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SUMMARY 

The response of a launch vehicle t o  a number of detailed wind pro- 
f i l e s  has been determined. 
techniques which are  br ief ly  described. 
an angle-of-attack sensor i n  conjunction with guidance data t o  measure 
the wind prof i le  traversed by some particular launch vehicle. The other 
wind-measuring technique i s  a photographic triangulation method, whereby 
two cameras take simultaneous pictures of a ve r t i ca l  t r a i l  of smoke left  
by a launch vehicle o r  sounding rocket. The response of a vehicle flying 
these detailed prof i les  i s  compared with the response of the same vehi- 
c le  flying through balloon-measured profiles. The response t o  the 
detailed wind profiles,  re la t ive t o  the balloon-measured profiles,  i s  
characterized by the large excitation of the r ig id  pi tch and e l a s t i c  
bending modes. 
c le  structure. Established design c r i te r ia  which u t i l i z e  balloon- 
measured wind prof i les  have a rb i t ra r i ly  accounted-for t h i s  increased 
load by adding a load due t o  some type of discrete gust. 

The wind prof i les  were measured by two 
One of these techniques uses 

T h i s  i s  found t o  cause higher loads on the launch vehi- 

. 
INTRODeTCTION 

. 

The wind and gust c r i t e r i a  for  determining design loads on launch 
vehicles, and the analytical  methods by which these c r i t e r i a  are  applied, 
re f lec t  the  characterist ics of available wind and gust data. The wind 
data have been obtained primarily from balloon soundings which detect 
only the  gross motion of the atmosphere and f i l t e r  out the small-scale 
fluctuations a s  indicated i n  figure 1. 
based on such wind data are the synthetic wind profi.les of references 1 
through 4 and the measured prof i les  in references 3 and 5. Most of the 
gust data which have been available were fo r  ve r t i ca l  gusts (or  turbulence) 
measured by a horizontally flying airplane, references 6, 7, and 8, also 
indicated i n  the figure. 
and c r i t e r i a  based on ver t ica l  gust data for  application t o  horizontally 
flying vehicles (airplanes) have been adapted t o  ver t ical ly  flying vehi- 
cles. 
able coefficient analysis with the wLnd prof i le  as a forcing function 

Examples of design c r i t e r i a  

The gust velocities have been assumed isotropic 

Vehicle loads are  usually predicted u t i l i z ing  a rigid-body vari-  
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and an elastic-body fixed coefficient analysis with the gust as a forcing 
function. 
two sources - winds and gusts. 
analytical techniques are w e l l  known, but improvements have awaited the 
avai labi l i ty  of bet ter  wind and gust data. 

Total design loads are then found by combining loads from the 
The shortcomings of these c r i t e r i a  and 

Recently, wind and gust data of an improved nature have begun t o  
become available. These data have been obtained by techniques which 
do not f i l t e r  out the small-scale fluctuations of the wind and allow 
the wind and horizontal gust prof i le  t o  be obtained simultaneously, 
references 9, 10, and 11. 
fo r  design c r i t e r i a  u t i l i z ing  them t o  have been established, the analy-b- 
i c a l  techniques for  predicting wind and gust loads must be reconsidered 
i n  v i e w  o f  the  improved data. 

While these data a re  too new and too meager 

In  t h i s  paper a br ief  discussion of two of t he  methods f o r  obtaining 
detailed wind profi le  data w i l l  be given. 
methods w i l l  then be used t o  predict the  loads and responses of a solid- 
propellant launch vehicle. The loads a re  determined using a program 
which accounts for  the e l a s t i c i ty  of the  booster as well as  the varying 
coefficients of the different equations. Comparisons a re  made with the 
loads which would have been predicted i f  t he  wind had been measured by 
a sounding balloon. 

Wind data obtained by these 
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bending moment, lb-in. 

bending moment induced by a detailed wind prof i le ,  lb-in. 

l i m i t  bending moment, lb-in. 

bending moment induced by a balloon-type wind prof i le ,  lb-in. 
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wind velocity, f't/sec 

t ranslat ion normal t o  a reference trajectory,  in.  

angle of attack, radians 

f light-path angle, radians 

a t t i tude  angle, radians 
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Gusts and winds for  application t o  ver t ica l ly  r i s ing  launch vehi- 
c les  are differentiated only by their  wavelengths. 
has been made primarily because of t h e  form of available data. If data 
were available which described the motion of t he  atmosphere with enough 
detai l ,  so that both the long and shor t  wavelength variations were 
included, the wind and gust design cr i te r ia  could be combined. Such 
d.a,ta are also needed for  the analysis of par t icular  missile flights, 
e i ther  for  evaluation of design c r i te r ia ,  for  comparison of measured 
and calculated loads, or for  failure investigations. In  recent years, 
such data have begun t o  be collected by a number of methods. Two such 
techniques will be br ie f ly  described and examples of the data presented. 

