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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-1376 

INFLUENCE OF TIRE TREAD PATTERN AND RUNWAY SURFACE 

CONDITION ON BRAKING FRICTION AND ROLLING 

RESISTANCE OF A MODERN AIRCRAFT TIRE 

By Walter B. Horne and Trafford J. W. Leland 

SUMMARY 

A series of taxiing tests was conducted at the Langley landing­
loads track with both braked and unbraked (freely rolling) single and 
tandem wheels equipped with 32x8 . 8 type VII aircraft tires of dif­
ferent tread designs to obtain data on tire and braking characteristics 
during operation on dry and on contaminated concrete and asphalt run­
ways. Contaminants used were water, slush, JP-4 jet fuel, and organic 
and detergent fire - extinguishing foams. Forward velocities for the 
tests ranged from approximately 13 to 104 knots . Vertical loads of 
approximately 9,000 to 22,000 pounds and tire inflation pressures of 
85 to 350 pounds per square inch were u sed . 

Results indicated that the unbraked tire rolling resistance 
increased with increasing forward velocity on dry and on contaminated 
runway surfaces. Peak tire-ground friction coefficients developed 
during wheel braking decreased rapidly with increasing velocity on 
contaminated runways but remained relatively unchanged on dry runways 
as the forward velocity was increased. Dry-runway friction coeffi­
cients were found to be relatively insensitive to tire tread pattern. 
However, the magnitude of the friction coefficients developed by tires 
on contaminated runways was extremely sensitive to the tire tread pat­
tern used, with circumferential-groove treads developing the highest 
values of friction coefficient, and smooth and dimple treads the lowest 
values for the tread patterns and runway conditions investigated. 

INTRODUCTION 

It has been recognized for many years that the presence of contam­
inating fluids such as slush, water, and oil on airport runways tends 
to impair landing and take-off performance of aircraft. Previous NASA 
work on tire performance under adverse runway conditions is reported in 
references 1 to 7. British work on this subject, in which a full-scaie 
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jet-fighter airplane was used} is reported in references 8 and 9. This 
degradation in performance due to contamination has been tolerated with 
propeller-type aircraft because only rarely are operations made unsafe 
by the presence of these contaminants. Operations of military jet air­
craft and of the recently introduced jet-powered commercial transport 
aircraft} on the other hand} have proved to be much more affected by run­
way contaminants than operations of the propeller-type aircraft. Several 
factors are responsible for the difference in the effect of contaminated 
runways on the ground performance of the two types of aircraft. The main 
factors are the higher landing and take-off velocities required of the 
jets} and their generally lower acceleration and deceleration character­
istics while on the ground. 

Operation on fluid-contaminated runways affects aircraft performance 
in several ways. First} the retardation forces developed by aircraft 
wheels when taking off from slush- or water-covered runways increase the 
take-off distance required by the airplane and under certain conditions 
would prevent the airplane from obtaining the required take-off velocity 
(ref. 2). Second} the high-velocity spray of slush or water originating 
from the airplane wheels can be damaging to the surfaces of the airplane 
that are under spray impingement. Third} under certain conditions of 
vertical load} tire-inflation pressure} and forward velocity} airplane 
tires on slush- or water-covered runways reach a condition called hydro­
planing during which the hydrodynamic lift force developed between the 
tire footprint and the fluid-covered runway surface equals or exceeds 
the vertical reaction of the airplane mass acting on the tire. During 
hydroplaning the tire loses contact with the runway surface and thus 
loses its directional stability and braking effectiveness. Fourth} at 
subhydroplaning velocities the friction coefficients developed between 
aircraft tires and the ground during braking on fluid-contaminated run­
ways are considerably reduced from values obtained on dry runways. 

Many investigations under various test conditions have been made of 
the effects of water or other runway contaminants on the performance of 
tires . In some of these investigations small tires were used} some of 
the investigations were confined to low speeds} and in some investiga­
tions in which full-scale airplanes were used} difficulty was experienced 
in maintaining test conditions constant. The presently described inves­
tigation extends the range of controlled tests to a higher speed and 
weight combination. This investigation under controlled conditions was 
performed at the Langley landing-loads track (track described in ref. 10) 
to determine the effect of forward velocity; type of runway surface; 
tire-tread material} pattern} and wear; and type of runway contaminant 
on the braked and unbraked rolling characteristics of aircraft tires on 
single and tandem wheels. Some of the preliminary experimental data 
obtained from this investigation were used in references 1 and 2 to 
demonstrate the degrading effects of runway slush and water on the take­
off and landing performance of several typical jet aircraft. 
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It is the purpose of this paper to describe the investigation in 
more detail than was done in references 1 and 2 so that the degradation 
of braking effectiveness on contaminated runway surfaces may be more 
fully understood. It will be demonstrated that tread designs or patterns 
used on tires have little effect on tire and braking performance on dry 
runways but have a very substantial effect on contaminated runways. 

F x,g,b 

Fx, g, f 

F x, g, r 

SYMBOIS 

gross footprint area of tire, sq in. 

net footprint area of tire, sq in. 

hydrodynamic lift coefficient (dimensionless) 

hydrodynamic drag coefficient (dimensionless) 

tire constant; 0.02 for type I tires and 0.03 for type III 
and VII tires (obtained from ref. 12) 

depth of contaminant on runway surface, in. 

instantaneous horizontal (drag) force at wheel axle, lb 

instantaneous horizontal (drag) force acting on tire at 
ground, Fx,g,r + Fx,g,b + Fx,g,f' lb 

braking drag (portion of Fx,g 

to roll at values of sl > 0 

other means), lb 

contributed by forcing tire 

either by wheel braking or by 

fluid-displacement drag (portion of Fx,g contributed by 

horizontal component of hydrodynamic force due to runway 
contaminant), lb 

rolling resistance (drag forces developed on unbraked wheel 
due to tire hysteresis and inertia effects), lb 

instantaneous vertical force at wheel axle, lb 

instantaneous vertical force acting on tire at ground, lb 
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p 

Pn 

T 

t 

w 

x 

4 

vertical component of hydrodynamic force due to runway con­
taminant, lb 

moment of inertia of rotating wheel and tire parts, slug-ft 2 

unloaded tire inflation pressure, lb/sq in . 

hydraulic-fluid pressure acting on wheel brake, lb/sq in . 

back pressure in return line of brake system, lb / sq in . 

average gross footprint pressure, FZ,g/Ag, lb/sq in. 

average tire- ground bearing pressure, FZ,g/~' lb/sq in . 

rated tire inflation pressure (one - fourth tire bursting pres­
sure), lb/sq in. 

unloaded tire radius, in. 

slip ratio (dimensionless) 

net spin-up or spin- down torque acting on wheel, lb- in . 

instantaneous retarding t orque deve loped on wheel by whee l 
brake, lb-in. 

time, sec 

carriage forward velocity, knots or ft / sec as noted 

tire hydroplaning velocity (occurs when Fz,g = Fz,L)' knots 
or ft/sec as noted 

unloaded maximum tire width, in. 

horizontal axle acceleration, ft/sec2 

instantaneous movement of vertical-load center of pressure, in. 

angular acceleration of wheel, radians/sec2 

vertical tire deflection, in. 
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Ilav 

Ilskid 

p 

instantaneous tire-ground friction coefficient, F k x, gr z, g 
(dimensionless) 

average value of 11 developed between slip ratios of 0.1 
and 0.5 

maximum value of 11 developed between slip ratios of 0 and 1 

value of 11 developed at slip ratio of 1 

mass density of runway contaminant, slugs/cu ft 

wheel angular velocity, radians/sec 

APPARATUS AND PROCEDURE 

The present investigation was carried out by making test runs at 
the Langley landing-loads track (track described in ref. 10). The main 
carriage (fig. 1) of this facility weighs approximately 100,000 pounds 
and travels at speeds up to 130 knots on steel rails which are located 
on each side of a 2,200-foot-long concrete runway. The investigation 
consisted of a series of braked and unbraked runs conducted at different 
forward velocities with a type VII tire at inflation pressures ranging 
from 85 to 350 pounds per square inch. The forward velocities varied 
from approximately 13 to 104 knots. The vertical load per tire varied 
from approximately 9,000 to 22,000 pounds. Runway surfaces investigated 
were concrete, smooth asphalt (sand finish), and rough asphalt (aggregate 
finish). Runway-surface contaminants investigated were water, slush, 
Jp-4 jet-engine fuel, and fire-extinguishing foam (both detergent and 
organic types). Both single and tandem wheel arrangements were inves­
tigated. 

TEST FIXTURE 

The tire under test was mounted on a main-landing-gear wheel from 
a century-series fighter airplane. This wheel was in turn mounted within 
an instrumented test fixture (fig. 2) suspended from the vertical drop 
carriage of the main carriage. Most of the tests were conducted with a 
single wheel. Some tests were made with the tandem arrangement shown in 
figure 3, where an unbraked wheel was added forward of the instrumented 
wheel contained in the test fixture. The fixture could be positioned to 
allow the tire to run 25 inches to either side of the track center line. 
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TI RES 

The tires used in the investigation were 32X8 . 8, 22 ply rating, 
type VII (extra high pressure ). Through the cooperation of several air­
craft tire manufacturers, a number of tires with different tread designs 
and tread materials were investigated . The tread designs for these tires, 
along with their footprints for a vertical- loading condition of 
Fz,g ~ 10,000 pounds and p = 260 lb / sq i n . , are shown in f i gure 4. 
Tire cross sections shown in figure 5 illustrate the two d i fferent tread 
materi als investigated, rubber and fabric- reinforced rubber . Several of 
the fabric - reinforced tires were provided with an extra thickness of rub­
ber at the t i re surface so that during test, braki ng woul d occur only on 
a rubber surface . A description of the t i res mentioned in this paper, 
the i r code designati ons, and some infl ated tire dimens ions are given in 
table I. Tires having the code des i gnation S were made espec i all y for 
thi s i nvesti gation, and in all cases were mol ded to fu l l tread depth but 
with no tread pattern . Before testing, the desired tread patterns were 
cut i nto the tire to a depth of approxi mately one- quarter of an inch by 
means of an electrical ly heated knife . 

WHEEL BRAKE 

The wheel brake used in this investigati on was the main-landing- gear 
di sk brake of a century- seri es jet fighter and cons i sted of an assembly 
of 5 rotor and 6 stator brake disks . The braki ng system f or most of the 
braki ng runs was equipped with an "on- off " type of automat i c braki ng 
device that dumped brake pr essure PB whenever t he wheel dece l eration 

dur ing braking exceeded 45 to 60 radians / sec2 . A recovery s i gnal was 
generated, recocking the automatic braking device, when, after brake 
re lease, the whee l angul ar ve l oc i ty became equal to the angul ar ve l ocity 
of an i nertia- type f l ywheel mounted i n the devi ce. Dur i ng the free - rol l 
or unbraked taxi i ng runs, the brake hydraul ic system was vented t o atmos ­
phere to mi ni mize brake torque . For most of the wheel- braki ng test runs , 
the brake system, with antiskid unit operating, was set up to represent 
a pil ot cont i nuous l y ridi ng brakes during the l andi ng ro l l . Thus , 20 to 
30 braking cycles occurred for a test run at l ow forward ve loc i ty and 
5 to 8 braki ng cycles for a run at h i gh forward velocity. A few whee l­
braki ng runs were made without automatic braki ng . For these runs, the 
brake was cycled once each run at specifi ed l ocat i ons on the track run­
way by means of a track- mounted knife edge whi ch actuated solenoid valves . 
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RUNWAY TROUGHS AND SURFACES 

A cross section of the test runway surfaces is shown in figure 6 . 
The concrete dikes located along the edges of both the asphalt and con­
crete runways formed troughs into which runway contaminants such as 
water, slush, foam, and JP-4 jet-engine fuel could be deposited to the 
desired depth. The concrete runway test surface shown at the right in 
figure 6 is similar to actual portland-cement concrete surfaces in cur­
rent use for airport runways. The asphalt runway shown at the left in 
figure 6 was rolled in two adjoining sections (fig. 7). The initial 
400-foot section had a smooth sand-finish surface, while the remaining 
portion of the asphalt runway had a rough aggregate surface. Photographs 
of the asphalt runway surfaces are shown in figure S. The sand particles 
used for the smooth asphalt would pass through a l!lO-inch sieve. The 
rough-asphalt aggregate conformed to a standard highway specification 
wherein 100 percent of the aggregate could pass through a I-inch sieve, 
95 to 100 percent through a 3/4-inch sieve, 60 to So percent through a 
3!S-inch sieve, 40 to 60 percent through a 1/4-inch sieve, 20 to 40 per­
cent through a 1/10-inch sieve, and 3 to 10 percent through aliSO-inch 
sieve. 

RUNWAY WETNESS 

The elevation characteristics of the concrete runway within the 
confines of the trough shown in figure 7 were such that with just the 
high spots of the runway showing through the water surface, the water 
depth in the trough varied between 0 and 0.3 inch. This degree of wet­
ness corresponds to conditions measured on an actual runway during a 
heavy rain shower. Figure 9 is a photograph of the concrete runway for 
this condition of wetness. 

The asphalt runway surfaces under similar wetness conditions (high 
spots showing through water surface) showed a variation in water depth 
of 0 to 0.5 inch. The larger variation in water depth for the asphalt 
runway surface is felt to be the result of the method used in rolling 
the asphalt during its installation on the track runway, and may be 
representative of actual runway surfaces . Most of the wheel-braking 
runs of this investigation were made with the wetness conditions just 
described (concrete, dl = 0 to 0.3 inch; asphalt, dl = 0 to 0.5 inch). 
For the unbraked rolling runs (performed on the concrete runway only), 
the water depth varied from 0.25 to 1.75 inches. 

