than 60 s. Those 

extrapolation techniques are covered in the discussion of the “Predict Avoidance Trajectories” module. 

This section limits discussion of the “Sense Own-State” module to the source data used to accurately locate 

the aircraft prior to the extrapolation.  
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It may be surprising that Auto GCAS does not need a dedicated sensor for altitude above ground level 

(AGL). Auto GCAS algorithms only rely on the GPS/INS altitude relative to a digital terrain map. 

Therefore, Auto GCAS does not require a radar altimeter or laser altimeter. This is a significant advantage 

for military aircraft, which need to minimize emissions that can reveal aircraft position to the enemy. Any 

aircraft needing Auto GCAS can also avoid the extra cost associated with installing a dedicated AGL sensor.   

 

Since many modern aircraft have access to high-quality position information, this module was much 

less of a challenge than it had been in past decades. Embedded GPS/INS (EGI) capability has become 

standard on fighters and UAVs and is even becoming common on general aviation aircraft.  

 

The primary GPS/INS outputs of latitude, longitude, and altitude are essential for any type of collision 

avoidance system.  The accuracy of those outputs has evolved such that navigation uncertainty is no longer 

a significant impediment to collision avoidance systems. 

 

Uncertainties in latitude and longitude can now be encompassed by horizontal errors of 50 ft or less. 

However, the remaining navigation uncertainty is still accounted for, as discussed in the “Generic ‘Identify 

Collision Threats’ Module” section below. 

 

The vertical accuracy of many GPS/INS altitude outputs has also improved dramatically. Wide Area 

Augmentation System (WAAS) GPS/INS units can provide vertical accuracies within 40 ft. However, 

global positioning system/ inertial navigation system units can output altitude values in more than one 

reference frame. The most common are mean sea level (MSL) and World Geodetic System - 1984 

(WGS84). For example, the F-16 used an MSL-based reference frame, whereas the Piccolo II autopilot on 

the SUAV Auto GCAS project used a WGS84 reference frame. Either altitude reference frame can work 

for collision avoidance systems, but care must be taken to ensure that all modules use the same reference 

frame. A factor for the vertical accuracy of the GPS/INS contributed to the generalized “built-in” buffer as 

discussed in the section “Generic ‘Determine Need to Avoid’ Module,” below. 

 

Any production implementation of Auto GCAS on a low-performance aircraft (such as a UAV or many 

general aviation aircraft) will probably require some sort of density altitude state to use as an input to the 

trajectory prediction. The impact of non-standard day performance on the trajectory prediction could be 

very significant, particularly for operations near the service ceiling. In practice, a sensor for outside air 

temperature (OAT) may be sufficient, but each low-performance aircraft may have unique requirements. 

   

Global positioning system / inertial navigation system units normally provide additional aircraft state 

information that is useful for collision avoidance systems. Euler angles, angular rates, and linear 

accelerations may all be important inputs to a collision avoidance system, depending on the platform. More 

of those terms would be needed for a high-performance aircraft such as a fighter; fewer terms may be 

sufficient for a lower-performance aircraft such as a UAV or transport. 

 

Air data systems are another fundamental source of aircraft state information that might be needed as 

input data for collision avoidance systems.  Some form of airspeed is probably important because it directly 

affects the maneuvering capability of any platform. The overall pitch and roll authority of a given platform 

will be a function of airspeed, as will the initial dynamic response to an avoidance maneuver command. 

Other air data terms such as angle of attack and sideslip may also be candidates for inputs to a collision 

avoidance system for some platforms, especially if improved-accuracy wind estimates are needed.  

 

Many current-generation GPS/INS systems also provide a wind estimate by comparing inertial and air 

data sources. The need for wind as an input to a collision avoidance system will depend on the platform. 
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High-speed aircraft (such as fighters or commercial transports) may not need a wind estimate. Low-speed 

aircraft such as UAVs or general aviation aircraft may have a more significant need for a wind estimate.  

 

As a rule of thumb, if the expected winds that may be encountered are less than 15 percent of the slowest 

airspeed for a given platform, wind estimates will probably not be needed and the remaining wind effects 

can be accounted for as part of other uncertainties. If the expected winds that may be encountered are greater 

than 30 percent of the slowest airspeed, it is likely that some sort of wind estimate will be needed. Those 

rule-of-thumb numbers are based on the F-16, which did not need wind estimates, and the SUAV, which 

could have benefited from improved wind estimates. Any wind expectations between 15 percent and  

30 percent of the slowest airspeed on a given platform would need to be more thoroughly evaluated to 

determine whether or not a wind estimate is appropriate. 

 

The preceding discussion of wind estimates only applies at the state of the aircraft leading up to 

avoidance maneuver initiation. Any wind changes that occur between the initiation of an avoidance 

maneuver and the termination of that maneuver will be more difficult to properly address. Most wind 

estimates depend on the aircraft being in relatively stable flight, and the accuracy of those estimates tends 

to degrade during maneuvering. Most wind estimates assume zero sideslip, but some sort of sideslip state 

sensor may help improve wind calculations. Wind shear as a function of altitude or horizontal position 

could have a significant impact on the repeatability of the overall collision avoidance algorithm.  

 

Optimizing the use of wind estimates for collision avoidance systems is a significant technical area that 

still needs to be developed. The SUAV Auto GCAS project began that development, but more work is 

needed. Additional discussion of the SUAV experience with winds is described throughout this report. 

 

 Recommendation 1 (R1): Future Auto GCAS projects should consider applying resources to 

develop improved integration of in-flight wind estimates with the Auto GCAS algorithm. 

 

Regardless of the input source being used, consideration should be given to what type of signal 

conditioning needs to be applied. The noise level inherent to individual parameters can dictate how much 

smoothing (if any) is needed. The most important outputs of a GPS/INS (latitude, longitude, and altitude) 

have most likely gone through a Kalman filter of some type, so a certain amount of smoothing can be 

expected in those source parameters. Other outputs, such as longitudinal acceleration and roll rate, may 

have high residual noise levels and an appropriately-designed smoothing algorithm may be warranted.  The 

“SUAV Auto GCAS ‘Common Interface’ Module” section below contains additional discussion of signal 

conditioning as applied on the SUAV project. 

 

A related consideration is the sample rate for each source of state data.  Clearly, the sample rate needs 

to be fast enough to allow the ensuing trajectory predictions to keep up with ongoing aircraft motions. 

High-performance (or high-speed) aircraft will require a higher sample rate than low-performance / 

low-speed aircraft. If the computational capability of the intended platform is limited enough to force a low 

sample rate, the collision avoidance algorithm can compensate for that by increasing the time-delay phase 

of the trajectory prediction (discussed further in the “Predict Avoidance Trajectories” module sections 

below). However, there is a limit, and at some point that extra time delay could contribute to early avoidance 

maneuver activations and could be considered a nuisance. This is one of the motivations for a 

clearly-defined nuisance criterion on any collision avoidance project (as discussed in the “Available 

Reaction Time” section below). 
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SUAV Auto GCAS “Sense Own-State” Module  

This section provides some insight into the choices that were made for the input parameters that fed the 

SUAV Auto GCAS algorithm. A summary of the fundamental input parameters follows: 

 

 Parameter              Source 

 Latitude  Piccolo II GPS/INS 

 Longitude  Piccolo II GPS/INS 

 Altitude (WGS84) Piccolo II GPS/INS 

 Calibrated airspeed Piccolo II air data system 

 Bank angle  Piccolo II GPS/INS 

 Dive angle (derived) Piccolo II GPS/INS (based on climb rate and an estimate for true   

airspeed) 

 True heading  Piccolo II GPS/INS 

  

A summary of the secondary input parameters follows: 

 

 Parameter                        Source 

 Load factor   Piccolo II GPS/INS 

 Roll rate   Piccolo II GPS/INS 

 Wind speed (derived)  Piccolo II GPS/INS/air data 

 Wind bearing (derived)  Piccolo II GPS/INS/air data 

 

The fundamental input parameters were essential to proper operation of the SUAV Auto GCAS 

algorithm. The secondary input parameters were implemented in order to assess their importance and to 

evaluate the need for those parameters in similar applications.  

 

None of the fundamental input parameters required special signal conditioning. Those parameters were 

adequate as they were output from the Piccolo II GPS/INS or air data system. During the early SUAV Auto 

GCAS design process it was decided that the only input parameters that required signal conditioning were 

the secondary input parameters roll rate and the wind values. The “SUAV Auto GCAS ‘Common Interface’ 

Module” section below contains additional discussion of signal conditioning for those parameters. 

 

Generic “Sense Terrain” Module 

Although this module was implemented as part of the SUAV Auto GCAS project, the resulting methods 

have much broader applications to any Auto GCAS project. In particular, very efficient techniques have 

been developed to utilize DEM at the core of this module. As represented in figure 14, the basic components 

of this module include DEM that cover a large enough region to support mission requirements, and a map 

handler to convert the very large regional map into local maps for the immediate area around the aircraft. 
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Figure 14. “Sense Terrain” module. 

 

An overall guiding principle was to provide a wide variety of users with the “best available” DEM for 

input to the Auto GCAS algorithms. In this context, “best available” meant high resolution and accuracy as 

well as the DEM source being widely accessible (lacking the classification restrictions of some military 

sources or the cost implications of some private sources). 

 

After considerable study it was determined that the best widely-accessible DEM source for Auto GCAS 

applications was the NED produced by the United States Geological Survey (USGS).  The NED provides 

horizontal resolutions of 1/3 arc-s (32 ft or better), and has an advertised vertical accuracy of 8 ft root mean 

square error (RMSE). The NED-based DEM are only available for the contiguous United States (CONUS) 

and parts of Alaska. 

 

The second-best widely-accessible DEM source for Auto GCAS applications was the database resulting 

from the Shuttle Radar Topography Mission (SRTM), produced by the National Geospatial-Intelligence 

Agency (NGA) and NASA. The publicly available SRTM database provides horizontal resolutions of  

1 arc-s (98 ft) for the United States and 3 arc-s over most of the Earth’s landmass. This SRTM database has 

an advertised vertical accuracy of less than 32 ft for most areas within coverage. The SRTM database covers 

approximately 80 percent of the land mass of the Earth (between 60 deg north latitude and 56 deg south 

latitude). The NGA publishes the SRTM database in the standard Digital Terrain Elevation Data (DTED) 

format, which is a format different than that of the NED. 

 

Several additional DEM sources provide coverage of the remaining areas of the Earth, but often at 

lower resolutions and degraded vertical accuracy. One of those sources has been labeled “Legacy” DTED 

to distinguish from SRTM DTED. Legacy DTED is also available from the NGA and has been a common 

source for terrain data prior to SRTM. Although Legacy DTED was a useful source in its time, it contains 

many discontinuities across longitudinal-latitudinal boundaries and localized artifacts that can result in 

vertical errors of hundreds of feet (in some cases there exists over a thousand feet of vertical error).  

 



22 

 

The goal of the SUAV Auto GCAS “Sense Terrain” module was to combine the best DEM sources for 

a given area into a single contiguous dataset for the entire Earth. Therefore, the NED was used for the 

CONUS, the SRTM database was used for most of the remaining land mass of the Earth, and other sources 

were used for landmasses not covered by the NED or SRTM. 

 

A related goal was to demonstrate advanced DEM compression and re-rasterization concepts in a 

practical flight-test environment. Part of that goal included demonstrating how the levels of DEM accuracy 

could be customized in different areas based on the mission needs of the aircraft. 

 

As an example, an air-superiority fighter mission does not require extensive operations at low altitudes. 

Therefore an Auto GCAS could be developed without the need for high-accuracy DEM over most of the 

surface of the Earth, over which the aircraft would primarily be in transit at high altitudes.  However, to 

avoid nuisance Auto GCAS activations, a higher level of DEM accuracy would still be required for the 

terrain within the airspace around typical operating bases.  

 

It was also recognized that Auto GCAS would become much more practical for many platforms by 

completely avoiding the need to load a specific regional DEM for each mission. In order to achieve all of 

the goals listed above, NASA developed numerical techniques to generate Compressed Digital Terrain 

Maps (CDTM) while maintaining minimal loss of accuracy. 

 

The generic example CDTM installed for SUAV Auto GCAS flight-testing achieved a compression 

ratio of approximately 2500 to 1. That level of compression enabled DEM for the entire Earth to be reduced 

in size from 400 GB to 170 MB. This was primarily accomplished using a combination of two numerical 

methods that were well-suited to compress large amounts of terrain elevation data. These two methods were 

known as “tip-tilt” and “semi-regular tree networks.”  

 

The combined mathematical methods nested a tip-tilted facet (sloped tile) fitting method within a 

recursive subdividing algorithm. The method began with a single very large facet of 1 deg x 1 deg  

(60 nm x 60 nm at the Equator) and used linear regression to fit the sloped tile to the terrain data underneath 

it.  If the specified worst-case vertical or horizontal accuracy were exceeded, that facet was subdivided. The 

overarching recursive process continued subdividing the area until the maximum error between all of the 

facets and terrain data underneath them satisfied the targeted error tolerance over the entire cell. With this 

approach, a large global regular network of 1 deg x 1 deg cells (divided along major latitudes and 

longitudes) was produced as a database, where each 1 deg x 1 deg cell contained a semi-regular network of 

free-edged tip-tilted facets of varying size covering the entire cell.  

 

An example of the tip-tilt concept is shown in figure 15. The enormous advantage of the tip-tilt 

technique is that it more closely matches natural terrain, as opposed to typical DEM flat, rectangular 

polygons arranged in a fixed grid (fig. 16). As can be seen, the tip-tilt facets tend to have errors at the 

corners. These corner errors can appear large compared to neighboring facets, but they are actually much 

smaller overall than similar errors that are induced along the edges of the flat rectangular DEM polygons. 
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Figure 15. Example of tip-tilt concept. 

 

Figure 16. Example of typical DEM data. 

 

The semi-regular tree compression technique allowed CDTM to be generated using facets that did not 

need to be arranged in a consistent “n x n” grid. Therefore, a single facet could represent many square miles 

over the Great Plains of the central USA. Many more facets were needed to cover the Rocky Mountains, 

but the sloped facets still fit those natural features much better than did flat rectangular polygons. The result 

was a dataset that was much smaller in size than would otherwise have been obtainable. 

 

The main product of the NASA CDTM development effort was a very flexible software package that 

can customize a CDTM to meet the requirements of any Auto GCAS project. That product is called the 

Global Elevation Data Adaptive Compression System (GEDACS).  NASA is in the process of applying for 

a patent for the GEDACS process (ref. 12) and the software will be available for public use via NASA 

license. Figure 17 shows an example GEDACS output representing the combined application of the tip-tilt 

technique and the use of semi-regular tree networks. 

 

 
 

Figure 17. Example of GEDACS CDTM product. 
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The GEDACS was also designed to provide improved vertical accuracy in particular areas where a 

given platform requires low-altitude operations, such as near airfields or along low-altitude training routes.  

The GEDACS provides plenty of flexibility to meet the individual requirements of a given platform while 

minimizing storage space.  

 

In the case of the generic example of worldwide CDTM used for SUAV Auto GCAS, the worst case 

for either vertical or horizontal accuracy was specified to be 500 ft anywhere on the Earth. A vertical 

accuracy of 500 ft would probably provide adequate Auto GCAS functionality for an aircraft that does not 

need to spend much time at low altitudes other than for takeoff and landing. Therefore, the SUAV Auto 

GCAS CDTM with worldwide coverage could be applicable to high-altitude platforms including many 

UAVs, airline transports, and even fighter aircraft that do not have a requirement for low-altitude strike 

missions.   

 

Once the generic example of worldwide CDTM had been generated, the SUAV aircraft was used as a 

testbed to demonstrate that this CDTM data could be accessed and used in a real-time flight-test 

environment. A key part of that demonstration included the ability to re-rasterize the CDTM in real time so 

it could be accessed by Auto GCAS using a typical rectangular grid in the local area around the aircraft. 

That re-rasterization logic was not a trivial design effort. It required interpretation of data that could 

represent many square miles or a few hundred square feet, followed by conversion of those data into a 

rectangular grid.  

 

Since any aircraft equipped with Auto GCAS will constantly be moving from one DEM area to another, 

a map handler was developed. The map handler was designed to add new local maps as the aircraft moves 

forward, and to remove local maps covering areas behind the aircraft (as those maps are no longer needed). 

 

SUAV Auto GCAS “Sense Terrain” Module  

In addition to the generic example of worldwide CDTM, local areas were also customized for SUAV 

flight-test operations.  These higher-accuracy portions of the CDTM encompassed most of the Edwards Air 

Force Base (EAFB) restricted area, including much of the extreme terrain in the southern Sierra Mountains, 

and were considered nearly “lossless” compared to the NED source data. The large EAFB restricted area 

also included the three SUAV test areas: the northern part of Rosamond Lakebed, the North Base runway 

area at EAFB, and the GCAS Valley (near Fremont Peak). Only the GCAS Valley test area is discussed in 

detail in this report. The other two test areas were primarily used for functional checkout flights and 

preliminary flight tests.  

 

The EAFB restricted area map was generated by GEDACS using a worst-case allowable threshold of 

20 ft.  That small error value resulted in GEDACS selecting the minimum facet size throughout the 

restricted area (the minimum facet size had been specified as approximately 3.5 arc-s on each side). Using 

these techniques helped maintain the CDTM vertical accuracy in the flight-test areas at approximately  

10 ft or better compared to the NED source data. 

 

In order to obtain an independent source for the key terrain features in the GCAS Valley area, 

representatives from NGA stationed at EAFB were requested to conduct a ground survey. The results of 

that survey are discussed and compared with the customized CDTM data in the “Ground Survey at GCAS 

Valley Test Site” section of this report, below. 

 

Generic “Common Interface” Module  

The primary function of the generic “Common Interface” module (fig. 18) was to communicate all of 

the input parameters needed by the Auto GCAS algorithm. This module also acted like an “input voting 
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plane.” The intent was to accomplish integrity management checks on the incoming data to ensure that 

appropriate values were fed to the Auto GCAS algorithms. However, those inputs were typically only 

single-string, so there were no redundant inputs to compare and voting logic could not be applied. 

Therefore, the main goal was to ensure that the incoming data were not stale or otherwise corrupted. 

 

  
 

Figure 18. “Common Interface” module. 

 

One of the general techniques used was heartbeat checks. Heartbeat checks have been typically applied 

between hardware components. The sending component includes a heartbeat signal as part of its output data 

structure, and the receiving component checks to confirm that the heartbeat changes in the expected way. 

If the received heartbeat does not change, a FAIL state is set to inhibit Auto GCAS avoidance maneuvers. 

 

Another type of check used was called a “reasonableness check,” and was used to ensure the incoming 

data were within a reasonable range of values.  For example, altitude inputs can be checked for values that 

are considered excessively high or excessively low for the expected operations of an aircraft. If an altitude 

input for an SUAV had a value of 50,000 ft, those data most likely would be corrupt and should not be used 

in the avoidance maneuver decision logic. 

 

Care must be taken to not over-design reasonableness checks. It is very easy for designers to come up 

with a wide range of creative checks that may not function as intended with real-world data. Noisy input 

data can be particularly troublesome if reasonableness checks are applied that use differentiation and 

therefore amplify the noise. Noise amplification can lead to inappropriately setting FAIL states and inhibit 

avoidance maneuvers when there is nothing that is actually wrong with the input data stream. 

 

It is also advisable to incorporate integrity management checks that are self-recovering. If the 

conditions that induced an invalid check are no longer true, the FAIL state should be removed automatically 

and allow Auto GCAS avoidance maneuvers to resume as needed.  

 

The F-16 Auto GCAS implementation also used a number of interlocks. Interlocks prevented avoidance 

maneuver commands from being initiated when outside of the intended design envelope (that is, too slow, 
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gear down, aerial refueling door open, excessive uncertainty in the navigation system accuracy,  excessive 

angle of attack, relevant failure modes, et cetera).  

 

Developmental flight-test experience with the F-16 Auto GCAS has indicated the need for another 

monitor to check for corrupted digital terrain data. Although several methods might be used to accomplish 

this check, the goal would be to ensure that the DEM loaded into the aircraft has not been corrupted on the 

data cartridge since the time it was downloaded from the original source data (that is, via a mission planning 

process). The F-16 Auto GCAS designers implemented a checksum for groups of digital terrain data within 

the overall dataset. If the expected checksum for a given group did not match the checksum from the source 

data, Auto GCAS avoidance maneuvers were inhibited. After implementation, this method worked very 

well to isolate and protect against nuisance activations in areas with corrupted terrain data.   

 

Recommendation 2 (R2): Future Auto GCAS projects should consider implementing a monitor 

to isolate and protect against corrupted digital terrain data. 
 

Recent experience during operational testing of the F-16 Auto GCAS indicated the need for another 

type of integrity management monitor. The F-16 Auto GCAS implementation depended upon a flyup 

request bit that was communicated from the single-thread avionics system to the quad-redundant flight 

control system. No problems were observed during several hundred flights of developmental testing. 

However, on one sortie during operational testing it was determined that an unusual multiplexer (mux) bus 

contention problem induced by one of the remote terminals on the mux bus could lead to a false flyup 

request bit.  

 

Recommendation 3 (R3): Future Auto GCAS projects should consider implementing a monitor 

to protect against false requests for avoidance maneuvers. 

 

Although Recommendations 2 and 3 were primarily based on experience with Auto GCAS as 

implemented on the F-16, similar hypothetical situations could also have occurred with the SUAV 

implementation. The resultant lessons learned will still have important significance for future Auto GCAS 

projects. 

 

SUAV Auto GCAS “Common Interface” Module  

The SUAV Auto GCAS implemented integrity management checks in several different ways. These 

methods were heavily influenced by the hardware configuration (refer to figs. 11(a) and 11(b)).  

 

The smartphone hosted all of the Auto GCAS-specific algorithms. The smartphone also hosted a limited 

set of integrity management checks that were only applied to incoming data from the UI (either the laptop 

computer or the Gumstix® personal computer). After initial power-up, the smartphone was ready and 

waiting for incoming data from the UI. The actions taken by the smartphone depended upon the mode state, 

as discussed in the “SUAV Mode States” section below. 

 

The UI hosted the integrity management checks. When the smartphone was on the ground, these checks 

were hosted on the UI laptop computer. When the smartphone was on board the aircraft, these checks were 

hosted on the Gumstix® personal computer. 

 

Regardless of the location of the smartphone, the UI integrity management checks were applied for  

two sets of incoming data. One set of checks was applied to incoming data from the smartphone. The other 

set of checks was applied to incoming data from the Piccolo II autopilot (as communicated through the 

Piccolo II autopilot ground station when the smartphone was on the ground).  
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The three basic types of SUAV Auto GCAS integrity management checks were:  

 Signal conditioning,  

 Exception handling, and  

 Connectivity and throughput checks.  

 

 Each type of integrity management check is discussed in the following sections. 

 

Signal Conditioning 

 

Preliminary flight-test data indicated that the noise levels of the Piccolo-II-autopilot-calculated winds 

and sensed roll rate could skew the performance of the Auto GCAS algorithm if not smoothed. Therefore, 

an attempt was made to apply moving averages to the relevant outputs from the Piccolo II autopilot.  

 

Those moving averages were applied within the UI software to avoid adding computational load to the 

smartphone software. When the smartphone was on the ground, the UI smoothing was hosted on the UI 

laptop computer. When the smartphone was on board the aircraft, the UI smoothing was hosted on the 

Gumstix® personal computer. 

 

The implementation of the various smoothing algorithms was considered a low priority during the 

design process for this flight-test demonstration project. The end result was that a moving average was not 

applied to the wind values as input to the Auto GCAS algorithm, only to some of the wind parameters 

available in the post-flight data. Therefore, the Auto GCAS avoidance maneuver decisions were made 

solely on the instantaneous wind values provided as output from the Piccolo II autopilot.  

 

A moving average smoothing algorithm was implemented on the roll rate input as intended. An error 

was found in the roll rate averaging affecting the data that were used to derive algorithm parameters.  

The software problem was corrected; however, given a lack of funding and time to re-evaluate and correct 

the affected algorithm coefficients, the decision was made to simply zero out the roll rate input to the  

Auto GCAS algorithm because of its status as a secondary parameter.   

 

Based on early flight-test results it was decided that the load factor output from the Piccolo II autopilot 

did not require smoothing. The load factor noise was typically associated with engine vibration and was at 

a high enough frequency not to interfere with the Auto GCAS. However, later flights were conducted in a 

more turbulent environment, in which the load factor variations due to turbulence could easily exceed  

+/-0.5 g. Because the maximum Auto GCAS command capability was established to emulate a 

medium-to-large UAV with a 40-deg bank angle limit, the maximum sustained load factor was 

approximately 1.3 g. That limit placed the entire normal maneuvering envelope of the test aircraft roughly 

between 1.0 and 1.3 g, which was overshadowed by the turbulence response of +/-0.5 g or greater. 

 

 Because the Auto GCAS avoidance maneuver decisions were made solely on the instantaneous load 

factor values output from the Piccolo II autopilot, the timing of the initiation was particularly susceptible 

to turbulence effects. In hindsight, it would have been better to also include a smoothing algorithm for the 

load factor before it was input to the Auto GCAS algorithm in order to minimize the potential for 

inappropriate activations due to turbulence. Another option would have been to remove the load factor as 

an input to Auto GCAS because of the poor signal-to-noise ratio. 

 

The various ways to implement and optimize Auto GCAS-related smoothing algorithms is one of the 

remaining technical issues that warrant additional research to provide future projects with a more solid 

foundation. Each platform will undoubtedly require some unique smoothing concepts, but there may also 

be generic smoothing concepts that could apply across multiple parameters on multiple platforms.   
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Recommendation 4 (R4): Future Auto GCAS projects should pay special attention to the input 

signal conditioning necessary for that particular implementation. 

 

Exception Handling  

 

The primary purpose for exception handling checks was to identify suspect data and automatically 

adjust those data as needed to avoid negative impacts to the Auto GCAS algorithm. Several types of 

exception handling checks were hosted in the UI software, including: 

 Divide-by-zero checks;  

 Valid-range checks; and  

 Off-map checks. 

 

In general, if these checks identified suspect data, the result led to a FAIL state. These exception 

handling checks functioned adequately with no negative impact to the flight-testing process. 

 

Connectivity and Throughput Checks  

 

The primary purpose for connectivity and throughput checks was to confirm that the communication 

between components was proceeding as required. These checks were hosted in the UI software and in the 

smartphone software. In general, if the continuity and throughput checks determined that communication 

was not proceeding as required, the result led to a FAIL state. Examples of connectivity and throughput 

checks included:  

 Stale data checks, and  

 Packet counting checks. 

 

These checks led to FAIL states on a number of flight tests. The checks correctly identified 

communication problems between components, but the ensuing action taken after setting the FAIL state 

evolved over time. Additional discussion is provided in the “SUAV Mode States” section below. 

 

The connectivity check “timeout value” was changed as a result of flight-testing. The original timeout 

value was selected to be 0.5 s to ensure that the FAIL state would be entered before the aircraft had traveled 

far enough to miss an entire re-rasterized terrain tile (a 3-arc-s rectangle). When flight-test telemetry 

dropouts were inducing excessive FAIL states, the timeout value was increased from 0.5 s to 5.0 s to provide 

an opportunity for the telemetry to improve before aborting a flight-test run. The 5-s timeout value was 

acceptable in flight-testing because a safety pilot was always in position to take control. A timeout of 5 s 

would probably be too large for a production implementation of Auto GCAS. 

 

Generic “Predict Avoidance Trajectories” Module  

This module requires the greatest amount of customization for the dynamic response of each specific 

platform. However, that customization does not require as much effort as might be expected. Figure 19 

shows the overall concept for this module. The solid blue line within the “Predict Avoidance Trajectories” 

module on figure 19 represents the predicted trajectory if an avoidance maneuver were initiated at that 

instant (that is, the blue line represents Altitude versus Range from the initiation point). 
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Figure 19. “Predict Avoidance Trajectories” module. 