T h i s  dist inction 

Angle-of -Attack Vane Method 

The a-vane method, described i n  considerable detail i n  reference 9, 
makes use of sensor equipment carried routinely on many launch vehicles 
fo r  guidance and control functions. 
i s  shown i n  figure 2, following reference 9, f o r  the pi tch plane only. 
Similar measurements i n  the yaw plane w i l l  determine the other component 
of wind. An init ial  assumption i s  made tha t  the wind velocity Vw i s  
horizontal. (As i l l u s t r a t ed  here, the wind i s  a headwind.) The vehi- 
c le ' s  i n e r t i a l  velocity V i ,  i t s  flight-path angle 
angle 
An angle-of-attack sensor measures the angle 
axis  and the free-stream velocity. T h i s  sensor i s  carried as par t  of 
the guidance and control equipment on some vehicles, or it may be added 
fo r  th i s  specific purpose. These measurements provide enough information 
t o  determine the wind velocity i n  whatever time or  a l t i tude  increments 
are required, provided the data are  continuous. Since winds measured 
by t h i s  technique are exactly those experienced by the flight vehicle, 
these data are especially usef'ul for loads analysis of the par t icular  

A sketch of the measuring scheme 

7 ,  and i t s  a t t i tude  
8 are the  quantit ies measured normally fo r  guidance and control. 

a, between the vehicle 

f l igh t .  

An example of data obtained by this method i s  presented i n  fig- 
ure 3. 
from M r .  W. W. Vaughan of Marshall Space Flight Center. 
the wind prof i le  as measured by a radiosonde balloon released about 
30 minutes a f t e r  the vehicle launch i s  also given. 
altitude portions of the east-west components a re  presented, since these 
produce the principal loadings on a vehicle. 
wavelength variations i n  the a-vane wind prof i le  which do not appear i n  
the radiosonde balloon-measured profile ( for  example, a t  25,000 feet  
altitude). It should be noted that  the primary function of the instru- 
mentation used t o  obtain t h i s  a-vane wind data was guidance and control 

These data, similar t o  those of reference 9, were obtained 
For comparison, 

Only the lower 

T h i s  figure shows the short 
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and the  wind h t a  were obtained only as a byproduct. 
have been reduced t o  give a wind velocity i n  1/2-second intervals  of 
f l i gh t  t i m e .  Since the f l i gh t  velocity increases with al t i tude,  the 
spread of a l t i tude  between velocity measurements a lso increases with 
al t i tude in t h i s  case. 
these wind data points could be obtained i n  whatever increment i s  
desired. 

The a-vane data 

However, i f  the data ex is t  i n  continuous form, 

The particular advantage of the a-vane technique of wind measure- 
ment i s  that an instantaneous and continuous record of winds experienced 
by a particular missile i s  available. 
measuring scheme would be employed whenever d i rec t  measurements of launch 
vehicle loads a re  attempted. 
the accuracy and high-frequency response required of the instrumentation, 
particularly the  angle-of-attack sensor. 
a very costly measurement scheme, usable f o r  monitoring specific flights 
but not particularly a t t rac t ive  a s  a routine wind data collection system. 

It would seem that t h i s  wind- 

The main disadvantage of t h i s  technique i s  

These requirements resul t  i n  

Smoke-Trail Method 
,. 

The second technique of measuring detailed winds, the smoke-trail 
method, has been described i n  references 10 and 11. 
of the measurement setup i s  shown i n  figure 4. 
photographic method of deducing wind veloci t ies  by triangulation from 
two cameras taking photographs of a vis ible  t r a i l  of smoke le f t  by an 
ascending rocket. The smoke may be the visible exhaust t ra i l  l e f t  by 
some rockets, o r  may be a r t i f i c i a l l y  generated by chemical releases 
in to  the airstream. The individual par t ic les  of smoke reach equilibrium 
with the atmosphere within seconds after the  passage of the rocket. Two 
cameras, located about ten miles from the launch s i t e ,  take synchronized 
pictures of the t r a i l  i n  known time increments. Triangulation i s  then 
used on a set of these photographs t o  determine the position of points 
along the smoke t r a i l ,  usually i n  100-foot-altitude increments though 
smaller Increments a re  possible. 
sequential s e t s  of pictures and the time interval  between the pictures, 
the wind-velocity prof i le  is found. 
about 2 minutes a f t e r  the  rocket i s  launched. 

