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SUMMARY 

Power, free - stream velocity, and duct angle of attack were varied 
at several wing angles of attack to define the aerodynamic characteristics 
of the ducted fan, wing, and of the ducted fan and wing together. 

At large duct angles of attack the inside of the upstream duct lip 
stalled causing a rapid change in the duct pitching moments and an 
accompanying increase in the power required . At low horizontal velocities 
this lip stall would probably limit the rate of descent of a vehicle with 
a wing- tip-mounted ducted fan . 

During low- speed, level, unaccelerated flight (30 to 80 knots) it 
appeared that a vehicle, with a configuration similar to that examined, 
would require less power if it were supported by a wing and ducted fans 
than if it were supported only by ducted fans . 

INTRODUCTION 

Tests of a wing-tip- mounted 4- foot - diameter ducted fan have been 
made for a l imited range of operating conditions and the results reported 
in references 1 and 2 . Tests at a smaller scale have been reported in 
references 3 and 4 . The result s in reference 1 are primarily for level 
unaccelerated flight; the present report contains data for the same model 
over a wider range of operating conditions . 

The test objectives were : (1) to define the aerodynamic character­
istics of the ducted fan and of the ducted fan and wing together for 
forward velocities up to about 100 knots; ( 2) to define the onset of 
any duct lip stall which might occur; ( 3) to determine the descent 
limitations imposed by duct lip stall on a vehicle employing wing-tip­
mounted ducted fans; and ( 4) to determine the extent to which the wing 
reduced the power required for a representative level, unaccelerated 
VTOL transition program at constant forward velocities from 0 to 80 knots. 
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NOTATION 

fan blade chord, in . 

wing mean aerodynamic chord, ft 

duct chord, ft 

total drag coefficient , drag 
qS 

ducted fan drag coefficient , ducted fan drag 
qdecd 

blade- section desl' gn lift section design lift coefficient, 
qb 

CL total lift coefficient, lift 
qS 

Cp 

ducted fan lift coefficient , ducted fan lift 
qdecd 

total pitching-moment coefficient ) 
pitching moment 

qSc 

ducted fan pitching moment 

qdecd2 

ducted fan pitching moment 

pn2 d5 

ducted fan normal -force coefficient) ducted fan normal force 
pn2 d 4 

ducted fan power coefficient power 
, pn3 d5 

ducted fan thrust coefficient , ducted fan thrust 

pn2 d 4 

d fan diameter) ft 

de duct exit diameter) ft 

h fan-blade thickness) in . 

J propeller advance ratio) Voo 
nd 
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n 

q 

r 

R 

S 

SHP 

x 

p 

fan rotational speed, rps 

free - stream dynamic pressure, Ib/ft2 

radial distance from duct center line, ft 

fan radius, ft 

wing area, ft2 

shaft horsepower 

free - stream velocity, knots or fps 

chordwise distance from duct leading edge, positive aft, in. 

duct angle of attack, deg 

wing angle of attack, deg 

fan blade angle measured at tip (unless otherwise noted), deg 

propulsive efficiency, C~ 100, percent 
Cp 

density 

MODEL AND APPARATUS 

General Characteristics 

The ducted fan studied in the present investigation and in 

3 

reference 1 was an exact duplicate of those used on the Doak VZ-4DA air­
plane . The semispan wing panel upon which the duct was mounted had the 
same geometric dimensions as the left wing panel of that airplane. The 
general arrangement of the ducted fan and wing mounted in the wind tunnel 
for testing is shown in figure 1 . Ducted fan and wing dimensions are 
shown in figure 2 and in tables I and II . As may be seen in these 
figures, a reflection plane was attached to the inboard end of the wing 
at the longitudinal plane of symmetry. All structure exposed to the 
air stream below this plane was isolated from the force measuring systemj 
that is, only forces and moments on the ducted fan, wing, and reflection 
plane were recorded . 
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Fan and Inlet Guide Vanes 

The eight-bladed fan had a fixed blade pitch and was tested at blade 
angles of 150 and 23 0 measured at the tip . The blades were of solid 
glass fiber construction . The clearance between the fan tip and the duct 
was approximately 0 . 030 inch. Blade plan- form curves ar e shown in fi g­
ure 3 j other pertinent dimensions ar e shown in table I . 