 

The first basic decision that must be made for every new Auto GCAS design is to define the specific 

avoidance maneuvers that will be implemented. The selected avoidance maneuvers must be appropriate to 

the type of mission that the platform conducts and will be directly influenced by the maneuvering capability 

of the aircraft.  

 

An important Auto GCAS design philosophy is to choose avoidance maneuvers that are as aggressive 

as a pilot would be in a situation that requires immediate action to avoid hitting the ground. Therefore, Auto 

GCAS avoidance maneuvers should utilize a large portion of the maneuvering capability that is available 

at a given set of flight conditions. Avoidance maneuvers that do not utilize a large portion of the 

maneuvering capability could lead to nuisance activations. However, avoidance maneuvers that might 

exceed aircraft structural limits or cause the aircraft to run out of airspeed before the avoidance maneuver 

is complete should not be used unless given careful consideration.  

 

A common design philosophy that was discussed early in the design process on several Auto GCAS 

projects can be paraphrased as, “It’s acceptable to exceed structural limits during an Auto GCAS avoidance 

maneuver if that helps an aircraft avoid impact with the ground.” However, any avoidance maneuver 

designed using that philosophy could not be flight-tested without risk of exceeding those structural limits. 

Great care would be needed to avoid conditions that might lead to an over-g; despite the best efforts of the 

test team, an over-g might still occur unless those boundaries are very well-defined and the aircraft response 

is especially predictable and controllable.   

 

Another common design philosophy that was discussed on several Auto GCAS projects but has not yet 

been implemented successfully can be paraphrased as, “Even if an aircraft might run out of airspeed during 

an Auto GCAS avoidance maneuver, go ahead and let it try, since that would be better than hitting the 

ground.” That design philosophy might work reasonably well at some conditions, but the ability to generate 

useful trajectory predictions becomes less reliable at the high angle of attack associated with low airspeed 

maneuvering. The overall result of trajectory prediction uncertainty could lead to excessive nuisance 

activations. The design team on each Auto GCAS platform will need to decide, “How slow is too slow?” 
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In the case of the high-performance F-16, a single basic flyup maneuver was used. As described earlier, 

a simplified description of the F-16 flyup maneuver was “roll toward wings-level and pull at 5 g until clear 

of terrain.” That simple description covers the essential F-16 flyup maneuver although there were several 

important modifications dependent on steep dives, high roll rates, et cetera. The F-16 typically had enough 

kinetic energy to convert into potential energy to allow successful flyup maneuvers straight over all but the 

tallest terrain features.   

 

In the case of a relatively low-performance aircraft like the DROID (or, rather, the medium-to-large 

UAV it was constrained to emulate), it was not practical to expect successful avoidance maneuvers directly 

over typical terrain features. In particular, given the very limited sustained climb performance of 

medium-to-large UAVs (not much more than 1000 fpm),  avoidance maneuvers that needed to fly over 

large hills or mountains would need to be initiated many thousands of feet prior to that feature. Those 

“straight” avoidance maneuvers would be considered an extreme nuisance by the pilot of a 

medium-to-large-UAV who intended to turn away from a terrain feature long before reaching it. Therefore 

it was necessary to include trajectory predictions for turning maneuvers to either side.  

 

Recommendation 5 (R5): Future Auto GCAS projects should consider incorporating multiple 

trajectory predictions to provide more than one option and to reduce nuisance potential.   
 

A full six-degrees-of-freedom simulation is not required to model the trajectory predictions for this 

module. High-fidelity aerodynamic, thrust, and flight control models are not required, although a simulation 

using those models can provide a very helpful starting point if available. If a high-fidelity simulation is not 

available, the necessary parameters can be determined directly from a few simple flight tests.  

 

For the purpose of Auto GCAS, it is only necessary to model the particular response that is expected 

during an avoidance maneuver. Since the avoidance maneuver itself is usually very simple, the 

corresponding models needed in order to predict the avoidance maneuver trajectory can also be very simple, 

as sketched in figure 20. 

 

 
 

Figure 20. Simple kinematic state model. 
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This methodology models the magnitude and orientation of the lift vector during the avoidance 

maneuver. The magnitude of the lift vector can be modeled by approximating the change in either the  

load factor or the climb rate from the initial state during the transition (the capture phase) to a steady-state 

target, and can continue into the steady-state phase as needed. Similarly, the orientation of the lift vector 

can be modeled based on the initial bank angle and flightpath angle; the change in that orientation can be 

approximated during the transition to the target attitudes, and the resulting orientation can continue into the 

steady-state phase.  

 

As an example, a fundamental portion of most Auto GCAS avoidance maneuvers is a bank angle 

capture. Given the initial bank angle of the aircraft, a lag/delay phase is used to account for any length of 

time in which no significant change in bank angle occurs (as observed on simulated or flight-test avoidance 

maneuvers). The lag/delay phase can account for the basic dynamics of the overall system and can also be 

used to add a term to account for Auto GCAS implementations that need to use a lower frame rate. As an 

example, the SUAV roll rate lag term was 0.2 s as determined by inspecting flight-test time histories from 

early characterization flights. Using data from the same SUAV characterization flights, the airspeed lag 

term was selected to be 0.24 s and the vertical velocity lag term 0.3 s.  

 

A simple roll rate onset term can be used during the capture phase, until the bank angle approaches the 

target value. Individual aircraft dynamics may result in overshoots of the target bank angle, but, if small 

enough, that overshoot may not need to be modeled as part of the trajectory prediction. As the target bank 

angle is being approached, the roll rate model is attenuated and bank angle is maintained during the 

steady-state phase until the end of the avoidance maneuver. The bank angle lag/delay term and the roll rate 

onset term may need to be scheduled as a function of flight conditions. It is unlikely that those terms would 

remain constant across a wide airspeed range. 

 

 Similar simple kinematic models can be used for the other axes that represent an avoidance maneuver. 

A higher-performance aircraft (such as the F-16) may use load factor lag/delay and g-onset as pitch axis 

terms. A lower-performance aircraft, such as a UAV, may use climb rate instead of load factor. An aircraft 

with an auto-throttle may also use thrust command or airspeed command as part of the simple kinematic 

model. Without an auto-throttle, it is likely that airspeed changes during the avoidance maneuver would 

need to be modeled.  

 

Each axis of the kinematic model is combined into simplified equations of motion to assemble the 

overall trajectory prediction that will be used in the modules that follow. A more detailed description of the 

overall process is contained in reference 9.  

 

Given the simple nature of the kinematic model, it can be easily tuned as conditions are observed that 

don’t match the original model. Excessively complicated trajectory prediction models can actually be 

harder to tune, take a lot of processor power, and may not provide much improvement in performance. 

“Keeping it simple” is a worthy trajectory prediction goal for any Auto GCAS project. 

 

Since no aircraft model is perfect, the trajectory prediction should try to account for any uncertainties 

that may not match the modeled trajectory. Those uncertainties can be due to un-modeled effects of gross 

weight, off-standard day performance, local winds, et cetera. However, those uncertainties are usually 

secondary or tertiary effects that can be captured with a few extra simple terms that encompass the 

worst-case effects, and should not require complicated additions to the model. Compensation for these 

uncertainties can be modeled either by specific terms or generalized terms. 

 

An example of a specific uncertainty term is the use of on-board local wind calculations to capture the 

expected variation due to the magnitude of the headwind, tailwind, or crosswind. Naturally, the ability to 

account for local winds is only as good as the quality of the onboard calculation. An alternative is to assume 
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a worst-case magnitude and direction, and include a single term to capture that effect as part of the trajectory 

prediction. That worst-case assumption could be set up differently for left or right trajectory predictions 

(that is, crosswinds from opposite sides).  

 

Generalized uncertainty terms can also capture the overall range of uncertainty for a given platform. 

Monte Carlo simulations are one way to define that overall range of uncertainty. Another way is to use the 

variations observed across a number of flight-test avoidance maneuvers. Those generalized prediction 

variations can be applied as a horizontal uncertainty, a vertical uncertainty, or both. These generalized 

variations can be represented by a standard deviation and can be either positive or negative, so it is 

recommended to account for those variations as part of a root-sum-square implementation in the 

“Determine Need to Avoid” module, as discussed in the section “Generic ‘Determine Need to Avoid’ 

Module,” below. 

 

The F-16 Auto GCAS implementation did not include an auto-throttle, so most trajectory predictions 

were based on the assumption that the throttle was not moved. Some F-16 trajectory predictions for flyups 

that were initiated at low airspeeds were based on the assumption that the pilot was aware of the low-speed 

condition (which was also annunciated on the head-up display), and would increase throttle as needed.   

 

  The F-16 trajectory predictions were developed by Lockheed Martin Aeronautics using high-fidelity 

simulations of the F-16. However, each F-16 Auto GCAS flight test project also verified the accuracy of 

the F-16 trajectory predictions using a flight-test technique that took advantage of the Pilot Activated 

Recovery System (PARS). The F-16 PARS was already part of the overall system design to provide the 

pilot with an option to initiate an automated recovery in spatial disorientation situations (one of the factors 

that has led to CFIT mishaps).  

 

Since the F-16 PARS maneuver was designed to be identical to an Auto GCAS flyup maneuver, the 

use of PARS as a flight-test technique was also very effective as a quick way to obtain trajectory data.  

The PARS allowed the test aircraft to be established at a wide range of initial flight conditions, and then an 

Auto GCAS flyup maneuver to be initiated without the need to be in close proximity to terrain. Although 

Auto GCAS maneuvers could be initiated farther from terrain by using a flight-test altitude buffer, that test 

technique still required maneuvering the test aircraft into a particular orientation over a specific piece of 

terrain. The PARS maneuvers allowed the same trajectory data to be obtained independent of the location 

relative to terrain and were, therefore, much more efficient. 

   

SUAV Auto GCAS “Predict Avoidance Trajectories” Module  

In the case of the SUAV project, a low-fidelity simulation was available, but it was clear that it did not 

represent the actual flight characteristics of the DROID. Even if a high-fidelity, high-confidence simulation 

is available, it is recommended that a small number of flight tests be accomplished to obtain data directly 

from a representative set of planned avoidance maneuvers. 

 

All of the necessary SUAV trajectory prediction parameters were determined from six preliminary 

flights totaling 4.0 flight hours. This was accomplished by executing a small matrix of avoidance maneuvers 

initiated by the user interface operator (UIO) (similar to PARS) to capture the range of variations that would 

be expected during the planned flight-test missions. The SUAV avoidance maneuvers were defined to take 

advantage of the standard capability of the Piccolo II autopilot. The basic autopilot functions used were:  

 Bank angle command,  

 Vertical rate command, and  

 Indicated airspeed command.  
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The SUAV avoidance maneuvers were defined as: 

 Straight:  

  Bank to wings-level;  

  Capture 1000 fpm climb; and  

  Capture 60 KIAS. 

 Left and right turns:  

  Bank to 40 deg left or right,  

  Capture 800 fpm climb, and  

  Capture 60 KIAS. 

 

The 40-deg bank target and the 1000-fpm climb rate target were selected to represent reasonable values 

for medium-to-large UAVs. The DROID was capable of a much higher bank and climb rate. An 800-fpm 

climb rate target was selected for the left- and right-turning avoidance maneuvers to mimic reduced aircraft 

performance when some of the excess power was used for turning instead of climbing (800 fpm is roughly 

1000 fpm times the cosine of the 40-deg bank used for turning avoidance maneuvers).  

 

During the preliminary flights, it was observed that avoidance maneuvers tended to achieve a slightly 

lower climb rate than the value commanded by the autopilot. Although this bias could have been explained 

by a number of different factors, it was easy to account for the bias in the trajectory prediction. A simple 

multiplier of 90 percent was incorporated in the trajectory predictions, resulting in 900 fpm instead of  

1000 fpm for the straight prediction, and 720 fpm instead of 800 fpm for the turning predictions. The result 

was that avoidance maneuvers were initiated slightly earlier but better reflected the actual climb 

performance of the aircraft. 

 

The DROID tended to change from one climb rate to another very quickly. Therefore the dynamic 

“capture” phase (when the aircraft was pulling up at more than 1 g) was over very quickly and the trajectory 

prediction reflected that short dynamic phase followed by a long steady-state phase. In contrast, an F-16 

flyup could remain at 5 g for an extended period (more than 5 s after initiating from a steep dive) and the 

airplane was often clear of terrain before transitioning to a steady-state climb rate. 

 

Another practical effect was observed on the preliminary characterization flights when PARS-type runs 

were accomplished. Although the autopilot was given a target of 40 deg for turning avoidance maneuvers, 

in practice the actual bank angle of the DROID tended to oscillate somewhat below 40 deg. Therefore, the 

trajectory prediction bank angle was changed to 37 deg to provide a better match with the actual flight-test 

data.   

 

The 60-KIAS target airspeed was selected to be near the middle of the airspeed range of the DROID 

(45-80 KIAS) and simulated an optimum climb speed. The SUAV implementation had an advantage over 

the F-16 since an auto-throttle was an inherent capability of the Piccolo II autopilot. Adding an auto-throttle 

to the F-16 would have been prohibitive due to the additional cost. 

 

 It is expected that a generic production UAV Auto GCAS implementation would use avoidance 

maneuver definitions similar to those of an SUAV but would also use more optimal values customized for 

the particular platform.  For example, some UAV Auto GCAS designers might choose to use a bank angle 

target scheduled as a function of gross weight and airspeed, a higher climb rate target (where available), 

and would probably select a higher target airspeed.  

 

During the first few test flights for obtaining trajectory prediction data, it became very apparent that the 

DROID P-factor effect was much more significant than had been predicted by the low-fidelity simulation. 

The P-factor affects propeller-driven aircraft and is particularly apparent at lower airspeeds when such an 
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aircraft is climbing under high power. The P-factor effect was especially noticeable with the high-powered 

DROID. The main impact of the P-factor effect was that when the “straight” avoidance maneuver was 

commanded, the DROID didn’t fly straight - it ended up in a wings-level, climbing turn which drifted to 

the left at over 3 deg/s heading rate (at the slower DROID airspeeds of 40-45 KIAS). A graphical 

representation of drift experienced due to P-factor effect is shown in figure 21. 

 

 
 

Figure 21. Heading drift during “straight” avoidance maneuver. 

 

A similar heading drift was present in turning maneuvers (i.e.; 40-deg left bank avoidance maneuvers 

had a tighter radius than expected, whereas 40-deg right bank avoidance maneuvers had a wider radius than 

expected). The P-factor effect was significant enough that it was included as part of the trajectory prediction. 

 

One option for accommodating P-factor effect would have been to adjust the autopilot bank target to 

compensate for the heading drift (by using a biased bank angle target opposing the P-factor effect). That 

option would have required significant regression testing in the hardware-in-the-loop (HIL) simulation 

environment at a time when there was insufficient funding for such testing. In addition, it is likely that a 

single bank angle adjustment for the P-factor effect would not have worked well under all conditions. 

Therefore the decision was made to include the heading drift directly as part of the trajectory prediction.  

 

Part of the goal of using this approach was to demonstrate the way in which specific aircraft 

characteristics such as P-factor effect can be readily incorporated as part of the trajectory prediction design 

process. The guiding philosophy was to model any unusual aspects in the trajectory prediction instead of 

changing the autopilot. 

 

Figure 22 shows an example of the three trajectory predictions that were used as part of the SUAV 

Auto GCAS algorithm. The example shows that the straight trajectory prediction isn’t actually straight, but 

includes an allowance for the effects of the P-factor. The example also shows that the left trajectory 

prediction has a slightly tighter radius than the right trajectory prediction to account for the P-factor effect. 
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Figure 22. SUAV three-trajectory example. 

 

Based on data from the preliminary flights, P-factor also impacted the climb rate, depending on the 

direction of the turn (whether the path of the turn was with or against the P-factor effect).  The climb rate 

for the left trajectory predictions was reduced by 200 fpm to reflect this effect. The climb rate for right 

trajectory predictions was increased by roughly 200 fpm.  

 

Additionally, the preliminary flights indicated that the P-factor effect was stronger when the airspeed 

was being increased at the beginning of climbing maneuvers. The P-factor effect was much less significant 

when the airspeed was decelerating or when the target airspeed was almost achieved. Therefore, the P-factor 

effect was modeled to be roughly half as effective when the airspeed had increased to within 5 kn of the 60 

KIAS target. 

 

As mentioned in previous sections, the SUAV trajectory prediction also used instantaneous winds as 

sensed by the Piccolo II autopilot to adjust the trajectory prediction. Headwinds shortened the trajectory 

prediction in the direction of flight. Crosswinds shortened the upwind side while extending the downwind 

side. Tailwinds extended the trajectory prediction in the direction of flight. 

 

Another option worth considering on any Auto GCAS project is to assume the worst-case winds as an 

inherent part of the trajectory prediction. This approach completely avoids reliance on real-time wind 

calculations. The simplest method is to always assume a worst-case tailwind when calculating all three 

trajectory predictions. This method can be further modified by also assuming a worst-case crosswind 

component for the left and the right trajectory predictions. The general effect of these methods is to cause 

avoidance maneuvers to be initiated earlier than they would initiate without accommodated wind effect. If 

the nuisance potential of the earlier initiations can be tolerated, this “worst-case wind” approach may be a 

viable option for many platforms.   

 

Also as mentioned in previous sections, the DROID was susceptible to turbulence. Vertical gusts (either 

from changes in local winds or flying through the up- or downdrafts created by thermals) often resulted in 

load factor variations in excess of +/- 0.5 g. On occasion these gusts resulted in load factor variations well 
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above +/- 1 g, even when the autopilot was simply attempting to hold level flight. The result was that 

approximately half of the accomplished PARS-type runs showed an un-conservative trajectory prediction 

(that is, the actual aircraft trajectory was closer to the ground than was indicated by the prediction). 

 

In the context of the Auto GCAS trajectory prediction, the influence of vertical gusts was obtained 

indirectly through the measured climb rate. Given the observed effect of vertical gusts on the DROID, a 

negative 200 fpm “bias” was applied to the measured climb rate input to the trajectory predictions, but with 

no change to the overall trajectory. Therefore, a 1000-fpm measured descent rate resulted in an initial 

condition feeding the trajectory prediction that appeared to be from a 1200-fpm descent rate. A 1-g level 

condition resulted in an initial condition that appeared to be a 200-fpm descent rate. Climbing maneuvers 

were also affected by the bias. The bias generally caused avoidance maneuvers to initiate slightly earlier 

and provided a little more pad relative to the ground. 

 

The SUAV Auto GCAS algorithms did not include trajectory predictions that were influenced by the 

effects of density altitude. On a hot day, or at altitudes well above the typical test band for the DROID, 

density altitude effects could require significant changes in the trajectory prediction.   

 

Recommendation 6 (R6): Future Auto GCAS projects for performance-limited aircraft may need 

to consider including density altitude as an input to the trajectory prediction. 

 

Generic “Identify Collision Threats” Module 

For any Auto GCAS application, the function of this module can be described most simply as “scan the 

digital terrain near the predicted aircraft flightpath.” Figure 23 shows the overall concept of this module. 

The main purpose of presenting F-16 scan pattern concepts is to show that there are options other than the 

methods used on the SUAV in the following section. Although many of the concepts will be similar for any 

aircraft, the specific methods and values chosen can be different depending on the mission type and the 

maneuvering capability of the relevant aircraft. 

 

 
 

Figure 23. “Identify Collision Threats” module. 
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The specifics of the SUAV process are described in the “SUAV Auto GCAS ‘Identify Collision 

Threats’ Module” section below. 

 

In the case of the F-16, the “Identify Collision Threats” module needed to scan only the digital terrain 

underneath a trajectory that would encompass the possible variations during a “roll toward wings-level and 

pull” flyup. Therefore, the F-16 scan region was relatively straight. The F-16 digital terrain scan area needed 

to be wide enough to capture all of the terrain that might be overflown throughout the entire flyup maneuver.  

 

The F-16 digital terrain scan also needed to start from initial conditions that could be very dynamic, 

such as a 7-g descending turn with bank angle past 90 deg, steep dives, or a turn reversal with a high roll 

rate. Therefore the F-16 scan region needed to encompass the trajectory of any flyup maneuver that was 

initiated from these types of dynamic initial conditions.  

 

Figure 24 shows the basic variations in scan pattern shape for the F-16. The scan pattern could be fairly 

narrow for straight-and-level flight. The scan pattern became wider in the direction of the turn. The scan 

pattern was more circular in the case of a steep dive, because the resulting flyup could go in any direction 

depending on the specific conditions at flyup initiation. 

 

 
 

Figure 24. Basic F-16 scan pattern shapes. 

 

The fundamental tradeoff with the F-16 was that a “too-wide” scan pattern could lead to increased 

nuisance potential because the digital terrain that was being scanned wasn’t actually a threat, causing 

unnecessary flyup activations.  A “too-narrow” scan pattern could lead to reduced collision protection if 

the flyup maneuver flew over digital terrain that was not scanned. All Auto GCAS projects will need to 

find an optimal solution to that tradeoff.  

 

The general philosophy behind the F-16 scan width was to ensure that at least two DEM posts were 

captured by the scan at the base of the scan pattern (near the F-16). This approach was necessary because 

the F-16 scan method looked for individual posts, not the rectangular areas surrounding each post. Given a 

DEM post spacing of 3 arc-s (roughly 300 ft between posts), a minimum scan width of greater than 600 ft 

at the base of the scan pattern ensured that at least two DEM posts were captured. Figure 25 shows how the 

base width and half angle both influence the overall shape of the scan pattern. The half angle represented 

how much the scan pattern needed to grow as a function of distance from the initial point. 
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Figure 25. Basic F-16 scan pattern terms. 

 

The chosen F-16 philosophy for scan width worked very well for normal F-16 missions above 500 ft 

AGL. However, for more aggressive missions below 500 feet AGL the wider scan widths would have 

resulted in excessive nuisance flyup activations. Therefore the F-16 design utilized a scan width narrower 

than 300 ft for low-level missions in order to reduce nuisance activations but at the expense of decreased 

collision protection. The tradeoff was considered acceptable because pilots flying those types of low-level 

missions were typically very aware of ground proximity and it was not a requirement to provide 100-percent 

collision protection. In those cases it was considered much more important to not interfere with the mission. 

 

Another factor that determined scan width was the uncertainty in the navigation solution. Since modern 

embedded GPS/INS components provide excellent navigation accuracy, the uncertainty factor is no longer 

as significant as it was for older navigation systems. However, it is still possible for the GPS/INS location 

to be off by dozens of feet, and that possibility can be accounted for by increasing the width at the base of 

the scan pattern accordingly. 

 

Another type of uncertainty that must be represented is called the track uncertainty. During an 

avoidance maneuver, the airplane will probably not track along the centerline of the trajectory prediction. 

That uncertainty grows with time out in front of the point at which the avoidance maneuver would need to 

be initiated. This is why the basic F-16 scan patterns shown in figure 24 get wider as a function of distance 

from the current location of the airplane. The normal F-16 scan patterns got wider at a half angle of 3.5 deg 

compared to the base width, as shown in figure 25.  

 

The magnitude of the track uncertainty can be obtained either from simulation runs or from flight-test 

maneuvers. The goal is to try to cover all track variations that may occur without making the half angle so 

large that it increases the nuisance potential.  

 

The length of the F-16 scan shapes was set at 18,000 ft. That scan length was primarily driven by the 

worst-case radius of the circular scan that would be needed to recover from a near-vertical supersonic dive. 

The 18,000-ft scan length also accounted for the tallest rising terrain that was likely to be a factor for the 

F-16 when using the non-circular scan shapes.  

 

Once all of the DEM posts within a scan pattern have been identified, that information must be 

converted into a form that can be compared with the trajectory prediction. A simple method was used on 

both the F-16 and the SUAV to convert the three-dimensional array of DEM posts within the scan pattern 
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into a two-dimensional matrix. At a series of fixed distances from the airplane (called “range bins”) along 

the centerline of the scan pattern, the highest DEM post at that distance is used to generate a simplified 

two-dimensional matrix, as shown in figure 26. 

 

 
 

Figure 26. Converting F-16 terrain posts into a two-dimensional matrix. 

 

Man-Made Vertical Obstructions  

 

Many digital terrain data sources do not include information for man-made vertical obstructions such 

as radio towers and tall buildings. For example, sources such as NED and Legacy DTED provide  

“bare-earth” data without including man-made structures. One exception is SRTM data, which include a 

portion of some structures. The SRTM methodology was based on radar sensors, it included portions of 

natural or man-made objects that were reflected to the radar receiver on the Space Shuttle. The SRTM data 

tended to clip the maximum height off of tall, thin obstructions such as radio towers because each post was 

averaged over a 60- by 60-m area. 

 

 Neither the F-16 nor the SUAV designs included dedicated data for vertical obstructions or 

obstacles as a core part of the Auto GCAS algorithm. Since the F-16 used SRTM, approximately  

50-70 percent of obstacle height was included in the DTED (for any obstacles that were in place in the year 

2000 when the Space Shuttle mission was accomplished). A deliberate decision was made to not include 

obstacles in the F-16 Auto GCAS because very few historical F-16 mishaps involved obstacles. In addition, 

the F-16 already had a separate obstacle warning system. The SUAV Auto GCAS was a low-budget 

research project; the addition of vertical obstructions to the algorithm was considered out of scope.  

 

Recommendation 7 (R7): The developers on any Auto GCAS project should consider the addition 

of vertical obstructions as part of the algorithm.  

 

It is recommended that whatever vertical obstruction database is used be kept separate from the digital 

terrain data until just before the combination is converted into the simplified two-dimensional matrix. This 

approach will allow the vertical obstruction data to be updated independent of the terrain data as new 
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buildings and towers are constructed. Future Auto GCAS projects will undoubtedly report their experience 

with vertical obstruction implementations. It is also likely that obstacle sensors will be developed that could 

help supplement a DEM-based Auto GCAS.  

 

Natural Vertical Obstructions (Trees)  

 

Most digital terrain sources do not include information on tree height. However, the SRTM database 

does include any portion of tree height that was reflected to the radar receiver and processed into the 

resulting DTED. It is unlikely that SRTM data captured individual trees, but informal tests have been 

conducted showing that, for more thickly forested areas, approximately 30-70 percent of tree height has 

been reflected in SRTM data, depending on the type of tree and the density of the forest.  

 

In the near future it may be very practical to include a tree height database that can provide a 

representative buffer for thickly forested areas without adding nuisance potential over areas that are known 

to be barren of trees. Until then, generalized tree buffer terms have been used, as discussed in the section 

“Generic ‘Determine Need to Avoid’ Module” below. 

 

SUAV Auto GCAS “Identify Collision Threats” Module  

The overall SUAV scan concept was very similar to the F-16. The fundamental steps were:  

 Define a scan pattern that encompasses all DEM posts that might be overflown during the 

corresponding avoidance maneuver (while also keeping the scan pattern small enough to minimize 

nuisance potential);  

 Include an allowance for navigation and track uncertainty; 

 Identify the height of all DEM posts in (or near) the scan pattern; and  

 Convert the highest DEM posts into a two-dimensional matrix for later comparison with the 

trajectory prediction.  

 

The fact that this Auto GCAS application was for an SUAV provided a number of benefits and 

constraints compared to the F-16. The primary benefits provided by the SUAV were a smaller range of 

airspeeds and much less dynamic maneuvering at initial conditions. The primary constraint was due to the 

lower climb performance. As previously discussed, the lower climb performance of the SUAV required the 

use of turning scan patterns in addition to a straight scan pattern. Due to the slower airspeed of the SUAV, 

turns could be accomplished in a much tighter radius than that of the F-16. Therefore, those turning scan 

patterns could be added while scanning far fewer DEM posts than similar turning scan patterns would 

require for an F-16. These factors enabled simpler and less variable SUAV scan patterns than those required 

for the F-16. 

 

The total length of the SUAV straight scan pattern was defined to be 18,000 ft (the same as that of the 

F-16). The long scan length was selected because of the limited SUAV climb performance, and provided 

an option to climb straight over large, distant terrain obstacles. The 18,000-ft scan length was also used in 

termination logic to determine when an avoidance maneuver was clear of terrain. 