----- - - --~-
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OTHER RUNWAY CONTAMINANTS 

Both braked and unbraked rolling runs were made on slush-covered 
runways with slush depths ranging from 0.5 to 2.0 inches. A detailed 
description of the slush, slush trough, and method of determining slush 
density is given in reference 1. 

One braked rolling run was performed on the asphalt runway after 
the surface had been covered with Jp-4 jet-engine fuel. For this run, 
a strip of the asphalt runway 1 to 2 feet wide and approximately 600 feet 
long was coated as uniformly as possible with 12 gallons of Jp-4 fuel. 
The fuel was allowed to stand on the runway for ~bout an hour, at which 
time most of the puddles of fuel had disappeared either by evaporation 
or penetration into the asphalt surface. The runway was then lightly 
sprayed with water to simulate the beginning of a rain shower, and the 
test run was made as soon as the entire surface was wetted. 

One braked rolling run was performed on the concrete runway after 
the surface had been covered with 2 to 5 inches of fire-extinguishing 
foam such as might be used to cover airport runways during emergency 
landing of airplanes. Two types of foam were used, organic (protein­
base solution, Joint Army-Navy Specification JAN-C-266) and detergent 
(Unox No.3 wetting-agent foam). Figure 10 shows the foam being applied 
to the runway surface. The foam issuing from the nozzle in figure 10 is 
of the organic type. The detergent foam was placed on the runway farther 
down the track. 

In addition to the purposely applied contaminants, the tires them­
selves contaminated the runway surfaces by depositing abraded and molten 
rubber on the runway surface during braked rolling. The abraded rubber 
(deposited only at very low taxiing speeds) did not stick to the runway 
surface and was readily removed. The molten rubber (deposited at the 
higher taxiing speeds) solidified in the irregularly shaped voids of the 
runway surface and was extremely difficult to remove. A stiff steel 
brush was used to remove as much as possible of the molten rubber deposits 
on the runway before the start of most of the wheel-braking runs. 

INSTRUMENTATION 

Instrumentation was provided to obtain the vertical and drag forces 
developed between the single tire or rear tandem tire and the runway. 
(See figs. 2 and 3.) Also obtained were the vertical and drag accelera­
tions of the wheel axle; brake torque; wheel angular acceleration, veloc­
ity, and displacement; forward velocity of the carriage; brake pressure; 
vertical displacement of the test fixture (tire deflection); and time. 
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A 16-channel oscillograph was used to record the outputs of this instru­
mentation during a test run. A more detailed discussion of the instru­
mentation is given in reference 1. In addition, high-speed (200 frames 
per second) 16-mm motion pictures were taken from three different posi­
tions around the tire during each braked and unbraked rolling run. 

GENERAL CONSIDERATIONS 

DEFINITION OF TERMS 

A discussion of various parameters that affect the unbraked and 
braked rolling of aircraft tires is included here as a basis for the 
presentation of the data to follow. Consider the external forces and 
moments acting on the rolling tire shown in figure 11. The net torques 
or moments acting on the wheel must equal the acceleration of the wheel 
(neglecting wheel-bearing frictional torque): 

a. = 
TB + Fz,gXc - Fx,g(ro - 5) 

I 
(1) 

For the notation used, positive a. denotes wheel spin-down and negative 
a. denotes wheel spin-up. Some of the parameters involved in this equa­
tion, as well as other tire parameters, will now be discussed. 

Instantaneous Drag Force 

An airplane tire during landing or take-off can be subjected to at 
least three distinct types of drag loading. The first type of loading 
is called rolling resistance Fx g and arises from wheel-bearing , ,r 
friction, tire hysteresis, and inertia effects. The second type of drag 
loading Fx,g,f occurs only on fluid-covered runways and is created by 

the aircraft tire displacing the fluid, for example slush or water, from 
the wheel path on the runway. Finally, the drag force Fx,g,b is 

created on a tire during changes in wheel rotational velocity and during 
locked-wheel skidding. The magnitudes of Fx,g,f and Fx,g,b depend 
upon the vertical load acting on the tire and the friction coefficients 
developed between the tire and the ground. The instantaneous drag force 
acting on the tire is the sum of these three types of drag force: 

F =F +F +F b x, g x, g, r x, g, f x, g, 
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Vertical Ground Forc~ 

The vertical ground force Fz,g is defined as the instantaneous 

ground force acting on the tire. It should be noted that this vertical 
ground force is practically never constant during take-off and landing 
because of runway roughness and changes in the airplane attitude on the 
runway. 

Brake Torque 

The brake torque TB is the wheel spin-down torque created by 

mechanically braking a rolling aircraft tire through use of wheel brakes. 
It is a resistive torque and its magnitude must equal the sum of the other 
torques acting on the wheel at any instant during braking. 

Deflected Tire Radius 

The difference between the unloaded tire radius ro and the vertical 

tire deflection 5 defines the length of the arm (ro - 5) through which 

the drag force Fx,g acts in spinning up a tire. 

Movement of Vertical-Load Center of Pressure 

Because of tire elasticity, inertia, and hydrodynamic (wet runways 
only) effects, the center of pressure of the vertical load on a rolling 
tire will be displaced from its static position beneath the wheel-axle 
center line. Positive values of Xc in equation (1) denote a shift of 
the center of pressure in the direction of motion, negative values the 
opposite. 

Footprint Area 

The tire contacts the ground in a "finite area whose shape is illus­
trated in figure 4 for a number of tires. For tires with a tread pattern} 
this area consists of alternate spaces where the tire contacts the ground 
~d where it does not contact the ground. The total area, including the 
spaces that do not contact the ground, is designated as the gross foot­
print area Ag of the tire. The actual ground-contact area, or bearing 

area, is referred to as the net footprint area An. 
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Wheel Moment of Inertia 

The wheel moment of inertia I is defined as the sum of the moments 
of inertia of all masses rotating about the wheel axle. The rotating 
masses in this investigation consisted of the wheel, tire, tube, and 
brake rotors. The moment of inertia was determined experimentally with 
tire Rl mounted on the wheel, and was found to be 2 .73 slug- ft2 . It is 
assumed that the moment of inertia had the same magnitude when the other 
t ire s were mounted on the test wheel. 

Slip Ratio 

The difference between the peripheral velocity of the tire and the 
horizontal velocity of the wheel axle is defined as the relative skidding 
velocity occurring between the tire and the ground. The ratio of this 
relative skidding velocity to the horizontal velocity of the axle is 
defined as the slip ratio sl. Thus for a free ly rolling wheel the slip 
ratio is effectively zero while for a completely braked wheel (full ski d ) 
the s lip ratio equals 1. When the rolling wheel is gaining angular veloc­
ity (-a) - that is, rolling at decreasing slip ratio - the condition is 
called spin-up. This condition occurs after touchdown at landing as well 
as after brake release during wheel braking. A loss in angular velocity 
(+a) - that is, rolling at increasing slip ratio - is called wheel spin­
down and occurs, on dry runways, during wheel-brake application only. 
Wheel spin- down and spin- up can also occur during high-speed unbraked 
rolling of tires on fluid-covered runways as a result of hydrodynamic 
effects. 

Tire-Ground Friction Coefficient 

The ratio of the instantaneous ground drag load Fx,g developed by 

a rolling or nonrolling tire during straight- ahead (00 yaw) translation 
on a runway surface and the instantaneous vertical ground load Fz,g 

acting on the tire is arbitrarily defined as the tire-ground friction 
Fx_ 0-

coefficient ~ =~. For the special case of an unbraked rolling tire 
Fz,g 

undergoing straight- ahead translation on a dry runway, Fx,g = Fx,g,r 

and the ratio F .IP is defined as the coefficient of rolling x, g, r/- z, g 

resistance . During wheel braking, if the braking torque TB is suf­

ficiently large, the tire will be forced from a freely rolling condition 
( sl = 0) to a full-skid condition (sl = 1) and the tire-ground friction 

coefficient ~ will vary with s lip ratio (for a dry runway) in the manner 
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shown schematically in figure 12. The relationship between friction 
coefficient I-l and slip ratio sl has considerable signific.ance with 

regard to wheel braking. For example, to obtain maximum effectiveness, 
automatic braking systems must be designed to operate near peak I-l 
(I-lmax usually occurs at a slip ratio between 0.1 and 0.2). If opera-

tion occurs at a slip ratio greater than that required for peak friction, 
tire tread life is reduced by skidding and braking effectiveness is 
reduced. Operation at a slip ratio below that required for peak fric ­
tion simply results in reduced braking action . 

Because of the transient nature of the tire- slip phenomenon, opera­
tion by the pilot or antiskid unit at I-lmax i s not generally realized 

without some overshooting or undershooting of the slip ratio for I-lmax ' 

For this reason, the average friction coeffic ient I-lav developed between 

slip ratios of 0.1 and 0.5 (see fig . 12 ), rather than I-lmax' was arbitrar­

ily chosen in this paper as more nearly representative of the friction 
coefficient attainable with present- day braking systems . In most of the 
comparisons made in this paper, I-lav is used . The friction coefficient 

at full skid (sl = 1) is also of interest and is designated I-lskid' 

MECHANICS OF THE ROLLING TIRE 

For the condition of straight-ahead (unyawed ) rolling on a runway 
surface, equation (1) specifies the angular acceleration a wheel will 
experience during both braked and free-rolling conditions . 

Unbraked Rolling 

Dry runways.- For the special case of unbraked rolling at constant 
VH (constant m) on dry runway surfaces, both ~ and TB must equal 

zero and equation (1) reduces to 

Equation ( 2) thus specifies that the moment Fz,gXc must be equal 

and opposite in direction to the wheel spin- up moment Fx g r(ro - 0) , , 
created by the tire rolling resistance, which means that for positive 
rolling resistance Xc must move forward of the axle center line in the 
direction of motion for a rolling unbraked tire . One possible explana­
tion of this phenomenon is based on the accelerations imparted to radial 
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elements of the tire when entering and leaving the tire footprint region. 
(See fig. 13(b).) If constant axle height above the runway (constant 
vertical load) during the rolling process is assumed, radial elements of 
the tire are acce lerated toward the axle as they pass through the for­
ward half of the tire footprint r~gion, from ro at the leading edge of 
the footprint to ro - 5 directly below the axle center line. As the 
radial tire elements rotate out of the rear half of the footprint region 
they are accelerated away from the axle by the internal tire pressure, 
from ro - 5 beneath the axle to ro where exit from the footprint 
occurs. These accelerations, and associated tire hysteresis effects, 
create forces which are thought to change the vertical-load distribution 
within the footprint from the symmetrical distribution of a standing tire 
(fig. 13(a)) to a distribution such as that schematically indicated in 
figure 13(b), with the resulting center of pressure of the vertical load 
moved forward of the wheel-axle center line in the direction of horizontal 
axle motion. Since the accelerations of the tire within the footprint 
are a function of the tire rotational velocity (accelerations must increase 
with increasing rotational velocity), it would appear logical for Xc to 
move increasingly forward as the rotational velocity or forward speed is 
increased. Such a trend is indicated by the data shown in figure 14(b). 
According to Kamm ( see ref. 11), this effect may result in loss of adhe­
sion over the last third of the contact surface at high rolling speeds. 

Wet runways.- Consider the case of a freely rolling unbraked tire 
accelerating on a fluid-covered runway as in airplane take-off. As the 
moving tire contacts and displa'ces the stationary runway fluid the 
resulting change in momentum of the fluid creates hydrodynamic pressures 
that react on the runway and tire surfaces . The tire engages the runway 
fluid at a definite angle of attack that is determined by the intersec­
tion of the tire equator and the ground plane. (See fig. 13(c).) As 
the forward speed is increased, a wedge of water penetrates farther and 
farther into the tire footprint region until at some high forward speed, 
complete separation between the tire and runway occurs. This speed is 
referred to as the tire hydroplaning velocity. At this speed, the tire 
loses practically all of its directional stability because of the inability 
of a fluid to develop large shear forces. Experimental measurements of 
vertical-load center of pressure obtained from the present investigation 
indicate that the hydrodynamic pressure generated at the front of the 
tire footprint by the wedge of water distorts the vertical-load distribu­
tion within the tire footprint region so that Xc moves farther forward 

of the axle than for the case of a tire rolling at the same forward 
velocity on a dry runway (shown schematically in fig. 13(c)). In addi­
tion, the horizontal component of the hydrodynamic force adds to the 
tire rolling resistance to produce a larger wheel spin-up moment. 

13 



r 
I , 

As in the case of the braked tire (eq. (1))) the net torques and 
moments acting on the unbraked tire must equal the acceleration of the 
wheel. Including hydrodynamic effects) this can be expressed approxi­
mately as 

Fz)~C - [Fx)g)r + Fx)g)f + (Fz)g - FZ)L)~ (ro - 5) 

I 

When the vertical component of the hydrodynamic force Fz L equals 
) 

the vertical ground force Fz)g in equation (3)) the tire-ground fric-

tional spin-up moment vanishes and since the tire is entirely supported 
by the runway fluid for this condition) tire hydroplaning then exists. 
If Fz L is assumed to be proportional to VH

2 and directly propor-
) 

tional to tire-ground gross contact area Ag and fluid density p) and 

if all other effects such as those due to tire tread design and fluid 
viscosity are ignored) the following approximate expression for tire 
hydroplaning velocity Vp may be obtained: 

(4) 

Rearranging terms gives 

The term Fz)g/Ag is actually the gross footprint pressure Pg 

exerted by the tire on the ground. From reference 12) this pressure may 
be represented (for modern airplane tires) by 

(6) 

Thus the tire hydroplaning velocity may be approximately expressed for 
modern aircraft tires by the equation 
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The data shown in figure 15 indicate that reasonable agreement between 
calculated and experimental tire hydroplaning velocities occurs when 
CL = 0.7 is used in equations (5) and (7). Equation (5)) rather than 

equation (7)) was used to calculate Vp for the nonaircraft tires shown 

in figure 15 because the effects of carcass stiffness on Pg for these 

particular tires is not known. 