A schematic diagram 
It i s  an optical- 

b 

Then, using position data from two 

All the data are obtained within 

A n  example of the dsta obtained by the  smoke-trail method from 
reference 10 is  presented i n  figure 5. 
particular day were low, less than 100 ft /sec,  but a measurement of 
velocity W ~ B  obtained f o r  each 100-foot change i n  altitude. 
wavelength variations i n  wind velocity, or  horizontal gusts, are very 
apparent. 

The winds measured on t h i s  

The short 

For comparison, an averaged smoke-trail p rof i le  i s  presented i n  
figure 5 also. This is  smoke-trail data which have been averaged over 
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2,000-foot-altitude increments, the same a l t i tude  increment used i n  
reducing balloon data. T h i s  p rof i le  is similar t o  the one which would 
have been measured by a balloon if  it were capable of sensing the wind 
over the ent i re  a l t i tude  range i n  the same t i m e  as  the smoke t r a i l .  
short wavelength wind variations have been f i l t e r e d  out, although the 
gross wind motion remains. 

The 

T h i s  method of measuring detailed wind prof i les  has several advan- 
tages. F i r s t  of a l l ,  since it uses precision photographic equipment, 
it is  very accurate. 
f o r  a typical  setup, i s  less than 1/2 f t / sec  over the a l t i tude  range 
of interest . )  
tude increments of l e s s  than 100 feet, gust Kavelengths of importance 
t o  a l l  vehicles i n  the foreseeable future can be obtained. 
can be used t o  measure winds acting on a par t icular  launch vehicle by 
equipping the vehicle with a small smoke generator. 
for  use with a re la t ively inexpensive sounding-rocket system for  col- 
lect ing routine wind data. 

(An estimate of rms error  appears i n  ref. 8, and 

Since horizontal wind veloci t ies  can be measured i n  al t i-  

The technique 

It i s  also suited 

The principal disadvantage of the smoke-trail method i s  i t s  current 
res t r ic t ion  t o  use on clear days with good v i s i b i l i t y  conditions. 
ever, high j e t  stream winds are  not dependent on v i s i b i l i t y  conditions 
near the  ground so that the probability of measuring high winds on a 
clear day i s  just as good as on a cloudy d ~ y .  
peak wind speeds of 300 f't/sec have been measured by the method. 

How- 

In  fact ,  prof i les  having 

ANALYSIS 

The response of a launch vehicle t o  some of the wind prof i les  j u s t  
discussed has been determined using equations and a d ig i t a l  computer 
program developed by Mr. V. L . Alley of Langley Research Center. 
equations are derived for  small perturbations i n  the pitch plane about 
a zero- l i f t  reference trajectory as indicated i n  figure 6 .  The degrees 
of f'reedom included i n  the equations are t ranslat ion normal t o  the ref-  
erence trajectory,  pitching, and three e l a s t i c  bending modes. 
f i c i en t s  of these equations vary with time due t o  changing mass and aero- 
dynamic properties. 
system, including s t ructural  feedback and a s tabi l iz ing f i l t e r  network, 
i s  a l so  represented by the equations. 

The 

The coef- 

A closed-loop at t i tude and att i tude-rate control 

The wind responses t o  be shown are  those of a Scout four-stage, 
It has both thrust vector and aerodynamic solid-propellant vehicle. 

control obtained by u t i l i z ing  jet vanes and movable f i n  t ips .  
bending frequency of the vehicle i s  about 3 cps. The Scout l i f ts  off 
under about 3 g  acceleration and the  maximum dynamic pressure i s  about 

The first 

3,000 PSf. 
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RESUU'S OF WIND RESPONSE STUDIES 

The Scout vehicle has been analytically flown through eight detailed 
Four prof i les  were obtained by the a-vane method and four 

The vehicle was also flown through a balloon- 
wind profiles. 
by the smoke-trail method. 
measuredprofile or  a smoothed prof i le  i n  each case. 