 

From a practical standpoint, the 18,000-ft scan length would not be needed in most situations because 

the algorithm would almost always choose one of the turning avoidance maneuvers. One hypothetical 

situation that could result in selection of a straight avoidance maneuver would be a ridge crossing at low 

altitude in which elevated terrain existed on both sides of a saddle. Another hypothetical situation in which 

a straight avoidance maneuver might be selected would be in a very narrow “V” canyon within which 

turning would not be an option but where distant, tall terrain features also existed at the end of the canyon.   
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Figure 27 shows a simplified example of a left turning scan pattern for the SUAV. The solid dark blue 

line represents the centerline of the trajectory prediction for a given set of initial conditions. The purple 

lines represent the outer boundary of the scan pattern including the horizontal navigation and track 

uncertainties. The horizontal navigation uncertainty remained at a constant value of 50 ft throughout the 

scan pattern. The purple lines in figure 27 are a simplified representation of the outer boundaries of the scan 

area (as described below). 

 

 
 

Figure 27. SUAV turning scan pattern example. 

 

The dashed blue lines in figure 27 represent the horizontal track uncertainty and increase with distance 

from the initial location. The growth angle for the SUAV track uncertainty was defined as 5 deg for the 

straight scan and 10 deg for turning scans. Those angles were determined from analysis of early flight-test 

runs and included an allowance for changing winds after the avoidance maneuver initiation. Basically, the 

scan angles were adjusted to encompass the variations from run to run. The same technique could be applied 

to simulation runs. 

 

The right turning scan pattern used the same values for horizontal navigation and track uncertainties as 

did the left scan. However, the resulting shape of the right scans was different due to the effect of P-factor 

on the trajectory prediction centerline (as discussed above).  

 

The total length of the SUAV turning scan patterns was enough to execute an avoidance maneuver 

through at least 225 deg of turn. A turn of at least 225 deg was sufficient to execute a teardrop-shaped 

maneuver that got the aircraft pointing back toward the inbound flightpath. The teardrop shape can be 

visualized by extrapolating linearly backward for the inbound segment and forward for the outbound 

segment. Those lines converge at the cusp of the teardrop shape. The centerline for trajectory predictions 

at higher airspeeds had a wider turn radius, so the actual length of those scan patterns was correspondingly 

longer. 

 

Once the SUAV Auto GCAS algorithm determined the size and shape of a given scan pattern based on 

initial conditions, the DEM posts near that pattern were scanned to determine the height of each post. That 
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process required the re-rasterization of CDTM data. For the SUAV Auto GCAS project it was decided to 

re-rasterize the CDTM at the same 3 arc-s post spacing that was used by the F-16. That was a somewhat 

arbitrary decision that was made solely to provide a consistent reference for comparison. The CDTM 

re-rasterization logic allows for selection of any post spacing.  

 

The SUAV project could have re-rasterized the CDTM into more tightly spaced posts to reflect the 

tighter turn radius compared to an F-16. The SUAV project could also have re-rasterized the CDTM into 

less tightly spaced posts than those of the F-16 to demonstrate that lower-resolution data could have been 

used effectively. Lower-resolution data might have been necessary if the overall Auto GCAS algorithm had 

been constrained by the processor speed on the Android™ platform smartphone; that was not the case for 

the SUAV project, but could be the situation encountered by higher-airspeed aircraft that still need the 

option for multi-trajectory avoidance maneuvers. 

 

Another SUAV design aspect that was different than that of the F-16 was the way in which digital 

terrain data were determined to be within the scan pattern. The F-16 technique only used terrain data when 

individual terrain posts were inside the scan pattern. This technique helped minimize nuisance potential but 

had the unfortunate side effect of missing terrain entirely if the scan pattern was narrower than the post 

spacing (the scan pattern was the narrowest near the aircraft). The SUAV technique included all terrain data 

when any part of the rectangle surrounding a post was within the scan pattern.   

 

Figure 28 shows how DEM posts were scanned for the SUAV project. The scan pattern is the same one 

shown in figure 27. The small green diamonds represent the 3-arc-s DEM posts as re-rasterized from the 

CDTM. Some of the DEM posts identified during the scan process were actually outside the scan pattern. 

The fine green rectangles in the background of figure 28 represent the individual polygons corresponding 

to each DEM post. If any portion of those rectangular polygons was within the scan pattern, the 

corresponding DEM post was included. Therefore, all of the green diamonds shown in figure 28 represent 

DEM posts that would have been used by the algorithm, even if outside the purple scan lines. This method 

ensured that nearby posts were always included in the scan pattern. 

 

 
 

Figure 28. SUAV DEM post scanning. 
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Once the height of each DEM post near the scan pattern was determined, those posts were converted 

into a two-dimensional matrix similar to the process used for the F-16. However, the range along the 

trajectory prediction centerline was broken into variable length bins, instead of the constant length bins 

used for the F-16.  

 

The variable bin lengths were implemented on the SUAV as a way to reduce the computational 

workload for the processor on the smartphone; there would be fewer bins further away from the aircraft. 

The SUAV variable bin length was related to the scan width. The bin length was smaller near the aircraft 

(roughly equivalent to the horizontal navigation uncertainty) and larger at a distance. The highest DEM 

post within each bin was used to assemble the overall 2-D profile. 

 

Circular bin shapes were another method that was used to reduce the computational workload on the 

SUAV smartphone. The F-16 used narrow, rectangular bin shapes in order to result in a higher resolution 

two-dimensional terrain profile as needed for that aircraft. Because of the lower airspeeds and tighter turn 

radius of the DROID, it was acceptable for the two-dimensional terrain profile to be at a lower resolution 

than the F-16 (i.e., fewer bins over the length of the scan). 

 

Each SUAV bin was represented by a circle of increasing radius. The center of each scan circle was 

located to provide overlap between neighboring bins. Using a circular scan resulted in a very simple 

equation to determine if a given DEM rectangle was within the scan radius for each bin. The purple lines 

in figure 28 are a simplified representation of the outer boundary of all of the scan circles. In theory, the 

circular scans might “miss” a small portion of a DEM rectangle if that portion fit between the overlapping 

circles. However, this was not considered a practical problem because any relevant DEM rectangle 

“missed” at one time frame would be identified in a later frame as the aircraft progressed forward. 

  

Generic “Determine Need to Avoid” Module  

The main function of this module was to decide when an avoidance maneuver needed to be initiated. 

This determination was accomplished by comparing the trajectory prediction (output from the  

“Predict Avoidance Trajectories” module) with the two-dimensional simplified terrain profile (output from 

the “Identify Collision Threats” module). When the predicted aircraft trajectory got too close to the terrain, 

the “Determine Need to Avoid” module sent out an avoidance maneuver command to be executed by the 

autopilot. Figure 29 shows the overall concept for this module. 

 

Once the DEM posts within the scan pattern were identified and converted into a two-dimensional 

matrix, a generalized “built-in” buffer was applied to account for any remaining uncertainties. A primary 

reason for adding a generalized altitude buffer was to account for suspected errors in the DEM data. The 

magnitude of those errors depended on the resolution of the source data and the compression and 

re-rasterization techniques that were used. As a point of reference, the F-16 and the SUAV each used an 

altitude buffer of 30 ft to account for possible errors in the DEM.   

 

Another reason to add a generalized altitude buffer was to account for known variations in the trajectory 

prediction that had not already been included in the algorithm (such as the effects of gross weight, 

off-standard day conditions, et cetera).  

 

In order to provide an allowance for vertical variations in the trajectory prediction, the SUAV used an 

altitude buffer of 10 ft (the F-16 used 15 ft for a similar altitude buffer). Another reason to add a generalized 

altitude buffer was to account for vertical navigation uncertainty. The F-16 EGI output an estimate for 

vertical uncertainty; that value was increased by a one- or two-sigma multiplier (depending on the mode 
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selected) to determine the value to be used for this portion of the altitude buffer. There was no similar 

vertical uncertainty output available from the SUAV Piccolo II autopilot.  

 

 
 

Figure 29. “Determine Need to Avoid” module. 

 

If each of these altitude buffers were directly added to the two-dimensional DEM profile, the result 

could be nuisance-prone because that method would assume that all of the errors were in the same positive 

direction at the same time. Both the F-16 and the SUAV used a combination of each component, utilizing 

a root-sum-square method. The equation for combining the constituent buffers as used on the SUAV project 

is provided in equation (1):  

 

 Total = NAV + (DEM2 + TPA2)1/2 (1) 

 

where NAV is used as the buffer to account for GPS navigation accuracy , DEM is used as the digital terrain 

buffer, and TPA is used as the trajectory prediction buffer. 

 

Auto GCAS developers should also consider the need for an additional altitude buffer. The F-16 used 

a tree buffer of 70 ft that was applied across the entire two-dimensional DEM profile. Obviously, many 

trees are shorter or taller than 70 ft. After a number of informal studies, the 70-ft value was settled upon as 

a way to provide some improved protection from tree impacts without excessively increasing nuisance 

potential. The SUAV did not use a tree buffer, because it was known that the flight-testing for this research 

project would be accomplished only over barren desert hillsides.  

 

Although the concept for this module is very simple, the implementation for future Auto GCAS projects 

will require careful consideration to determine the answer to the question “how close is too close?” 

Determination of the minimum approach to terrain will require consideration of the essential mission 

requirements for the relevant aircraft. Even if the relevant aircraft only has a high-altitude mission 

requirement, it will be appropriate for any built-in altitude pad to be defined at the lowest number practical 

that still provides adequate collision protection. 
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SUAV Auto GCAS “Determine Need to Avoid” Module  

Given that the SUAV Auto GCAS algorithm was based on three possible trajectory predictions, the 

project-specific implementation of this module required three sets of “Determine Need to Avoid” logic. 

Each of the three trajectory predictions (left, straight, and right) was compared with the corresponding 

two-dimensional terrain profile underneath that trajectory.  

 

When any of the three trajectory predictions intersected with the corresponding terrain profile 

(including any altitude buffers) that direction was no longer considered a valid terrain avoidance option. 

When two of the directions were no longer valid options, the aircraft was allowed to continue since the 

third direction still provided a valid way to avoid terrain. An avoidance maneuver was only initiated when 

the last trajectory prediction intersected with its buffered terrain profile.  

 

The end result of this process is represented by the example shown in figure 30. The black polygons 

show the flightpath of the test aircraft leading up to an avoidance maneuver initiation. The red “straight” 

trajectory and the yellow “left” trajectory would have intersected the terrain well before the green “right” 

trajectory and therefore were not viable terrain avoidance options. The green “right” trajectory was the only 

remaining terrain avoidance option. When that trajectory prediction intersected the buffered terrain profile, 

an avoidance maneuver was initiated to the right. The philosophy behind this trajectory selection was only 

to avoid the imminent terrain threat (given the assumption that the pilot had lost awareness of terrain 

proximity for any reason). There was no attempt to help the pilot resume the original flight plan. If the pilot 

was lost in clouds or flying at night, the algorithm would help protect against additional terrain threats, but 

eventually the pilot would need to climb to a safe altitude or take some other corrective action. 

 

 
 

Figure 30. Example of “Avoid to the Right.” 

 

Nuisance Potential  

Previous ground collision avoidance projects have concluded that “time to avoid” is a much better 

metric than “distance to avoid.” An avoidance maneuver at high airspeeds needs to be initiated at a greater 
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distance from terrain than does a similar avoidance maneuver at low airspeeds. Using “time to avoid” 

automatically accounts for variations in airspeed and acts as a normalizing metric. Using “time to avoid” 

also provides a better indication of nuisance potential. The overall concept of “time to avoid” has been 

implemented in several ways. A “time-to-flyup” calculation was often used within the Auto GCAS 

algorithm to trigger the avoidance maneuver when that value reached zero. Also, an available reaction time 

(ART) calculation has been used as part of post-flight data analyses to provide an assessment of how well 

the algorithm achieved design goals (see the “Available Reaction Time” section below). 

 

One of the original F-16 Auto GCAS projects in the late 1990s conducted flight tests to evaluate 

nuisance potential in terms of time (ref. 1). It was concluded that any flyup initiated more than 1.5 s earlier 

than necessary to barely avoid hitting the ground would be considered a nuisance by a pilot who was 

accomplishing a normal F-16 low-level mission and was also aware of ground proximity. The Auto GCAS 

FRRP F-16 (ref. 2) confirmed that almost all flyup maneuvers occurred within that 1.5-s criteria. The 

primary exceptions were at very steep dives, where the original nuisance evaluation did not apply.   

  

Although the 1.5-s value was determined specifically for an F-16 conducting low-level missions, that 

value has also proven useful as a point of reference and design goal for other projects. If any Auto GCAS 

design can be implemented consistent with that 1.5-s value, it will probably not be considered a nuisance. 

Individual Auto GCAS projects can probably relax that 1.5-s design goal, but should only do so when it is 

certain that the resulting nuisance potential will be considered acceptable by the pilot. 

 

For an autonomous or remotely-piloted vehicle it might be difficult to develop a specific design 

criterion similar to the 1.5-s value of the F-16. Test pilots were able to provide an “anxiety rating” when 

recovering the F-16 in close proximity to the ground that would be difficult to replicate for UAVs. It might 

be appropriate to develop a UAV criterion in a high-fidelity simulation, since the “sight picture” for the 

operator would not be much different than that seen from a ground control station. 

 

Generic “Avoid” Module  

The main function of this module (fig. 31) was to translate the avoidance maneuver command from the 

Auto GCAS algorithm into an avoidance maneuver that could be executed by the aircraft autopilot or flight 

control system. On any Auto GCAS project, the first step in this process should be to verify that the 

avoidance maneuver command was valid. In practice, that first step has been implemented as simple 

“heartbeat” checks to ensure that the avoidance maneuver command was coming from a system component 

that was still functional. More creative integrity checks may be possible, but care must be taken not to build 

in so many unwarranted checks that the system will not work when it is needed. 

 

For the F-16 Auto GCAS, the flyup command was a single bit that basically communicated “Initiate a 

Flyup NOW.” The F-16 flight control system had already been pre-programmed to translate that flyup 

command into the various components to result in a flyup maneuver that can be summarized as “roll toward 

wings-level at roughly150 deg/s, and pull as much as 5 g until clear of terrain.” The commanded rates and 

peaks for each individual axis were developed as part of previous simulation and flight-testing over a 

number of F-16 Auto GCAS projects. 

 

The F-16 implementation of this module included some “heartbeat” checks to verify that a flyup 

command was being sent from a healthy avionics system (single-string) to the flight control system 

(quad-redundant).  

 

The F-16 implementation also used a number of interlocks, which prevented flyup commands from 

being initiated when outside of the intended design envelope (that is, too slow, gear down, aerial refueling 
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door open, excessive uncertainty in the navigation system accuracy, excessive angle of attack, relevant 

failure modes, et cetera). 

 

 
 

Figure 31. “Avoid” module. 

 

 

SUAV Auto GCAS “Avoid” Module  

For the SUAV Auto GCAS project, this module was slightly more complicated than that of the F-16, 

because the Piccolo II autopilot needed to execute three possible avoidance maneuvers (left, straight, and 

right). Each of those avoidance maneuvers had been tuned to reflect the desired response, as discussed in 

the “SUAV Auto GCAS ‘Predict Avoidance Trajectories’ Module” section above. 

 

The SUAV Auto GCAS implementation was also different from the F-16 implementation in that the 

SUAV did not accomplish any integrity management checks within this module. All of the SUAV Auto 

GCAS integrity checks were accomplished as part of the “input voting plane,” as discussed in the “Generic 

‘Common Interface’ Module” section above. This method was necessary because the SUAV Auto GCAS 

project did not have the option of inserting additional integrity checks into the proprietary Piccolo II 

autopilot. This implementation was less desirable than the F-16 implementation because there existed less 

protection against communication errors. As discussed above, this module could also be made more robust 

by incorporation of a monitor to protect against false requests for avoidance maneuvers. 

Pilot-Vehicle Interface 

 For any Auto GCAS implementation intended for a production aircraft, considerable attention must be 

paid toward ensuring that the pilot has adequate system information, presented in a logical manner, while 

not being inundated with information to the point at which it interferes with other essential operations. The 

intended level of pilot interaction with Auto GCAS must also be determined.  

 

The general pilot-vehicle interface (PVI) philosophy used for the F-16 was to minimize Auto GCAS 

displays and audio annunciations. The intent was for Auto GCAS to execute in the background, remaining 

unseen until needed.  
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In the original version of F-16 PVI, the pilot normally had no warning of an imminent flyup. When a 

flyup initiated, the word “FLYUP” was displayed in the head-up display (HUD) and an audio tone was 

annunciated. Pilots judged that those annunciations were sufficient to communicate why the aircraft was 

suddenly performing an uncommanded maneuver.  

 

Operational pilots who had flown flight-test versions of Auto GCAS requested the option to display 

chevrons on the HUD that appeared approximately 3 s prior to a flyup and merged into a break-X at flyup. 

Some F-16 test pilots felt that the HUD chevrons could be a distraction and wanted the default to be “no 

chevrons.” The operational F-16 pilots found that the HUD chevrons provided helpful information when 

flying low-level missions. As of the writing of this report, the production F-16 version of Auto GCAS 

implements the chevron display as the default, but pilots were given the option to disable the chevrons. This 

implementation may be re-evaluated after Auto GCAS experience has been obtained in operational units.   

 

At low airspeeds, the “FLYUP” indication on the HUD was replaced by an “AIRSPEED” indication. 

This indication was intended as a prompt for the pilot to add power, because insufficient airspeed could 

prevent the flyup from completing. The prompt was necessary because the F-16 did not have auto-throttle 

capability, which would allow Auto GCAS to make power changes.   

 

The F-16 pilots were also provided with several Auto GCAS Mode settings. Most F-16 missions were 

conducted with Auto GCAS in the “NORM” setting. Low-level missions were conducted with Auto GCAS 

in the pilot-selectable “MIN” setting, which minimized nuisance potential by reducing built-in buffers while 

still providing good CFIT protection.  

 

Most importantly, F-16 pilots were allowed to disable Auto GCAS at any point during a mission, and 

also to stop Auto GCAS flyups already in progress by using a paddle switch on the sidestick. There had 

been considerable debate regarding providing those two pilot controls; the concern was that pilots might 

disable Auto GCAS inappropriately, rendering it unable to prevent CFIT mishaps. However, the final 

decision was to provide the pilot with the methods for disabling Auto GCAS in case unforeseen problems 

were encountered in operational units. Once Auto GCAS is judged sufficiently mature, one or both of those 

disabling controls might be removed if the pilot community concurs. 

 

Even after considerable evolution of F-16 PVI, it was still considered marginal by the developmental 

flight-test community (see reference 3 for details). The PVI for the F-22 “Line in the Sky” implementation 

of Auto GCAS was also considered marginal by the developmental flight-test community (see reference 4 

for details). A common thread between these PVI design philosophies was the decision to minimize costs 

by avoiding significant changes to audio tones and other aspects of PVI. The short-term cost savings 

achieved by both projects may result in long-term impacts to operational users. The operational 

communities will provide the final judgment on the respective PVI implementations.  

 

Pilot-vehicle interface was also considered a low priority for the SUAV Auto GCAS project, since the 

project was a limited-scope flight-test demonstration. Although the cockpit in the ground control van 

provided some capability for a pilot to manually fly the DROID, there was insufficient budget to optimize 

the interface for Auto GCAS. One impact was that the pilot did not have the ability to terminate an 

avoidance maneuver already in progress. Also, the setups for test cards could be flown by the ground 

cockpit pilot, but when an avoidance maneuver occurred and terminated, control was returned to the GCO 

and not directly to the ground cockpit pilot. Methods were under consideration to address this topic, but 

were not implemented, during the course of the project.  

 

A few Auto GCAS displays were provided on a computer-generated HUD overlaid on the video from 

the nose camera, but these were designed more as flight-test aids than production implementations. Any 
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implementation of Auto GCAS on UAVs will need to pay special attention to incorporating the PVI that 

may be appropriate to that particular system.  

 

Recommendation 8 (R8): Future Auto GCAS projects should carefully assess the tradeoffs 

between short-term PVI cost savings against the potential for longer-term impacts on the user. 

SUAV Mode States 

 The SUAV Auto GCAS project was a flight-test demonstration, therefore mode states were not 

designed for a production implementation. However, some consideration was given to basic mode state 

logic. The basic SUAV Auto GCAS modes states were IDLE, STANDBY, ON, and FAIL. 

 

The IDLE mode state was designed to prevent Auto GCAS modules from being executed. The IDLE 

mode state was also the default mode state during start-up, requiring a manual command from the UI for 

transition to another mode state.  

 

The STANDBY mode state allowed the Auto GCAS modules to execute, but prevented avoidance 

maneuvers from being initiated. The STANDBY mode state proved useful on both the F-16 and the SUAV 

because it allowed Auto GCAS data to be recorded during checkout flights and nuisance evaluations 

without concern that an unexpected avoidance maneuver might occur. 

 

The ON mode state allowed automatic avoidance maneuvers to initiate. The ON mode state was the 

typical mode state used during Auto GCAS flight-testing.   

 

The FAIL mode state was entered when connectivity checks indicated a loss of communication between 

components, or when an error in the data was detected. The loss-of-communication check was disruptive 

on early flights when the smartphone was in the ground control van and telemetry dropouts occurred as the 

DROID was flown close to the hills. The dropouts could have been caused by multi-path interference with 

the telemetry signal. The frequency of telemetry dropouts was dramatically decreased when a directional 

antenna assembly was developed for use with the ground control van.  

 

Telemetry interference due to terrain proximity could influence many Auto GCAS projects on UAVs 

if the algorithm is hosted on the ground. Improved aircraft antenna design (such as mounting antennas on 

both the top and the bottom of the aircraft) may help, but multi-path reflections off of the surrounding 

terrain and line-of-sight problems with the ground antenna may result in loss of communication just when 

it is needed most.  

 

Recommendation 9 (R9): Future Auto GCAS projects involving flight-testing of UAVs should 

pay particular attention to telemetry and control links when operating in close proximity to terrain.  

 

When the Auto GCAS algorithm was hosted with the smartphone on the DROID, FAIL states due to 

telemetry dropout were eliminated and the overall system was much more robust. However, a few FAIL 

states still occurred, due to on-board communication interruptions.  

 

In the original SUAV implementation, when a FAIL state was annunciated Auto GCAS would not 

initiate an avoidance maneuver and any avoidance maneuvers in progress were immediately terminated. By 

comparison, the F-16 had already implemented a better FAIL state mechanization that allowed avoidance 

maneuvers to continue after a failure. The original SUAV mechanization proved to be suboptimal because 

the aircraft would stop flying away from terrain, forcing the safety pilot to take control. The FAIL state 

logic was re-designed for the last two flights so that an avoidance maneuver would continue if the FAIL 
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condition occurred after an avoidance maneuver initiation. In this case, the avoidance maneuver would 

continue until the safety pilot took control (or communication with the ground control van was restored).  

 

Recommendation 10 (R10):  Future Auto GCAS projects on UAVs should consider a mode state 

implementation that allows the avoidance to continue even after reaching a FAIL state.  

 

The obvious problem with that re-designed mechanization would be the situation in which a hard FAIL 

condition occurs and there is no way for the algorithm to know when it is clear of terrain and safe to 

terminate the avoidance maneuver. During SUAV Auto GCAS flight-testing, this condition was not a 

problem because the safety pilot was always in position to take control. In a production implementation, 

timeout logic might be sufficient to allow the aircraft to avoid the terrain that triggered the avoidance 

maneuver in the first place and allow the UAV to fly back the way it came until the FAIL state no longer 

exists. 

 

The SUAV Auto GCAS project was a flight-test demonstration, and FAIL states needed to be reset 

manually by the UIO. The F-16 implementation allowed for self-recovery from failure states.  

 

Recommendation 11 (R11): Future Auto GCAS projects on UAVs should consider a 

self-recovering mode state implementation to resume CFIT protection as soon as the cause for the 

FAIL state no longer exists.  

System Ground Testing 

Prior to flight-testing, a rigorous set of verification and validation ground tests was accomplished for 

every new software-hardware configuration. The primary intent of these tests was to confirm that the 

software was coded as expected and that the hardware interfaces allowed for proper communication 

between components. Some ground tests were also accomplished to verify that there was no 

electromagnetic interference between components.  

 

The hardware configuration for these ground tests was very similar to the flight-test configuration. All 

of the essential hardware components as shown in figures 11(a) and 11(b) were connected in an HIL 

simulation environment. The HIL setup included a smartphone running the Auto GCAS algorithms 

connected to a UI laptop computer (or a Gumstix® personal computer if simulating a “smartphone on 

aircraft” configuration). The portable ground station provided the necessary interface between the UI laptop 

computer, GCO laptop computer, ground cockpit, and the Piccolo II autopilot.  

 

The software configuration of each set of ground tests was frozen to match the following phase of 

flight-testing. The most significant difference between ground testing and flight-testing was that the DROID 

dynamics were simulated in the HIL simulation environment hosted within the AFRC Simulation 

Laboratory. The DROID simulation was not very representative of the actual test aircraft, but was still 

adequate to accomplish ground testing. 

Flight-Testing 

The standard set of parameters as recorded throughout each test flight for the SUAV Auto GCAS 

project is given in appendix A.  The specialized data analysis techniques that were used are presented in 

appendix B.  A flight log for all SUAV Auto GCAS flights is presented in appendix C. The flight log is 

divided into two sections. The first section documents the preliminary flights that were used to obtain basic 
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aircraft response data and accomplish the initial Auto GCAS functionality checks. The second section 

documents the primary Auto GCAS flight tests.  Appendix D contains a summary of the open NASA 

discrepancy reports (DR) that existed at the end of the SUAV Auto GCAS project.  The main intent for this 

list is to allow the staff on similar future projects to decide if each item warrants improvement.  

Test Objectives 

Prior to formal SUAV Auto GCAS flight-testing, a few flights were conducted with the objective of 

obtaining basic DROID response information during maneuvers that were similar to Auto GCAS avoidance 

maneuvers. These characterization flights were accomplished using normal DROID flight procedures and 

normal DROID autopilot functionality. The data obtained from these flights were not directly applicable to 

an Auto GCAS avoidance maneuver because each axis of the maneuver had to be initiated by separate 

keystrokes (instead of simultaneously). However, the limited data obtained from these flights were 

sufficient to provide a decent starting point for the Auto GCAS algorithm.   

 

The SUAV Auto GCAS flight-test objectives were to: 

 Accomplish basic functionality checks; 

 Verify Auto GCAS component function; and 

 Evaluate fully integrated Auto GCAS: Evaluate:  

  collision avoidance capability; and  

  nuisance potential (limited). 

 

   The test flights tended to be conducted in groups based on the location of the test site and whether 

the smartphone was on the ground or on the test aircraft. 

Test Sites 

Three test sites, each site serving a particular purpose, were used for all of the SUAV Auto GCAS flight 

tests. Figure 32 provides an aerial map view of the three test sites. 

 

 
 

Figure 32. Test site overview. 



52 

 

 

The coordinates for each test site are provided to enable readers to find those locations on Google Earth 

(Google Inc., Mountain View, California). In each case, the coordinates represent the approximate position 

of the ground control van as shown in the figure for that site. 

 

    The North Base test site lies at 34° 59.400’ north latitude and 117° 51.890’ west longitude.  The 

North Base test site was the closest location to AFRC and therefore required the least amount of logistical 

effort for test team deployment. This site was also selected because it was where normal DROID operations 

had previously been accomplished. The North Base test site was one of the locations within EAFB airspace 

that had been approved for SUAV operations (as coordinated through the normal flight-test scheduling 

process).   

 

    The North Base test site had the advantage of an existing hard-surface runway (fig. 33). From an 

Auto GCAS point of view, the North Base test site was limited to smooth-terrain test points because the 

entire area is quite flat. 

 

 
 

Figure 33. North Base test site. 

 

    The first few characterization flights and functional check-flights were accomplished at the North 

Base test site location. The Auto GCAS component functions were also verified at this test site. One of the 

North Base test site flights included the first few smooth-terrain Auto GCAS test points. 