The model was t est ed with seven inlet guide vane s positioned 
radially. These vanes were set at 00 incidence with r espect to the duct 
axis . Pertinent characteristics and dimensions of the vane s are shown 
in table I . 

Stators 

Nine stators were used in the duct aft of the fan to r emove rotation 
from the exit flow . Eight of the stators had 6- inch- chord NACA 0008 . 4 air­
foil shapes superposed on an NACA a = 0 .4 mean line . The ninth vane, 
which housed the fan drive shaft, had a 9- inch- chord NACA 0017 airfoil 
shape on the same mean line . Other characteristics of the stators are 
given in table I . 

Fan Drive System 

The fan was driven by a 1000-horsepower electric motor through a 
shaft within the wing . The motor speed could be continuously varied 
from 0 to 6600 r evolutions per minute . Power input to the mot or was 
r ecorded on a polyphase wattmeter . These r eadings were corrected for 
motor efficiency . 

Instrumentation 

Forces and moments on the ducted fan and wing 
measured on the wind- tunnel six- component balance . 
duct trunnion support tube me'asured the ducted fan 
and pitching moment . 

combination were 
Strain gages on the 

thrust , normal fo r ce, 
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TESTS 

The wing was tested with the ducted fan removed and the end of the 
wing sealed . These tests consisted in varying the wing angle of attack 
for several free - stream velocities . 

The remainder of the testing was conducted on the complete model 
and consisted in varying the duct angl e for various wing angles and 
advance ratios. 

REDUCTI ON OF DATA 

Duct Trunnion Strain-Gage Data 

The thrust gages were directly calibrated in pounds of force and 
required no corrections . The normal- force and pitching-moment gages 
were also calibrated in pounds and foot pounds, respectively, but it 
was necessary to correct these readings for torque reactions in the fan 
drive gear box . The torque reactions were computed from the power input 
data and were subtracted from the values indicated by the strain gages. 

Accuracy of Measuring Devices 

The various measuring devices used were accurate within the following 
limits . The values given include error limits involved in reading and 
reducing the data as well as the accuracy of the device itself. 

Duct angle ±O . 2° 

Lift flO lb 

Drag ±2 lb 

Pitching moment ±30 ft-lb 

Fan rotational speed ±O . 5 rps 

Shaft horsepower ±20 

Free- stream dynamic pressure ±O . 2 lb/sq :ft 
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RESULTS AND DISCUSSION 

Basic Aerodynamic Characteristics 

Ducted fan.- Two basic types of coefficients have been used to 
define the aerodynamic characteristics of the ducted fan . The first 
type is referred to the wind axis and is based on the free-stream 
dynamic pressure and the product of duct chord and duct exit diameter . 
The second type is referred to the duct thrust axis and is based on the 
fan rotational speed and fan diameter . The results of tests of the 
ducted fan at angles of attack from 00 to 900 defined by the first type 
of coefficient are shown in figure 4 and by the second type in figure 5 . 
These tests were all conducted with the wing in place at 00 angle of 
attack, and with a fan-blade angle of 150 at the tip. 

The propulsive performance and static efficiency were determined 
for the ducted fan operating at 00 inclination to the air stream for 
fan-blade angles of 150 and 23 0 • The thrust coefficient, power coeffi­
cient, and propulsive efficiency are shown as functions of advance ratio 
in figure 6. The static performance is defined in figure 7 by the thrust 
to horsepower ratio and the fan tip speed which are shown as functions 
of the disc loading. The maximum propulsive efficiency shown in figure 6 
is about 62 percent whereas the data of r eference 5 indicate that maxi ­
mum efficiencies in excess of 80 percent could reasonably be expected 
with proper design . Similarly, the maximum1 figure of merit, determined 
from figure 7 by means of the expression 

. thrust3j2 
figure of merlt = 4 

SHP 7 . 5de 

(about 74 percent at a blade angle of 23 0
) , was less than the value of 

about 80 percent obtained from the data of reference 5 . 

Wing and ducted fan.- The aerodynamic characteristics of the wing 
alone are shown in figure 8 and the characteristics of the wing and 
ducted fan together, in figure 9. These coefficients are based on the 
free - stream dynamic pressure and the wing geometry and are referred to 
the wind axis , with advance ratiO and wing angle as the independent 
parameters . 