a-Vane Measured Profi les  

Response time histories.-  Typical time his tor ies  of vehicle response 
t o  the detailed, a-vane measured prof i le  previously i l l u s t r a t ed  are  shown 
i n  figure 7. 
f'unction of t i m e .  
a l t i tude  to  a time base using the reference t ra jectory fo r  this partic- 
ular launching. 
versus time, connected by straight l ines  between the points. 
portion of the  fUght  i l lus t ra ted ,  the winds never exceed about 70 ft /sec.  
The middle curve i s  the pi tch angle perturbation of the complete vehicle. 
Lightly damped low-frequency osci l la t ions of the rigid-body s t ab i l i t y  
mode a t  about 1 cps are  excited by the  wind and are very apparent. The 
bottom curve is  the rotation angle of the je t  vanes and the aerodynamic 
f i n  t i p  controls. A control angle with the same sign as the pitch angle 
produces a restoring moment on the vehicle. The low-frequency s t ab i l i t y  
mode frequency a t  1 cps i s  also predominant i n  the control angle. 
ever, oscil lations a t  about 3 cps, corresponding t o  the  first e l a s t i c  
bending mode, show tha t  the detailed wind prof i le  i s  exciting the struc- 
tural modes of the vehicle and i s  being sensed by the control system via  
the mechanism of s t ructural  feedback. 

On the upper curve the input wind velocity i s  shown a s  a 
T h i s  measured prof i le  has been converted from an 

The wind input t o  the program i s  a ser ies  of points 
For the 

How- 

The loads experienced by the vehicle a re  i l l u s t r a t ed  by the t i m e  
his tor ies  i n  figure 8. 
wind profiles - at the  bottom i s  the response t o  the same a-vane prof i le  
used. i n  the previous figure, and a t  t he  top i s  the response t o  a radio- 
sonde balloon prof i le  measured a t  approximately the same time. The 
bending moment shown here, and i n  subsequent figures, i s  at  an in te r -  
stage station on the vehicle near the location of maximum bending mament. 
It i s  recognized tha t  the exact nature of the bending-moment response 
will vary with vehicle station, due t o  the  influence of the various 
bending modes. However, only t h i s  one s ta t ion w i l l  be examined i n  order 
t o  simplify the comparisons t o  be made. 
bending-moment response i s  very apparent. 
caused a considerable increase i n  first-mode excitation, compared t o  
the balloon prof i le ,  but it has also considerably increased the response 
of the low-damped s t ab i l i t y  mode near 1 cps. If an envelope of the maxi- 
mum bending moments were drawn about these responses, as indicated on the  

The bending-moment response i s  shown for  two 

The osci l la tory nature of the 
The detailed prof i le  has 
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figure, the load levels  due t o  the detailed p ro f i l e  would be generally 
higher than the  load levels  due t o  the balloon-measured prof i le .  

Bending-moment envelope.- The bending-moment envelopes f o r  the  
responses just i l l u s t r a t e d  are shown i n  f igure 9. The bending moments 
have been normalized by the l i m i t  bending moment at  the  same s ta t ion  
and are plot ted over the  a l t i t ude  range from launch t o  about 50,OOO fee t .  
One curve i s  shown f o r  the detailed u-vane measured prof i le ,  another f o r  
the radiosonde measured prof i le .  For most a l t i tudes ,  the  detailed pro- 
f i l e  produces larger  loads. The mximum moment induced on the s t ructure  
by the radiosonde prof i le  occurs i n  the 25,000- t o  30,000-foot-altitude 
range and equals the  detailed prof i le  moments i n  t h i s  region. However, 
the a-vane p ro f i l e  produces greater loads a t  other a l t i tudes .  Its maxi- 
mum occurs between 30,000- and 35,000-foot a l t i t ude  arid i s  about 15 per- 
cent greater than the  maximum moment produced by the radiosonde prof i le .  
Most of this increase i n  bending moment comes from the excitation of 
the e l a s t i c  modes by the detai led profile. 
tudes, it has been shown that the detailed p ro f i l e  a l so  excites the  
lightly damped pitching mode of t h i s  vehicle which increases the load. 
The bending moments which r e su l t  from f ly ing  these p ro f i l e s  never exceed 
about 37 percent of l i m i t  load, ref lect ing the f a c t  that  these a re  
re la t ive ly  low winds with a peak velocity of about 115 f t /sec.  