 

    The Rosamond Lakebed test site lies at 34° 52.132’ north latitude and 118° 5.200’ west longitude.     

The Rosamond Lakebed test site offered the slight advantage of small terrain features that could provide 

Auto GCAS test options other than those provided by the predominantly smooth terrain of the North Base 

test site. The main advantage of the Rosamond Lakebed test site was that the logistics of test team 

deployment were much simpler than what would have been required to deploy the test team to a remote 

desert location.  
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    There is a small hill (approximately 75 ft tall) on the north side of the lakebed. That hill was used as 

the location for the first few Auto GCAS test points over terrain that was not smooth (fig. 34). The safety 

pilot was located at the top of that hill for those test points. 

 

 
 

Figure 34. Rosamond Lakebed test site. 

 

    The Rosamond Lakebed test site offered no hard surface runway, but the lakebed surface was 

normally dry enough to support DROID takeoff and landing operations. This test site was another of the 

locations within EAFB airspace that had been approved for SUAV operations (as coordinated through  

the normal flight-test scheduling process).   

 

    The GCAS Valley test site lies at 35° 12.208’ north latitude and 117° 25.116’ west longitude. The 

GCAS Valley test site was selected because it provided a very useful variety of terrain features, and because 

one of the small lakebeds within it provided an adequate takeoff and landing surface for the DROID. The 

specific test locations within the GCAS Valley test site (fig. 35) were selected in order to provide adequate 

areas in which to position the safety pilot and ground observers. 

 

 
 

Figure 35. GCAS Valley test site. 
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    The GCAS Valley test site required the most logistical effort for test team deployment. This test site 

was only reached after almost two hours of driving time from AFRC; approximately half of that time spent 

driving on partially-maintained dirt roads. This test site was located directly underneath the Black Mountain 

low-altitude supersonic corridor, and required special scheduling to avoid airspace conflicts with other 

flight-test operations. On each test day, a Notice to Airmen (NOTAM) was issued to alert other pilots to 

the DROID test activity in that area. 

 

    The test area closest to Fremont Peak was about 1.5 miles from the lakebed used for takeoff and 

landing. It required an additional 30-45 minutes to move the safety pilot and ground observers to their 

assigned stations via rough dirt roads.  

 

       Despite the logistical challenges, this test site was well-suited for Auto GCAS flight testing on the 

DROID class of aircraft. Almost all SUAV Auto GCAS flight-testing was accomplished at the GCAS 

Valley test site. This test site included smooth terrain; a small hill (approximately 350 ft taller than the 

surrounding terrain) with safety pilot access to the top of that hill; moderate terrain (approximately 700 ft 

taller than the surrounding terrain) including a small box canyon with safety pilot access on the side of that 

canyon; and a small saddle area for nuisance testing. 

Ground Survey at the GCAS Valley Test Site  

    An important consideration for the GCAS Valley test site was whether or not the terrain features 

were actually at the same longitude, latitude, and altitude positions as those indicated by the DEM within 

the NED. The answer was not considered a flight-safety issue because the safety pilot remained the primary 

protection against ground impact. However, a technical problem could have arisen if the actual terrain in 

the GCAS Valley were significantly different than that as shown by the NED, so a ground survey for key 

terrain features within the GCAS Valley was conducted.  

 

    Ground surveys have been a common procedure on past Auto GCAS flight-test projects. On the F-16 

Auto GCAS projects in the 1990s and portions of the F-16 FRRP, ground surveys were accomplished by 

project personnel hiking to the relevant terrain features with handheld GPS units. This same technique was 

also used for the SUAV Auto GCAS project in the GCAS Valley for the valley floor and the accessible 

sides of the hills (only where the terrain was not too steep to walk).  

 

    One of the test sites used by the F-16 FRRP included terrain that was much too steep for simple 

hiking surveys. At that test site the professional surveyors at the NGA were requested to accomplish a more 

formal survey. These NGA surveyors were already stationed at EAFB and conducted surveys like this as a 

normal part of their support for base activities. For inaccessible terrain locations these surveyors used 

standard triangulation techniques to obtain high accuracy.  

 

    The NGA was also requested to support the SUAV Auto GCAS project by surveying the more 

inaccessible portions of the GCAS Valley. From an Auto GCAS perspective it was not necessary to obtain 

a ground survey in a rectangular grid for the entire area; it was only necessary to survey the ridgelines at 

the planned test sites within the GCAS Valley. The ridgelines were the most likely areas to trigger an 

avoidance maneuver, and were also the areas where it was most likely for the test aircraft to get closest to 

terrain (during or shortly after the avoidance maneuver). 

  

      Figure 36 shows the results of the NGA survey for a portion of the small box canyon area. The 

bottom cusp of each white balloon represents the survey altitude at that longitude and latitude. The white 

line below each balloon represents the difference between the survey altitude and the Google Earth 

representation. 
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Figure 36. NGA survey at primary test area. 

 

    The Google Earth graphics were also based on NED data, and figure 36 is considered a good 

depiction of the altitude errors that would be inherent to the Auto GCAS algorithm that was also based on 

NED data. Figure 37 provides an overall summary of the difference between the NGA survey and the NED 

data at the closest NED post to the survey coordinates. 

 

 
 

Figure 37. NGA survey histogram. 
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    The histogram data shown in figure 37 indicate that the survey data were higher than the nearest 

NED post by about 27 ft on average. One survey point was approximately 60 ft higher than the 

corresponding NED post. There were no cases in which the NGA survey data were below the NED data. 

 

  The overall conclusion from the NGA survey was that the NED data were sufficiently accurate to 

provide a viable source for the Auto GCAS algorithm. The 27-ft average error was within the tolerance 

provided by the DEM uncertainty buffer of 30 ft. The scan pattern methodology and the selection of DEM 

posts outside the scan pattern (fig. 28) provided sufficient additional buffering. 

Test Methods  

The primary test methods used were:  

 PARS (to obtain trajectory data);  

 Collision avoidance testing;  

 Mishap scenarios; and  

 Nuisance evaluations.  

Each method is described below. 

Pilot-Activated Recovery System 

   The SUAV flight-test technique used was based on the F-16 PARS maneuver. The goal was to initiate 

a maneuver that replicated an avoidance maneuver as closely as was practical. For the SUAV Auto GCAS 

project, PARS maneuvers were initiated by the GCO instead of the pilot, but the intent was the same.  

 

The PARS maneuvers provided a significant flight-test advantage over Auto GCAS -initiated avoidance 

maneuvers when the only intent was to obtain trajectory data. Auto GCAS avoidance maneuvers require 

that the test aircraft be maneuvered into a particular set of flight conditions over a specific terrain feature. 

The PARS maneuvers could be initiated as soon as the aircraft was set up on the target test conditions, 

regardless of terrain. The extra maneuvering time required to set up for an Auto GCAS maneuver 

significantly impacted test efficiency and effectiveness. On average, SUAV PARS test runs were executed 

at twice the rate of Auto GCAS test runs.  

Collision Avoidance Testing 

The vast majority of SUAV Auto GCAS flight-testing was collision avoidance testing. These tests 

always required the most planning and test team coordination, because the test aircraft was being 

intentionally aimed at terrain.  

 

The single most important guiding principle for collision avoidance tests was, “Do not rely on Auto 

GCAS to prevent a collision.” Any collision avoidance system under test could reveal unforeseen problems 

at the most inopportune time. Discovering those problems when close to terrain could easily result in a 

mishap, so extra care and control was necessary to maintain test safety.  

 

In a piloted test airplane like the F-16, this was accomplished by placing all responsibility for avoiding 

collisions on the test pilot. In the case of the SUAV project, all responsibility for avoiding collisions was 

placed on the safety pilot (located on the ground near the test area). The essential point was that the F-16 

test pilot and the SUAV safety pilot were briefed to take control as needed, regardless of how much 

confidence had been developed in the Auto GCAS.  
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Another important guiding principle for collision avoidance tests was, “Add a flight test altitude buffer 

for each new set of flight conditions.” Both the F-16 and the SUAV used a terrain clearance buffer (TCB) 

that was implemented as a flight-test aid. The TCB caused avoidance maneuver initiations to occur at a 

higher altitude than would normally occur with the basic Auto GCAS algorithm.  

 

The TCB value was specified on the test cards for each run and could be set by the test pilot on the 

F-16 project and the UIO on the SUAV project. The TCB value specified for a given run was dependent 

upon the target test conditions. In general, steeper dives and more dynamic maneuvers led to higher TCB 

values. Once Auto GCAS had been evaluated at higher TCB settings, the same test conditions could be 

repeated at lower TCB settings.  

 

Some SUAV collision avoidance flight tests were conducted with a TCB value of zero. Those runs used 

whatever buffer was built into the Auto GCAS algorithm, but there was no additional flight-test buffer. 

Tests with zero TCB were only accomplished once the test team was satisfied with the system performance 

established using higher TCB values. When testing with zero TCB the responsibility for avoiding collisions 

remained with the safety pilot.  

 

A primary goal of the collision avoidance tests was to thoroughly “wring-out” the Auto GCAS 

implementation under controlled conditions prior to conducting nuisance evaluations, which tend to be less 

scripted. On the F-16 project, this goal was accomplished during incremental phases because the emphasis 

was on reaching the nuisance evaluations phase as quickly as practical. It was critical to show that the F-16 

Auto GCAS would not be nuisance-prone under operationally relevant scenarios. On the SUAV project, 

the main emphasis was on demonstrating the portability of the Auto GCAS algorithms, so there was much 

less emphasis on nuisance evaluations. Therefore, nuisance evaluations were only conducted on the last 

two flights of the SUAV project (for more background see the “Nuisance Evaluation Techniques” section 

below).  

 

 On the SUAV project, the general collision avoidance test procedure for a given test run began with 

the GCO commanding the test aircraft into a circular holding pattern (see fig. 38). The holding pattern was 

typically a few hundred feet above the intended test point altitude and at least 500 ft above the valley floor. 

For the example shown in figure 38, the holding pattern was clockwise. Before the test aircraft left the 

holding pattern, the GCO commanded the test aircraft to descend to the intended test point altitude. After 

the test conductor confirmed that the test team was ready to test, the GCO commanded the test aircraft to 

leave the holding pattern and enter the test pattern. 
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Figure 38. Example collision avoidance pattern showing waypoints (WP). 

 

A sequence of four waypoints was used to establish the test pattern. Waypoints 1 and 2 consisted of 

longitude, latitude, and altitude coordinates located at the tangent points of the holding pattern that remained 

fixed throughout a test mission. Waypoint 3 was located at the “Initial” point for the final run-in to an 

expected avoidance maneuver (represented in figure 38 by the black line between the “initial” point and the 

expected avoidance point at the green dot). The coordinates for waypoint 3 varied, depending upon the 

setup needed for a particular test point. Between waypoints 2 and 3, the test aircraft was usually commanded 

to accelerate or decelerate to the test airspeed. Waypoint 0 was the “aimpoint” for each avoidance maneuver. 

Waypoint 0 established the heading for the final run-in line from waypoint 3. The coordinates for waypoint 

0 varied depending on the aimpoint needed for a particular test point. 

 

The expected avoidance point was defined on each test card. The coordinates for that point assumed 

that the test aircraft flew exactly along the planned run-in line, but that was not always true because of 

crosswinds or other setup problems. Those coordinates were also used for a countdown display in the 

ground control van. The dark blue line in figure 38 represents the expected avoidance path. That path was 

shown on the test cards to provide the test team with an idea of what to expect for a given test run.  

 

The primary information communicated on the test cards was whether a given run was expected to 

execute an avoidance maneuver left, straight, or right. However, the actual test event did not always occur 

as expected. In particular, if a given test run was aimed along the crease in a ridgeline, the avoidance could 

go either left or right, depending on small setup variations. Those subtle Auto GCAS algorithm decisions 

were intentional parts of the test. The test team was always ready for the test aircraft to turn in unplanned 

directions. The safety pilot always took control if the aircraft appeared to be headed too close to terrain or 

if it was heading outside the field of view (such as over a ridgeline or into the glare of the sun).  

 

The test cards also provided the test team with some idea of the specific path the test aircraft might take 

relative to the safety pilot and ground observers. The ground observers were located in key positions relative 

to nearby terrain features to assist the safety pilot when the test aircraft was flying close to those terrain 

features the proximity of which was not easy to judge from the safety pilot perspective (see example  
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in figure 38). If the aircraft remained clear of terrain, the ground observers made periodic “clear” calls on 

the radio. If the ground observers judged that the aircraft was getting too close to terrain, they called for an 

“abort” on the radio and the safety pilot took immediate control.  

 

When a test run went according to plan and the avoidance maneuver terminated normally, the test 

conductor called “test complete” on the radio. That call was another signal for the safety pilot to take 

control. Therefore, the safety pilot took control on every collision avoidance test run, even if everything 

went according to plan. This procedure was an intentional one, the purpose of which was to eliminate any 

uncertainty as to who was flying the aircraft and when on every collision avoidance test run.  

 

After taking control on every collision avoidance test run, the safety pilot would first and foremost 

ensure terrain clearance. Once satisfied that the aircraft was well clear of terrain, the safety pilot then 

maneuvered the aircraft back toward the holding pattern. When the test conductor determined that the test 

aircraft was in a good position, control was transferred from the safety pilot to the GCO. The GCO 

maintained the aircraft in the holding pattern until the test conductor coordinated the setup for the next test 

card. The test team became very proficient at executing these test procedures and averaged one collision 

avoidance test run every 5 min.  

Mishap Scenarios 

A few collision avoidance test runs were configured to replicate three scenarios that have occurred in 

real-world UAV and general aviation mishaps. The basic flight conditions for each of these mishaps were 

obtained from the USAF Safety Center (for the UAVs) and the National Transportation Safety Board  

(for the Cessna). 

A top-level description of those mishap scenarios is: 

 During an approach to landing, an MQ-9 was destroyed after hitting some power lines short of the 

runway after a steep descent. The key mishap flight conditions replicated were the bank angle and 

descent rate over smooth terrain. The test airspeed was approximately 10 kn less than for the mishap 

aircraft. 

 During combat support operations in mountainous portions of Afghanistan, an MQ-1 Predator 

(General Atomics, San Diego, California) was destroyed when the aircraft entered a box canyon 

while attempting to cross from one mountain valley into another valley. The key mishap flight 

conditions replicated were the bank angle, dive angle (near level flight), and ingress to a terrain 

feature that resembled a box canyon. Once again, the test airspeed was approximately 10 kn less 

than for the mishap aircraft. 

 During a nighttime cross-country flight over rising mountainous terrain, a Cessna Turbo 182T 

(Cessna Aircraft Company, Wichita, Kansas) was destroyed with two fatalities when the 

established climb rate was insufficient to clear a ridgeline. The key mishap flight conditions 

replicated were the climb rate on a wings-level approach to rising terrain. The exact airspeed at 

impact for the mishap aircraft was not known but was likely about 20-30 kn faster than the test 

aircraft. 

Nuisance Evaluation Techniques 

The primary test technique used for nuisance evaluations was to mimic UAV mission segments that 

could occur during normal operations while also within reasonably close proximity to terrain. The primary 

intent of those tests was to evaluate whether Auto GCAS avoidance maneuvers would be considered a 

nuisance if they occurred during those mission segments.   
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Most normal UAV operations are conducted many thousands of feet above terrain, where the risk of 

CFIT is very low. However, a number of situations exist within which the risk of CFIT is higher.  

 

Any operations in mountainous regions could place the UAV near its performance ceiling, forcing the 

UAV to attempt ridge crossings in the passes between mountain peaks in order to get from one valley to 

another (as in the MQ-1 mishap). Examples of this scenario include combat operations in mountainous 

regions such as Afghanistan, but could also include peacetime missions in support of firefighting operations 

over mountainous areas within the CONUS. In addition, even if the UAV is not flying near its performance 

ceiling, air traffic control limitations could place a ceiling on operations that constrains the UAV to an 

altitude lower than surrounding mountain peaks. 

 

Two UAV mission segments were selected for SUAV Auto GCAS nuisance evaluations. These were 

called “ridge crossings” and “valley patrols.” In order to obtain a more qualitative evaluation, both of these 

segments were planned for a pilot manually flying those mission segments. A system test of Auto GCAS 

could also have been flown under GCO control using the normal technique using waypoints for both 

mission segments. 

 

Ridge crossing tests were constrained by the requirement that the safety pilot keep the test aircraft in 

sight at all times. The test aircraft could not cross a ridge above the safety pilot and then continue across 

that ridge beyond where the safety pilot would lose visual contact. Therefore, a more practical location was 

selected that allowed the safety pilot to be positioned where the test aircraft would remain in sight 

throughout the test run. The only location at GCAS Valley with reasonable dirt road access was a small 

saddle area. This saddle allowed limited ridge-crossing testing, but the terrain was only slightly higher on 

both sides of the saddle (fig. 39).  

 

 
 

Figure 39. Ridge crossing test location. 

 

The test cards for ridge crossings listed a minimum safe altitude that would keep the test aircraft clear 

of all terrain within the designated test area (as shown in figure 39). The minimum safe altitude was based 

on MSL altitude as provided by the Piccolo II autopilot GPS/INS. The pilot was directed to stay above that 
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minimum safe altitude while also staying within the test area, a large display of each of which was visible 

directly in front of the pilot. This method was used to attempt to simulate typical mission constraints that 

might be placed on a UAV operator. 

 

If the pilot flew directly over the saddle while also above the minimum safe altitude, there would be at 

least 185 ft of clearance. The intent was to show that the saddle could be crossed at a reasonably low altitude 

without the Auto GCAS algorithm inducing a nuisance avoidance maneuver.  

 

If the pilot strayed close to the boundary of the test area, the clearance would have been approximately 

75 ft. The safety pilot was in a good position to take control if a run became too close to terrain on that side 

of the saddle.  

 

Valley patrol tests were intended to represent a mission segment in which a UAV was tasked to loiter 

within a mountain valley while conducting normal surveillance operations. Similar to the ridge crossings, 

the pilot was directed to stay above a minimum safe altitude while also staying within the test area (fig. 40). 

 

 
 

Figure 40. Valley patrol test area. 

  

Given those mission constraints, there would be at least 150 ft of clearance anywhere within the test 

area. The examples in figure 40 show typical racetrack patterns, but the pilot was allowed to follow any 

pattern as long as the test boundary and altitude constraints were observed. The intent was to show that 

missions of this type could be conducted at reasonably low altitude without the Auto GCAS algorithm 

inducing a nuisance avoidance maneuver.  

 

Valley patrol tests were planned so that the safety pilot and ground observers could be located where 

they could monitor the test area boundaries and abort the run if the test aircraft strayed too far outside those 

boundaries.  

 

Ridge crossings and valley patrols were planned to be accomplished either with the normal 

three-trajectory Auto GCAS algorithm (allowing left, straight, or right avoidance maneuvers) or with the 
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multi-trajectory option disabled (allowing only straight avoidance maneuvers). The intent was to provide a 

comparison of the nuisance potential of those differing design approaches. 

Test Preparation  

It may be possible to accomplish Auto GCAS flight-testing by selecting a likely terrain feature and 

aiming the aircraft at that feature. However, more useful test results and safer test conduct can be achieved 

when the test team knows what to expect for each test run. A powerful, integrated flight-test planning tool 

was developed in support of the SUAV Auto GCAS project. That tool consisted of two primary 

components:  

 The SUAV Auto GCAS avoidance maneuver simulation, and  

 The avoidance maneuver visualization using Google Earth.  

     

The combination of these two components considerably enhanced flight-test planning. The avoidance 

maneuver visualization component also greatly improved flight-test data analysis, as discussed in the “Test 

Results” section below.  

SUAV Auto GCAS Avoidance Maneuver Simulation 

A customized simulation of SUAV Auto GCAS avoidance maneuvers had been developed early in the 

project as a design tool. That simulation enabled the user to establish aircraft setup conditions relative to 

terrain features and initiate the simulation. The results then provided an indication of where and when the 

avoidance maneuver was expected to occur. At a more fundamental level, the simulation also indicated 

whether an avoidance maneuver would occur, because some setups would not necessarily lead to an 

avoidance maneuver. For SUAV Auto GCAS, the simulation also predicted whether the avoidance 

maneuver would be executed to the left, straight, or right. 

 

One of the original purposes for this simulation was to provide software programmers with a functional 

reference model. The simulation provided test cases that could be used to compare with results from the 

Java™ software hosted on the smartphone. 

 

The SUAV Auto GCAS simulation used the same modular architecture and the same simplified 

kinematic models for the avoidance maneuver dynamics as those described in the “SUAV Auto GCAS 

Software Components” section above. The simulation also used a subset (limited to the SUAV Auto GCAS 

test sites) of the same DEM data that the smartphone would use.  

 

The use of a simplified Auto GCAS simulation for this purpose has a history that goes back to early 

F-16 Auto GCAS flight-testing in the 1990s. At that time, the simulation was successfully used for 

flight-test planning and to determine the abort altitudes required to observe flight-test safety procedures. 

The simplified kinematic models in that F-16 flyup simulation were initially generated based on hundreds 

of high-fidelity six-degrees-of-freedom simulation runs provided by Lockheed Martin. Those kinematic 

models were later verified using flight-test data. The F-16 flyup simulation was also used for trajectory 

reconstruction in over a dozen F-16 CFIT mishap investigations.  

  

In the 1990s, the utility of the output from the F-16 flyup simulation was of course constrained by the 

current state of the art for computer graphic visualization tools. It was possible to feed the predicted 

trajectory from the simulation (or the actual trajectory from flight-testing) into three-dimensional computer 

graphics software to generate views of the flightpath of a run relative to the intended terrain, but that process 

was labor-intensive and each run could take hours to generate from a single perspective. More recent 
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computer graphics tools have helped overcome that constraint for the SUAV Auto GCAS project as 

described in the following section. 

Avoidance Maneuver Visualization  

Various figures in this report have already provided examples of the SUAV Auto GCAS visualization 

tools (figs. 22, 30, and 38). The tremendous utility of these tools was enabled by linking the output from 

the SUAV Auto GCAS simulation to provide inputs into Google Earth. This linking was accomplished by 

using MATLAB® (The MathWorks, Natick, Massachusetts) to feed the outputs from the simulation into 

standard Google Earth graphic functions. The result was keyhole markup language, or KML, files that could 

be viewed easily in Google Earth. (Keyhole Corp., Mountain View, California, was a technology company 

purchased by Google in 2005). 

 

Examples of the types of information output from the simulation into Google Earth included:  

 The planned flightpath leading up to the avoidance maneuver; 

 The predicted flightpath during the avoidance maneuver; 

 The scan pattern used at avoidance maneuver initiation; 

 The highest terrain “threat” at a given range from the aircraft;  

 The height of the combined TCB and built-in buffers above the highest terrain at a given range; 

and  

 Alternative trajectories that were not selected. 

 

      The DEM data were also represented by placing Google Earth polygons around each terrain post, 

but these data were not output directly from the simulation. 

 

      An example of how Google Earth was used to help visualize the setup for a particular flight-test 

point is shown as a top view in figure 41. This figure shows a top view of the terrain near the scan pattern 

used by the Auto GCAS algorithm at the instant at which the right avoidance maneuver was predicted by 

the simulation. The left and straight trajectory predictions were also calculated by the simulation, but were 

already rejected as invalid avoidance options prior to this point in time. 

 

 
 

Figure 41. Circular terrain scanning example 1. 
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   The green circles in figure 41 illustrate how the expanding scan pattern can be simplified by 

combining the navigation uncertainty and track uncertainty (as described in the “SUAV Auto GCAS 

‘Identify Collision Threats’ Module” section above) into expanding circles centered at increasing ranges 

along the predicted trajectory.  

 

Although this circular scan technique may theoretically “miss” terrain features located near the 

intersection of these circles, missed terrain features have not been a problem in practice. If a terrain feature 

happened to fall into the “crevice” between two scan circles, that terrain feature was always detected by the 

scan during a following frame. Additional conservatism was built into the scanning technique because the 

individual DEM posts were represented by rectangular polygons as used by the Auto GCAS algorithm. 

DEM posts well outside the scan pattern were detected whenever a tiny corner of the rectangular polygon 

was within any of the scan circles.  

 

The way in which the circular scanning technique identifies the highest terrain post in the vicinity is 

illustrated in figure 42 by a perspective view of the same trajectory prediction as that shown in figure 41. 

 

 
 

Figure 42. Circular terrain scanning example 2. 

 

The orange polygons in figure 42 represent the way in which the scanning algorithm interprets each 

terrain post. The relevant terrain posts are represented by the multi-colored balloons in figure 42. The terrain 

post height is at the cusp underneath each balloon, which is the same height as the corresponding flat, 

horizontal, orange polygon. Each post has been re-rasterized from the CDTM data. 

 

The smallest circle in figure 42 represents the first terrain scanning area and was closest to the location 

where an avoidance maneuver was predicted to initiate. The only orange polygon within the bounds of that 

smallest circle was the one corresponding to the first balloon. Therefore, the height of the circle is set at the 

same height as the balloon. 
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Scan circles 2 and 3 (in blue) overlap more than one orange polygon. The highest orange polygon was 

the one established by the post represented by the dark blue balloon. Therefore, scan circles 2 and 3 are set 

at the same height as the dark blue balloon.  

 

That pattern continues with the light blue scan circle 4 set at the same height as the light blue balloon. 

The two green scan circles 5 and 6 are set at the same height as the green balloon, and so on for the yellow 

scan circle 7 and the red scan circle 8.  

 

The dark blue curving line in figure 42 represents the trajectory prediction for that run. The dark blue 

vertical lines help visualize the height of the trajectory above the ground at the center of each scan circle. 

It can be seen that the dark blue trajectory line is above all of the scan circles up to and including the yellow 

scan circle. Therefore, the terrain represented by all of those circles would not have been high enough to 

trigger the avoidance maneuver. However, the red scan circle is above the dark blue trajectory prediction, 

and therefore the terrain post represented by the red balloon is the one that triggered this particular 

avoidance maneuver.  

 

Also note that the red scan circle in figure 42 is barely touching the orange polygon corresponding to 

the red balloon. This occurrence was very common. One frame earlier, the trajectory prediction would have 

been slightly farther from the red post, the red scan circle would have been at a much lower height, and 

therefore an avoidance maneuver would not have been initiated at that point in time.  

 

   All of the scan circles in figure 42 represent no added built-in buffer or TCB. If the simulation of this 

run had used a higher value for the TCB, the tops of all of the scan circles would have been higher, but the 

yellow scan circle would probably have been high enough to trigger the avoidance sooner.  

 

Once the information shown in these Google Earth representations was understood, the predicted 

trajectory for a given simulation run could be assessed very quickly to see if it would yield the desired 

results. If the resulting avoidance maneuver went in the wrong direction, or was triggered by the wrong 

piece of terrain, the initial conditions were adjusted until the desired results were obtained. 

 

During early SUAV flight tests, the Google Earth visualization tools were used to identify initial points 

and aimpoints that would maximize the likelihood that the avoidance maneuver would occur in a predictable 

direction. The avoidance maneuver direction was not always intuitive because the P-factor effect made the 

trajectory prediction asymmetric. Test day winds also influenced the avoidance maneuver direction selected 

by the Auto GCAS algorithm. 

 

As the test team became more experienced with test run setup and at judging the rate at which the test 

aircraft approached terrain, the visualization tools were used to identify initial points and aimpoints that 

challenged the Auto GCAS algorithm by making the optimal avoidance maneuver direction more 

ambiguous, such as aiming directly at the crease in a ridgeline. 

 

The end result of the process was a test matrix that efficiently captured as many setup variations as 

were practical for a short flight-test project. After the test matrix was established and approved by project 

management, the Auto GCAS simulation was also used to generate test cards for each individual run in the 

test matrix.  

Test Cards 

An example test card is shown in figure 43. 
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Figure 43. Example test card. 