Stall Boundary for Upstream Duct Lip 

The results of figures 4(b)) 5(b)) and 9 (b) indicate that at large 
duct angles of attack, the pitching-moment coefficients reached a maximum 
value and then decreased . In addition , the normal- force coefficient 
lFigure of merit did not vary with disc loading for the range examined . 
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versus power coefficient) results of figure 5 (b), indicates that a sharp 

increase in power coefficient also occurred at these same conditions. 

Tuft studies showed that these characteristics were caused by stalling 

of the inside of the upstream duct lip. In addition, this lip stall was 

accompanied by a sudden increase in the noise level) which suggested an 

asymmetric loading on the fan . The onset of this stall was considered 

to have begun when the rate of change of the pitching-moment coefficient 

with respect to the duct angle of attack dCmld~d began to decrease 

rapidly, as indicated in figures 4(b) and 5(b) by small crosses on the 

pitching-moment coefficient curves . 2 From these results, figure 10(a) 

was developed which shows the duct angle of attack at which the duct lip 

stall occurred as a function of the advance ratio. 

To evaluate the significance of this lip stall boundary, the duct 

angle and advance ratio requirements of the vehicle of reference 1 for 

low- speed) level, unaccelerated flight were determined from figure 9(a).3 

The advance ratio was then used to determine the duct-lip stall boundary 

from figure 10(a). The results are shown in figure 10(b) where the duct­

lip stall boundary and the variation of the duct angle required for level, 

unaccelerated flight are compared . These results indicate that at 00 wing 

angle of attack there is always a duct angle of attack margin of at 

least 80
• 

Vertical Velocity Limitation 

The vertical velocity which can be attained by a vehicle employing 

wing- tip- mounted ducted fans can be limited by duct lip stall, wing 

stall, or power. Only the limitations due to duct lip stall will be 

considered here . To gain some insight into the effects of duct lip 

stall on the vertical velocity) curves of constant vertical velocity for 

the vehicle of reference 1 in unaccelerated flight were superimposed 

upon the faired CL vs, CD curves of figures 9 as illustrated for 00 wing 

angle of attack in figure ll(a) . Negative vertical velocity represents 

descending flight and positive velocity represents climb. The indicated 

lip stall boundaries have been taken from figure 10(a). It is apparent 

from this figure that duct lip stall would limit the maximum descent 

velocity but not the climb velOCity . The descent boundary curves are 

shown in figure ll(b) , where descent velocity is presented as a function 

of horizontal velocity for wing angles of attack of 00
, 40

, 80
) and 120. 

2Most of the curves stopped at) or slightly past, the onset of lip 

stall because there was no means of monitoring the fan -blade stresses and, 

hence, of knowing the magnitude of the fan-blade stresses due to the 

suspected asymmetric fan loading . 
3The physical conditions assumed were a semispan lift of 1550 pounds 

and a semispan drag of 0 . 96 times the dynamic pressure in psf. 

---------------
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These results indicate that for 00 wing angle of attack) allowable 
descent velocities) without encountering l i p st all ) ranged f rom about 
370 fpm for a horizont al velocity of 30 knots to about 2100 fpm 
for 75 knots . Increasing the wing angle of attack increased the allow­
able descent rates since for a given descent rate) the wing lift and 
drag made it possible to operate the duct at a lower angle of attack . 
It should be noted that any device that would increase the wing effec­
tiveness ) such as a trailing- edge flap or leading- edge droop ) would 
also increase the allowable descent rates ( see ref . 2) . 

Effect of the Wing on Power Required During Transition 

To evaluate this effect the power required for transiti on from 
hover to 80 knots for the vehicle of reference 1 was examined for various 
wing attitudes, The results are shown in figure 12) where the shaft 
horsepower is presented as a function of the forwar d velocity for wing 
angles of attack of 00

) 40 ) 80 ) and 120 . The power required for the 
ducted fan alone is presented also , From this figure it is evident that 
less power was required when the wing angle of attack was increased ) as 
was shown in r eference 3. However) it must be noted that the rate of 
decrease is less for wing angles greater than 40

) probably because of 
the occurrence of local separation on the wing at the wing- duct juncture) 
as was indicated in reference 2 . 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field) Calif . ) Feb . 1) 1962 
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TABLE I. - BASIC DD1ENSIONS OF DUCTED FAN AND WING 

Duct 
Inside diameter, ft 
Outside diameter 
Chord • • •.• 
Exit diameter • 
Diffuser angle, deg 

Inlet guide vanes 
Chord, in . 
Number of vanes • 
Airfoil section • • • 
Position of vane c/4, 

. . . 
4 

4 ft 10 . 5 in. 
2 ft 9 in . 