However, a t  the lower a l t i -  

Effect of direction.- All of the wind prof i les  have been flown as 
headwinds. One prof i le ,  the a-vane measured wind used i n  the previous 
i l l u s t r a t ions ,  was a lso  flown as  a tailwind and the r e su l t  i s  shown i n  
figure 10. The envelope of the ra t io  of bending moment t o  l i m i t  bending 
moment i s  shown for  a l t i tudes  up t o  about 50,900 f ee t  a l t i t ude  fo r  the 
p ro f i l e  flown both a s  a headwind and as  a tai1win-d. 
f ly ing  a p i tch  prograa such that it i s  inclined about 35 degrees from 
the ve r t i ca l  i n  the maximum dynamic-pressure region near 35,000 feet 
a l t i tude .  
tailwinds. 
ment with the  larger  wind angle of attack. 
about 5 percent lower i n  the maximum q 
flown as a tailwind. 
nearly ver t ica l ,  only very small differences are detectable. 

The vehicle i s  

Thus, headwinds induce slightly larger  angles of a t tack  than 
Headwinds are shown t o  produce the largest  loads, i n  agree- 

Bending moments a re  actual ly  
region when the  prof i le  i s  

A t  lower a l t i tudes,  where the vehicle i s  f ly ing  

Smoke -Trai  1 Measured Prof i les  

Bending-mcanent responses similar t o  those ju s t  discussed f o r  a-vane 
p ro f i l e s  are found f o r  wind profiles determined by the smoke-trail method. 
A typ ica l  example of response t o  a smoke-trail p rof i le  (not the p ro f i l e  
i l l u s t r a t e d  i n  fig. 5 )  i s  given i n  figure 11. 
of bending moment t o  l i m i t  bendingmoment a t  the  same s ta t ion  is  given 
as a function of a l t i tude.  

The envelope of the  r a t i o  

Envelopes a re  given f o r  loads resul t ing 
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from both smoke-trail and averaged smoke-trail data. These data a re  
f o r  a case with a large wind shear i n  the maximum dynamic-pressure 
region with very ;Litt le gustiness imposed on the shear. 
tudes, the smoke-trail data show considerable short wavelength var ia t ion 
i n  wind velocity. 
the  increase i n  detai led p ro f i l e  loads, compared t o  the  smoothed prof i le  
loads, a t  lower a l t i t udes  and only a slight increase, about 5 percent, 
i n  the  peak wind region. Notice tha t  the maximum bending moment i s  only 
about 30 peacent of the l i m i t  load. 
peak wind veloci t ies  of about 115 f t /sec.  

A t  lower a l t i -  

T h i s  i s  ref lected i n  the bending-moment envelopes by 

a 

Again, this r e su l t s  from the low 

Bending-Moment Amplification by Detailed Prof i les  

The bending-moment envelopes jus t  discussed have shown tha t  the  

The actual  amplification of the  bending moment a t  various 
detailed prof i les  generally produce higher loads than the  balloon-type 
profiles.  
a l t i tudes i s  i l l u s t r a t e d  i n  figure I 2  fo r  three wind measurements. 
bending-moment envelope of the detai led p ro f i l e  has been divided by 
the envelope of bending moment f o r  the smoothed prof i le ,  such tha t ,  a t  
any al t i tude,  the ordinate gives the  increase i n  load produced by the 
detailed prof i le .  A l l  three prof i les  had peak wind ve loc i t ies  of about 
115 ft /sec such that maximum steady wind loads would be comparable. 
The amplification by the  detai led prof i les  a t  various a l t i tudes  i s  seen 
t o  vary dras t ica l ly  with the  par t icu lar  case, i l l u s t r a t i n g  the dependence 
of the  load on the de ta i l s  of the prof i le .  
t i o n  of the load depend on t he  de t a i l s  of the par t icu lar  prof i le ,  but 
it also depends on the character is t ics  of the par t icu lar  vehicle being 
considered. 
velocity which occur between the  time of the detai led and the balloon 
measurements. ) 
endanger this vehicle, since it has been dssigned fo r  a much higher 
peak wind with an added margin f o r  gusts. 
amplifications occur i n  the low- or high-altitude regions, where dynamic 
pressure i s  reduced, so that t o t a l  loads are within design limits. 