 

The left-hand side of the test card was primarily intended for the test conductor and the test team in the 

ground control van. In addition to various test-unique SUAV information, the test card also showed basic 

setup information that would be useful for any Auto GCAS test, such as the:  

 TCB value and coordinates for initiation of the expected avoidance maneuver;  

 Specified level flight setup (versus diving);  

 Target conditions for the avoidance maneuver;  

 Sequence of autopilot states; and  

 Test execution sequence. 

 

The upper right-hand side of the test card showed a top-down Google Earth view of the planned test 

run and was used by all team members to visualize the expected results. In particular, this portion of the 

test card was intended to help the safety pilot and the ground observers know where the test aircraft would 

be approaching terrain, and the expected direction of the avoidance maneuver. During test missions, the 

same waypoints used to generate the test pattern on each individual test card were also replicated on a large 

high-definition display visible to all members of the test team in the ground control van.  

 

The lower right-hand side of the test card was primarily intended for those runs during which a test 

pilot was flying the aircraft from the ground cockpit. This Google Earth image provided the test pilot with 

a view along the planned run-in line (the dashed black line). The green circle showed the pilot an aimpoint 

for runs at zero TCB. The green triangle showed the pilot an aimpoint for runs with a TCB of 200 ft. 

 

Much of the information shown on the test card was pre-established in pre-configured PCC files for 

each individual run. Therefore, when the test conductor called for a particular test card number, it was easy 

to configure the PCC for that run. The test conductor called out each autopilot state at the appropriate point 

in the test pattern and the GCO commanded the PCC to that state. 
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The expected coordinates for the avoidance maneuver initiation were entered into a countdown timer 

calculation on the UIO laptop, and the results displayed to the test conductor. That countdown timer used 

a simple equation based on the current distance to the initiation point and the current velocity of the test 

aircraft. The test conductor provided a radio call at 10 s out and then a countdown from 5 s. This method 

worked reasonably well as long as the test aircraft was somewhat stabilized on test conditions and the winds 

weren’t very high. Even on runs when the countdown timer did not exactly predict the timing of the 

avoidance initiation, the 5-s countdown helped everyone on the test team know that an avoidance maneuver 

was imminent.    

Data Recording Limitations 

  The SUAV Auto GCAS project experienced advantages and disadvantages associated with using the 

Android™ platform smartphone as the primary source of post-flight data. One advantage was that  

the smartphone provided the ability to record data that was internal to the Auto GCAS algorithm (similar 

to a data pump on a mux bus). It was not necessary to develop and pay for a separate flight-test 

instrumentation system for that type of internal test-data recording. Another advantage was that the data 

were recorded on the same computer that was hosting the Auto GCAS algorithm, avoiding the potential for 

time synchronization problems that could have occurred with data being recorded on an independent device 

after being fed through other system components. 

 

The disadvantages have been discussed in the “Host Computer Requirements” section above. In the 

context of total smartphone storage capacity, the design constraint was that Auto GCAS data were only 

recorded at the initiation of each avoidance maneuver. The F-16 recorded Auto GCAS data throughout the 

flight, which was much more useful for assessing nuisance potential in situations in which flyups did not 

activate. In the context of overall smartphone throughput capacity, the primary design constraint was the 

rate at which flight-test data could be recorded without interfering with the basic Auto GCAS functions.  

 

The combination of these two design constraints led the team to decide to only record trajectory 

prediction and scan pattern data at the initiation of an avoidance maneuver. Both of those data types 

consisted of a moderately-sized array of data. Attempting to record the trajectory prediction and scan pattern 

arrays at every time frame during the run-in could have stressed both the throughput capacity and the storage 

capacity of the smartphone. If the throughput capacity were stressed, the Auto GCAS algorithm might not 

function properly. 

 

The F-16 Auto GCAS was not limited in the same way with respect to recording of trajectory prediction 

and scan pattern data. The F-16 used an ethernet from the computer hosting the Auto GCAS algorithm to 

the data recording device. That ethernet path provided sufficient high-capacity throughput to record all of 

the trajectory prediction and scan pattern data throughout the entire test flight. This capability was a 

tremendous advantage over the SUAV Auto GCAS implementation because it enabled post-flight data 

review of maneuvers that came close to a flyup but did not actually initiate a flyup.  

 

Recommendation 12 (R12): Future Auto GCAS test projects using a smartphone as the data 

recording device should consider implementing a recording method that provides data throughout 

the flight, not just when avoidance maneuvers occur.  

 

It may not be necessary to record trajectory prediction and scan pattern data throughout the entire test 

flight. It may be possible to record those data at a slower rate (such as every other frame) or only when the 

predicted time to the avoidance maneuver drops below a predefined value (such as 5 s). The extra ability to 

analyze post-flight data would probably be worth the additional design effort.  
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In order to accommodate the extra throughput that is required, some portion of the standard set of data 

recorded throughout the test mission may need to be sacrificed. Some of those “always recorded” 

parameters may need to be deleted, or some may need to be recorded at a slower rate. The standard set of 

parameters as recorded throughout each test flight for the SUAV Auto GCAS project is given in  

appendix A. 

Test Results 

One participant in the SUAV Auto GCAS test project described the results by stating, “It worked 

surprisingly well.” That somewhat cryptic description is actually a good overall summary, because the 

system did work better than expected given that the entire project was conceived as a low-budget 

demonstration effort.  

 

There was never the intent that this demonstration effort directly apply to a production implementation. 

However, there was always a vision that the results might be good enough to form a basis for follow-on 

efforts. The results validated the potential for the new technology concepts and opened the door to several 

follow-on efforts.  The overall assessment of SUAV Auto GCAS is divided into the following areas:  

 Excellent CFIT protection,  

 Adequate nuisance potential, and  

 Outstanding modular technologies. 

Controlled Flight Into Terrain Protection 

There were a total of 61 Auto GCAS events that were included in the post-flight analysis process. This 

includes almost all test runs on which an avoidance maneuver was initiated by Auto GCAS, but does not 

include PARS-type avoidance maneuvers. These events do not include another three dozen runs from flights 

7, 8, 9, and 10, when the telemetry reception was especially poor (before the directional ground antenna 

was developed).   

 

Valid initiations occurred on 52 of the 61 runs. The nine invalid initiations were induced by residual 

telemetry problems caused by incorrect setup or aiming of the directional antenna assembly.  

 

The primary measure of CFIT protection was, “How close did the aircraft get to the rocks?” This 

question was addressed using the minimum AGL value reached during a recovery. All AGL values, 

including minimum AGL, were obtained by comparing to the NED truth source as described in the 

“Comparison to Digital Terrain Truth Data” section of appendix B.   

 

Of the 52 valid initiations, 42 resulted in a usable minimum AGL value. Eight cases did not obtain a 

usable minimum AGL value because the safety pilot diverted the flightpath before reaching the minimum 

AGL location. In those cases, the safety pilot took control because the ability to judge terrain clearance was 

degrading (due to a combination of distance and other terrain in the background), not because of a problem 

with the trajectory of the Auto GCAS avoidance maneuver. Two of the unusable minimum AGL cases were 

due to FAIL conditions that were modified in later software updates. 

 

Figure 44 shows “how close the aircraft got to the rocks” using a histogram for the 42 runs that resulted 

in a usable minimum AGL value. 

 



69 

 

 
 

Figure 44. Minimum AGL (mountainous and smooth terrain). 

Because the test runs were accomplished in a buildup manner, they tended to progress through TCB 

settings of 200, 100, and 0 ft. In order to show all of the data on the same plot, the TCB was subtracted 

from the actual minimum AGL value obtained from each run. This effectively shows “how close the aircraft 

would have come to the rocks if TCB had been set to zero.” 

 

Most of the runs in figure 44 show that the aircraft cleared the buffered “rocks” by 100 ft or more, with 

a mean of 142 ft. None of the 42 runs penetrated the TCB. This shows that the combination of the scanning 

techniques and the built-in buffer of 40 ft worked quite well to minimize the potential for terrain impact.  

 

One run would have been within 25 ft of the “rocks” if the TCB had been set to zero (the test run had 

a TCB setting of 100 ft). That particular run was one during which the actual trajectory during the avoidance 

maneuver went far outside the scan pattern at initiation. It is suspected that this deviation was caused by a 

significant change in winds after the avoidance was initiated. The effects of non-steady winds were 

discussed above, and warrant additional consideration on future Auto GCAS systems. This case shows the 

way in which non-steady wind effects could reduce CFIT protection if future Auto GCAS algorithms do 

not account for those effects. 

 

The data in figure 44 represent all of the usable minimum AGL data regardless of the type of terrain 

along the flightpath. Almost all of those runs were over mountainous terrain. Only a few runs were 

conducted over smooth terrain (a dry lakebed) because that terrain was not considered sufficiently 

challenging to the system. The two runs over smooth terrain that provided usable minimum AGL data are 

shown in figure 45. As expected, these runs recovered at a minimum AGL that was just above the built-in 

buffer of 40 ft. 
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Figure 45. Minimum AGL (smooth terrain). 

The data in figures 44 and 45 indicate that the SUAV Auto GCAS demonstrated excellent CFIT 

protection given the basic design that was implemented for this demonstration effort. 

Nuisance Potential 

Providing a measure of nuisance potential is more problematic than providing a measure for CFIT 

protection. Nuisance potential of a generic UAV is a more subjective measure that will almost always 

depend on the perspective of the individual UAV operator as well as on the mission of a particular UAV.  

 

Most Auto GCAS nuisance evaluations have been accomplished by conducting a series of operationally 

relevant tasks and asking the pilot to qualitatively evaluate the nuisance potential of any Auto GCAS 

avoidance maneuvers encountered. That type of subjective evaluation provides a valid overall indication of 

nuisance potential but does not establish a quantitative boundary for when an avoidance maneuver would 

be considered a nuisance. 

 

Available Reaction Time  

As discussed above, nuisance criterion flight tests were conducted on an F-16 in the 1990s. This study 

was the only known analytical flight-test study specifically planned to develop a criterion for Auto GCAS 

nuisance potential. The F-16 study was accomplished by allowing pilots to initiate avoidance maneuvers at 

progressively lower altitudes until each pilot reached a comfort threshold for that maneuver. The end result 

was a quantitative nuisance criterion for typical low-altitude maneuvering for F-16 missions.  

 

The F-16 nuisance criterion indicated that any Auto GCAS avoidance maneuver initiated more than  

1.5 s earlier than necessary to avoid hitting the ground, would be considered a nuisance by an F-16 pilot 

aware of ground proximity. That time-based metric was considered much more applicable than a 

distance-based metric. The term “available reaction time” (ART) has been used as one way to describe that 

time-based metric.  
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A similar analytical study to develop an Auto GCAS nuisance criterion for UAVs has not been 

conducted. It is suspected that the operator of a UAV would accept avoidance maneuver activations at 

higher ART values than the 1.5-s threshold for F-16 pilots. An Auto GCAS nuisance criterion for a UAV 

would probably depend on a number of additional relevant factors, such as:  

 The size of the UAV;  

 The maneuverability of the UAV;  

 Whether the UAV is remotely piloted or autonomous; and  

 Whether direct line-of-sight control or a satellite link were being used (which determines the 

amount of delay in the two-way control link). 

 

Since many of these factors will be platform-dependent, it is probably not appropriate to define a 

generic nuisance criterion that will work for all UAVs. However, it should be practical and necessary to 

develop a nuisance criterion that makes sense for each platform by using simulators combined with in-flight 

pilot experience. It will be essential for Auto GCAS designers on future UAV projects to have some kind 

of guidance regarding nuisance potential so that design tradeoffs can be made.  

 

Recommendation 13 (R13): Future Auto GCAS projects on UAVs should develop a nuisance 

criterion specific to that project.  

     

An indicator of the nuisance potential as experienced on the SUAV Auto GCAS project can be obtained 

by inspection of ART. Available reaction time was defined as the amount of time after initiation of the Auto 

GCAS maneuver that the same maneuver could have been delayed and barely avoided terrain. The premise 

of the ART calculation was to determine the amount of time available for a pilot to react if an Auto GCAS 

maneuver were not initiated. A negative ART indicates that the avoidance maneuver would not prevent the 

aircraft from flying into the terrain, or, in this case, the terrain plus TCB. A formal study has not yet been 

accomplished to quantify the ART nuisance boundary for UAVs similar to the test aircraft. The ART was 

not determined from a qualitative pilot opinion but was based on an extrapolation of the actual aircraft states 

combined with the trajectory of the actual avoidance maneuver for a given test run. The method for 

determining ART values on the SUAV Auto GCAS project is described in appendix B.  

 

A total of 43 runs provided usable ART values. A number of runs did not provide usable ART values, 

usually because the safety pilot took control and ART could not be determined from the limited data 

available for those runs.  

 

The ART values obtained during SUAV Auto GCAS tests are shown in figure 46. Even though these 

values cannot be compared to a UAV nuisance criterion, they still provide some helpful insight into the 

overall conservatism of the SUAV Auto GCAS algorithm and the consistency from run to run. 
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Figure 46. Available reaction time. 

As expected, the ART values shown in figure 46 tend to be higher than the 1.5-s criterion of the F-16. 

The mean ART value of 3.5 s might still be quite adequate for a UAV. The highest ART value 

(approximately 7 s) might be considered a nuisance for UAVs. 

 

UAV Mission Segments  

Since the DROID was not a production platform having a well-defined mission, operationally relevant 

tasks could not be selected from an existing list. However, as previously discussed, ridge crossings and 

valley patrols were the two mission segments identified with some operational relevance to UAV missions. 

Only a few of each task type were conducted near the end of flight-testing because these were considered 

lower-priority tests for this project.  

 

All of the ridge crossing and valley patrol tests were conducted with the TCB set to zero. Higher TCB 

settings were not used because the intent was to accomplish these runs as if they were portions of an 

operational mission in which no flight-test buffers would be added. A buildup approach was used by starting 

new runs approximately 200 ft above the test card minimum safe altitude that would be used on the final 

run. This approach provided the pilot in the ground cockpit the chance to become familiarized with the 

visual cues available on the cockpit video display and to get an idea of the overall setup for each run. 

 

Seven ridge crossings were accomplished on flight 20, including two buildup runs that were 200 ft 

higher than the final runs. The ridge was crossed in both directions (roughly west to east and then east to 

west). Five runs were accomplished with the Multi-Trajectory option set to ON, providing the Auto GCAS 

algorithm with the option to use left, straight, or right avoidance maneuvers. All five of those runs crossed 

the ridge without any indication of the need for an avoidance maneuver. The aircraft crossed the ridge as 

close as 196 ft AGL. 
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Two additional runs were accomplished with the Multi-Trajectory option set to OFF. This setting forced 

the Auto GCAS algorithm to only use the straight trajectory for avoidance maneuvers. One of these runs 

crossed the ridge at approximately 175 ft AGL, but without an avoidance maneuver.  

 

The second run with the Multi-Trajectory option set to OFF showed an indication of a straight 

avoidance maneuver, but the aircraft did not react. This miss was quickly traced to a setup problem with 

the Gumstix® personal computer. This setup problem did not invalidate the other ridge crossing runs 

because the main goal was to determine whether nuisance activations would occur. However, this last run 

with the Multi-Trajectory option set to OFF, did indicate a possible nuisance activation. A pilot assessment 

would be needed to determine whether that particular avoidance would have been considered a nuisance. 

If the aircraft had reacted to the initiation, it is likely that the maneuver would have been very short, and 

the pilot may not have considered it a nuisance given the low altitude. 

 

An example visualization aid for the ridge crossing with the lowest AGL is shown in figure 47. This 

figure shows the flightpath followed by the DROID, with the superimposed wingspan of an MQ-9 (the 

white lines between the red and green “wingtips”) to represent a medium-to-large UAV. This figure 

provides a good perspective of how closely an MQ-9 could have crossed that ridge without triggering an 

avoidance maneuver. 

 

 
 

Figure 47. Ridge crossing test. 

     

A few valley patrol tasks were attempted on flight 21. Part of flight 21 had been dedicated to the final 

collision avoidance runs with the smartphone installed on the test aircraft. Since it was already late in the 

day, the decision was made to only attempt valley patrol tasks with the Multi-Trajectory option set to OFF. 

The previous flight had provided confidence that tasks executed with the Multi-Trajectory option set to ON 

would be unlikely to show any avoidance maneuvers at the planned altitudes (at least 150 ft AGL with no 

ridge crossings). 

 

The first valley patrol pass was conducted in a counterclockwise direction as a buildup run at 200 ft 

above the minimum safe altitude shown on the test cards. There were no avoidance maneuver indications 
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on this pass. While attempting to set up for a lower-altitude pass (at the minimum safe altitude), a straight 

avoidance maneuver occurred. This avoidance maneuver occurred well away from the safety pilot and 

terrain clearance could not be properly judged from that distance. In this situation the safety pilot took 

control and maneuvered the aircraft back toward the holding pattern.  

 

The third valley patrol pass was intended to be a clockwise pattern at 200 ft above the minimum safe 

altitude. However, during the setup another straight avoidance maneuver occurred. This maneuver occurred 

even further away from the safety pilot than had the avoidance on the first valley patrol pass, so the test 

team decided not to attempt any more nuisance evaluations on that flight. 

 

The overall observations made during the valley patrol tests confirmed the general expectations. When 

the Auto GCAS algorithm was constrained to only use the straight trajectory, the occurrence of avoidance 

maneuvers was not intuitive and could happen at surprising locations. This occurrence was partially because 

of the very low climb performance that was being modeled (in order to replicate a medium-to-large UAV). 

The low climb performance led to avoidance maneuver initiations even when terrain features were several 

thousand feet away from the test aircraft. The occurrence was made even less intuitive because of the way 

the P-factor effect was modeled within the Auto GCAS algorithm. As modeled, the P-factor effect caused 

the “straight” trajectory prediction to be a long, curving flightpath to the left. The pilot could not simply 

look straight ahead to see possible terrain conflicts because the trajectory as adjusted for the P-factor effect 

could trigger from terrain well to the side and was not easy to visualize.  

 

Another factor that diluted these nuisance evaluations was the setup of the ground cockpit. In an ideal 

setup, control would be returned directly to the pilot immediately after an avoidance maneuver had 

completed, but because of the way in which the ground cockpit was set up during these tests, when an 

avoidance maneuver was complete, control reverted to the GCO. The pilot could resume control by hitting 

a button on the ground cockpit, but it was not always obvious when that button was active. This setup could 

have been easily improved, but with cost and schedule impacts to the ground control station that were 

determined to be out of scope.  

  

Avoidance Maneuver Termination  

An Auto GCAS nuisance evaluation can also be influenced by the timely termination of avoidance 

maneuvers. If an avoidance maneuver lasts too long, it will undoubtedly be considered a nuisance. 

Conversely, even if a pilot feels an avoidance maneuver may not have been necessary, it may not be viewed 

as a nuisance as long as the maneuver was very short in duration (pilots have described this occurrence as 

a “speedbump”).  

 

During the F-16 Auto GCAS FRRP (ref. 2), a quantitative criterion was used to assess flyup maneuver 

duration. That criterion was originally developed during F-16 Auto GCAS flight-testing in the 1990s. The 

resulting criterion specified that a flyup must terminate when the flightpath had cleared the terrain 

immediately ahead of the aircraft by less than 5 deg of overshoot. This flightpath-based criterion was 

applicable to the F-16 since it only used straight flyup maneuvers, and the aircraft was usually near 

wings-level when it cleared significant terrain features. It now appears that the production F-16 version of 

Auto GCAS will be able to meet that criterion, and related F-16 pilot comments have been very favorable. 

However, a similar criterion does not yet exist for the timely termination of UAV avoidance maneuvers.  

 

Recommendation 14 (R14): Future Auto GCAS projects on UAVs should develop a termination 

timeliness criterion specific to that project. 

 

  The SUAV Auto GCAS mechanization added another dimension to a termination assessment because 

of the options for turning avoidance maneuvers. Since most of the SUAV avoidances were turning 
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maneuvers, the most relevant angular measure was heading change. In addition, UAV pilots may be able 

to tolerate more angular termination overshoot in terms of heading change than F-16 pilots in terms of 

flightpath angle.  

 

A termination analysis was accomplished for every run that continued all the way through normal 

termination (without the safety pilot taking control). Of the 52 valid initiations, 28 continued all the way 

through normal termination without being interrupted by the safety pilot or experiencing telemetry dropout. 

On each run, an ideal termination heading was calculated using a simple extrapolation of the tangent line 

at each point along the turning avoidance maneuver. The ideal heading was defined as the point at which 

that tangent line first became clear of terrain. That ideal heading calculation included three frames of 

persistence, for consistency with the on-board termination calculation. The ideal heading was compared 

with the actual heading at termination to obtain a delta heading.  

 

The specific methodology is described in appendix B and an example is shown in figure 48. The 

semi-horizontal black and red lines show the trajectory of the test aircraft prior to and after the avoidance 

maneuver initiation, respectively. The vertical black and red lines show the update rate at which the 

algorithm was calculated in that segment. The green lines show tangential extrapolations at key points along 

the trajectory. Those extrapolations included a vertical component that was based on the climb rate at that 

point. This example shows how straight tangent lines were projected from the turning maneuver trajectory 

until all terrain within approximately 3 nm was cleared for three sequential frames. The distance of 3 nm 

was selected to be consistent with the normal Auto GCAS algorithm, but could be tuned for specific 

platforms. The projected tangent lines slope up in order to include the climb rate established at that point 

in the avoidance maneuver. 

 

 
 

Figure 48. Ideal termination heading. 

 

    Despite the lack of a formally-developed termination criterion for UAVs, a reference of some kind 

was still needed to help interpret the test results. It was assumed that a UAV pilot would tolerate quite a bit 

more angular overshoot than the 5-deg flightpath overshoot that worked well for the F-16 pilots. Therefore 
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a “Good” termination was defined to be no sooner than the ideal heading, but less than 15 deg past that 

ideal heading. The results are shown in figure 49. 

 

  
 

Figure 49. Termination timeliness: heading. 

 

The data in figure 49 show that there was only one avoidance maneuver that would have been 

considered “Good” using the 0- to 15-deg delta heading criteria. The remaining maneuvers were 

considerably late or early. This undesirable result can be attributed to the way in which the P-factor effect 

was used as part of the termination logic. 

 

When the DROID P-factor effect was initially quantified, the decision was made to incorporate that 

characteristic as part of the trajectory prediction algorithm instead of taking the extra time to try to design 

a set of autopilot commands to compensate for the P-factor effect. This approach also influenced the 

termination logic because the straight trajectory (which is a curving trajectory due to the P-factor effect) 

was used to determine when the aircraft was clear of terrain. 

 

An example of how the P-factor effect induced late terminations is shown in figure 50. The 

semi-horizontal black and red lines show the trajectory of the test aircraft prior to and after the initiation of 

the avoidance maneuver (as in figure 48). The green line shows the tangential extrapolation of the ideal 

termination (three sequential frames clear of terrain). The transition from the red line to the blue line shows 

the point at which the flight-test maneuver was terminated. The blue line represents the straight trajectory 

(as influenced by the P-factor effect) that was used by the Auto GCAS algorithm to determine when the 

avoidance was terminated. Even though the ideal green tangent line for this maneuver was clear of both the 

near ridgeline and the more distant peaks, that maneuver did not terminate until the blue straight trajectory 

(as influenced by the P-factor effect) was clear of the terrain. The specific features of the terrain in the test 

area tended to amplify this effect, but the overall result tended to be a significant delay in termination that 

would most likely be considered a nuisance, the maneuver lasting much longer than necessary. 
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Figure 50. Late termination example. 

 

An example of how the P-factor effect induced early terminations is shown in figure 51. The 

semi-horizontal red line shows the trajectory of the test aircraft during the avoidance maneuver.  

The transition from the red line to the blue line shows the point at which the flight-test maneuver was 

terminated. The orange line shows the tangential extrapolation of the trajectory at that point. The green line 

shows the tangential extrapolation of the ideal termination (three sequential frames clear of terrain). In this 

case, the blue curving trajectory (as influenced by the P-factor effect) caused the termination logic to see 

the gap in terrain before the aircraft was pointed toward that gap, causing the avoidance maneuver to 

terminate while the aircraft was still pointed at terrain (orange line). In several cases the aircraft did not 

continue in the turn, which triggered the almost-immediate initiation of additional avoidance maneuvers. 

Although not a direct safety hazard, when additional avoidance maneuvers occur immediately after a 

previous avoidance maneuver has terminated, the result creates an impression of reduced confidence in the 

Auto GCAS algorithm, and would probably be considered a nuisance as compared to a single, longer 

avoidance maneuver.  

 
 

Figure 51. Early termination example. 
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Given the overall undesirable results, it may not be warranted to include the P-factor effect in the 

termination logic even if the P-factor effect is considered in the development of the trajectory prediction. 

This rationale is based on the principle that an aircraft should be considered clear of terrain when it can roll 

out of the turn and continue in a straight climb without intersecting the digital terrain.  

 

Recommendation 15 (R15): Future Auto GCAS projects on propeller aircraft should determine 

if the use of the P-factor effect in the termination logic is warranted on that platform. 

 

Direct pilot evaluations of the termination characteristics were not obtained because nuisance 

evaluations were only accomplished on two flights and no avoidance maneuvers were initiated when the 

Multi-Trajectory option was set to ON. In addition, the ground control van mechanization did not return 

control directly to the pilot, so any qualitative termination evaluation would have been skewed when 

compared to a more representative mechanization. Pilots flew some of the collision avoidance test points, 

but the focus was on getting the system to function as desired, and not on a thorough evaluation of 

termination timeliness. 

 

       Termination timeliness was analyzed in terms of delta time in addition to the delta heading analysis. 

A “Good” termination was defined to be no earlier than the time at which the ideal heading was achieved, 

and less than 1.5 s beyond that time (1.5 s correlates to the 15-deg delta heading based on a nominal turn 

rate of 10 deg/s during these avoidance maneuvers). The results are shown in figure 52. 

 

 
 

Figure 52. Termination timeliness: time. 

 

Using the delta time criterion also results in a single maneuver that would have been considered 

“Good.” The remaining maneuvers reflect the undesirable effects of the P-factor. The data depicted in figure 

52 indicate that termination timeliness was generally between 1-5 s early for left turns, and 1-5 s late for 

right turns. Two outliers are shown terminating early by approximately 8 and 10 s. These two outliers show 

that the method for calculating the ideal heading may be susceptible to using instantaneous values for the 

extrapolated flightpath. Future projects implementing similar analysis techniques should consider using a 
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five-point moving average instead of the instantaneous values (which may be more susceptible to gusting 

winds). 

 

The overall conclusion from this termination analysis is that the designers for each platform will need 

to carefully consider the logic to be used for when an avoidance maneuver should be terminated and control 

returned to the pilot.  

 

Recommendation 16 (R16): Future Auto GCAS projects should consider implementing 

termination logic that returns control to the pilot when well clear of terrain in the immediate vicinity, 

but should not be overly conservative for distant peaks. 

   

Trajectory Prediction Accuracy 

The accuracy of the trajectory prediction can be assessed by answering two fundamental questions: 

 How well did the trajectory prediction at initiation compare to the flightpath of the actual avoidance 

maneuver?  

 Did the flightpath of the actual avoidance maneuver stay within the scan pattern used at initiation? 

 

These questions are addressed by utilizing the analyzed data from individual test runs as in the example 

in figure 53 to create the summary data that are depicted in figure 54. A more complete description of the 

technique that was used is presented in appendix B. 

 

 
 

Figure 53. Worst-case trajectory example. 
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Figure 54. Trajectory prediction accuracy. 

  

Figure 53 shows the worst-case example from all test runs. On this run (flight 18, event 6) the actual 

flightpath went the furthest outside of the scan pattern on the side closest to terrain. The blue line shows the 

trajectory prediction at initiation. The green circles show the scan pattern at initiation, with the dashed white 

line representing the outer edges of that scan pattern. The red line shows the actual flightpath during the 

avoidance maneuver. The yellow dot identifies the point where the actual flightpath went the furthest 

outside the scan pattern.   