Experimental data obtained from the present tests and reference 6 
indicate that when tire hydroplaning velocity is approached or exceeded 
by an unbraked rolling tire) tire spin-down or even tire stopping (m = 0) 
can occur. Figure 16 shows data obtained on the buffed dimple tire D5Ml 
when it entered a wet runway unbraked at a forward speed of 113 knots. 
The predicted hydroplaning velocity (from eq. (7)) for the test tire pres­
sure of 90 lb/sq in. was 85 knots. It will be noticed in this figure 
that the tire started s lowing down immediately upon entering the wet run­
way and stopped rotating at approximately 102 knots) which is 17 knots 
above the predicted hydroplaning velocity. These data support the con­
clusion reached from the treadmill tests (ref. 5 ) that a hydroplaning 
tire is stable about m = 0 for forward velocities in excess of the 
hydroplaning velocity Vp and for moderate fluid depths. The data in 

figure 16 also show that tire D5Ml did not spin up on the wet runway until 
the forward velocity had decreased to 72 knots) a speed which is 13 knots 
below the predicted hydroplaning velocity. This result indicates a 
hysteresis effect which was noticed in the investigation of reference 5 
but not reported. Because of this effect) the forward velocity required 
for a tire to spin down and stop under increasing forward velocity con­
ditions is always greater than the forward velocity required to spin up 
the tire (after hydroplaning) under decreasing forward velocity conditions. 

It is of interest to note that a similar test was performed at the 
same forward velocity on the rib-tread tire R4 for a tire pressure of 
85 lb/sq in. rather than the 90 lb/sq in. which was used for tire D5Ml. 
Tire R4 never stopped rotating) but did suffer a 20-percent loss in 
angular velocity while in the water trough) which was covered with water 
to a depth of 0.1 to 0.4 inch. From equation (7)) the hydroplaning 
velocity for rib-tread tire R4 should be slightly lower than that for 
smooth-tread tire D5Ml because the inflation pressure for tire R4 was 
5 lb/sq in. l ess; yet tire R4 showed less tire spin-down than tire D5Ml. 
The tread depth of tire R4 at the time of the test was approximately 
0.2 inch. The test results thus indicate a tread effect on tire hydro­
planing even when the water depth is somewhat greater on the average 
than the tread depth. 
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Braked Rolling 

In order to develop drag forces for stopping aircraft on runways or 
for directional control, a resistive torque opposing tire rotation is 
applied to an aircraft wheel by means of wheel brakes. Rearranging equa­
tion (1) gives an expression for this resistive torque TB in terms of 

all the other torques or moments acting about the wheel axle at any instant. 
A typical variation of TB with time is shown in figure 17 for tire R2 

undergoing braked rolling on a wet runway at high forward speed (VH = 96 
to 93.5 knots). Also shown in this figure are time histories of ill, 0" 

PE, ~,and the net spin-up moment Fx,g(ro - 0) - Fz,~c under these 
test conditions. 

The mechanics involved in braking a rolling tire can be treated best 
by discussing figure 17 in detail. Just before time zero in this figure, 
the tire is unbraked and rolling at a velocity of 130 radians/sec. At 
time zero, a valve is opened to allow hydraulic fluid to flow from an 
accumulator through a micrometer needle valve and into the brake, where 
the pressure PE builds up to the accumulator pressure. This pressure 
acts on pistons positioned around the wheel which force brake stators 
(splined to the wheel axle) against brake rotors (rotating with the wheel). 
The stator and rotor rubbing surfaces (brake pucks) generate a resistive 
torque TB which opposes tire rotation. The torque TB is a function 

of the pressure PB supplied to the brake, the friction coefficient 

developed between the rubbing surfaces, and the distance between the axle 
and brake-puck center lines. It will be noticed in figure 17 that the 
initial rise of ~ after time zero does not create a corresponding rise 

in TB until PB exceeds approximately 100 Ib/sq in. This lag is 

explained by the fact that the brake pistons must first overcome return 
spring forces before the stators will start sliding along the axle toward 
the rotors. The small constant value of TB before stator motion starts 

is believed to be due to light contact between the stators and rotors 
while unloaded. 

As PB increases further, there is a corresponding rise in the 

curves for both TB and Fx,g(ro - 0) - Fz,~c until the slip ratio 

for ~max is exceeded. At this point the wheel decelerates rapidly as 

a result of the net torque impulse (area between curves for TB and 

Fx,g(ro - 0) - Fz,~c)' The change in momentum imparted to the wheel by 

the brakes must exactly equal this net torque impulse. This comparison 
is shown in figure 17 for both spin-down and spin-up conditions. The 
agreement shown is typical for the instrumentation used in this 
investigation. 
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Continuing along the time history of the braking cycle in figure 17) 
a point is reached where the wheel comes to a complete stop. At this 
point a and Fx)g)r equal zero and TB equals 

(Fx)g)f + FZ)~Skid)(rO - 5) - Fz)gXc' The symbol ~skid is the fric­

tion coefficient for the tire under full- skid (sl = 1) conditions) and 

is considerably lower than ~max for the wet-runway test conditions of 

figure 17. At time 0.63 second in figure 11) the brakes are released by 
dumping the pressure PB' Almost immediately) the net spin-up moment 

increases above TB and the resulting net torque impulse spins up the 

wheel to the angular velocity required for free rolling. It is inter­
esting to note that considerable TB exists after PB has been reduced 

to near zero 
(stators and 

values. This effect is attributed to grabbing of the brakes 
rotors do not disengage at zero PB) due to dynamic condi-

tions in the brake. The residual TB after release of PB was a var-

iable in the current tests. Some runs developed larger residual TB 
values than others without establishing any identifiable pattern. This 
residual torque can seriously affect wheel spin-up characteristics when 
tire treads with low friction coefficients are used at high forward speeds 
on wet runways) as is shown in figure 18. 

AUTOMATIC BRAKING DEVICES 

This section of the paper will discuss how the deterioration of wheel 
angular acceleration with increasing forward velocity on wet runways 
impairs the performance of the antiskid unit used in this investigation. 

The operation of many antiskid units in use on aircraft at the pres­
ent time is based on changes in wheel angular acceleration. The antiskid 
unit used in the present investigation is such a device. Depressing the 
pilot's brake pedal releases pressure from an accumulator to the wheel 
brake. Thi s hydraulic pressure forces the brake stators against the brake 
rotors (for a disk brake)) creating an increasing resistive torque TB 

that opposes wheel rotation in the direction of motion. A point will 
soon be reached where the slip ratio required for maximum tire-ground 
friction coefficient will be exceeded and the tire will suddenly decel­
erate. The test antiskid unit was set to dump brake pressure (by means 
of a solenoid-operated valve) when this angular deceleration exceeded 
45 to 60 radians/sec2 . In the test antiskid unit) an inertia-type fly­
wheel disengages from the main wheel when the main wheel starts to decel­
erate. This inertia flywheel then coasts, continuously losing its angular 
velocity because of bearing frictional torque and possibly clutch drag. 
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After brake-pressure release, the resistive torque TB decays to 
zero and the drag-load spin-up moment accelerates the main wheel back up 
to runway speed. When the angular velocity of the wheel equals the rota­
tional velocity of the antiskid inertia flywheel, which has now slowed 
below its value at brake release, a signal is generated to close the 
pressure dump valve and open a valve located between the accumulator and 
the brake, allowing pressure to be applied to the brake again, and another 
braking cycle commences. 

For dry runways, spin-up accelerations are large enough so that the 
inertia flywheel loses little velocity during the recovery portion of the 
braking cycle, and successive braking cycles always start with the tire 
rotating at or near the tangential velocity required for the airplane's 
forward speed along the runway (sl = 0). Such is not the case under 

certain braking conditions on wet runways, as is shown in figures 19 
to 21. These figures show sample oscillograph tracings obtained during 
wet-runway braking tests at different forward speeds with several tires 
having different tread patterns. Figure 19 shows tracings obtained for 
the rib-tread tire S2M2 at low and high forward speeds. This figure 
illustrates satisfactory antiskid operation on a wet runway, with the 
tire recovering the necessary tangential velocity before each new braking 
cycle. 

Figure 20 shows sample oscillograph tracings obtained during wet­
runway braking tests at approximately the same test forward velocities 
for a less skid-resistant tire, smooth all-rubber-tread tire Sl. Notice 
that the developed drag loads and spin-up accelerations in figure 20 are 
much less than those shown in figure 19 for the rib-tread tire S2M2. 
Figure 20(b) illustrates a characteristic of the test antiskid unit in 
that reapplication of brake pressure initiates another braking cycle 
before complete wheel spin-up has been attained. 

The end result of this antiskid characteristic is illustrated in fig­
ure 21, where tracings of oscillograph records obtained during wet-runway 
tests at high forward speeds are shown for tire Dl at p = 260 Ib/sq in. 
and tire Sl at p = 120 Ib/sq in. The initial braking cycle for tire Dl 
(fig. 21(a)) started on dry concrete. Note that for both tires Dl and Sl, 
the initial angular velocity of the wheel was never completely regained 
before the next braking cycle commenced, resulting in completely locked 
wheels (wheels at full skid) at the end of 3 or 4 braking cycles. 

The test antiskid unit had a lockout feature for low-speed taxiing 
(below 4 or 5 mph) so that the pilot could arbitrarily brake each wheel 
up to full skid without operation of the antiskid unit. This feature 
is illustrated in figure 2l(b), where after the last braking cycle the 
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brake pressure PB is seen to be increasing rapidly. (Brake pressure 

PB went to full system pressure in subsequent portions of the oscillo­

graph records of fig. 21.) Inadvertent operation of the antiskid lock­
out feature also occurred during the first wet braking run with a new 
and unused test tire (tracings not shown). Conditions for this test 
were: Fz,g = 10,000 pounds, P = 260 lb/sq in., and VH = 100 knots. 
The wheel developed a full-skid condition on the wet concrete in a man­
ner similar to that shown in figure 21 and then skidded onto a portion 
of the concrete runway that was dry. The tire failed (see fig. 22) after 
sliding (locked wheel) approximately 60 feet on the drY runway surface. 
It is obvious that the combination of this antiskid lockout feature and 
a pilot continuously riding the brakes can be hazardous to airplane opera­
tion on runways which are intermittently wet and dry. 

In summary, it is apparent that the relatively long spin-up times, 
due to low spin-up accelerations, developed by some tires during braking 
at high speeds on wet runways can seriously impair the performance of 
antiskid units that utilize an inertia flywheel for reference angular 
velocity. The antiskid-unit lockout feature used in some airplane braking 
systems to permit differential braking by the pilot at low taxiing speeds 
with antiskid on, can lead to tire failure under certain braking condi­
tions on wet runways at high forward speeds. 

Examination of equation (1) shows that highest wheel spin-up accel­
eration on wet runways will result when (a) the forward shift of Xc is 
a minimum, (b) the drag moment Fx,g(ro - 5) is as large as possible, 

and (c) the brake torque TB drops to zero immediately after brake­

pressure release. The test results indicate that for wet conditions 
(a) and (b) are functions of tire tread and runway design while (c) is 
a function of the braking system (hydraulic resistance and brake grab). 

DISCUSSION OF PARAMETERS 

ROLLING RESISTANCE 

The variation of the steady-state unbraked-rolling resistance 
force Fx,g,r with forward velocity is shown in figure 14(a) in terms 

of the ratio Fx,g/Fz,g. The data shown in this figure were obtained 

from the unbraked-rolling tests under essentially constant conditions 
of vertical ground load Fz,g and tire pressure p on a dry concrete 

runway. The scatter of the test data in this figure is such that no 
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discernible tendency of the rolling resistance to increase with decreasing 
tire pressure (at constant vertical load) is evident . Such a trend would 
be expected from tire hysteresis and inertia considerations because of 
the larger deformations of the carcass experienced by tires rolling at 
reduced tire pressures. The tendency of rolling resistance to increase 
with increasing forward velocity shown in figure 14(a) is in agreement 
with the findings of reference 11. The rolling- resistance values obtained 
from the present tests are, however, somewhat higher than those reported 
in reference 11 for airplane tires on hard surfaces. It is fe l t that 
brake grab (discussed in an earlier section of this paper) is mainly 
responsible for this disagreement in that drag forces produced by the 
unloaded wheel-brake rubbing surfaces add to the actual rolling-resistance 
values to produce larger effective rolling resistance values for the tire 
being tested. The possibility that modern aircraft tires, such as those 
used in the present tests, might develop larger rolling-resistance val ues 
than the older and smaller aircraft tires discussed in reference 11 
should, however, not be entirely ruled out as a factor contributing to 
this difference. 