The 

Not only does the amplifica- 

( I n  addition, t h i s  factor  w i l l  r e f l ec t  any changes i n  wind 

The large amplifications shown here do not necessarily 

Also, some of the largest  

The increase i n  bending moments which resu l t s  from using the  
de t a i l edpro f i l e s  instead of the  smoothed o r  averaged prof i les  can be 
generally credited t o  the short wavelength fluctuations,  or "gustiness ," 
of the  detailed prof i les .  
do not necessarily occur a t  the same t i m e .  Thus, it can be argued t h a t ,  
since most of the detai led wind prof i les  have been measured on re la t ive ly  
low wind days, the  amplification of bending moment by the  detailed f luc-  
tuations of these prof i les  may exaggerate the effect  t o  be expected on 
high wind days. Figure 13 i s  an attempt t o  es tabl ish the trend of the 
bending-moment amplification as the peak wind velocity increases. The 
r a t i o  of the maximum bending moment resul t ing from the  detai led prof i les  
t o  the  maximum bending moment resul t ing from the smoothed prof i les  i s  

However, high gross winds and large gusts 
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plo t ted  against the  peak wind velocity of the  detai led prof i le .  
bending moments presented a re  those which occur i n  the  maximum dynamic- 
pressure portion of the launch trajectory. The c i r c l e s  indicate p ro f i l e s  
obtained by the smoke-trail method and the  squares indicate prof i les  
measured by the  a-vane method. 
points, but a t rend does appear t o  be indicated. 
occur a t  low peak wind veloci t ies ,  w h i l e  continually decreasing amplifica- 
t ions  occur as the peak wind velocity increases. 
here is p a r t i a l l y  due t o  the d i f f icu l ty  of obtaining radiosonde balloon 
data a t  the  same time as the  detailed p ro f i l e  measurement. 
u tes  t o  5 hours t i m e  difference exists i n  these soundings, providing 
t i m e  fo r  the wind prof i le  t o  have changed. 
s ca t t e r  i s  simply due t o  the dependence of the bending-moment response 
on the  de t a i l s  of the  par t icu lar  prof i le  and the par t icular  vehicle. 
For instance, t he  a-vane p ro f i l e  which produces amplifications greater 
than two f o r  a peak wind velocity of 117 f t / s ec  was a part icular ly  
"gusty" p ro f i l e .  However, this figure does seem t o  indicate tha t  
detai led wind prof i les  with very high peak winds w i l l  amplify the 
bending moments produced by the  smoothed prof i les  by only moderate 
amounts. 

The 

Considerable sca t te r  i s  evident i n  these 
Larger amplifications 

The sca t te r  evident 

From 30 min- 

O f  course, much of the 

Much additional data are needed. The variations i n  bending moment 
which result from response t o  the  various prof i les  indicate the  impor- 
tance of the character is t ics  of the  par t icular  prof i le .  Though con- 
siderably more experience with these prof i les ,  a s  applied t o  various 
vehicles, i s  needed, a possible design approach would be similar t o  
the one recommended i n  reference 5. It would be a brute force method 
by which samples of measured, detailed wind prof i les  (possibly 15, 50, 
o r  150 prof i les )  would be used t o  predict loads on a launch vehicle. 
Such a technique would require a massive computer program involving 
variable parameters and e l a s t i c  degrees of freedom, but it would not 
necessitate separate consideration of winds and gusts. A more sophis- 
t i ca t ed  approach would be the use of a s t a t i s t i c a l  method such a s  pro- 
posed i n  references 12 and 13. 

CONCLUDING RplARKs 

Detailed wlnd prof i les  obtained by two methods have been discussed. 
The two methods of measuring horizontal wind velocity as a f'unction of 
a l t i t ude ,  the  u-vane method and the  smoke-trail method, u t i l i z e  an angle- 
of-attack measuring device carr ied by a launch vehicle and a t r a i l  of 
smoke l e f t  by a sounding rocket, respectively, t o  sense the motion of 
the  atmosphere. A launch vehicle has been analyt ical ly  flown through 
a number of these detai led prof i les  as w e l l  as equivalent balloon- 
measured o r  smoothed prof i les ,  The detai led wind prof i les  were shown 
t o  exci te  the  p i tch  and e l a s t i c  bending modes of the vehicle and, as 
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b 
a result, t o  produce higher loads on the  vehicle structure than are 
produced by balloon-type wind profiles.  

load by adding a somewhat arbitrary gust load t o  the wind load. When 
more of the detailed wind prof i le  data are  available, revision of design 
procedures t o  include the detailed variations i n  the winds would seem 
t o  be indicated. 

Present design procedures 
(which are based on balloon-measured prof i les)  allow f o r  this increased .* 
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