 

The situation shown in figure 53 is undesirable because the aircraft could have flown close to terrain 

features that might not have been detected by the scan pattern. In this case, the resulting minimum AGL 

was 125 ft, but that test point had been executed with the TCB set to 100 ft. If the TCB had been set to zero, 

terrain clearance would have been approximately 25 ft. This was the lowest minimum AGL for any test 

run, and it was considerably lower than the more typical clearance at 100 ft or greater. 

 

In a production Auto GCAS implementation this characteristic could degrade CFIT protection. Limited 

analysis indicates that this worst-case example was probably induced by changing winds during the 

avoidance maneuver. The onboard wind calculations from the Piccolo II autopilot showed a significant shift 

in wind magnitude and direction during the maneuver. However, those onboard wind calculations become 

more suspect when the aircraft is not in straight-and-level flight. If confirmed, this characteristic warrants 

additional effort to account for changing winds through increased buffers, a wider scan pattern, or some 

other method.  

 

Recommendation 17 (R17): Future Auto GCAS projects should determine if changing winds 

during the recovery should be addressed in the design for that platform. 

 

A case-by-case analysis of each test run is useful, but it is even more helpful to look at summary data 

that encompass all of the relevant test results. The individual run analysis technique presented in figure 53 

was applied to all relevant test runs to obtain the summary data depicted in figure 54. Each symbol in 



81 

 

figure 54 represents a single test run at the point along the actual flightpath that was furthest away from the 

trajectory prediction.  

 

Although the scan pattern size and shape varied based on airspeed, wind, and other factors, the data 

were normalized to a generic scan pattern by using a percentage deviation from the centerline trajectory 

prediction. At any given distance along the centerline, 100 percent was located on the scan pattern line 

(perpendicular to the centerline) and 50 percent was located halfway between the centerline and the scan 

pattern line.  

 

The normalized data depicted by figure 54 also include test runs that resulted in right avoidance 

maneuvers (shown with closed symbols) even though the generic scan pattern shown is for left maneuvers 

(shown with open symbols). The data for right maneuvers was included by flipping the x-axis for those test 

runs. This method maintained the relative position of each dot in the sense that any symbols below the 

centerline in figure 54 were inside the turn, whereas any symbols above the centerline were outside the 

turn. The specific normalization analysis techniques are described in appendix B.   

 

Figure 54 addresses the two fundamental questions about the accuracy of the trajectory prediction. The 

summary data given in figure 54 show that most of the test runs flew reasonably close to the centerline of 

the trajectory prediction, and most of the worst-case locations were within the scan pattern. Another way 

of showing the same trend is presented in figure 55. 

 

 
 

Figure 55. Trajectory prediction histogram: across the scan pattern. 

 

Figure 55 shows the same data from figure 54 represented by a histogram indicating the worst-case 

position as a percentage of the scan width relative to the centerline. Almost half of the worst-case positions 

were less than 40 percent of the scan pattern width.  Most runs stayed with the scan pattern for the entire 

avoidance maneuver. Only a few runs strayed outside the scan pattern (as indicated on the histogram for 

values greater than 100 percent).  
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Only one case went beyond the scan pattern on the outside of the turn (closer to terrain). That run was 

at 132 percent relative to the outer scan pattern line and occurred during event 6 of flight 18 (fig. 53).  

   

Three cases went beyond the scan pattern on the inside of the turn (farther from terrain). These three 

runs ranged from 117 percent to 197 percent relative to the inner scan pattern line. Similar to event 6 of 

flight 18, it is suspected that variable winds during these maneuvers contributed to flying beyond the scan 

pattern. These cases do not necessarily indicate degraded CFIT protection, but there could be increased 

nuisance potential if this situation is not adequately addressed in a production implementation. The only 

situation in which these three cases might result in degraded CFIT protection would be if the aircraft were 

descending into terrain that happened to enter the scan pattern inside of the predicted avoidance maneuver 

(at the same time as when the other avoidance directions were unavailable). That situation may be possible 

but is probably unlikely.  

 

Figure 56 shows the same data from figure 54, represented by a histogram indicating where the 

worst-case locations occurred relative to the distance (range from initiation) along the centerline. This 

histogram shows that most of the worst-case locations were within the first third of the total scan length. 

The same trend can be seen in figure 54. This does not imply that the scan length was longer than necessary. 

The avoidance maneuvers for these particular test situations were completed relatively quickly, and 

therefore any trajectory errors did not have time to grow larger. Different test situations could lead to 

trajectories that last longer and therefore require the longer scan length. 

 

  
 

Figure 56. Trajectory prediction histogram: along the centerline. 

 

Scan Pattern Functionality 

The functionality of the scan pattern can be assessed by answering two fundamental questions: 

 1. What was the location of the terrain post that triggered the avoidance maneuver (relative to the 

scan pattern)? 
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 2. Did the flightpath of the actual avoidance maneuver stay within the scan pattern used at 

initiation?  (Note: this is the same question that was used to assess the trajectory prediction 

accuracy; the trajectory prediction accuracy and scan pattern functionality modular components are 

inter-related.)  

 

These questions are addressed by utilizing the analyzed data from individual test runs similar to the 

example presented in figure 57 to create the summary data that are depicted in figure 58. The individual 

run in figure 57 is the same run that was shown in figure 53. Additional data is presented in figure 54.   

The terrain post that triggered the avoidance maneuver is represented by the orange balloon in figure 57. 

The method used to determine the specific location of that trigger post for a particular run is described in 

appendix B. In the SUAV Auto GCAS algorithm, the terrain posts were not used directly, but rectangular 

areas around each post were created at the same height as that post. The rectangular area is represented by 

the orange box in figure 57. 

 

 
 

Figure 57. Scan pattern functionality. 

 

An avoidance maneuver was triggered as soon as one of the rectangular terrain polygons was within 

one of the green scanning circles at a height above the trajectory prediction (including any built-in or 

flight-test altitude buffers added to the terrain height). 

 

In figure 57 the orange terrain polygon was within three of the green scan circles. In this case, the 

buffered terrain height was above the trajectory prediction at all three of those scan circles, so the avoidance 

maneuver was triggered by whichever was first in the internal sequence of checks. One frame earlier 

(approximately one-fifth of one second), the path of the trajectory prediction was far enough away from 

that particular terrain polygon/post so that an avoidance maneuver was not triggered. 

 

The main point to be gleaned from figure 57 is that the individual terrain post that triggered this flyup 

maneuver was outside the scan pattern. As will be seen in figure 58, this result was fairly common, and the 

terrain scanning approach was implemented as a conscious part of the design process to ensure that terrain 

posts were not missed.  

 

The summary data presented in figure 58 were constructed using the same type of normalization process 

as applied to those data depicted in figure 54. As can be seen, almost all of the trigger posts were outside 
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the scan pattern (on the side closer to terrain). A small number of trigger posts were within the scan pattern, 

and one was outside the scan pattern on the inner side of the turn. These occurrences were generally when 

the test aircraft was in a dive, so that the scan pattern or trajectory prediction descended down onto the 

highest terrain post, as compared to the more typical case in which the test aircraft flew in level flight 

toward the trigger post. 

 

 
 

Figure 58. Trigger post locations. 

 

 

The mean for trigger post locations was at 175 percent relative to the scan width for the outer scan line. 

The trigger posts were usually outside the scan pattern because of the scan technique that included any 

portion of a terrain rectangle within the scan pattern (fig. 28). There was no significant difference in trigger 

post location for left or right avoidance maneuvers.  

 

The trigger post with the greatest percentage outside the scan pattern was at 366 percent relative to the 

scan width for the inner scan line. That seemingly extreme case was from event 5 of flight 18, which was a 

straight activation from a diving maneuver over smooth terrain. That straight activation reflected the general 

trend expected from diving maneuvers over smooth terrain: the straight trajectory prediction climbs at  

1000 fpm whereas the left and right predictions climb at 800 fpm. Over smooth terrain the left and right 

trajectories will be lower and intersect with smooth digital terrain before the straight trajectory, resulting in 

a straight trajectory as the last viable option.  

 

In addition, the same trend resulted in trigger posts quite close to the initiation point because the straight 

trajectory prediction curved upwards quite rapidly compared to the essentially flat digital terrain. When the 

trigger post occurred close to the initiation, the very narrow scan pattern detected the tiny corner of a terrain 

rectangle generated from a post that was well outside the scan pattern compared to the scan width.  

 

Figure 59 shows the same data from figure 58, represented by a histogram indicating the trigger post 

locations as a percentage of the scan width relative to the centerline. The data in figure 59 resulted in a 

mean value of 175 percent scan width and a standard deviation of 71 percent. The straight activation at  
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366 percent was an outlier and was not included in this histogram, but the value was included in the 

calculation of the mean. 

 

 
 

Figure 59. Trigger post location histogram: across the scan pattern. 

 

 
 

Figure 60. Trigger post location histogram: along the centerline. 
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Figure 60 shows the same data from figure 58, represented by a histogram indicating the worst-case 

locations relative to the distance (range from initiation) along the centerline. The data in figure 60 resulted 

in a mean value of 38 percent range along the centerline and a standard deviation of 17 percent. 

Avoidance Maneuver Summary 

This section describes the general characteristics of the avoidance maneuvers encountered during this 

project. The discussion includes the flight conditions at initiation, the direction in which the algorithm 

commanded the maneuver, and the overall duration of the maneuver (in terms of time and heading change). 

   

The basic flight conditions at initiation are shown in figures 61 and 62. Figure 61 shows that the DROID 

speed range of 40 to 80 KIAS was well-covered by test conditions. There were two main target airspeeds 

on the test cards: 45 and 70 KIAS. However, the normal variations induced by autopilot control and piloted 

maneuvering provided the additional spread around the two main airspeeds. Most of the initiations were in 

relatively level flight, but a few shallow dives and climbs were also accomplished. The mishap cases that 

were replicated tended to be at the higher end of the DROID speed range, because those mishaps occurred 

on the MQ-1 and the MQ-9. 

 

 

 
 

Figure 61. Initiation flightpath versus airspeed. 
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Figure 62. Initiation flightpath versus bank angle. 

 

Figure 62 shows the bank angle variations at initiation. Most of the runs were near wings-level, but a 

few were initiated at approximately 30-40 deg bank. The three mishap cases targeted 0 deg, 15 deg, and  

25 deg of bank. Although one test card sequence targeted negative bank angle, that series was only 

attempted on flight 17 and the resulting data were not usable due to poor telemetry on that flight. 

 

Almost all of the avoidance maneuvers were to the left or the right, as shown in figure 63. The data in 

figure 63 include all valid initiations, even if the safety pilot took control later. 

 

 
 

Figure 63. Avoidance maneuver direction. 
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Only two test setups resulted in straight avoidance maneuvers with usable data. Straight avoidance 

maneuvers were only expected to occur over smooth terrain, or possibly during ridge crossings. A number 

of smooth-terrain test points were attempted, but most of those occurred on missions with poor telemetry 

and resulted in unusable data. The Auto GCAS algorithm initiated one straight avoidance maneuver during 

a ridge crossing on flight 20, but the Gumstix® personal computer was not set up correctly on that mission 

and the autopilot did not respond to the commanded maneuver. 

 

The longest avoidance maneuver was approximately 15 s and the shortest approximately 1 s, as shown 

in figure 64. The duration was a simple calculation that began when the Auto GCAS algorithm initiated the 

avoidance maneuver and ended when the algorithm determined the maneuver was complete. The data in 

figure 64 do not include runs in which the safety pilot took control prior to normal termination. 

 

 
 

Figure 64. Avoidance maneuver duration. 

 

There was considerable variation in avoidance maneuver duration with no discernible pattern. This 

variation was not surprising, because the duration was solely driven by the amount of time needed for the 

aircraft to clear the terrain. Many of the test setups were intentionally targeted at a bowl-shaped canyon in 

order to stress the system. That bowl-shaped canyon tended to force the aircraft to “go back toward the way 

it had come,” resulting in quite a few avoidance maneuvers each lasting longer than 10 s. The duration of 

avoidance maneuvers was also influenced by the way the P-factor effect was modeled in the termination 

logic.  

 

  The amount of heading change that occurred during avoidance maneuvers is shown in figure 65. The 

data in figure 65 only include turning maneuvers, and only include runs that continued to normal 

termination before the safety pilot took control. 
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Figure 65. Avoidance maneuver heading change. 

 

The effect of the P-factor bias can be seen in figure 65. Left turns had a mean heading change of 

approximately 80 deg, whereas right turns had a mean heading change of approximately 110 deg. Left turns 

tended to have less heading change and right turns more heading change. It was not unusual for avoidance 

maneuvers to continue for 90 deg heading change or more.  

Concluding Remarks 

The small unmanned aerial vehicle (SUAV) Automatic Ground Collision Avoidance System (GCAS) 

project successfully demonstrated many important collision avoidance technologies. Foremost among these 

demonstrations were: 

 Auto GCAS testing with multiple avoidance maneuvers including turns to either side; 

 Testing of digital terrain scanning techniques determined directly from the predicted trajectory; 

 In-flight testing of highly compressed digital elevation models; 

 In-flight testing of digital elevation models that had been customized to reflect tighter tolerances in 

some areas and relaxed tolerances in other areas; 

 In-flight testing of Auto GCAS on an unmanned aerial vehicle; and 

 Hosting Auto GCAS algorithms on a smartphone during flight tests. 

 

Additional noteworthy accomplishments included: 

 Design and implementation of a flight-test user interface that enabled ground operators to control 

the Auto GCAS algorithms on the smartphone (either with the smartphone on the ground or on 

board the test aircraft); 

 Rapid design and implementation of a directional antenna system to avoid multi-path noise when 

in the vicinity of terrain, which greatly improved communications between the test aircraft and the 

ground control van; 
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 Derivation of Dryden Remotely Operated Integrated Drone trajectory prediction models purely 

from very limited flight-testing of the specific avoidance maneuvers on the test aircraft, without 

relying on any type of simulation; 

 Innovative use of Google Earth to enable pre-flight visualizations of Auto GCAS setups, enhance 

test-card generation, and greatly improve post-flight data analysis of test maneuvers; and 

 Auto GCAS algorithms coded into Java™ (Oracle Corporation, Redwood Shores, California) (the 

native language for the smartphone). 

 

Although the SUAV Auto GCAS implementation was not intended for production, the test results are 

positive enough to provide a solid basis for scaling onto many production UAV platforms. The same basic 

SUAV Auto GCAS concepts should also be adaptable to similar aircraft types having relatively low 

airspeeds and low maneuverability (typical of general aviation). 

 

Some of the concepts have demonstrated the potential to provide significant capabilities for Auto GCAS 

implementations on higher-airspeed, higher-maneuverability aircraft such as fighters, transports, business 

jets, and airliners. These concepts include the use of highly-compressed DEMs, multi-trajectory avoidance 

options, and terrain scanning techniques.   

 

Auto GCAS follow-on projects could include: 

 Implementation of GCAS algorithms on a smartphone or tablet for general aviation platforms. 

General aviation applications could be automated when a digital autopilot is available, but 

significant improvements to protection against controlled flight into terrain (CFIT) might also be 

obtained when a digital autopilot is not available by using the same GCAS algorithms as part of a 

ground proximity warning system utilizing manual pilot reactions. Any automatic implementation 

of GCAS using a smartphone or tablet would need to pay particular attention to the redundancy 

and reliability aspects in order to avoid violation of the “do no harm” principle. General aviation 

smartphone or tablet implementations should be evaluated first in a simulation environment and 

then in flight-testing. 

 Flight-test demonstration of GCAS algorithms for helicopter platforms. It is expected that 

helicopters could also benefit from automatic GCAS or a GCAS-based ground proximity warning 

system. Because of the additional avoidance maneuver options available to a helicopter (stop and 

hover, reverse direction, et cetera) additional development would be required to properly evaluate 

GCAS tradeoffs. 

 Analytical studies and flight-test demonstrations to evaluate the effectiveness of new Auto GCAS 

concepts for fighter platforms. Even though a very capable production version of Auto GCAS is 

nearing deployment to the F-16 fleet, variations of Auto GCAS are still in development for the 

F-22 and F-35. Some of the techniques implemented on the SUAV Auto GCAS could provide 

significant improvements to the tradeoff between CFIT protection and nuisance potential for any 

of those airplanes. 

 Analytical studies and flight-test demonstrations to evaluate the effectiveness of new Auto GCAS 

concepts for transport platforms. Transport platforms have limited maneuverability compared to 

fighter platforms, but also have much higher airspeed envelopes compared to an SUAV. This 

characteristic might lead to the need for adaptations of existing GCAS technologies that would be 

appropriate to explore in a flight-test development environment. 
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Summary of Recommendations 

Recommendation 1 (R1): Future Auto GCAS projects should consider applying resources to 

develop improved integration of in-flight wind estimates with the Auto GCAS algorithm (page 19). 

 

Recommendation 2 (R2): Future Auto GCAS projects should consider implementing a monitor 

to isolate and protect against corrupted digital terrain data (page 26). 

 

Recommendation 3 (R3): Future Auto GCAS projects should consider implementing a monitor 

to protect against false requests for avoidance maneuvers (page 26). 

 

Recommendation 4 (R4): Future Auto GCAS projects should pay special attention to the input 

signal conditioning necessary for that particular implementation (page 28). 

 

Recommendation 5 (R5): Future Auto GCAS projects should consider incorporating multiple 

trajectory predictions to provide more than one option and to reduce nuisance potential (page 30). 

 

Recommendation 6 (R6): Future Auto GCAS projects for performance-limited aircraft may need 

to consider including density altitude as an input to the trajectory prediction (page 36). 

 

Recommendation 7 (R7): The developers on any Auto GCAS project should consider the addition 

of vertical obstructions as part of the algorithm (page 39). 

 

Recommendation 8 (R8): Future Auto GCAS projects should carefully assess the tradeoffs 

between short-term PVI cost savings against the potential for longer-term impacts on the user  

(page 49). 

 

Recommendation 9 (R9):  Future Auto GCAS projects involving flight-testing of UAVs should 

pay particular attention to telemetry and control links when operating in close proximity to terrain 

(page 49). 

 

Recommendation 10 (R10): Future Auto GCAS projects on UAVs should consider a mode state 

implementation that allows the avoidance to continue even after reaching a FAIL state  

(page 50). 

 

Recommendation 11 (R11): Future Auto GCAS projects on UAVs should consider a 

self-recovering mode state implementation to resume CFIT protection as soon as the cause for the 

FAIL state no longer exists (page 50). 

 

Recommendation 12 (R12): Future Auto GCAS test projects using a smartphone as the data 

recording device should consider implementing a recording method that provides data throughout 

the flight, not just when avoidance maneuvers occur (page 67). 

 

Recommendation 13 (R13): Future Auto GCAS projects on UAVs should develop a nuisance 

criterion specific to that project (page 71).  

 

Recommendation 14 (R14): Future Auto GCAS projects on UAVs should develop a termination 

timeliness criterion specific to that project (page 74).    

     



92 

 

Recommendation 15 (R15): Future Auto GCAS projects on propeller aircraft should determine 

if the use of the P-factor effect in the termination logic is warranted on that platform  

(page 78).    

   

Recommendation 16 (R16): Future Auto GCAS projects should consider implementing 

termination logic that returns control to the pilot when well clear of terrain in the immediate vicinity, 

but should not be overly conservative for distant peaks (page 79).   

 

Recommendation 17 (R17): Future Auto GCAS projects should determine if changing winds 

during the recovery should be addressed in the design for that platform (page 80). 
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Appendix A: Parameter List 

The main purpose in presenting the parameter list is to provide future project teams with a starting point 

for consideration when they are developing their own project-specific parameter list. Table A1 provides a 

complete list of the parameters that were available to the Auto GCAS test team. All of the parameters that 

were used for post-flight analysis were recorded on the smartphone and downloaded after the flight. The 

post-flight analysis parameters were recorded on the smartphone regardless of its location (whether in the 

ground control van or in the DROID). Additional telemetered data were available in the ground control van, 

but those data were not used for post-flight analyses and so are not included in table A1. Additional data 

were also recorded on the user interface (UI) laptop computer, but those data were not used for post-flight 

analyses and so have not been included in table A1.  

 

Three sources provided the data that were recorded on the smartphone: the Piccolo II autopilot; the  

UI laptop computer (by way of uplinked telemetry or the Gumstix® personal computer); and the Auto GCAS 

algorithm on the smartphone. Selected parameters from the Piccolo II autopilot included basic aircraft state 

information such as latitude, longitude, airspeed, altitude, angular rates, linear accelerations, et cetera, along 

with autopilot status and target values and the winds as estimated by the standard Piccolo II autopilot 

software. The UI parameters consisted primarily of state values that could be set by the UI Operator: Terrain 

Clearance Buffer; horizontal and vertical uncertainties (for the built-in buffers); the flag to switch between 

multiple avoidance trajectories and the straight-only trajectory, and others. The data from the Auto GCAS 

algorithm on the smartphone included Auto GCAS modes, time to flyup for each of the three trajectories, 

and minimum approach to terrain for each of the three trajectories, along with some Auto GCAS status 

words.   

 

A number of parameters were not directly available from any of the sources but could be calculated 

using the available parameters. Those calculated parameters are listed near the end of table A1. 

 

The parameter names in table A1 are listed in two columns: “Smartphone parameters,” and  

“AUTO GCAS maneuver-specific parameters.” Most of the parameter names are the same in both of these 

columns. In a few cases the parameter existed in only one form, indicated in table A1 by the entry “N/A.” 

in the relevant parameter column. The difference only applied to the type of post-flight analysis being 

conducted. 

 

Table A1. Small Unmanned Aerial Vehicle Automatic Ground Control Avoidance System parameters.  

 
Smartphone parameters AUTO GCAS 

maneuver-specific parameters 

Units Description Source Data 

rate 

time_system time_system ms Time since start-up Piccolo II  5 Hz 

flt N/A N/A  Flight number Algorithm 5 Hz 

exe exe N/A Execute flag (1 or 0) Smartphone 5 Hz 

latitude latitude deg GPS latitude Piccolo II  5 Hz 

longitude longitude deg GPS longitude Piccolo II  5 Hz 

altitude_gps_wgs84 altitude_gps_wgs84 ft 
GPS altitude above the 

WGS84 ellipsoid 
Piccolo II  5 Hz 

ktas ktas kn Calculated true airspeed Piccolo II  5 Hz 

kias kias kn Indicated airspeed (raw) Piccolo II  5 Hz 

bankAngle bankAngle deg Bank (roll) angle Piccolo II  5 Hz 

climbRate climbRate ft/s Climb rate Piccolo II  5 Hz 

rollRate rollRate deg/s 

Roll rate, as read from 

Piccolo II 3-axis 

gyroscope 

Piccolo II  5 Hz 

heading heading deg True heading Piccolo II  5 Hz 
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windVelNorth windVelNorth ft/s 

Wind velocity, north 

(parameter is positive with 

wind from south) 

Piccolo II  5 Hz 

windVelEast windVelEast ft/s 

Wind velocity, east 

(parameter is positive with 

wind from west) 

Piccolo II  5 Hz 

horizUncertainty horizUncertainty ft Horizontal uncertainty UI laptop  5 Hz 

vertUncertainty vertUncertainty ft Vertical uncertainty UI laptop  5 Hz 

TCB TCB ft Terrain Clearance Buffer UI laptop  5 Hz 

rollRateLag rollRateLag N/A Roll rate lag UI laptop  5 Hz 

airspeedLag airspeedLag N/A Airspeed lag UI laptop  5 Hz 

climbRateLag climbRateLag N/A Climb rate lag UI laptop  5 Hz 

multiAvoidReq multiAvoidReq N/A Multi-avoid request UI laptop  5 Hz 

acDataValid acDataValid N/A AC data valid flag UI laptop  5 Hz 

AGCASmodeReq AGCASmodeReq N/A AGCAS mode request UI laptop  5 Hz 

AGCASmode AGCASmode N/A 
AGCAS mode as reported 

by smartphone 
Algorithm 5 Hz 

apCmd apCmd N/A 
AGCAS autopilot 

command request 
Smartphone 5 Hz 

strTime2Flyup strTime2Flyup s 
AGCAS time to flyup, 

straight 
Smartphone 5 Hz 

leftTime2Flyup leftTime2Flyup s AGCAS time to flyup, left Smartphone 5 Hz 

rightTime2Flyup rightTime2Flyup s 
AGCAS time to flyup, 

right 
Smartphone 5 Hz 

minApprTerrainStr minApprTerrainStr ft 

AGCAS Minimum 

Approach to Terrain, 

straight 

Smartphone 5 Hz 

minApprTerrainLeft minApprTerrainLeft ft 
AGCAS Minimum 

Approach to Terrain, left  
Smartphone 5 Hz 

minApprTerrainRight minApprTerrainRight ft 
AGCAS Minimum 

Approach to Terrain, right 
Smartphone 5 Hz 

errorCode errorCode N/A AGCAS error code Algorithm 5 Hz 

warningCode warningCode N/A AGCAS warning code Smartphone 5 Hz 

infoCode infoCode N/A AGCAS info code Smartphone 5 Hz 

lmRefLatitude lmRefLatitude deg 
Local map reference, 

latitude 
Smartphone 5 Hz 

lmRefLongitude lmRefLongitude deg 
Local map reference, 

longitude 
Smartphone 5 Hz 

time_gps_hours time_gps_hours hr GPS time Piccolo II  5 Hz 

time_gps_minutes time_gps_minutes min GPS time Piccolo II  5 Hz 

time_gps_seconds time_gps_seconds s GPS time Piccolo II  5 Hz 

altitude_baro altitude_baro ft Barometric altitude, MSL Piccolo II  5 Hz 

laserAlt laserAlt ft Laser altitude, AGL Piccolo II  5 Hz 

RPM RPM rpm Revolutions per minute Piccolo II  5 Hz 

mag_hdg_deg mag_hdg_deg deg Magnetic heading Piccolo II  5 Hz 

pitch_deg pitch_deg deg Pitch Piccolo II  5 Hz 

yaw_deg yaw_deg deg Yaw Piccolo II  5 Hz 

pitch_rate_dps pitch_rate_dps deg/s Pitch rate Piccolo II  5 Hz 

yaw_rate_dps yaw_rate_dps deg/s Yaw rate Piccolo II  5 Hz 

xaccel_g xaccel_g g Acceleration, x-direction Piccolo II  5 Hz 

yaccel_g yaccel_g g Acceleration, y-direction Piccolo II  5 Hz 

zaccel_g zaccel_g g Acceleration, z-direction Piccolo II  5 Hz 

LoopTarget0_kts LoopTarget0_kts kn 
Indicated airspeed loop 

target 

Piccolo II  
5 Hz 

LoopTarget1_ft LoopTarget1_ft ft Altitude loop target Piccolo II  5 Hz 

LoopTarget2_deg LoopTarget2_deg deg Bank loop target Piccolo II  5 Hz 

LoopTarget3_deg LoopTarget3_deg deg Flaps loop target Piccolo II  5 Hz 

LoopTarget4_deg LoopTarget4_deg deg Heading loop target Piccolo II  5 Hz 

LoopTarget5_deg LoopTarget5_fpm ft/min VRate loop target Piccolo II  5 Hz 
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AP_Global AP_Global N/A 

Autopilot global on/off 

flag.  Indicates whether or 

not SUAV was flown by 

ground control 

operator(s), or whether or 

not a safety pilot had 

control. 