4 ft 6 .3 in. 
11 

3 
•• 7 

NACA 65A010 

percent of duct chord 
Twist, deg . . . . . . . 12.1 

o 
Fan 

Plan-form curves • . • • 
Number of blades 
Hub to tip diameter ratio 
Position of hub center line, 

. . . . 

percent of duct chord • •. • • • • 
Design static thrust disc loading, psf •••• 
Design static power disc loading, HP/ft2 

Blade angle control • • • • • 
Blade angle at tip, deg • • ••• 

Stators 
Number of stators • 
Position of stator c/4) 

percent of duct chord • . • • • • . • • • • 

( see fig . 3) 
8 

0 . 333 

29 . 3 
150 

• • • •• 7.96 
fixed pitch 

15 and 23 

9 

Twist, center body to tip, deg .•••••••••• 
49 . 4 

• •• 15 
( see text) Airfoil shape • • • • • • . • • • • • • • • 

Wing 
Airfoil section • 

2 Area) ft ••• 
Semi span , ft 
Mean aerodynamic chord, ft 
Taper ratio • . • • • • . . . . 

NACA 2418 
48 
8 

6 . 09 
0 . 675 
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TABLE II. - SHROUD AND CENTERBODY COORDINATES 

Shroud coordinates t abulated in Centerbody coordinat es tabulated in 
percent of shroud chord (33 .00 in.) percent of centerbody length (71. 5 in.) 

Chordwise Outside Inside 
length} X radius} ro radius} T1 

0 81. 5 81. 5 
.5 83 . 4 79 . 6 
.75 83 .8 79 .0 

1. 25 84 . 4 78 . 4 
2.5 85 .4 77 .2 
5.0 86.4 75 .8 
7.5 87 .1 74 .9 

10 .0 87 .6 74. 2 
15 .0 88 .2 73 .3 
20 .0 88 .6 72 .9 
25 . 0 88 .6 72. 7 
30 .0 88 .6 72 .7 
35 .0 88 .6 72 .7 
40 ,0 88 , 6 72 .7 
45 .0 88 .6 72.7 
50 .0 88 .6 72 .7 
55 .0 88 . 6 73 .2 
60.0 88 .6 74.1 
65.0 88.0 75 .1 
70 .0 87 . 4 76.1 
75 .0 86.8 77 .1 
80 .0 85 .9 78 .1 
85 .0 85 . 2 79 .1 
90 .0 84. 3 80 .1 
95 .0 83 .3 81.1 

100.0 82 . 2 82 .0 
1Shroud l eading- edge position. 
2Inlet guide vane cf 4 line position. 
3Shroud tra iling- edge position. 

Length) X Radius ) r 

0 0 
. 5 2.07 

1. 25 3.20 
2. 50 4.46 
5.0 6.17 
7.5 7.40 

10 .0 8.31 
15.0 9. 68 
20 .0 10.54 
25 . 0 11.01 
25 .8751 11.06 
30 .0 11.19 
32. 572 11.19 
40.0 11.19 
50 .0 11.19 
60.0 11.19 
70,0 10.49 
72 .053 10.14 
80.0 7.97 
83 . 20 6.77 
90 .0 4.03 
95 .0 2.01 

100,0 0 
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Figure 1.- Ducted fan model mounted in the Ames 40- by 80- Foot 
Wind Tunnel. 

_J 



r 

6'8" 

8' 

~33"1 
l6.29"~ r-I 

Wing £ line 

End plate 

Base fairing 
NAeA 0036 I-

Figure 2.- Basic model dimensions. 
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Figure 4.- Aerodynamic characteristics of the ducted fan with the coefficients based on duct 
geometry and free- stream dynamic pre s sure f or several advance ratios j ~ = 15°, aw = 0° . 
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