FLUID-DISPLACEMENT DRAG 

Single or Leading Tandem Wheels 

When an unbraked rolling tire encounters a fluid of finite depth on 
a runway surface, the drag force acting on the rolling tire will increase 
in the manner shown in figures 16 and 23. In reference 1, where the ini­
tial results obtained from the unbraked-rolling portion of this investi­
gation were used, it was determined for the velocity range covered that 
this increase in tire rolling resistance due to fluid displacement drag 
Fx g f could be represented with reasonable accuracy by the equation , , 

(8) 

In words, equation (8) states that F for a single wheel or a x,g,f 
front-mounted tandem wheel varies approximately linearly with fluid den­
sity, fluid depth, tire cross-sectional width at the fluid surface on 
the runway, and forward velocity squared. The comparison of the predic­
tions of equation (8) and experimental data from unbraked-rolling runs 
on a water-covered concrete runway made later in the test program (not 
included in ref. 1) is shown in figure 24. The scatter of the data in 
figure 24 is attributed mainly to wind effects, which produced water­
depth gradients in the water trough when the wind was blowing during 
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test runs, and to the elevation characteristics of the concrete runway, 
which produced water-depth variations of as much as 0.3 inch in the test 
trough. (See section entitled "Runway Troughs and Surfaces.") 

Rear Tandem Wheels 

It was observed in reference 1 that when a single wheel passed 
through the slush trough, most of the slush in the wheel path was com­
pletely removed or thrown from the slush trough. Reference 1 also states 
that the slush residue remaining in the trough in the path of the wheel 
did not exceed 0.1 inch. This observation on the path-clearing effective­
ness of the front wheel is confirmed by the data shown in figure 25. The 
solid curve in this figure is the slush-displacement drag acting on a 
single wheel for the slush conditions noted, calculated from equation (8), 
while the single data point shows the slush-displacement drag developed 
on a rear tandem wheel at the same forward velocity (approximately 
92 knots) for the same runway slush conditions. With a slush depth of 
1.75 inches on the runway, the drag force developed on the rear wheel 
of the tandem gear was the same as a single wheel would experience in 
approximately 0.1 to 0.2 inch of slush. These data indicate that for 
the test conditions noted, the fluid-displacement drag developed on rear 
tandem wheels is only 0.1 the magnitude of the drag force developed on 
a single wheel or front-mounted tandem wheel. 

BRAKING DRAG 

When relative motion exists between the tire footprint (the part 
of the tire in contact with a runway surface) and the runway surface, a 
drag force Fx,g,b is created which is equal to the product of the ver­
tical load acting on the tire and the friction coefficient ~ developed 
between the tire and runway surfaces. (See section entitled "Definition 
of Terms.") No further treatment of Fx g b will be given in this paper , , 
since a knowledge of the variation of ~ and the vertical load automat­
ically defines the variation of Fx g b. The coefficient ~ is discussed , , 
in detail in a subsequent section. 

MOVEMENT OF VERTIC AIr- LOAD CENTER OF PRESSURE 

The ground-pressure distribution within the footprint of a tire 
undergoing translation along the ground can be distorted by different 
ground-load conditions so that the vertical-load center of pressure of 
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the tire may shift either ahead of or behind the wheel-axle center line. 
Tire fore-and-aft elastic effects displace the tire footprint in the 
direction of the applied ground-drag loads and cause Xc to move toward 
the rear of the footprint. Tire hysteresis and inertia, and runway 
hydrodynamic effects, distort the pressure distribution within the foot­
print in such a way that Xc must move toward the front. 

For the condition of unbraked rolling on a dry runway, tire elastic 
effects are small and tire hysteresis and inertia effects predominate, 
so that Xc is always a small distance forward of the axle center line. 
Figure 14(b) illustrates this condition and also shows that Xc tends 
to move farther forward as the rolling velocity or forward velocity is 
increased. For the condition of unbraked rolling on fluid-covered run­
ways, the hydrodynamic effects predominate, expecially at the higher for­
ward speeds and greater fluid depths, and Xc moves farther forward of 
the axle center line than for the equivalent dry-runway conditions. 
These effects are shown in figures 16, 23, and 26. It is interesting 
to note in figure 16 that just before the unbraked hydroplaning tire 
encounters the greater water depth on the runway and after tire spin­
down to a stop, Xc decreases in magnitude. Apparently the decrease 
in Xc at this point is caused by tire hysteresis and inertia effects 
dropping to zero when the tire stops rotating. 

On a dry runway during wheel braking, tire elastic effects predom­
inate and Xc moves toward the rear of the tire footprint at the larger 
values of ground-drag load during both wheel spin-down and spin-up, as 
is shown in figure 27 for tire R2. During wheel braking on wet runways, 
hydrodynamic effects become increasingly larger as the forward velocity 
is increased and tend to reduce or eliminate the rearward movement of 
Xc shown for dry runways. This trend was evident for all tires inves­
tigated but especially for the less skid-resistant tread designs; for 
example, see figure 28 for the smooth-tread tire Sl. 

WHEEL SPIN-UP AND SPIN-OOWN 

Satisfactory operation of most antiskid devices in use on airplanes 
today is dependent upon quick recovery of wheel rotational velocity by 
the braked wheel upon release of the wheel brakes. (See section entitled 
IIAutomatic Braking Devices. II) Test results indicate that the degree of 
runway wetness, tire-tread design, tire inflation pressure, and the loca­
tion of the tire (in tandem-wheel landing-gear arrangements) can influence 
wheel spin-down and spin-up characteristics markedly. 

The test data indicate that for braking on dry runway surfaces, 
tread design has little effect on wheel spin-up characteristics. For 
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example, compare the solid curves in figure 29 for the rib-tread tire Rl 
and the dimple-tread tire Dl. All of the tire-tread designs investigated 
show a degradation in wheel spin-up performance during braking on wet 
runways, especially at the higher forward velocities of the investigation. 
For the velocity range covered, multirib-tread tires such as tires Rl 
and S2M2 showed considerably less decrease in spin-up performance than 
did the other tire tread types. For example, compare the dashed curves 
in figure 29 for the multirib-tread tires Rl and S2M2 with the dashed 
curves obtained for tires Dl and S3. 

The test data also indicate that wheel spin-up performance on wet 
runways will be further impaired for the less skid-resistant tires by 
reducing the tire inflation pressure while keeping the vertical load on 
the tire constant (see fig. 30), which increases the length of the con­
tact region between the tire and the ground. The multirib-tread tire S2M2 
under the same test conditions (see fig. 30) showed little loss in spin­
up performance. 

Wheel spin-up performance on wet runways for the less skid-resistant 
tires may be improved by mounting these tires on the rear wheels of tan­
dem landing gears, thus utilizing the path-clearing ability of the front 
or leading tandem wheel. (See discussion of fluid-displacement drag 
Fx,g,f.) The curves in figure 31 indicate that no large improvement in 

wheel spin-up performance is experienced by the more skid-resistant tires 
(represented in fig. 31 by tire S2M2) when they are mounted on the rear 
wheel of a tandem landing gear. 

INSTANTANEOUS TIRE-GROUND FRICTION COEFFICIENT 

Time histories illustrating the variation of the instantaneous 
tire-ground friction coefficient ~ developed during braking test runs 
on wet concrete runways for a tire with good skid resistance (tire R2) 
and a tire with poor skid resistance (tire Dl) are shown in figures 17 
and 18, respectively. The variation of ~ with slip ratio is shown in 
the appendix for most of the skid cycles obtained during braking tests 
of a single wheel on wet concrete runways for the different tires 
investigated. 

MAXIMUM TIRE-GROUND FRICTION COEFFICIENT 

Dry Runways 

For dry concrete runways, the curves of ~ as a function of slip 
ratio for the different tires investigated usually displayed a very 
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prominant peak ~max between slip ratios of O.l and 0.2 (see appendix). 

The data shown in figure 32 indicate that ~ax is practically inde­

pendent of forward velocity, with most of the tire tread designs indi­
cating little or no decrease in the magnitude of ~max over the for-

ward velocity range investigated. 

The magnitude of ~max is, however, dependent upon the average 

tire-ground bearing pressure Pn' as shown in figure 33, where ~max 

decreases in magnitude with increasing values of Pn. This is the trend 

reported in reference 12 for ~max values obtained at very low forward 

speeds (0.009 < VH < 2 knots). It is interesting to note that the equa­

tion ~ax = 0.93 - O.OOllPn' which was empirically derived on the basis 

of low-speed data (ref. 12), also fits the high-speed data of this inves­
tigation with fair accuracy. This agreement also supports the conclu­
sion that ~ is relatively independent of forward speed for a dry 
concrete runway surface. 

Contaminated Runways 

The data from this investigation and other available experimental 
data (refs. 4 to 9) indicate that ~ax decreases with increasing for­
ward velocity on fluid-covered or contaminated runways. The test data 
indicate that ~max follows the trends observed for ~av but at some-

what higher values of ~. 

FULL-SKID TIRE-GROUND FRICTION COEFFICIENT 

Dry Runways 

The variations of ~skid with forward velocity on a dry concrete 
runway for several of the tire designs investigated are shown in fig­
ure 32. It is seen that ~skid decreases as the forward velocity 
increases for the velocity range investigated. This trend is more 
clearly shown in figure 34, where the ratio ~skid/~max is plotted 

against forward velocity for a number of tires used in this and other 
investigations. The data in £igure 34 indicate very small differences 
between ~skid and ~max at low forward velocities and very large 

differences (~:d ~ 0. 32) at the higher forward velocities. The sub­

stantial difference in tire behavior at low and high forward velocities 
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is attributed to tire heating effects. For example, at the low veloc­
ities of references 13 to 15, the rubber deposited on the runway by 
the sliding tires consisted of small solid particles that were evidently 
sheared or abraded from the tire surface by the asperities of the run­
way surface. At the conclusion of each of these low-speed runs, the 
rubber tread in the ground-contact region was warm to the touch but 
showed no evidence of being subjected to high heat. In contrast, in 
the present investigation, inspection of the skid marks after high-speed 
skids on a dry concrete runway revealed that the rubber apparently was 
deposited in the liquid state since the concrete surfa~e gave the appear­
ance of having been painted with rubber. At the conclusion of each high­
speed braking run, the rubber or rubber-fabric tread of the ground­
contact region of the tire was hot and sticky to the touch. In fact, 
when the brake was released after a high-speed skid, this sticky contact 
area of the tire would stamp the runway at each succeeding revolution 
of the wheel and leave a clear imprint on the runway surface. As a 
point of interest, these stampings looked exactly like the tire foot­
prints shown in figure 4. 

Correlation of the movie films taken on each braking run with the 
corresponding oscillograph records showed that the puff of smoke 
(oxidized rubber) emanating from the tire footprint region during a 
braking cycle at high speed occurred at slip ratios ranging from 1.0 
(full skid) to as low as 0.15. The reduced values of ~skid/~max 
obtained on tires at the higher forward velocities are probably caused 
by the molten rubber in the tire footprint region acting as a lubricant 
between the tire and the ground. Prolonged skids of a tire at or near 
~skid can cause rapid erosion of the tire tread and carcass and result 

in failure of the tire. Figure 22 is a photograph of a tire that failed 
after a full skid of only 60 feet on a dry concrete runway. No tests 
were conducted on dry asphalt runways during this investigation. 

Water-Covered Runways 

Figure 35 shows the variation of ~skid with forward velocity for 

several different rib-tread aircraft tires on water-covered concrete 
and asphalt runway surfaces. For comparison purposes, this figure 
includes British flight-test data (refS. 8 and 9) that were obtained 
under similar runway wetness conditions. Both British flight tests 
and NASA track tests indicate that ~skid decreases with increasing 

forward velocity for wet concrete and asphalt runways, although the 
British values of ~skid are generally lower than the track values 

over the velocity range investigated. Both British and NASA track 
data indicate that the wet asphalt-runway surfaces investigated gave 
higher ~skid values than did the wet concrete surfaces at the higher 

forward velocities. 
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AVERAGE TIRE-GROUND FRICTION COEFFICIENT 

Dry Runways 

In figure 12) ~av is defined as the average value of the tire­

ground friction coefficient ~ obtained between slip ratios of 0.1 
and 0.5. For tires on a dry concrete runway) the data shown in fig­
ure 36 indicate that ~av is approximately 10 percent lower in magni­
tude than ~max over the forward-velocity range investigated. Fig­
ure 36 also indicates that ~av (as was found earlier for ~max) 
appears to be independent of forward velocity over the range of condi­
tions investigated) on a dry concrete runway. 

Contaminated Runways 

In contrast to the dry-runway results) which showed little or no 
forward-velocity effect on ~av) the experimental data obtained during 

braking runs on contaminated runway surfaces disclosed that ~av 

decreases markedly with increasing forward velocity. The magnitude of 
the decrease in ~av was found to depend upon such parameters as: 

Runway composition and surface 

Type and depth of contaminant on runway 

Vertical ground load acting on tire 

Tire inflation pressure 

Tire position in tandem wheel arrangements 

Tire tread material 

Tire tread pattern 

It is the purpose of this section to show how these parameters affect 
the magnitude of ~av developed on contaminated runway surfaces. 

Runway composition and surface.- The effect on ~av of braking a 

single wheel on water-covered runways of different composition and sur­
face texture is shown in figure 37. These data indicate that the values 
of ~av developed on asphalt surfaces with both the smooth sand finish 
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and the rough aggregate finish were higher than those developed on the 
concrete surface for the low and medium forward velocities investigated. 
At the higher forward velocities, ~av values developed on the test 

runway surfaces were approximately e~ual. Figure 37 also shows that the 
surface texture of the asphalt runways investigated apparently had little 
effect on ~av' since both the smooth and rough asphalt surfaces gave 

rise to approximately the same values of ~av for the range of condi­

tions investigated. 