Piccolo II  

5 Hz 

TrackerStatus TrackerStatus N/A Tracker status Piccolo II  5 Hz 

LoopStatus0 LoopStatus0 N/A 
Indicated airspeed loop 

status 

Piccolo II  
5 Hz 

LoopStatus1 LoopStatus1 N/A Altitude loop status Piccolo II  5 Hz 

LoopStatus2 LoopStatus2 N/A Bank loop status Piccolo II  5 Hz 

LoopStatus3 LoopStatus3 N/A Flaps loop status Piccolo II  5 Hz 

LoopStatus4 LoopStatus4 N/A Heading loop status Piccolo II  5 Hz 

LoopStatus5 LoopStatus5 N/A VRate loop status Piccolo II  5 Hz 

windVelNAve windVelNAve ft/s 
10 s average of parameter 

windVelNorth 
UI laptop 5 Hz 

windVElEAve windVelEAve ft/s 
10 s average of parameter 

windVelEast 
UI laptop 5 Hz 

triggerPressed triggerPressed N/A Trigger pressed UI laptop 5 Hz 

PARSstate PARSstate N/A 
Pilot Activated Recovery 

Switch state 
UI laptop 5 Hz 

PARSengaged PARSengaged N/A 
Pilot Activated Recovery 

Switch engaged flag 
UI laptop 5 Hz 

flyupActive flyupActive N/A 

Flyup active flag. Boolean 

1 (flyup active) or 0 (flyup 

not active). Same as 

parameter flyup_active. 

UI laptop 5 Hz 

noTMcount noTMcount N/A Telemetry failure flag Smartphone 5 Hz 

flyupHold flyupHold N/A Flyup hold flag Smartphone 5 Hz 

flyupHoldCount flyupHoldCount N/A Flyup hold count Smartphone 5 Hz 

Vnorth N/A ft/s 
North velocity (north-east-

down frame) 

Piccolo II  
5 Hz 

Veast N/A ft/s 
East velocity (north-east-

down frame) 

Piccolo II  
5 Hz 

Vdown N/A ft/s 
Down velocity (north-

east-down frame) 
Piccolo II 5 Hz 

Clock_ms Clock_ms ms 
Same as parameter 

time_system 
Calculated N/A 

Hours Hours hr 
Same as parameter 

time_gps_hours 
Calculated N/A 

Minutes Minutes min 
Same as parameter 

time_gps_minutes 
Calculated N/A 

Seconds Seconds s 
Same as parameter 

time_gps_seconds 
Calculated N/A 

time_sec time_sec s Time, starting at zero Calculated N/A 

time_sec_since_midnight time_sec_since_midnight s Time since midnight Calculated N/A 

time_sec2 time_sec2 s 
Time since midnight, 

starting at zero 
Calculated N/A 

time_irig time_irig s Time, IRIG style Calculated N/A 

time_delta time_delta s 
Change in time between 

data points 
Calculated N/A 

time_delta2 time_delta2 s 

Change in time between 

data points, starting at 

zero 

Calculated N/A 

LeftRPM LeftRPM rpm Same as parameter RPM Calculated N/A 

latitude_deg latitude_deg deg 
Same as parameter 

latitude 
Calculated N/A 

longitude_deg longitude_deg deg 
Same as parameter 

longitude 
Calculated N/A  
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height_ft height_ft ft 
Same as parameter 

altitude_gps_wgs84 
Calculated N/A 

direction_deg direction_deg deg 
Same as parameter 

heading 
Calculated N/A 

alt_ft alt_ft ft 
Same as parameter 

altitude_baro 
Calculated N/A 

tas_kts tas_kts kn Same as parameter ktas Calculated N/A 

roll_rate_dps roll_rate_dps deg/s 
Same as parameter 

rollRate 
Calculated N/A 

roll_deg roll_deg deg 
Same as parameter 

bankAngle 
Calculated N/A 

agl_ft agl_ft ft 
Same as parameter 

laserAlt 
Calculated N/A 

windsouth_fps windsouth_fps ft/s 
Same as parameter 

windVelNorth 
Calculated N/A 

windwest_fps windwest_fps ft/s 
Same as parameter 

windVelEast 
Calculated N/A 

pars_engage pars_engage N/A 
Same as parameter 

PARSengaged 
Calculated N/A 

ias_kts ias_kts kn Same as parameter kias Calculated N/A 

climb_rate_fps climb_rate_fps ft/s 
Same as parameter 

climbRate 
Calculated N/A 

climb_rate_fpm climb_rate_fpm ft/min 
Parameter climbRate, 

multiplied by 60.0 
Calculated N/A 

flyup_active flyup_active N/A 

Flyup active flag as set by 

UI. Boolean 1 (flyup 

active) or 0 (flyup not 

active). Same as parameter 

flyupActive 

Calculated N/A 

altitude_gps_msl altitude_gps_msl ft 
GPS altitude, above mean 

sea level 
Calculated N/A 

N/A type N/A 

Text string used in 

determining where flyups 

occur in data 

Calculated N/A 

N/A event N/A Event number Calculated N/A 

N/A alt_AGL_ft ft 

Altitude, AGL (used for 

comparison with laser 

altimeter data) 

Calculated N/A 

N/A alt_NED_wgs84_ft ft 
Altitude, NED, using 

WGS84 ellipsoid 
Calculated N/A 

N/A alt_NED_wgs84_m m 
Altitude, NED, using 

WGS84 ellipsoid 
Calculated N/A 

N/A GPSVelNorth ft/s GPS velocity, north Calculated N/A 

N/A GPSVelEast ft/s GPS velocity, east Calculated N/A 

N/A GPSVelDown ft/s GPS velocity, down Calculated N/A 

N/A deltaDistN ft Change in distance, north Calculated N/A 

N/A deltaDistE ft Change in distance, east Calculated N/A 

N/A deltaDistD ft Change in distance, down Calculated N/A 

N/A dt_sec s Differential time Calculated N/A 

N/A GPSVel_fps ft/s GPS velocity, total Calculated N/A 

N/A GPSVel_kts kn GPS velocity, total Calculated N/A 

N/A GPSAccelNorth_fpsps ft/s2 GPS acceleration, north Calculated N/A 

N/A GPSAccelEast_fpsps ft/s2 GPS acceleration, east Calculated N/A 

N/A GPSAccelDown_fpsps ft/s2 GPS acceleration, down Calculated N/A 

N/A ART s Available reaction time Calculated N/A 

N/A FPA deg Flightpath angle Calculated N/A 

N/A deltaTermAz deg Number of degrees turned 

until termination occurs 
Calculated N/A 

N/A deltaTermTime N/A 
Time until termination 

occurs 
Calculated N/A 
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Appendix B: Analysis Techniques 

Most of the analyses presented in this report consist of straightforward presentations of the data and 

require no further elaboration. A few of the analysis methods were unique, however, warranting some 

additional background description to help future project teams adapt those methods to their own needs.  

Those unique analysis techniques were: 

 Google Earth interface; 

 Available reaction time; 

 Determination of trigger post locations; 

 Determination of worst-case mismatch locations; 

 Trajectory normalization analysis; and 

 Termination logic cross-checks. 

Google Earth Interface 

One of the tools used by the Small Unmanned Aerial Vehicle (SUAV) team for planning test missions 

and analyzing flight-test data was Google Earth. Google Earth provided a markup language known as 

keyhole markup language, or KML. (Keyhole Corp., Mountain View, California, was a technology 

company purchased by Google in 2005). Keyhole markup language allows users to plot locations, lines, 

and polygons within Google Earth for visualization purposes. This same markup language enables Google 

Earth to render images of three-dimensional buildings, text, and other visualization aids. For the purpose 

of analyzing SUAV flight test data, KML proved to be an extremely useful data visualization tool for several 

reasons: 

 Raw flight-test data (SUAV latitude, longitude, and elevation) were plotted using Google Earth, 

which readily allowed users to see where the Dryden Remotely Operated Integrated Drone 

(DROID) airplane flew relative to the nearby terrain features. 

 Algorithm data were also plotted using Google Earth. Algorithm data include trajectory predictions, 

scan patterns, and representative digital elevation model (DEM) data. Plotting algorithm data using 

Google Earth allowed users to determine the effectiveness of the collision avoidance algorithms. 

 The Auto GCAS team was able to use Google Earth to visualize Auto GCAS termination 

predictions. Such visualizations would have been much less useful and far more difficult without 

Google Earth. 

 The team was able to use Google Earth to visualize an available reaction time (ART) by extending 

the actual avoidance trajectory to where the representative DEM data were located. The ART was 

useful for determining a degree of “nuisance potential,” as discussed above within the main body 

of this report. 

 

During the analysis of the SUAV flight-test data, various software routines were implemented to write 

KML files for use with Google Earth. In order to process KML files for use with Google Earth, the analysis 

team used MATLAB® (The MathWorks, Natick, Massachusetts). The MATLAB utility was the tool of 

choice because it provided a simple interface with which users could easily write scripts which, when 

executed, would write KML files. Of particular interest was the MATLAB Mapping Toolbox™, which 

contained several geodetic calculation functions. The geodetic calculation functions were used to calculate 

trajectories on the WGS84 ellipsoid mathematical model of the surface of the Earth. 

Excel® Test Planning Tool 

The SUAV Auto GCAS test point setups and test cards were produced using an Excel® (Microsoft 

Corporation, Redmond, Washington) worksheet, a sample of which is shown in figure B1, which 
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implemented both the collision avoidance algorithms (similar to those used on the smartphone) and the 

DEM data set as needed for the SUAV Auto GCAS flight-testing. The smartphone contained DEM data for 

the entire Earth, but the Excel® worksheet needed DEM data only for the local test areas. 

 

 
 

Figure B1. Excel® test planning application. 

 

The Excel® worksheet provided a very useful, basic simulation of the end-to-end Auto GCAS 

algorithm. The Excel® methodology had been used successfully to support a number of F-16 airplane 

(Lockheed Martin, Bethesda, Maryland) Auto GCAS projects dating back to the early 1990s, and the Excel® 

implementation was also used successfully in support of this SUAV Auto GCAS project. Future related 

projects should take into consideration that any Auto GCAS simulation method will need to have 

functionality similar to the Excel® implementation described herein. The combination of the Excel® 

worksheet simulation and Google Earth was new for the SUAV Auto GCAS project. That combination of 

the two was particularly effective for evaluating and selecting potential flight-test setups. The ability to feed 

simulation results into Google Earth should be a consideration for future Auto GCAS projects.  

 

The user interface of the Excel® test planning application is shown in figure B1. The user could enter 

all of the flight-test point setup parameters (the red numbers shown in figure B1), and then use the graphical 

user interface buttons (the buttons within the blue fields, also shown in figure B1) to plot collision avoidance 

algorithm results using Google Earth. 

 

The test planning process typically began by choosing a simple start location (latitude, longitude, and 

altitude) using Google Earth. A target terrain feature and a desired heading for approaching that terrain 

feature were visually selected. The Excel® - Google Earth combination was then used to refine the setup to 

obtain the desired conditions at collision avoidance initiation. The remaining parameters KCAS (knots 

calibrated airspeed); dive; bank; TCB (terrain clearance buffer); et cetera were entered and the “Run Time” 

along the desired heading was varied until the proximity to terrain indicated the need for an avoidance 

maneuver. Given all of the setup parameters, the results from the Excel® worksheet indicated the expected 

location for initiation of the avoidance maneuver and the direction of the avoidance (left, straight, or right). 

A considerable amount of additional useful information was also provided, such as the expected flightpath 
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and the closest approach to terrain. All of this information could be visualized using Google Earth as 

described below. 

Excel® - Google Earth Interface 

To implement the user interface buttons that are shown within the blue fields in figure B1, the analysis 

team used Microsoft Visual Basic for Applications (VBA). The VBA is a scripting interface that has been 

included with all builds of Microsoft Office® since version 4.0 (Microsoft Office® 2010 contains VBA 

version 14). The VBA allows Excel® users to facilitate automatic worksheet features and calculations that 

if performed manually would require vast amounts of time. In the case of the information shown in figure 

B1, the user would have to constantly enter a time in the “Run Time” field in order to determine exactly 

where and when a ground collision avoidance maneuver would occur. The analysis team inserted VBA 

code to automate the process of determining the location of a ground collision avoidance maneuver.  

The user simply clicked on the button labeled “Simulate,” and Excel® ran the calculations until an 

avoidance, as shown in figure B2, was found. 

 

 
 

Figure B2. Avoidance maneuver initiation example. 

 

   Figure B3 displays the results of clicking on the “Plot in Google Earth” command button that is shown 

in figures B1 and B2. In figure B3, the black line is the “pre-avoidance” flightpath (that is, the predicted 

flightpath until the point of an Auto GCAS maneuver). When the flightpath was expected to be straight  

(a 0 initial bank value in merged cells A4/A5 as shown in figure B2), the program drew a straight line in 

Google Earth to represent a straight pre-avoidance flightpath. That straight line began at the initial 

longitude-latitude-altitude coordinates and along the heading specified by the user, and ended at the location 

of the avoidance maneuver initiation. 
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Figure B3. Result from clicking “Plot in Google Earth” button illustrated in figure B2. 

 

If a turning flightpath was expected, the pre-avoidance flightpath displayed as curved in Google Earth. 

The length of that curved black line was based on the user-specified heading change, using a radius 

established by the user-specified bank angle and load factor.  For example, in figure B2, merged cells 

G14/G15 were set to 45, which meant that the curved black line in Google Earth represented a turn through 

a heading change of 45 deg prior to the Auto GCAS avoidance maneuver initiation. In the example 

worksheet shown in figure B2, the load factor of 1.2 g entered in merged cells C2/C3 determined the radius 

of the curved flightpath. Visualizing the results in Google Earth enabled the user to determine where a 

turning flight-test maneuver needed to begin in order to result in an avoidance initiation at the desired 

location and flight conditions. 

 

The light green cylinders in figure B3 represent the Auto GCAS algorithm scan width, which is a 

function of the range along the avoidance prediction path (the scan width circles increase in diameter with 

range from the initiation point). The scan width near the initiation point was based on the horizontal 

uncertainty (from merged cells G12/G13 in figure B2). The dark green discs (“wagon wheels”) in figure 

B3, which lie slightly above the light green cylinders, represent the sum of the terrain clearance buffer  

(TCB from merged cells A13/A14 in figure B2) and vertical uncertainty (from merged cells G10/G11 in 

figure B2). Whenever any portion of the buffered terrain (represented by the dark green discs in figure B3) 

intersected with the trajectory prediction (represented by the blue line in figure B3) the result would indicate 

the coordinates for the expected avoidance initiation (indicated by the white arrow in figure B3).  

 

The “Plot In Google Earth” buttons shown in figures B1 and B2 allowed the user to display KML paths 

within Google Earth that represented the ground collision avoidance trajectory predictions. An  

Excel® - MATLAB® interface was required in order to use MATLAB® functions that were needed to 

produce KML files. The MATLAB® application and Excel® communicated through the Microsoft 

Component Object Model (COM). By implementing a COM interface, MATLAB® and Excel® were able 

to easily exchange data in real time.  
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In addition to pre-flight predictions using the Excel® tool, the analysis team also plotted flight-test data 

from the DROID within Google Earth. Figure B4 represents an actual avoidance maneuver taken from 

flight-test data. The black extrusion represents the actual DROID flightpath before and after the avoidance 

maneuver. The red extrusion represents the actual DROID flightpath during the avoidance maneuver. 

Terminology for the green cylinders and dark green “wagon wheels” remains the same as that used for 

figure B3. The orange cubes represent the DEM data for the GCAS valley test area. It can be seen in figure 

B4 that neither the left nor straight trajectory was selected (because the trajectory predictions were well 

below the buffered terrain within the scan patterns). Figure B4 also shows that the actual flightpath for the 

selected right avoidance maneuver closely followed the trajectory prediction for this example. Additional 

examples for Google Earth plots of flight-test data are shown in the main body of this report as well as 

below within this appendix. 

 

 
 

Figure B4. Example flight-test data. 

Available Reaction Time 

The premise of the “Available Reaction Time (ART)” calculation was to determine the amount of time 

within which a pilot would need to react were an Auto GCAS maneuver not initiated. Available reaction 

time was defined as the amount of time after initiation of the Auto GCAS maneuver within which the same 

maneuver could have been delayed while still avoiding terrain. The reason for calculating ART was to 

determine the “nuisance potential” of the system. A formal study has not yet been performed to quantify 

the ART nuisance boundary for UAVs similar to the DROID. For the purpose of this demonstration project, 

ARTs in excess of six seconds were considered possible nuisances, while those less than four seconds were 

considered probable non-nuisances. A negative ART indicates that the avoidance maneuver would not 

prevent the DROID from flying into the terrain, or in this case, the terrain plus TCB. 

 

To calculate ART, the trajectory of the DROID after avoidance maneuver initiation was extrapolated 

as though the avoidance maneuver had been delayed. Figure B5 shows a setup maneuver, avoidance 

activation, and avoidance maneuver but without an extrapolated trajectory. The extrapolated trajectory 

consisted of three segments: the delay segment, the delayed avoidance maneuver segment, and the 
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post-termination maneuver segment. The delay segment, shown in green in figures B6, B7, and B8, 

estimated the DROID’s path had no avoidance maneuver been initiated. The delayed avoidance maneuver 

segment, shown in dark red in the same three figures, used the same avoidance maneuver path that occurred 

in flight-testing, delayed by the selected time increment. The post-termination maneuver segment, shown 

in dark blue in these figures, attempted to estimate the trajectory as though the avoidance maneuver had 

continued after termination of the flight-test maneuver. The delay segment was progressively increased 

until any of the three segments intersected with the digital terrain. The ART was then defined at the value 

of the delay segment one frame before the extrapolation intersected with the digital terrain. 

 

 
 

Figure B5. Actual trajectory. 

 

 
 

Figure B6. Three-segment extrapolation at intersection with terrain. 
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Figure B7. Three-segment extrapolation one frame before terrain intersection. 

 

 
 

Figure B8. Three-segment extrapolation from above. 

 

Figures B5, B6, and B7 show flight 19 event 16. Figure B5 shows the actual trajectory of the DROID, 

including the path during the setup maneuver prior to the avoidance activation and the actual avoidance 

maneuver. Figure B6 shows the three segments of extrapolation delayed 2.2 s, resulting in part of the 

trajectory intersecting with the digital terrain. Fig. B7 shows the three segments one frame earlier, when 

the extrapolation was delayed 2.0 s and the trajectory just missed the digital terrain. For this example, this 

technique resulted in an ART value of 2.0 s. 
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The delay segment treated the DROID as a point mass and used basic particle kinematics to extrapolate 

using the aircraft states at the original activation, ignoring acceleration in the z-axis. The delayed avoidance 

maneuver was a copy of the actual avoidance maneuver, rotated about the z-axis to align with the delay 

segment, so that the flightpath continued smoothly into the delayed avoidance maneuver. The flightpath 

after the delayed avoidance maneuver was calculated differently, depending on whether the avoidance 

maneuver was over smooth terrain or not.  

 

Over smooth terrain, the important factor in determining whether the extrapolated flightpath would 

intersect with the digital terrain was the movement of the DROID in the vertical plane, because the digital 

terrain was of approximately the same height throughout the surrounding area. In mountainous areas, 

however, the movement of the DROID in the horizontal plane dominated the consideration of whether the 

extrapolated flightpath would intersect the digital terrain. For this reason, over smooth terrain, the actual 

flightpath of the DROID after avoidance maneuver termination was used. Over mountainous terrain the 

trajectory prediction (as calculated at activation) was used to estimate the flightpath after avoidance 

maneuver termination. The trajectory prediction was used for mountainous terrain instead of the actual 

flightpath because the safety pilot often took control shortly after normal termination (as planned for each 

test point). The trajectory prediction was considered the best estimate for the flightpath that would have 

occurred had the safety pilot not taken control. It was not necessary to use the trajectory prediction for 

smooth terrain because there were few of those events and the safety pilot did not take control until after 

the point at which the extrapolated trajectory intersected with digital terrain. 

 

The best available digital terrain model was used to determine the intersection with the extrapolated 

flightpath. For these ART analyses, the one-third-arc-second National Elevation Dataset (NED) was used. 

The delay was incremented in time steps that were the same as the recorded data on the smartphone  

(roughly 0.2 s). The specific magnitude of each time step was dependent on the smartphone data time steps 

because the smartphone calculations were somewhat asynchronous and did not calculate at precise, regular 

intervals. 

Three Segment Extrapolation Methods 

As discussed above, the DROID trajectory was extrapolated in three segments: the delay segment, the 

delayed avoidance maneuver segment, and the post-termination maneuver segment. A top view of these 

three segments at the point where the ART value was determined for flight 19 event 16 (as viewed from 

above) is shown in figure B8. This figure shows that the three-segment extrapolation method creates a 

continuous trajectory. 

 

Delay Segment 

For the first segment of the extrapolated flightpath for ART calculations, the SUAV was treated, for 

simplicity, as a point mass. In general, ART calculations were based on particle kinematics, with the 

exception that vertical accelerations were ignored, and the DROID was assumed to experience a constant 

rate of climb or descent. 

 

In the case of the ART analysis, vertical accelerations were not taken into account for two reasons. The 

first reason was the extremely low signal-to-noise ratio in the z-axis Piccolo II autopilot accelerometer data 

(see figure B9). The second reason was that the DROID often flew in near-equilibrium flight (lift equaling 

weight, and thrust equaling drag) as commanded by the autopilot. In addition, the small size of the DROID 

made it extremely susceptible to even slight changes in wind direction, wind speed, turbulence, and other 

atmospheric conditions. In calculating the ART for the F-16, the maneuvers were far “larger” in the sense 

of the scale of the F-16; therefore all accelerations (north/east/down) had to be taken into account. 
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Figure B9. Impact of atmospheric turbulence on measured vertical acceleration. 

 

In the case of the ART analysis as applied to the SUAV project, the noisy z-axis accelerometer data 

induced inappropriate and unlikely estimated flightpaths. The Piccolo II autopilot kinematics data (north 

and east velocities and accelerations) also failed to record; therefore, the analysis team generated the 

estimated flightpaths from known position and velocity data (latitudes, longitudes, and climb rate). 

Velocities were obtained from changes in latitude and longitude, and accelerations were further 

differentiated from changes in velocity. The technique of differentiation in order to obtain velocities and 

accelerations was not ideal because differentiation often amplified signal noise.  

 

To counteract the effects of signal noise due to differentiation, the analysis team applied a generic 

smoothing routine to the north/east velocities and accelerations; vertical acceleration remained too noisy to 

be useful even after smoothing attempts. Figure B9 shows a typical sample of the measured z-acceleration. 

The upper limit of the normal maneuvering envelope of the DROID as configured (1.3 g given the 

preprogrammed bank limit of 40 deg) is also shown in figure B9. This clearly shows that the noise in the 

data captured was induced by atmospheric turbulence, not the normal maneuvering of the DROID. 

 

Delayed Avoidance Maneuver  

The delayed avoidance maneuver flightpath estimated what the DROID would have done had the same 

avoidance maneuver been executed after some time delay. Since the heading may have changed during the 

delay segment, the delayed avoidance maneuver was rotated to align with the heading at the end of that 

delay segment. A new initial heading and a new position (latitude, longitude, and altitude) were chosen to 

match the end of the delay segment flightpath, and from this position, the flightpath angles and changes in 

heading of the original avoidance maneuver were applied. Changing the initial heading but recreating the 

same change in heading effectively “rotated” the avoidance maneuver about the z-axis and maintained 

continuity in the horizontal flightpath between the delay segment and the delayed avoidance maneuver. 

Rotating the avoidance maneuver about the y-axis was not necessary because vertical acceleration was 

ignored and the flightpath angle did not change during the propagation. 
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Figures B6 and B8 show that the method of rotating the flightpath of the original avoidance maneuver 

and appending it to the end of the delay segment resulted in a continuous propagated flightpath. Ignoring 

the vertical acceleration did not induce a significant discontinuity in the vertical flightpath at the point 

where the delay segment met the delayed avoidance maneuver. This method worked because most 

flight-test maneuvers were near 1 g during the approach to the avoidance maneuver. If the maneuvering of 

the DROID at the initiation of the avoidance maneuver were more dynamic, a different propagation method 

would have been required. 

 

Post-Termination: Mountainous Terrain  

When the avoidance maneuver ended, if neither the safety pilot nor ground control gave instructions to 

the DROID, the DROID would stay in the climbing turn last commanded during the avoidance maneuver. 

In other words, the autopilot made no effort to return the DROID to level flight before terminating. Over 

mountainous terrain, it was the curvature of this climbing turn that most accurately determined whether the 

extrapolated flightpath would intersect with digital terrain. The actual post-termination flightpath could not 

be used because it was normal test procedure for the safety pilot to take control soon after the avoidance 

maneuver had terminated. Therefore it was determined that the best estimate for propagating the flightpath 

of the DROID after termination was based on the steady climbing turn calculated as part of the trajectory 

prediction from when the avoidance maneuver was initiated. 

 

To make the estimation of flightpath as continuous as possible, the point along the trajectory prediction 

where the heading most closely matched the heading at the end of the delayed avoidance maneuver was 

used as the beginning of the post-termination segment. This flightpath was then translated in three 

dimensions to meet the end of the delayed avoidance maneuver. This method may result in some 

discontinuity in flightpath angle, but since the slope of the flightpath of the DROID was so much less than 

the slope of the digital terrain, small offsets in extrapolated altitude were less significant than the latitude 

and longitude of the DROID during this segment. Also, this method guaranteed that the flightpath angle 

over the entire extrapolation was a flightpath angle sustainable by the DROID. 

 

Flight 19 event 10 having flown over mountainous terrain, it was used to demonstrate this method for 

the post-termination segment. Figures B6 and B8 show that this method created a smooth transition (that 

is, revealed no obvious discontinuities) from the delayed avoidance maneuver to the post-termination 

segment. 

 

Post-Termination: Smooth Terrain  

Over smooth terrain, the most important factor in determining ART was the vertical flightpath shortly 

after the avoidance maneuver. In order to obtain the most accurate trajectory propagation, the actual 

flightpath after termination of the avoidance maneuver was used (instead of the trajectory prediction method 

that was used for mountainous terrain). This method worked over smooth terrain because there were a few 

seconds until the safety pilot took control, and that amount of time was sufficient to provide enough data 

for the propagation. The actual flightpath after termination, up until the safety pilot took control, was 

appended to the end of the delayed avoidance maneuver. That flightpath was rotated and translated similar 

to the way in which the delayed avoidance maneuver was appended to the delay segment. This ensured 

continuity in both heading and flightpath angle.  

 

The post-termination segment of the extrapolated flightpath over smooth terrain was significantly less 

important to the ART calculation than that segment over mountainous terrain. Most avoidance maneuvers 

over smooth terrain terminated during a slight climb, which was sufficient to clear smooth terrain. 
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Comparison to Digital Terrain Truth Data  

Once the longitude, latitude, and altitude of the DROID were extrapolated for the entire three-segment 

trajectory, the extrapolated trajectory was compared to “best source” data for the digital terrain. For this 

ART analysis the best source for truth data was considered to be the one-third-arc-second NED. At every 

point of longitude-latitude in the extrapolated flightpath (shown by solid colored vertical lines in Google 

Earth snapshots in figures B6, B7, B10, and B11) the height of the NED was found. The TCB for each 

event was then added to the NED as a way to normalize across every test run, since the Auto GCAS system 

interpreted the “ground” to be at digital terrain height + TCB. The NED altitude plus TCB is represented 

by a tan line in these figures. Because flight 19 event 16 had a TCB of 0 ft and Google Earth also used the 

one-third-arc-second NED, these tan lines are barely visible above the ground as it is displayed in Google 

Earth depiction of figures B6 and B7. Therefore, flight 19 event 7, with a TCB of 100 ft, was used to 

demonstrate this concept in figures B10 and B11. Figure B10 shows the delayed avoidance maneuver at 

the frame when the propagated trajectory was just clear of the buffered terrain (NED + TCB). That frame 

in the propagation was used to define the ART value. Figure B11 shows the delayed avoidance maneuver 

one frame later, when the propagated trajectory intersected with the NED + TCB. The vertical tan line 

shows the first point along the trajectory where the NED + TCB line was above the trajectory. The 

intersection in this event happened during the delayed avoidance maneuver segment, but it sometimes 

happened in the post-termination segment (as in the case of flight 19 event 16). 

 

 

 
 

Figure B10. Extrapolated trajectory above NED + TCB (at the ART). 
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Figure B11. Extrapolated trajectory below NED + TCB (one frame after the ART). 