Type and depth of contaminant on runway.- Figure 38 shows faired 
~av data obtained during single-wheel braking runs on both slush-

covered and water-covered runways for tires D2 and 82M2. By comparing 
curves A (water) and curves B (slush) of this figure, it may be seen 
that curves B increase at the higher forward velocities whereas curves A 
continue to decrease . This rising trend of the slush data at the higher 
velocities is believed to be due to the depth of slush on the runways 
during the tests. The fluid-displacement drag forces due to slush for 
the test conditions were calculated by means of equation (8), and these 
calculations in terms of an effective ~av are shown as curves C of 

figure 38. The same calculations were made for the water-covered run­
way at a forward speed of 100 knots, and an effective ~av e~ual to 
approximately 0.014 was obtained. This low value is due to the small 
average water depth (dl = 0.15 inch) used in the tests. The differences 

between curves B and C are curves D of figure 38, the contribution to 
~av of tire braking friction and tire rolling resistance. Curves D 

decrease with forward velocity in a manner similar to data for the 
water-covered runway (curves A), which contain a negligible amount of 
water-displacement drag as just indicated. Comparison of curves A 
and D indicates that lower values of ~av are generated during braking 

on slush-covered runway surfaces than on water-covered surfaces. 

Test results indicate that the presence of measurable fluid depths 
on a runway surface are not a necessary requirement for low braking 
friction on contaminated runways. Values of ~av that are considerably 
reduced from dry-runway values can also be obtained during braking runs 
on runways that are only damp, that is, moistened with just enough water 
or other fluids to create a film on the runway surface, but not suf­
ficient to form puddles. This effect is shown in figure 39 for tire 81M3 
on a concrete runway and for tire 82M2 on an asphalt runway. The data 
in figure 39 indicate that ~av values developed on both the damp 

(with water) asphalt and concrete runways are only slightly higher than 
the values obtained for the water-covered (dl = 0 to 0.3 inch) runways. 

The data shown in figure 39(b) for an asphalt runway contaminated with 
Jp-4 fuel and water indicate that this form of runway contamination 
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results in an even greater decrease of ~av than was obtained for the 

asphalt runway dampened with water only. No tests were made with the 
concrete runway contaminated with Jp-4 fuel. 

The data obtained during braked rolling on a concrete runway 
covered with two types of fire-extinguishing foam (organic and deter­
gent) are shown in figure 40. For the velocity range investigated these 
data indicate that ~av values developed on the foam-covered runway 

were approximately equal to those developed on a water-covered concrete 
runway. The large depths of foam indicated for this particular braking 
run can be discounted, since both types of foam were of very low density 
and foam-displacement drag forces would be negligible. 

The results of the braking runs on runways damp with water, damp 
with Jp-4 fuel and water, slush-covered, and foam-covered tend to indi­
cate that the reduction of ~av developed on these surfaces may depend 

less on depth and density and more on lubrication or other properties 
of the particular contaminant, especially at subhydroplaning velocities. 

Most airport runway surfaces are contaminated to some extent by 
~bber from aircraft tires that is deposited on the runway surface during 
wheel spin-up at initial airplane touchdown, and during wheel braking 
in the landing roll. The data shown in figure 41 indicate that the tire­
ground friction coefficient is reduced from the values for uncontaminated 
dry runweys when wheel braking occurs on a rubber-contaminated surface. 
These data indicate that ~av decreases from about 0.64 for the dry 
uncontaminated concrete surface to about 0.48 for the dry rubber­
contaminated concrete surface under the conditions of the investigation. 

Vertical ground load acting on tire.- Increasing the vertical 
ground load on tire 82M2 (fig. 4(n)) while keeping the tire inflation 
pressure constant during single-wheel braking tests on a wet runway 
affects ~av as shown in figure 42. The data in figure 42 indicate 

that for this particular tread design, an increase in the tire vertical 
load from 10,000 pounds to 22,000 pounds decreases the magnitude of ~av 

throughout the forward-velocity range investigated. Apparently this 
result is a tread effect rather than a load effect, since for this par-
ticular tire the higher load condition results in a larger footprint ~ 

area and consequently a larger region near the outside of the footprint 
without grooves to furnish escape paths for the water trapped between I 
the footprint and the ground. 

It is interesting to note that while an increase in the vertical 
load at constant tire pressure reduces ~av' this load condition also 

increases the average wheel spin-up acceleration acting on tire 82M2 
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after brake release, as is shown in figure 42(b). This result points 
out the fact that it is the product of Fz,g and ~, rather than ~ 

alone, that determines the wheel spin-up acceleration. For this reason, 
better wheel spin-up acceleration will probably result if wing lift is 
dumped as quickly as possible after touchdown during landing, so that 
the full weight of the airplane will act on the tires. 

Tire inflation pressure.- Decreasing the tire inflation pressure 
while keeping the vertical ground load on a tire constant affects the 
tire-ground contact region in two ways. First, the tire footprint length 
and width is increased, and second, the tire-ground bearing pressure is 
reduced. The data shown in figure 43 indicate that lowering the tire 
pressure from 260 to 120 Ib/sq in. at Fz,g ~ 10,000 pounds produces 

little change in ~av for tires 81, 82, and 82M2 on a wet concrete run­

way . These data do, however, show some tendency for the low-pressure 
~av values to be higher at low forward speeds than the high-pressure 

~av values. The reverse is true at the higher forward speeds. These 

trends are best illustrated in figure 43(a) for data obtained for 
tire 82M2 on the wet asphalt runway. The same trends are shown in fig­
ure 43(b) where average spin-up acceleration is plotted against forward 
speed for the same tires and test conditions (on the concrete runway) 
as those of figure 43(a). For the condition of constant vertical load, 
average wheel spin- up acceleration reflects the magnitude of the tire­
ground friction coefficient that is developed during wheel spin-up. 

Tire position in tandem wheel arrangements.- As pointed out in 
reference 1, the forward or leading wheel of a tandem-wheel landing­
gear arrangement tends to clear the path for the rear wheel of the tan­
dem gear during unbraked rolling on a fluid-covered runway. This obser­
vation was confirmed by the data shown in figure 25. The data shown in 
figure 44(a) indicate that this path-clearing ability of the forward 
wheel can also raise the level of ~av developed during braking on wet 

runways by tires with poor skid resistance when these tires are used on 
rear tandem wheels. These data also indicate that for the conditions 
investigated, position of the tire in a tandem gear had little or no 
effect on ~av values developed by the skid-resistant rib-tread 

tire 82M2. The same trend is indicated in figure 44(b), where the aver­
age wheel spin-up accelerations developed under the test conditions of 
figure 44 (a) are plotted against forward velocity. The path-clearing 
effect of the leading wheel in a tandem arrangement is even more pro­
nounced when braking occurs on slush-covered runways, as illustrated in 
figure 44( c). 

Tire tread material.- Until the advent of jet aircraft, tire 
designers used rubber alone as tread material with very satisfactory 
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results. The much higher landing and take-off velocities required of 
most jet aircraft as compared with propeller-type aircraft, however, 
compelled designers to reinforce the rubber tread by means of fabric 
laminations in order to meet the new high-speed design requirements con­
cerning tread wear and tread integrity. Typical all-rubber and fabric­
reinforced tire-tread sections are shown in figure 5. The data in fig­
ure 45 indicate that the effect of tread material on the magnitude of 
~av is largely insignificant over most of the forward-velocity range 

investigated. At the higher forward velocities, however, the fabric­
reinforced treads tend to develop slightly higher ~av valu€s on wet 

concrete runways than do all-rubber treads. In fact, the buffed dimple 
tire D5Ml (fig. 4(d)), which had all of the tread removed so that the 
carcass cords were exposed, developed the highest ~av values at the 

higher forward velocities of all the tires investigated for this effect. 
In summary, reinforcing rubber tire treads by means of fabric lamina­
tions in the tread does not impair the braking effectiveness of tires 
on wet concrete runways. 

Tire tread pattern.- The variations in average tire-ground friction 
coefficient ~av with forward velocity obtained for the 20 different 

tread patterns (see fig. 4) investigated during single-wheel braking 
tests on a wet concrete runway are shown in figure 46. The ~av values 

shown in this figure were determined from wheel spin-down data given 
in the appendix. The tread-pattern comparisons to follow make use of 
the faired lines drawn through the data of figure 46. 

Smooth and dimple treads: Tires with smooth and dimple treads 
developed the lowest ~av values of all the different tires investigated 

on wet runway surfaces. The variations of ~av with forward velocity 

for these tire treads were similar in shape and magnitude, as is shown 
in figure 47. For the conditions investigated, the smooth and dimple­
tread tires developed values of ~av ranging from 0.14 to 0.175 at 
50 knots and 0.060 to 0.085 at 100 knots forward velocity. 

The path of the braked wheel through the water-covered runway was 
examined after each braking run. This examination revealed that at the 
higher forward velocities, the smooth- and dimple-tread tires investi­
gated did not deposit rubber on the wet concrete surface as did the rib­
~read tires Rl and S2M2. The only visual evidence on the runway that 
the smooth- and dimple-tread tires had been subjected to braking action 
was that the path of the tire was much cleaner and whiter than the sur­
rounding concrete surface. The inference follows that most of the foot­
print was supported by a water film at the higher velocities, or else 
penetration to the concrete surface would have occurred and rubber would 
have been deposited on the runway surface. 
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Circumferential rib treads: Tire designers have known for many 
years that cutting grooved patterns into tire treads can substantially 
increase the braking coefficients of tires on wet surfaces. This effect 
is shown in figure 48, where ~av values obtained for the smooth-tread 

tires 81 and 82 are compared with values obtained for the identical 
tires after circumferent i al grooves were cut into the treads. Also shown 
in figure 48 are the comparisons between ~av values obtained for the 

dimple-tread tire D2 and values obtained for the similar dimple-tread 
tires D6Ml and DBMI which were modified before the test by cutting five 
and two circumferential grooves, respectively, into the tread . In every 
case shown in figure 48, cutting circumferential grooves into the smooth 
and dimple tire treads resulted in large increases in braking friction, 
especially at the higher test velocities. The curves in this figure also 
indicate that increasing the number of grooves cut into a tread increases 
the braking friction for the tires shown. In fact, tire Rl (see 
figs. 4(s) and 46(w)), which has nine circumferential grooves, developed 
the highest values of ~av at most forward speeds of all the tires 
investigated. It should be noted, however, that other design considera­
tions, such as tread wear, tread integrity, and reinforcing of the tread 
for high-speed operation, act to limit the number of grooves that can be 
incorporated in a tread. As an example, this same tire Rl which produces 
such good braking friction on wet runways is not qualified for use on 
high-speed aircraft because of the excessive tread wear and tread chunking 
that occurs for this tire during high-speed operation. 

The test data also indicate that the width of the circumferential 
groove cut into a tire tread is of utmost importance with regard to 
developing high braking coefficients on wet runways. For example, 
increasing the width of the single groove from 1/2 inch for tire 81Ml 
(fig. 4(j)) to 3/4 inch for tire 81M2 (fig. 4(k) ) tended to decrease 
~av' as is shown in f igure 46 (k). Removing the zigzag rib between the 

grooves of tire DBMl (fig . 4 (g)), thus increasing greatly the width of 
the groove for tire DBM2 (fig. 4(h)), resulted in lower ~av values 
for tire DBM2 over the forward- velocity range shown in figure 46(h). 
On the other hand, the addition of a narrow groove to tire 82Ml 
(fig. 4(m)) resulted in higher values of ~av for tire 82M2 (fig. 4(n)) 
than for tire 82Ml, as is shown in figure 48(b}. 

As previously mentioned, close scrutiny of the wet concrete runway 
surface after braking runs in which circumferential-groove-tread tires 
were used disclosed that these tire treads depos ited rubber on the con­
crete surface during braking cycles at the higher forward velocities, 
whereas smooth- and dimple - tread tires did not. The implication is that 
at least a portion of the footprint area of these tires must have been 
in intimate contact with the runway surface during the braking process 
on water-covered runways. In some instances, deposited rubber was found 
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on the runway for the circumferential-groove-tread tires where the water 
depth on the runway was as much as 1/2 inch. 

Other treads: In addition to the tire treads already discussed, 
studies were made of tire treads having lateral grooves (fig. 4(f)), 
large diamond patterns (fig . 4(p)), and small diamond patterns (fig. 4(q)). 
In figure 49, faired ~av data obtained for these treads are compared 

with faired ~av data obtained for the circumferential-groove-tread 

tires Rl and 82M2. It should be mentioned that all the tires in fig-
ure 49 had approximately the same value of An/Ag (see table I) and 
therefore exerted approximately equal pressures on the runway surface. 
The curves for the two diamond- tread tires shown in this figure indi-
cate that the small-diamond tread (more grooves ) developed larger ~av 

values than did the large - diamond tread. This result is in agreement 
with the results shown for the circumferential groove tires in that 
increasing the number of grooves increases the value of ~av' The curves 

of figure 49 also indicate that the lateral-groove and diamond treads 
are not as efficient as the circumferential-groove treads in increasing 
the braking effectiveness of tires rolling at zero yaw angle on a wet 
concrete runway. 

TIRE TREAD WEAR 

Tire tread wear produces a marked degradation in the braking effec­
tiveness of grooved tires on contaminated runway surfaces, a fact clearly 
illustrated by figure 48 if it is assumed that the smooth tires 81 
and 82 before modification represent tires with the tread worn off com­
pletely. This assumption is substantiated by the data in figure 50 
(taken from ref. 2), which show that on wet concrete, when tire R2 was 
80 to 90 percent worn it developed values of ~max only about half as 

good as those it developed when 0 to 50 percent worn. As tire wear 
progresses past the point where the tread is worn off completely, the 
tire footprint will undergo little change until the tire carcass cords 
are exposed, when its appearance is radically altered. For example, 
compare the unworn dimple-tread tires D2 and D3 shown in figures 4(a) 
and 4(b) with the buffed dimple tire D5Ml, figure 4(d). Tire D5Ml was 
buffed down mechanically until the tread was completely removed and the 
tire carcass cords exposed. The curves shown in figures 45, 46 (b ), 
46(c), and 46(e) indicate that at the higher forward velocities on a 
water-covered runway, the tire with the exposed carcass cords (D5Ml) 
develops s lightly higher ~av values than do the less-worn tires. Thus 

it is apparent that as a grooved-tread tire becomes progressively worn, 
braking effectiveness on wet runways will suffer greatly as the tire 
approaches the smooth-tread condition, recovering only a small part of 
its original effectiveness after the carcass cords are exposed. 
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SUMMARY OF RESULTS 

An investigation was made with 32XB .B type VII aircraft tires of 
different tread designs mounted on a single wheel and on tandem wheels 
to examine the effects of dry and contaminated runway surfaces on the 
unbraked and braked rolling characteristics of the tires. The principal 
results found for the range of conditions investigated were : 

1. The unbraked rolling resistance of an aircraft tire increases 
with increasing forward velocity on dry and contaminated runway surfaces. 
For contaminated surfaces, the rolling resistance increases parabolically 
with increasing forward velocity and approximately linearly with depth 
and dens i ty of the contaminating fluid. 

2 . The center of pressure of the vertical load on the tire moves 
progressively forward of the ax l e center line (in the direction of motion) 
as the forward velocity is increased during unbraked rolling on both 
dry and contaminated runway surfaces . 

3. Automatic braking devices that use an inertia flywheel for ref­
erence angular velocity tend to become deficient in operation at high 
forward velocities on runways contaminated with s lush and water because 
of the longer time required for wheel spin- up and consequent greater 
reference- flywheel spin- down . Chiefly responsible for this effect are 
low tire- ground fr iction coefficients, forward movements of the vertical­
load center of pressure of the t ire , and unloaded- wheel brake drag that 
develop under certain contaminated- runway conditions and combine to pro­
duce extremely low wheel spin- up accelerations . 

4. Peak tire-ground friction coefficients developed during braking 
on contaminated runway surfaces tend to decrease rapidly with increasing 
forward ve l ocity. In contrast, peak friction coefficients obtained on 
dry runway surfaces appear to be relatively insensitive to changes in 
forward velocity. 

5. The magnitude of tire-ground friction coeffi cients developed on 
contaminated runway surfaces is extremely sensitive to tire tread design; 
of the various tread patterns tested, the circumferential-groove treads 
exhibited the least degradation of fr i ction coefficient, and smooth and 
dimple treads the greatest degradation, for the contaminated- runw~" 
conditions investigated . 
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6. The magnitude of tire-ground friction coefficients developed 
by tire treads with poor skid resistance was increased on contaminated 
runway surfaces by mounting tires having these treads on the rear wheel 
of a tandem-wheel landing gear. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va.) May l6) 1962. 
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APPENDIX 

For those who may desire more detailed information} figures 51 
to 79 contain plots of instantaneous tire-ground friction coefficient 
as a function of slip ratio for all tires and tire tread designs used 
in this investigation. All test runs utilized single-wheel braking 
only} with the vertical load Fz)g on the tire approximately equal to 

10)000 pounds. As explained in the body of this report} the test runs 
in which the automatic braking device was used consisted of from 3 
to 22 braking cycles) depending on forward velocity. In those instances 
where automatic braking was not used) brakes were applied by a knife­
edge-activated solenoid valve) and only one braking cycle per test run 
was obtained. The brake hydraulic system was modified for some of the 
test runs and incorporated some residual back pressure Ps 1 into the 

} 

system. These runs are so indicated} all other runs having zero back 
pressure. 

All test runs in figures 51 to 79 were intended to investigate 
braking effectiveness on water-covered concrete surfaces only. In some 
instances) however) braking action was initiated before the wet test 
section was reached) with the result that in some runs part or all of 
a particular braking cycle occurred on dry concrete. Braking cycles 
that occurred entirely on dry surfaces are indicated in the pertinent 
figures by the words "Dry runway." In those cases where braking started 
on dry concrete and ended on wet concrete the transition point is indi­
cated by a vertical line marked "A." This should be interpreted to mean 
that spin-down values to the left of the line occurred on dry concrete) 
while spin-down values to the right of the line) and all spin-up values} 
were on wet concrete. The depth of the water on the surface varied from 
damp (no puddles) dl ~ 0) to wet (high spots showing) dl = 0 to 0.3 inch) 
to flooded (runway completely covered) dl = 0.2 to 0.5 inch)} and these 

depth variations are indicated in each figure. 

Figures 51 to 79 are arranged in the same manner as table I} that 
is) data for dimple treads and modified dimple treads are presented 
first) then data for smooth and modified smooth treads) and finally 
data for grooved or rib treads. The runs for each tire are arranged in 
order of increasing forward velocity) except in figure 79. The decrease 
in forward velocity from cycle to cycle -in a particular run is due to 
wind and rolling resistance that acts to decelerate the main carriage 
upon termination of the catapult stroke. 

In figure 79} the runs are arranged chronologically rather than 
in order of increasing velocity. Braking tests on tire R3 started with 
the new tire) as did the braking tests on each of the other tires. At 
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the conclusion of run 3, however, the tire was considerably worn by 
heavy braking action on dry concrete (see run 3, fig. 79). Two more 
runs were made on this tire to demonstrate the effect of excessive tread 
wear, and upon conclusion of the last run the tire was judged to be 
approximately 90 percent worn. 
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TABLE I.- CHARACTER I STI CS OF 32x8 . 8 TYPE VII TIRES OF THE INVESTIGATION 

I nflated dimensions (p = 260 lb/sq in. ) 

Tire Descripti on Diameter, Tread An Area ratio, -
in . radius, i n . Ag 

Dl Dimpl e, fabric- re i nfor ced tread, fabric surface (a ) (a ) (a ) 

D2 Dimple, fabric - r e inforced t read, fabric surface 30 . 3 6 . 5 0.87 

D3 Dimpl e, f abr i c- re inforced tread, rubber surface 30 · 4 6 . 0 0 .87 

D4 Dimple, fabric- reinforced t read ( ice grip ) 30 · 5 6.0 0 .86 

D5Ml Dimple, fabr ic- reinforced tread modi f i ed by (a) (a ) 1. 00 
buffing t o remove t he dimples 

D6Ml Dimple , fabric- r e inforced tread modi fied by 30. 2 6 . 2 0 · 59 
5 circumferent ial grooves 

D7Ml Dimpl e, fabric- reinforced tread modified by 30 . 6 6 . 0 0 · 75 
37 lat eral grooves 

D8M! Dimple, f abric- re info r ced t r ead modifi ed by 30· 9 (a ) 0·75 
2 zigzag circumferenti al gr oove s 

D8M2 Tire D8M1 modified by removing rib between the (a ) (a ) 0 . 60 
2 zigzag grooves 

Sl Smooth, all- rubber t read 30 .8 6 . 6 1 . 00 

SlMl Ti re 81 modified by 1/2- inch- wide (a ) 6 . 6 0 · 91 
circumferential groove 

S1M2 Tire Sl modif i ed by 3/ 4- inch- wide (a ) 6.6 0 .86 
circumfer ential groove 

S1M3 Tire S1M2 modi f ied by adding two 3/ 8- inch- (a ) 6 . 6 0 . 78 
wi de ci rcumferenti al groov~ s 

S2 Smooth, f abric- reinforced t r ead, rubbe r surface 30· 9 (a ) 1. 00 

S2M! Tire S2 modified by 4 circumferential grooves 30· 9 (a ) 0 · 79 

S2M2 Tire S2M! modified by adding 1 narrow 31.1 (a ) 0 · 78 
circumferential groove at center line 

S3 Smooth, fabric- reinforced tread, fabric surface 30· 9 (a) 1 . 00 

84M! Smooth, fabric- reinforced t r ead, rubber surface, 30 · 9 (a ) 0 .81 
modified by a l arge diamond pattern 

S5M! Smooth, fabric- reinforced tread, rubber surface , 30 ·8 (a ) 0 . 72 
modified by a small diamond pattern 

S6Ml Smooth, fabr i c- reinforced t read, rubber 30. 9 (a ) 0 .62 
surface , modified by 7 circumferenti al 
grooves (sine- wave cr oss section) 

Rl Rib, all- rubber tread, 9 groove s 30. 6 5 . 7 0 . 77 

R2 Rib, all- rubber tread, 9 grooves (a ) (a ) (a ) 

R3 Ri b, all- rubber t r ead, 9 grooves (a ) (a ) (a ) 

R4 Rib, all- rubbe r tread, 11 gr ooves (a) (a ) (a ) 

R5 Rib, fabric - re i nfor ced tread, 3 grooves 30 . 6 5 . 7 0 · 79 

"Not recorded . 
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Figure 3.- Tandem wheel setup at Langl ey landing-loads track . L-60- 6948 
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Tire footprint 

( a ) Tire D2; dimple, fabric - reinforced tread, fabric surface. L- 60- 69S0 

Figure 4.- 32XS . S type VI I aircraft tires . Tire footprint conditions : Fz,g ~ 10, 000 pounds; 

P = 260 lb / sq in . 
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Before test After test 

,----
Tire footprint 

(b ) Tire D3; dimple, fabric - reinforced tread, rubber surface . 

Figure 4. - Continued . 
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Tire footprint 

After test 

(c) Tire D4; dimple, fabric-reinforced tread (ice grip ) . 

Figure 4.- Continued. 
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Before test After test 

No footprint available 

L- 60- 3527 
(d) Tire D5Ml; dimple, fabric-reinforced tread modified by bl1ffing to remove the dimples. 

Figure 4.- Continued. 
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Before test After test 

........ 
Tire footprint 

L-62-2064 
(e ) Tire D6Ml; dimple} fabric-reinforced tread modified by 5 circumferential grooves. 

Figure 4.- Continued. 
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Before test After test 
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Tire footprint 

L- 62- 2065 
(f) Tire DTMl; di mple, fabr i c-re inforced tread modified by 37 l ateral grooves . 

Figure 4.- Continued . 
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Before test 

1 __ --

Tire footprint 

'-

No photo 
available 

After test 

L-62-2066 
(g ) Tire DBMlj dimple) fabric-reinforced tread modified by 2 zigzag circumferential grooves. 

Figure 4. - Continued. 
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Before test After test 

, ........ 
Tire footprint 

L- 62- 2067 
(h) Tire DBM2; tire DBMl modified by removing rib be tween the 2 zigzag grooves . 

Figure 4.- Continued . 
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Before test 

Tire footprint 

(i) Tire 81; smooth, all-rubber tread. 

Figure 4.- Continued. 

No photo 
available 

After test 
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L-6o-6979 
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Before test 

I .... n .. 

Tire footprint 

(j) Tire S1Mlj t i re Sl modi f i ed b y 1/2-inch­
wi de circumfe r ent i a l groove . 

Before test 

rnnnlI 

Tire footprint 

L- 62- 2068 
(k ) Tire S1M2; t i re Sl modi fied by 3/ 4- inch­

wide c i rcumferent ial groove . 

Figur e 4.- Cont i nued . 
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Before test After test 

rnnn'II 

Ti re f ootprint 

L-62-2069 
(1 ) Tire 81M3; tire 81M2 modified by adding two 3/8-inch-wide circumferential grooves . 

Figure 4.- Continued. 
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Before test After test 

Tire footprint 

(0) Tire 83; smooth, fabric-reinforced tread, fabric surface. 

Figure 4.- Continued. 

rr-62-2070 
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Before test After test 

rn ...... 

Tire footprint 
I 

L- 62- 207l 
(p ) Tire S4Ml j smooth) fabric - r e inforced tread) rubber surface ) modified by a l arge diamond 

patte rn . 

Figur e 4 .- Continued . 
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Before test After test 

rntmmII 

Tire footprint 

L-62-2072 
(q) Tire S5MI; smooth, fabric-reinforced tread, rubber surface, modified by a small diamond 

pattern. 

Figure 4.- Continued. 
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Before test After test 

•• 

Tire footprint 

L-62-2073 
(r) Tire S6Mlj smooth, fabric-reinforced tread, rubber surface, modified by 7 circumferential 

grooves (sine-wave cross section). 

Figure 4.- Continued. 
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No photo available 

Before test After test 

I- ••• 

Tire footprint 

(s) Tire Rl; rib, all-rubber tread, 9 grooves. 

Figure 4.- Continued. 
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L-60-6978 
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( t ) Tire R4; rib) all- rubber tread) 11 grooves (after test ). 

Figure 4.- Continued . 
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Before test After test 

IIHlIfiili 

Tire footprint 

(u) Tire R5; rib, fabric - reinforced tread, 3 grooves . L-62-2074 

Figure 4.- Concluded. 
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(a) Fabric-reinforced dimpl e tread ( similar 
to tires Dl) D2 ). 

,0 I ,1";' ',2 I ,3 

( c ) All-rubber rib tread ( similar to 
tires Rl) R2) R3 ). 