Determination of Trigger Post Locations 

As described in the “Generic ‘Sense Terrain’ Module” section in the main body of this report, the DEM 

was decompressed as a rectangular grid of posts with latitude, longitude, and altitude, and treated as a flat 

polygon surrounding that post at the same altitude. The trigger post analysis seeks to determine which 

specific post caused the avoidance maneuver.  

 

The trajectory prediction and related scan circles in the direction of the avoidance were used as the 

basis for this analysis. In the case of flight 16 event 6, which is depicted in figures B12, B13, and B14, the 

avoidance was to the right, so the right trajectory prediction was analyzed. Within the Auto GCAS 

algorithm, the digital terrain was represented by scan circles at the altitude of the highest terrain polygon 

within the radius of each circle. That altitude was raised further to account for the flight-test buffer  

(the TCB) and the built-in buffer (vertical uncertainty) since the trajectory prediction was being compared 

to DEM + TCB + vertical uncertainty altitude. 
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Figure B12. Trajectory prediction and scan circles viewed from above. 

 

 

 
 

Figure B13. Trajectory prediction and scan circles viewed from side. 
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Figure B14. Trigger post location relative to scan circle. 

 

In figure B13, the scan circles are shown in light green (at the DEM altitude) and dark green  

(at the DEM + TCB + vertical uncertainty altitude). The trajectory prediction is shown in blue. When the 

trajectory prediction was lower than one of the buffered scan circles the avoidance maneuver was triggered. 

The trigger post was associated with the polygon that gave this scan circle its height. In figure B13, it can 

be seen that the 8th light green scan circle (from the left) is paired with the first dark green buffered circle 

that the trajectory prediction passes underneath. Figure B14 shows this 8th scan circle and the surrounding 

DEM polygons. In this case the scan circle just touches the corner of the polygon associated with the trigger 

post. The practical significance of this implementation was that the DEM posts which triggered avoidance 

maneuvers tended to be outside of the scan circles and therefore created some additional horizontal buffer 

away from the actual terrain. 

Determination of Worst-Case Mismatch Locations 

In order to evaluate the accuracy of the trajectory prediction, the worst-case mismatch between the 

actual ground track compared to the predicted ground track was found for each event.  

 
The actual ground track always included the automated avoidance maneuver. In some cases, the actual 

ground track also included the time after the automatic system terminated in order to determine when the 

DROID was at its minimum altitude above the ground (as long as the safety pilot did not take control). In 

figures B15 and B16, the actual ground track is shown by a red dotted line. The predicted ground track and 

half-scan width, as determined by the algorithm, are shown in blue and purple solid lines, respectively. 
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Figure B15. Worst-case point: inside of the scan. 

 

 
 

Figure B16. Worst-case point: outside of the scan. 

 

In some cases, the ground track was never farther away from the predicted ground track than the 

half-scan width. The DROID stayed above the terrain included in the scan pattern. In such cases, the worst 

case was the point at which the actual ground track was farthest from the prediction. Figure B15 shows the 

worst-case analysis plot for such a case, flight 12 event 1. The red actual ground track is clearly inside the 
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purple scan, and the worst case is the point at which the red actual ground track is farthest from the blue 

predicted ground track.  

 

In other cases, the actual ground track was farther away from the prediction than the half-scan width. 

In these cases, the DROID flew over terrain not necessarily accounted for by the algorithm. In such cases, 

the worst case was the point at which the flightpath was farthest outside the scan. Figure B16 shows the 

worst-case analysis plot for such a case, flight 18 event 6. The red actual ground track extrudes past the 

purple scan, and the worst case is the point at which the red actual ground track is farthest outside the purple 

scan.  

 

The methods for finding the distance along the trajectory prediction and the half-scan width at each 

predicted ground track point are described in the following section. 

Trajectory Normalization Analysis 

In order to assess how well the overall Auto GCAS algorithm was working, a normalization analysis 

was used to compare key points from multiple test runs all on the same plot. This normalization method 

was used to show key points at the trigger posts and the location of the worst-case mismatch between the 

actual trajectory compared to the prediction as described in the appendix sections “Determination of Trigger 

Post Locations” and “Determination of Worst-Case Mismatch Locations.” The following discussion 

assumes a known latitude and longitude for each point in question. 

 

The premise of the normalization analysis was that any desired point could be characterized by a 

distance along the trajectory prediction and distance perpendicular to the trajectory prediction. These 

distances could also be expressed as percentages of the total length and percentages of the corresponding 

width. 

 

Scans for individual flight-test runs had different shapes and lengths depending on factors such as initial 

turn rate, airspeed, and wind. In Figures B17 through B22, comparisons of the trajectory prediction to the 

right were generated by changing the initial turn rate (bank), airspeed, and wind, respectively. A similar set 

of scans could be generated for a trajectory prediction to the left or straight. In each set of comparison 

figures, the trajectory prediction shown on the left-hand side of the page is based on the DROID initially 

traveling at 0 deg bank and 75 KTAS with no wind. Figure B17 compares the no-bank trajectory prediction 

to a trajectory prediction with an initial 40-deg left bank in figure B18. The DROID needs time to adjust 

from turning left to turning right, so the initial opposite bank makes the turn somewhat wider. Conversely, 

an initial bank in the same direction of the avoidance makes the turn tighter. Figure B19 compares the 

75-KTAS trajectory prediction to a trajectory prediction with an initial speed of 60 KTAS in figure B20. 

The slower airspeed results in a tighter turn radius. Figure B21 compares the trajectory prediction with no 

initial crosswind to a trajectory prediction with a 20-kn crosswind from the right in figure B22. A crosswind 

of that magnitude from that direction tightens the turn radius considerably, while a crosswind in the opposite 

direction widens the turn radius. 
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Figure B17. Trajectory prediction with no initial 

bank. 

 

Figure B18. Trajectory prediction with initial 

40-deg left bank. 

 

 

  
 

Figure B19. Trajectory prediction with 75-kn 

initial speed. 

 

Figure B20. Trajectory prediction with 60-kn 

initial speed. 
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Figure B21. Trajectory prediction with no initial 

wind. 

 

Figure B22. Trajectory prediction with 20-kn 

initial crosswind. 

 

A single scan shape was selected to use as a reference for showing the key points from all of the 

flight-test runs. This reference scan shape was selected from flight 12 event 4, initiated at 73 KTAS,  

0.5 deg bank, with a negligible crosswind. By normalizing the location of each point in question relative to 

the reference scan shape, those points could all be placed on one plot even if the original avoidance 

maneuver was to the left, straight, or right. The results shown in figures 54 and 58 of the main body of this 

report used the techniques discussed in the following paragraphs. The results of this analysis are also shown 

on histograms in figures 55, 56, 59, and 60 of the main body of this report, to provide an alternative 

summary. 

Finding Distances 

The trajectory prediction on the smartphone determined the centerline at multiple bin locations. The 

spacing between each bin was a function of how dynamic the expected avoidance maneuver would be at 

that location. The bins were spaced closer together during dynamic portions of the maneuver such as during 

g-onset or roll-rate onset. The bins were spaced farther apart if the expected avoidance maneuver at that 

location would be relatively stabilized.  

 

Given the latitude and longitude of individual bin locations along the centerline of a trajectory 

prediction from flight-testing, the first steps were to find the total length of the centerline and the scan 

pattern width at each bin location. A visual representation of this method is shown in figure B23. Each 

distance point is shown as a blue dot. At the beginning of the trajectory (the most dynamic portion of the 

maneuver), the dots are so close together that they appear to form a solid line. The total distance is the sum 

of the straight line distances between neighboring distance points. 
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Figure B23. Method for finding total distance along trajectory prediction. 

 

The scan pattern width could then be found at any distance point along the trajectory prediction using  

equation (B1). In order to match the values used during SUAV Auto GCAS flight test in equation (B1), 

 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 50 𝑓𝑡, and 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝐺𝑟𝑜𝑤𝑡ℎ𝐴𝑛𝑔𝑙𝑒 = 10° for turning scans and 5° for 

straight scans. The results of this method are shown in figure B24. By plotting the purple half-scan width 

on each side of the blue trajectory prediction, the entire scan is shown. 

 
𝐻𝑎𝑙𝑓 𝑆𝑐𝑎𝑛 𝑊𝑖𝑑𝑡ℎ

= √𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦2 + (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑙𝑜𝑛𝑔𝑇𝑃𝐴 ∗ sin(𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝐺𝑟𝑜𝑤𝑡ℎ𝐴𝑛𝑔𝑙𝑒)2  

(B1) 

 

 
Figure B24. Half-scan width. 
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Once the total length of the centerline and the scan pattern width at each point along the entire length 

were known, the next step was to identify where key points of interest from a flight-test maneuver were 

located relative to the centerline. As mentioned at the beginning of this section, those key points could be 

trigger posts or they could be the location of the worst-case mismatch between the actual trajectory and the 

prediction.  Given the latitude and longitude of a key point in question, distances along the centerline and 

perpendicular to the centerline were needed.  

 

The two distance point locations along the centerline closest to the key point in question were found by 

using a distance function to find the distance from every point location along the centerline to the key point. 

The total distance along the centerline from maneuver initiation up until the distance point closest to the 

key point in question was determined by using the sum of the distances between neighboring distance point 

locations, as already described in the discussion above of figure B23. 

 

To find the distance perpendicular to the centerline, distance functions were used to determine the 

perpendicular distance, as shown in figure B25. The two closest bin locations were mathematically 

connected by a straight line. A perpendicular to that line was determined which also intersected with the 

key point. The length of this line was used as the distance perpendicular to the centerline. 

 

 
 

Figure B25. Method for finding perpendicular distance at a given point along the trajectory prediction. 

Nondimensionalizing Distances and Plotting on a Representative Trajectory Prediction Algorithm 

In order to make the distances nondimensional, the perpendicular distance was divided by the half-scan 

width at that location to convert into a percentage. Similarly, the distance along the trajectory prediction 

from maneuver initiation to the key point was converted into a percentage by dividing by the total length 

of the trajectory prediction. In addition, to transpose a point from a right or straight trajectory prediction 

onto the intended reference (left trajectory prediction), the key point location inside or outside of the 

trajectory prediction was used. The right trajectory prediction shown in figure B26 shows a point in orange 

that is 50 percent along the trajectory prediction length, and 75 percent of the half-scan width inside the 

curve of the trajectory prediction. The right trajectory prediction shown in figure B26 also shows a point in 
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blue that is 50 percent along the trajectory prediction length, and 75 percent of the half-scan width outside 

the curve of the trajectory prediction. The left trajectory prediction shown in figure B26 shows how the 

orange and blue points were transposed onto the reference left trajectory prediction. 

 

 
 

Figure B25. Example for non-dimensional key point locations. 

Termination Logic Cross-Checks 

When an SUAV avoidance maneuver was not terminated by the safety pilot, the Auto GCAS algorithm 

determined when the avoidance maneuver was no longer necessary and returned control to the ground 

control operator. In order to assess the timeliness of the avoidance maneuver termination, the flight-test 

results were compared with an ideal termination defined by generating a straight line tangent to the 

avoidance flightpath.  A straight line tangent (including the current climb rate) was used as a way to identify 

that there was no obstructing terrain directly in front of the DROID. Although other methods could have 

been used, this was considered the simplest and would most directly correlate with the view of the pilot  

(in this case, the view provided by the forward-looking video camera). When the straight tangent line was 

projected to be clear of the DEM terrain for three consecutive time frames (approximately 0.2 s per frame), 

that third frame was considered the ideal termination. 

 
The purpose for these termination logic cross-checks was to determine whether the Auto GCAS 

algorithm terminated the maneuver earlier than it should have, at about the right time, or later than 

necessary.  As a general result, when the DROID maneuvered left to avoid terrain, the software logic caused 

the avoidance maneuver to terminate earlier than it should have. For a right avoidance, the Auto GCAS 

maneuver tended to terminate later than necessary. The overall results are described in the main body of 

this report; the methods used are described below. 

 

Figure B27 illustrates how the Auto GCAS algorithm determined when to terminate the avoidance 

maneuver using an example from flight-testing. The black line in figure B27 represents the actual flightpath 

of the DROID prior to the avoidance maneuver. The navy blue line in figure B27 represents the trajectory 

prediction at initiation (in this case, the Auto GCAS algorithm determined that the DROID should avoid 

terrain by executing a left turn). The red line in figure B27 represents the actual flightpath during the 

avoidance maneuver. To determine when an avoidance maneuver should be terminated, the Auto GCAS 
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algorithm computed a straight trajectory at every time frame throughout the maneuver. The labeled  

“1st blue line” in figure B27 represents the straight trajectory prediction one frame before the trajectory 

prediction was clear of the buffered digital terrain (green rectangular polygons). The labeled “2nd blue line” 

in figure B27 represents the straight trajectory prediction at the frame when the trajectory prediction was 

first clear of the buffered digital terrain. The straight trajectory predictions do not appear straight in figure 

B27 because of the P-factor, described in the main body of this report. The Auto GCAS algorithm 

terminated the avoidance maneuver when three consecutive frames were clear of terrain. 

 

 
 

Figure B27. Example avoidance maneuver. 

 

To accomplish termination logic cross-checks, the Auto GCAS team used MATLAB® to implement 

the calculations combined with Google Earth as a visualization aid.  Using Google Earth KML files, violet 

straight lines were drawn tangential to the red avoidance maneuver flightpath in figures B28 through B30. 

To avoid clutter, these violet lines were only drawn every fifth frame (there is roughly 1 s between each 

line). 
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Figure B28. Tangential lines (violet) drawn from the avoidance flight path (red). 

 

 

 

 
 

Figure B29. Right-turning avoidance terminated late. 
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Figure B30. Left-turning avoidance terminated early. 

 

Next, three arc-second buffered DEM terrain tiles (represented by the green polygons) were added. The 

buffered terrain added the TCB value to the DEM altitude but did not include any built-in buffers. 

Therefore, the results from any test run could be evaluated in the same manner as if the TCB were set to 0. 

The DEM terrain tiles were sized at three arc-seconds to be consistent with the resolution used by the Auto 

GCAS algorithm and to minimize computational time. This calculation being post-flight, the theoretical 

accuracy could have been improved using higher resolution DEM tiles (as fine as the one-third-arc-second 

resolution of the NED source data) but that increased accuracy was not considered necessary for this 

analysis. 

 

The ideal termination heading was defined to be when the green DEM polygons did not block three 

consecutive tangential paths (as shown by the three lighter colored violet lines in figures B28 and B29). 

The determination of when the tangent lines no longer intersected with the DEM terrain was accomplished 

as a numerical calculation but is shown using Google Earth to help visualize the concepts. 

 

Figures B28 and B29 illustrate termination calculations for similar right-turning avoidance maneuvers. 

Figure B28 shows the avoidance maneuver as viewed from almost directly above. Figure B29 shows the 

same maneuver from the perspective of a lower viewing angle. The darker violet lines represent the 

tangential paths that were blocked by terrain (drawn every five frames), and the three right-most lighter 

violet lines represent the three-frames-of-persistence clear of terrain (drawn every frame). In these cases, 

the right-turning avoidances illustrated in figures B28 and B29 indicate that the avoidance maneuver 

terminated approximately 26 to 29 deg later than necessary. 

 

The short vertical lines along each tangential path represent a distance equivalent to one arc-second. 

Greater accuracy could have been achieved with smaller intervals for the tangential paths (that is, one-third 

arc second instead of one arc-second resolution) but computational time would have been increased 

significantly as a result. 
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Figure B30 illustrates termination calculations for a left-turning avoidance maneuver. The red 

flightpath in figure B30 once again represents the actual avoidance maneuver path up to the point at which 

the Auto GCAS algorithm terminated the maneuver. The violet straight lines (drawn every fifth frame) 

represent the tangential paths along the red actual avoidance path. The orange semicircle represents an 

extrapolated avoidance trajectory that the DROID would have taken had it continued the avoidance 

maneuver. The dark-orange straight lines (drawn every fifth frame) represent the tangential paths along the 

extrapolated orange semicircle. Finally, the three straight yellow lines (drawn at each frame) represent the 

consecutive tangential paths which do not intersect with the green DEM polygons. 

 

To determine an extrapolated avoidance trajectory, several new elements were needed. Since the 

smartphone hosting the Auto GCAS algorithm did not use a consistent time interval for each frame, an 

average time interval was selected using the last five time increments in the red portion of the actual 

avoidance maneuver (see figure B31). Next, a constant radius was calculated for the extrapolated avoidance 

maneuver based on the arc between the last two points of the actual avoidance maneuver. This radius was 

calculated from equation (B2): 

 

 𝑠 = 𝜃 ∙ 𝑅 (B2) 

 

where 𝜃 is the heading change calculated from the last two points in the red avoidance path in figure 

B30, and s is the arc distance between those two points. In this example case, the left-turning avoidance 

maneuver shown in figure B30 terminated approximately 32 deg earlier than it should have. Although this 

extrapolation method worked reasonably well on most runs, it was also susceptible to noise in the source 

data, causing some uncertainty in the results. An alternative method could use an extrapolated radius based 

on the average arc over the previous several frames. 

 

 
 

Figure B31. Differential time element illustration. 

 

For the extrapolated runs the delta time and delta heading were based on the new incremental elements 

described above.  
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Appendix C: Flight Log 

This appendix presents a summary of all flights that were related this project. Table C1 presents the first few flights that were accomplished on 

the DROID aircraft to obtain basic trajectory prediction data along with the SUAV system checkout flights. Table C2 presents all of the SUAV test 

flights that were accomplished to evaluate the overall system and obtain test data. 

 

Table C1. Preliminary flights. 

Flight 

number 

Flight 

date 

Duration, 

min 

Smartphone 

location Test site Test types* Notes 

DROID #1 4/14/2011 47 N/A North Base 10 sequential axis PARS runs** Normal inputs to Piccolo II  

DROID #2 4/14/2011 33 N/A North Base 8 sequential axis PARS runs** Normal inputs to Piccolo II  

DROID #3 4/14/2011 10 N/A North Base No test runs** Normal inputs to Piccolo II  

DROID #4 4/14/2011 29 N/A North Base 9 sequential axis PARS runs** Normal inputs to Piccolo II  

DROID #5 4/14/2011 35 N/A North Base 13 sequential axis PARS runs** Normal inputs to Piccolo II  

SUAV #1 9/28/2011 44 Van North Base 9 combined axis PARS runs** UI inputs to Piccolo II 

SUAV #2 9/28/2011 42 Van North Base 7 Auto GCAS functional checks None 

SUAV #3 9/28/2011 51 Van North Base 17 combined axis PARS runs** UI inputs to Piccolo II 

SUAV #4 10/7/2011 26 Van Rosamond Lakebed 3 Auto GCAS runs Intermittent RPM sensor 

SUAV #5 10/7/2011 15 Van Rosamond Lakebed No test runs Failed RPM sensor 

SUAV #6 10/7/2011 27 Van Rosamond Lakebed 3 Auto GCAS runs Intermittent RPM sensor 

SUAV #7 10/18/2011 53 Van Rosamond Lakebed 12 Auto GCAS runs TM dropouts near hill 

SUAV #8 10/18/2011 51 Van Rosamond Lakebed 
2 Auto GCAS runs 

11 combined axis PARS runs 
None 

Notes: 

* The number of runs listed represents the runs attempted. Some runs were not completely successful for a variety of reasons. 

** The six flights identified with double asterisks were accomplished to determine the parameters needed to define the trajectory predictions. Pilot Activated 

Recovery System (PARS) maneuvers were initiated in each axis to obtain the required data. PARS maneuvers were executed using the same command sequence 

intended for the corresponding flyup maneuvers.  
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Table C2. Primary test flights. 

Flight 

number 

Flight 

date 

Duration, 

min 

Smartphone 

location Test site Test types* Notes 

SUAV #9 10/21/2011 55 Van GCAS valley 13 Auto GCAS runs  
Top of small hill 

TM dropouts near hill 

SUAV #10 10/21/2011 55 Van GCAS valley 11 Auto GCAS runs 
Top of small hill 

TM dropouts near hill 

SUAV #11 11/7/2011 49 Van GCAS valley 7 Auto GCAS runs 
Base of small hill 

TM much improved 

SUAV #12 11/7/2011 35 Van GCAS valley 6 Auto GCAS runs Medium hill 

SUAV #13 3/5/2012 59 Aircraft Rosamond Lakebed 
6 Auto GCAS runs (no flyups) 

1 nuisance test rehearsal 

No flyups: traced to Piccolo II roll rate 

values 

SUAV #14 3/15/2012 32 Aircraft GCAS valley 5 Auto GCAS runs Smartphone data did not record 

SUAV #15 3/15/2012 2 Aircraft GCAS valley No test runs Smartphone dislodged on takeoff 

 SUAV #16 3/15/2012 53 Aircraft GCAS valley 9 Auto GCAS runs FAIL states disrupted testing 

SUAV #17 3/29/2012 59 Van GCAS valley 13 Auto GCAS runs 

Near Fremont Peak 

(Smartphone back in van to allow testing 

without disruptions due to FAIL states.) 

SUAV #18 3/29/2012 63 Van GCAS valley 11 Auto GCAS runs 
Lakebed and medium hill  

Guest pilots. 

SUAV #19 3/29/2012 54 Van GCAS valley 12 Auto GCAS runs Medium hill 

SUAV #20 5/31/2012 40 Aircraft GCAS valley 7 nuisance test ridge crossings 

Small hill 

(Smartphone back in DROID with 

improved FAIL states.) 

SUAV #21 5/31/2012 52 Aircraft GCAS valley 
12 Auto GCAS runs 

3 nuisance test valley patrols 
Medium hill 

Note: 

* The number of runs listed represents the runs attempted. Some runs were not completely successful for a variety of reasons.  
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Appendix D: Open Discrepancy Reports 

   Table D1 provides a list of each NASA Discrepancy Report (DR) that remained open at the end of the SUAV Auto GCAS project.  

An additional 29 DRs were written during the project but were closed by the Configuration Control Board, normally because the problem had been 

confirmed as fixed. The main intent of table D1 is to allow staff of similar future projects to decide whether each item warrants improvement.  

A paraphrased and shortened description for each DR is provided in the table.  
 

Table D1. Open Discrepancy Reports. 

DR # Title Short description and disposition Auto GCAS component 

11-125 
TRANSITION TO IDLE 

KEEPS FLYUP ACTIVE 

 When a flyup is engaged, transitioning to IDLE keeps the flyup 

active. 

 Workaround: Click on another mode to transition out of flyup 

mode 

User interface 

 

11-126 

INTERMITTENT 

CONNECTION BETWEEN 

PHONE AND USER 

INTERFACE 

 User interface timeout on AGCAS connection occurs at random 

times, causing a FAIL mode to be asserted. Frequency is very 

low, but random in nature. 

 Workaround: Click on appropriate mode on user interface to 

resume normal function. 

User interface / smartphone 

software 

 

11-130 

INAPPROPRIATE FLYUP 

TERMINATION DUE TO 

P-FACTOR 

 Termination of some flyups is delayed longer than necessary. 

Data show that flyups to the right result in delayed termination; 

flyups to the left result in early termination. 

 Recommendation: Future SUAV Auto GCAS projects should 

consider modifying the termination logic to use a straight 

trajectory that is unaffected by P-factor. 

Algorithm on smartphone 

12-108 FAIL INDICATIONS 

 FAIL indications occurred shortly after flyup initiation on at least 

three test runs. These FAIL indications were somewhat disruptive 

to the normal test flow and degraded the intended test data. On 

later missions the FAIL “timeout” was changed from 0.5 to 5.0 s 

to ensure no test disruption, but 5.0 s may not be the optimal 

setting. 

 Recommendation: Determine optimal FAIL timeout value for 

future Auto GCAS projects.  

 

12-110 

STREAMLINE CAPABILITY 

FOR PILOT CONTROL 

AFTER AGCAS 

FLYUP/ABORT 

 When the DROID pilot is commanding the from the pilot control 

station at the time a FLYUP is initiated, the pilot does not have a 

single-action command ability to regain control of the DROID. 

 Recommendation: Mechanize system so that a single action 

command by the pilot will regain control after a FLYUP or 

ABORT.   

Ground control van and user 

interface 
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12-111 

AUTOPILOT DID NOT 

RESPOND TO FLYUP 

COMMAND 

 A right FLYUP command was sent but there was no response 

from the autopilot. This occurred only once on the three flights on 

March 29. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts.  

Smartphone to Piccolo II 

interface 

12-112 

ILLOGICAL FLYUP 

TRAJECTORIES IN 

RECORDED DATA 

 The left, straight, and right trajectories recorded at FLYUP 

initiation were all identical.  

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts.  

Algorithm on smartphone 

12-113 
FLYUP WENT OUTSIDE 

SCAN PATTERN 

 The actual flyup trajectory went outside the scan pattern by 

approximately 50 ft horizontally. The altitude approached 25 ft of 

the TCB, indicating that going outside the scan may have 

contributed to reduced terrain clearance. This run may have been 

influenced by wind changes after FLYUP initiation. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts.  

Algorithm on smartphone 

12-114 
INDECISIVE FLYUP 

TERMINATION 

 Three additional short flyups occurred after termination of the 

first flyup (over total duration of 7 s). Cases with one or two 

additional flyups occurred on other flights. It would be 

appropriate for every flyup to terminate without subsequent 

flyups for at least several seconds. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts.  

Algorithm on smartphone 

12-115 
FLYUP WENT INSIDE SCAN 

PATTERN 

 Flyup was as much as 130 ft inside the scan. Flyups with this 

characteristic pose an increased risk of nuisance potential but are 

unlikely to increase risk of terrain impact. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts. 

Algorithm on smartphone 

12-116 POSSIBLE LATE FLYUPS 

 The data show that the predicted trajectories were well below the 

buffered terrain for both left and right options. This result implies 

a large jump in the TPA compared to a single frame earlier. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts. 

Algorithm on smartphone 

12-117 GPS DISCONTINUITIES 

 GPS position discontinuities up to 132 ft occurred (in between 

frames) on several flights. This problem was later traced to a 

known problem in the Piccolo II software version used during 

flight-testing. 

 Recommendation: Update Piccolo II software before future tests 

using the DROID. 

Piccolo II software 

12-118 
AUTOPILOT EXCEEDS 

LIMITS 

 The DROID was able to establish a descent rate over 2500 ft/min 

and a bank angle of almost 50 deg. These values were well in 

excess of expected Piccolo II limits of @ 1000 ft/min and 40 deg 

bank. This problem was later traced to large-amplitude rudder 

Ground control van to  

Piccolo II interface 
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inputs applied by the pilot in the ground cockpit (rudder inputs 

went directly to the control surfaces and were not limited by the 

Piccolo II). 

 Recommendation: Reconfigure rudder pedal commands so 

Piccolo II limits will not be exceeded, or advise pilots on limited 

use of rudder pedals.  

12-120 

NO CAPABILITY FOR 

COCKPIT PILOT TO 

DISENGAGE FLYUPS 

 The ground cockpit pilot could not disengage a flyup and regain 

control (as the design was then implemented). The main impact of 

not implementing this capability was the inability to properly 

conduct Auto GACS nuisance testing. 

 Recommendation:  The ideal mechanization would allow a single 

HOTAS action to terminate a flyup in progress and not allow that 

flyup to resume. “New” flyups could occur unless the pilot 

chooses to continue holding the HOTAS.   

Ground control van to user 

interface 

12-121 
ABORT BUTTON 

FUNCTIONALITY 

 The UI ABORT button sends a signal to terminate the current 

flyup but another flyup is almost immediately recalculated and 

performed. 

 Workaround: Instead of clicking on the UI ABORT button, 

change the AGCAS mode to STANDBY or IDLE until ready to 

resume avoidance maneuvers. 

User interface 

12-122 

AGCAS SOFTWARE 

RECORDED REDUNDANT 

LATITUDE AND LONGITUDE 

VALUES IN SMARTPHONE 

 For eight flight-test events the Auto GCAS software recorded 

redundant trajectory prediction latitude and longitude data on the 

smartphone SD card. These cases are related to DR 12-112. 

 Recommendation: Additional research as needed to support future 

Auto GCAS development efforts.  

Algorithm on smartphone 
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