° I 11'°;"'1 2 I 13 

(b) Fabric-reinforced rib tread ( similar 
to tire R5 ). 

10 I f'";·",2 I 13 

L-62-2075 
(d) All-rubber rib t r ead ( s i milar to 

tire R4). 

Figure 5. - Cross sections obtained from 32XB.B type VII aircraft tires with fabric - reinforced 
tread and all- rubber tread . 

~--~~-- --------------zr-><-------~~--~----- ~~---------------&-_-~ ...... ~.:.r_..___ _____ ~~ ---n.~-~ 



0\ 
\.)I 

I 
I 
• + 

~ 19" I ,- - ~ 

2" 

-----------_ .,... .... '-_._-- <----
~ 

--1--+ - +--
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Figure 6.- Cross section of test runway surfaces . 
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Concrete runway 
----------~~--Direction or carriage travel 

r T1re center line 

I I I I I I I t 
100 800 900 1,000 1,100 1,200 1,)00 I, 00 

Di8tance along track, rt 

Figure 7.- Schematic diagram showing location of test runways on Langley landing-loads track. 
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(a) Smooth asphalt runway (sand finish). . L-59-7643 

(b ) Rough asphalt runway (aggregate finish). L-59-7644 

Figure 8 .- Asphalt runway surfaces used in investigation. 

----------- .~-



(J\ 
(J\ 

L- 62- 2076 
Figure 9.- Water- covered concrete runway i mmedi ately before wheel- braking run. 

dl = 0 to 0 . 3 inch . 
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L-62-2077 
Figure 10.- Spreading detergent and organic foam on concrete runway just before start of a 

braked rolling run. 
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-------- Tire for F ~ 0; Fz,g i 0 x,g 

- - - - Tire for Fx,g = 0; Fz,g = 0 
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/ 

Xc (positive forward 
of axle c'enter 
line) F 

z,g 

;;Runway surface 

t 

Figure 11.- Moments and torques acting on decelerating tire during braked 
rolling. (Wheel-bearing frictional torque is disregarded.) 
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Figure 12 .- Determination of ~av. 
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Shape of pressure 
distribut ion 

(a) Standing tire under vertical load only. 

Runway s ur face 

(b ) Unbraked tire rolling at constant velocity on dry runway. 

FX , g , f~ 

Fx g r~ ~ --~"""'= 
, , Fx , g, b 

TB = O. 

"A" Foot print region s upported by runway 
( vertical l oad::: Fz,g - Fz,L) 

"8" Footpr int region supported by fluid 

( ver tical load ::: Fz,L) 

O· , 

(c ) Unbraked roll ing tire undergoing spin- down on flui d- covered runway. 
ex, > 0 ; TB = O. 

Figure 13. - Schematic representation of pressure distributions developed 
in footprint region of a loaded tire under various roll ing conditi ons . 
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(b) Variation of vertical-load center-of-pressure 
movement. (Pos i tive value denotes movement 
i n direc t ion of motion.) 
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Forward veloc i ty, VH, knots 

120 

Figure 14.- Vari ation of rolling- resistance coeffi c i ent and vertical­
load center- of- pressure movement with forward ve l ocity for an 
unbraked t i re (R2 ) ro l ling on a dry concrete runway. 
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Calculations 
based on 
CL ::: 0 .7 

in eq. (5) 

Calculations 
based on 
CL ::: 0 . 7 

in eq. (7 ) 

120 

100 

80 

60 

40 

20 

o 

~ 6 .70-15 automobile tire (unpublished data from friction- cart 
tests ; see ref . 3 for description of cart) : 

p = 18- 40 Ib/in2 ; Fz, g = 1, 875 Ib ; smooth t read ; dI zO . 3 inch 

v 12 inch diameter x 3 inch width tire ( r ef . 5) 
p = 7. 5- 28 .5 Ib/in2j Fz , g = 100 Ib ; smooth t read; dl~0 . 05 inch 

o 32 x 8 . 8 type VII aircraft tire (rr esent test) : 
r = 115 I b/ in2 j F = 9, 400 I b j r ib tread ; d1ZO . 5-0 .8 inch , z , g 
44 x 13 type VII aircraft tire (ref . 7) : 
P = 100-150 Ib/in2; F = 20, 000 Ib; rib treadj dl·e O. l inch z, g 

o 

17 . 00- 20 ty,e III aircr aft tire ( r eL L ) : 
p = 65 Ib/in2j F = 10, 000 Ibj r ib tread j dl ""'0 . 4 inch z,g 

o 

Lio, of ." .,",ot~ 

20 40 60 80 100 120 

Experimental hydroplaning velocity, knots 

Figure 15.- Comparison of exper imental hydroplaning velocities obtained 
from tests on wet runway surfaces and velocities calculated by us i ng 
CL = 0·7 in equations (5) and (7). 
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Runway Predicted .................. 

hydroplanl.ng 
velocity 
(eq . (7 » 
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L x 104 

Spin- up moment F x , g (ro - 6 ) 

Spin- down moment F z , g Xc 

~ Spin-up torque impulse 

Wll2:] Spin- down torque impulse 

-~~---~----*------~---~----~------~----~----~----~ 

Time, sec 

Figure 16 .- Unbraked rolling run during which t i re hydroplanes and 
spins down t o stop on water- covered concrete runway. Ti re D5Ml; 
p = 90 lb/sq in. 
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Figure 17 .- Braking cycle for tire R2 on wet concrete . Fz,g ~ 10,000 

pounds; p ~ 260 l b/sq i n . ; dl 0 . 05 to 0.3 inch; VH ~ 96 to 
93 . 5 knots; antiski d uni t not used . Brake pressure was sequenced 
by energizing sol enoid valves in brake c ircuit through knife edges 
positioned on track runway. 
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( a) VH 30 kn ots. 
,Arrows indicate posi tive or increasi ng direction of traces . 

Cycle 2 0.1 

_ I I 
( b ) VH = 89 knots . 

Figure 19. - Typical oscillograph tracings obtained during low- speed and high-speed braking on 
a wet concrete runway with the fabric - reinforced rib- tread t i re 82M2. Fz, g ~ 10,000 poundsj 

p = 260 Ib / sq in . ; dl = 0 to 0 . 3 inch . 
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L- 62- 2078 

Figure 22 .- Tire appearance after skidding approximately 60 feet on a dry 
conc r ete runway. 
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Figure 23 .- Typical time history of wheel loads, velocities , and dis ­
placement during unbraked rolling through s l ush and wate r troughs 
on a concrete runway. p = 115 1b / sq in. 
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Figure 25 .- Forces deve l oped on unbraked tandem whee l s i n s l ush . Slush depth, 1. 75 inche s ; 
s l ush density, 1 . 82 s l ugs / cu ft . 
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runways for several different tires. Fz, g ~ 10,000 pounds; dl (asphalt) = 0 to 0,5 inch; 

dl (concrete ) = 0 to 0. 3 inch. 



104 

8 

4 

~ Tire 82M2; concrete runway 
~ ol·--------~-------J--------~------~--------L-----~ 
"-
(f) 
c 

'" 'M 
"0 

~ 12 x 102 

c 
o 

'M 
+-' 

'" ~ Q) 
rl 
Q) 
tJ 
tJ 

'" Po 
::l 
I 
r: 

'M 
Po 
(f) 

rl 
Q) 
Q) 

.<:: 
~ 
Q) 
b!J 

~ 
Q) 
~ 
< 

8 

4 

Tire 81; concrete 

~ p = 260 lb/in2 

- - 0 - - p = 120 lb/in2 

0L-----~------~-------L------~~_1 

8 

4 

Tire 82; concrete runway "-

O,------~2~~------~4~'0~----~6~O------78bD~-"-~[~I~lOO~'------~i20 

Forward velocity, VH' knots 

(0 ) Average wheel spin- up acceleration. 

Figure 43. - Concluded. 



1--

b 
\Jl 

. 6 

.L 
;:; 

"-

+' 
iJ 
"8 . 2 
""' ... 
'l1 
o 
u 

g 0 
""' +' 
~ 
~ 

§ . 61 

~ 
1: 
j .L 

~ 
H 

~ 
.2i 

--~. ~~--I 

BuB ~ Direction of Motion 

Rear Forward 
Tandem Wheels 

---{)--5ingle or forward tandem wheel 

- - 0- - Rear tandem wheel 

o Dimple tread, tire D2 

o Dimple tread, tire D2 (S- groove rib 
tread tire 52M2 on forward wheel) . 

o 5DlOoth tread, tire 52 

o 5mooth tread. tire 52 (S- groove r ib 
tread tire 52M2 on forward wheel). 

~ 
~~ 

I I I ! I I I 

o 5- groove rib tread tire 52M2 

o 5-groove rib tread tire 52M2 
(S- groove rib tread tire 52M2 
on forward wheel) 

~-~--
o 

O S-groove rib tread tire 52M2 

o 5- groove rib tread tire 52M2 (smooth . 
tread tire S2 on forward wheel) 

'4~ ~"- __ _ 
~ 

o m ~ w ~ ~ ~ o 20 40 60 o 100 120 

Forward velocity J V H ' knots 

(a ) Average tire- ground friction coefficient ~av ' 

Figure 44 . - Effect of tire position in a tandem wheel arrangement on average tire - ground fric­
tion coefficients and wheel spin-up accelerations developed during braking tests on wet 
concrete runways . Fz,g ~ 10,000 pounds per tire; p = 260 lb/sq in.; dl = 0 to 0.3 inch. 



b 
0'1 

1_2 x 102 

C\J -
8 

t) 
cu ., 

';n--
a 
al 4,-or< 
'd 
al 
H 

a~ 
0 

or< 

1il 0 H 
cu 
.--I 
cu 
t) 
t) 
al 

go 12 x 102 

I 
a 

OM 
Po ., 

.--I 
cu 8 cu 
.Q 

I -0 ;. 
cu 
:if 
H cu 

4 ~ 

o 20 

Dimple tread, tire D2 

o Single wheel 
[] Rear tandem wheel {tire S2M2 

on front tandem wheel) 
Rib tread, tire 52M2 

o 
o 

Single wheel 

--00 -- __ - o <> 
Rear tandem wheel (tire 82M2 
on front tandem wheel) 

Rear tandem wheel(tire 82 
on f r ont tandem wheel) o 

'0- ..... 

40 

0-

Smooth tread, tire 82 

o Single wheel 
[] Rear tandem wheel (tire S2M2 

on front tandem wheel) 

12 x 102 

8 

4 

<> 
o 

o---o~~o <> o 0 

o o 
o 

t I I ! I ! I 

o 20 40 60 80 100 120 

60 80 100 120 

Forward Velocity, VH ' knots 

(b ) Average wheel spin- up acceleration. 

Figure 44. - Continued . 



I 

b 
-.l 

.6 

AVERAGE .4 
FRICTION 

COEFFI C lENT, 

~av .2 

a 

------. --- - -

o REAR TANDEM WHEEL, 0- 0.3 INCH WATER DEPTH 
o REAR TANDEM WHEEL, 1.5 INCH SLUSH DEPTH 

-- SINGLE WHEEL, a - 0.3 I NCH WATER DEPTH 
--- SINGLE WHEEL (LESS SLUSH DRAG), 1.5 INCH 

SLUSH DEPTH 

-{Jom 
o 0 

.......... -....-...._-----

20 40 60 80 100 

FORWARD VELOC ITY, KNOTS 

(c ) Average tire - ground friction coefficient !-lav for tire 82M2 braki ng in s l ush and water . 

Figure 44 .- Concluded. 

_____ J 



b 
OJ 

> ro 
:i 

... 
+> r::; 
(l) 

'M 
() 

'M 
'H .6 
'H 
(l) 

o 
() 

r::; 
o 

'M 
~ .4 
'M 

r.... 
'H 

'0 
r::; 
;:l 
o 
r.... .2~ · 
Wl , 
\l) 

.~ 
+> 

-------- Tire D5Ml - Smooth (buffed dimple), rubber and carcass-fabric 
contact surface 

-- --- Tire Sl 
Tire S2 

---- Tire S3 

\" ~~., 
"0-

- Smooth all-rubber tread, rubber contact surface 
- Smooth fabric-reinforced rubber tread, rubber contact 

surface 
- Smooth fabric -re inforced tread, rubber and tread 

fabric contact surface 

(l) 

~ o· 2
1

0 4'0 60 8'0 Ibo lko 
(l) 

> c:x: Forward velocity, VH, knots 

Figure 45 .- Effect of tire tread material on the average tire - ground friction coefficients 
deve loped during single-wheel braking tests on wet concrete runways. Fz)g ~ 10)000 

pounds; p = 260 Ib/sq in; dl = 0 to 0 . 3 inch. 

L-__ . __ . --~ 
----------------------~~-~~--------



· 6 

.4 

• (a) Tire 01. ~ 
dl=OtoO .5 1n .j ~ 
PB,l = 50 Ib/ in2 . 

~~ 
(b) Tire 02. ~ 

OL-__ ~ ____ ~ ____ -L ____ ~ __ ~ 

.6 

.4 5F 

. 2 

(c) Tire 0,. (d) Tire D4. 
oL-__ ~ ____ ~ ____ -L ____ ~ __ ~ 

.6 

~ 
(e) Tire 05Ml. (r) Tire D6MJ. . 

0 

. 6 
--O-TireD8Ml 

- - -0 - Tire D8M2 

.4 

. 2 

(g) Tire 07MJ.. (h) Tires 000 and 08l!2 . 

0 20 40 60 80 100 0 20 40 60 80 1 

Forward veloc i ty, V H' knots 

Figure 46 .- Variations of average t ire - ground fr i ction coefficient 
wi th forward ve locity for the di fferent tires investigated during 
singl e- wheel braking tests on a water- covered concrete runway. 
Test conditions , except where noted, are Fz, g ~ 10,000 pounds, 

p = 260 Ib/sq in., and dl = 0 to 0. 3 inch. Shaded circle symbols 
i n this figure denote average values over several braking cycles 
due to inability of tire to spin up after brake release. 

109 



o 

(j) Tire 81; 

o Water depth 0- 0 . 3 inch 

o Damp runway, water depth<='zero 

(1) Tire 81M3 . 

• 2 

(0) Tire 82Ml. (p) Tire 82M2; p = 260 1b/in2 . 

0'~----~2~0----~4~0------6~0------~80------1-L00 o 20 ~O 60 100 

Forwar d velocity, VH, knots 

Figure 46. - Continued. 

110 

I 

~ 



I 
L_ 

. 2 

~ 

~ 
(r) Tire 53. ~ 

.6 

.4 

o 
(8) Tire 54Ml . (t) Tire 55Ml. 

• 4 

.2 

(u) Tire 56Ml. (v) Tire Rl. 
o~----~----L-----L-____ L-__ ~ 

.6 

.4 

.2 

(w) Tire R4. d1 ~ 0 to 0 ·5 in.; PB,l ~ 50 Ib/ in2 . (x) Tire R5. 
o 20 40 100 60 80 o 40 20 60 

Forward velocity, V
H
, knots 

Figure 46. - Concluded. 

III 



L._ 

f--' 
f--' 
I\) 

.6 

~8:::::::::~8j Dimple-tread tires (tires Dl, D2, D3, and D4) 
:> 

:i
ctl .5~ uTilI C Smooth-tread tires (tires Sl , S2 , and S3) 

"' +> 
C 
<lJ 

'M 
() 

'M I 
'H .~ 
'H 

<lJ 
o 
() 

c 
o 

'M 

~ .3--
'M 
H 
'H 

'0 
C 
;:l 
o 
~ . 2--
I 
<lJ 

.~ 
+> 
<lJ 

~ .1 
H 
<lJ 

~ 

o 10 20 50 60 70 

Forward velocity, V
H

, knots 

Figure 47.- Average tire-ground friction coefficients obtained with smooth- and dimple-tread 
tires during braking tests on a water-covered concrete runway. Fz,g ~ 10,000 pounds; 

P = 260 Ib/sq in.; dl = 0 to 0.3 inch. 

.------"----- -~ ___ ,~ ~_~~_ ,-------------------v-~ .~. _____ _ 



I~-

~ 
~ 
\)j 

~ 

'" ::1-
~ 

+> 
J:: 
Q) 
·rl 
() 

·rl 
'H 
'H 
Q) 
0 
() 

J:: 
0 

-rl 
+> 
() 

·rl 
I-< 

'H 

"0 
J:: 
;:l 
0 ,.. 
bD 
I 
Q) 

.~ 
+> 
Q) 
bD 

'" ,.. 
Q) 

~ 

.6 

.4 

.2~ 

-----------.--.---.~.~-~- - --- .---~---~------" 

Smooth-tread tire Sl 
- - - - - Tire Sl modified by 1 circumferential 

groove ( SlMl ) 
--- -- Tire Sl modified by 3 circumferential 

grooves ( SlM3 ) 

~ --- ---

'-

---- Smooth-tread tire 52 
- - Tire 52 modified by 4 circumferential 

grooves ( 52Ml ) 
- Tire 52 modified by 5 circumferential 

grooves ( 52M2 ) 

'---~ " ==--
--------::-..::::--:----::----

----

--------I (a) Tires Sl, SlMl, and S1M3· 
__ I . (b) Tires 82, 82Ml, and 82M2. 

0 

.6 

.4 

.2 

0 

Dimple-tread tire D2 
- - - -- - Dimple-tread tire modified by 5 

circumferential gr ooves (D6Ml) 

-- --

(c) Tires D2 and D6ML 
I 1 I I 

20 40 60 80 100 o 

Dimple - tread tire D2 
-- - - - Dimple-tread tire modified by 2 

circumferential zigzag grooves (DBM1 ) 

" -­
" 

(d) Tires D2 and D8Ml. 

20 40 60 80 100 

Forward velocity, VH, knots 

Figure 48.- Braking effectiveness of smooth- and dimple-tread tires on water-covered runways 
before and after circumferential grooves were cut into tire tread. Fz,g ~ 10,000 pounds; 

P = 260 lb/sq in.; dl = 0 to 0.3 inch. 

I 



L 

~ 
:i 
" ~ 

s.:: 
Q) 

·rl 
C) 

·rl 
Ct-i .6 
Ct-i 
Q) 
o 
C) 

s.:: 
o 

·rl 
t .4 
·rl 
H 

Ct-i 

'"d 
§ 
o 
H .2 
b.O 
I 

Q) 

H 
·rl 
~ 

Q) 

b.O 

~ 0 
Q) 

:> 
c:x: 

20 

Tire Rl (9 circumferential grooves) 
Tire S2M2 (5 circumferential grooves) 
Tire D7Ml (37 lateral grooves) 
Tire s4Ml (large diamond) 
Tire S5Ml (small diamond) 

An/Ag 

0 . 77 
0 .78 
0. 75 
0 . 81 
0 . 72 

40 60 80 100 120 

Fonlard velocity, VH, knots 

Figure 49.- Wet-runway braking effectiveness of tire treads with lateral 
grooves, diamond patterns, and circumferential grooves. Data obtained 
during single-wheel braking tests on a wet concrete runway. 
Fz,g ~ 10JOOO pounds; P = 260 Ib/sq in.; dl = 0 to 0.3 inch. 

114 



1--- -

I 
! 

! 

! 
\ 
( 
1 

I 
\ 
1 

1 

Dry concrete Wet concrete 
(0 to 1.0 in. water) 

.8 

.6 ~ 0 0 

~max .4 O~ ~ o Tire R2 

.2 0 Ti re R3 

0 

(a ) 0- to 50-percent worn . 

.8 6 80 percent worn 

.6 o 80 to 90 percent worn 

~max .4 

.2 

0 20 40 60 80 100 o 20 40 60 80 100 

(b ) 50- to 90- percent worn . 

Figur e 50 .- Effe ct of tread wear on maximum t ire- ground friction coeffi­
cient ~max for t i res R2 and R3 (9 circumferential grooves, al l­
rubbe r t r ead) . Fz, g ~ 10, 000 pounds; P = 260 lb/sq in. 

115 



.----

~ 
~ 
0\ 

.6 I c9 Cycle I , V H • W. knots Cycle 2, V H • 39 knots 

° 0 

° 0 o Spin- down cg 8 0 o Spin- up 0 
. 4 I- 0 CO 

0 
0 

0 C 
0 0 0 0 00 0 0 

0 
0 0 @ 0 

. 2 I 
Dry runway Dry runway 

0 . 2 . 4 . 6 . 8 1.0 0 . 2 . 4 .6 . 8 1.0 

'" ,; 
c 
~ 

<l ., ~ 0,0" ,. " . " _" r Cycle 5, v
H 

• 37 knots r Cycle 7 , VH 
• 35 knots .... .... .... 

~ 

8 
o oc9 

~ 00 0 o~ 
c 0 0 .... 

. 2 8 Cb QJ o ff:y0 0 CO ~ 0 0 .... oEl h 

'" B 0 

0 . 2 . 4 0 . 2 . 4 . 6 0 . 2 . 4 

.4 
Cycle 9 , V H • 34 knots 

lo 

Cycle 11, V
H 

• 3J knots 

00 
0 o @ 0 . 2 ~ 0 0 

o OJ 00 0 o CO 0 0 0
0 

0 0 0 0 oC 
0 

0 . 2 .4 .6 .8 1.0 0 . 2 . 4 .6 . 8 1.0 

Slip ratio, 51 

(a) Run 1. 

Figure 51.- Tire Dl, dimple fabric-reinforced tread, fabric surface . Antiskid unit operating; 
p = 260 lb/sq in.; dl = 0. 2 to 0.5 inch (except where noted); PB,l = 50 lb/sq in. 

----~<-------~ -~--- ... --------~.~ 



I 

I-' 
I-' 
~ 

+' 
<: 
Ql 
-r< 
0 
-r< .... .... 
Ql 
0 
0 

<: 
0 

.r< 
+' 
0 

-r< ... 
r.. 

--.J' __ ~ ______ ~ _~. ____ ~-____ --- - _..r-'.L..-..-_____ _ 

. 8 , 
Cycle 1 , V

H 
- 49 knots 

0 
.6 f--- @ 

00 

0 CIA II 

.4 I 
0 

. 2

1 0 01 

0 . 2 .4 . 6 

.4 
Cycle 7, V

H 
46 knots 

. 2 

6f1«D<0 

o . 2 .4 .6 

00 

.8 

0 

o 

o Spin- down 

o Spin- up 

.4 Cycle 3, V
H 

48 knots 

& 

0 

1.0 

. 2 

o 

8Q) 
0@@J 

. 2 

Cycle 9, V H 44 knots 

~ oc§) 800 
o 0 

. 2 .4 .6 

Slip ratio , sl 

(b) Run 2 . 

.U 

Figure 51.- Continued . 

- ----_._- --~---

Cycle 5, V
H 

u7 knots 

c:P~OO ~ 

o . 2 .4 

Cycle 11 , V
H 

41 knots 

o <Q() ~ 0tJO o 0 

o . 2 .4 .6 

-----., 
I 



,-

~ 
c . 
~ 
1 
c 

~ 
E 

l 
~ 
8 

~ 
~ 
.t: 

Cycle 2, VH := 62 knot3 

° 
' A' 

0 

10 
° 0 

° 

. 4. Cycle h, VB :: 60 knot.s 

. 2 

°1 0° ° 
00 

0 0 0 
0 

6b'O 0c90~ ~ 

--1 
.2 .4 .6 . 8 1.0 .2 .4 .6 . 2 .4 

.4 r I Cycle 5, vH :: 59 knots Cycle 7, V H :: 58 knots Cycle 9 . V H ;; 56 knot:!! Cycle la, VH =: 55 knots 

'~ 
.2 .4 

i~~OD 

o 
. 2 

o 
o 

00 

.4 

( c ) Run ) . 

. 2 

.6 ,-------- Cycle 1, V
H 

:: 88 knots 

I 
.4 

. 2 

BttB 
0 

J 0 
Dry 

runway 

o ~
CYCle 2, VH ' 66 kno," 

Cycle 3, Vii :: 8) knots 

o 0,<\ Ii "" .. " . n •• ," 

O~@CD~ 
o 

I 

. 2 .4 .6 .8 loC 
Sllp ratio, 9 1 

Cd) Run 4. 

Figure 51.- Concluded . 

o 0 
o 0 ~ 

.2 

o Spln- dovn 

o Spin- up 

.......... -----~- ~ --- - -"'00.....- - - --_.---...--..-_ -. -----

00 '0& 

.4 .6 .8 

-. --"'--------- .-.----===---~-



I 

~ 

t) 

. 2 

o 
o 

Cycle 2, VII = u6 knoLl! 

o 
o 00 0 0 0 

o 
I I I I I 

. 2 . 4 . 6 ) 1.0 

a COrl 
IlD DO 00 000' 

Cycle 6. V H :;: ',6 knots 

I I I 

ocoo~ 
o Cycle 7, VII :: Lit knoLl! 

n .2 .1. . 2 . 4 

Cycle ) , VII = 47 knots 

~ 8 ° °0 <EJ ° 
. 2 .4 

Qo§<§Q~% 
Cycle 9 , \ = il2 knots 

. 2 .4 

( a ) Run 1. 

t::ycl e 1, VH = 61 knots 

c 
.4 

"A" 

Cycle S. VH = 46 knots 

o°Q:POOO6l 

. 6 .2 

@ O@OO ° 
00 0 

C;rela 11, VII :: hO knot ::. 0 

. 2 .4 .6 

Cycle 7 . VH = 8S knots CYcle J, V
M 

= 81 knoLs Cycle L, V
H 

= 79 kn!:t.!! 

o 
.2reo 

o 

.4 

o 
o 

o 0 
00 

00 

Cyel~ S, VH :: 78 knot.s 

o 8 0 
o 0 Ceo o 

.2 .4 

.6 

o 

@ oCt:a£ ° LJ C 
I I 
, .4 

o 
"i§lC 

. ~ .l 

Cvc11" 6 , VII :;: 71 knots 
DO 

Cycle 1 , Vli :;: 76 kllots 

I1J) 

° 00 

Dry spin-up 

o 
8 c/¢J 

° C , I 
.2 . lI 

SUp ratio, 51 

(b) Run 2 . 

° ~O 
co ct9 

o Spin- dOWn 

C Spin-up 

. 2 .J, 

Figure 52 .- Tire Dl, dimple fabric-reinforced tread, fabric surface . Antiskid unit operating; 
P = 260 lb/sq in.; dl = 0 to 0. 3 inch (except where noted ); PB 1 = 50 lb/sq in. , 

-~----- -I 

~ 



B 

1_ 

::I. 

... 
+> 
!:: 
Q) 

.,-i 
u 

.,-i 
Ct-i 
Ct-i 
Q) 
o 
u 
!:: 
o 

-,-i 
+> u 
.,-i 
H rx.. 

.6-

~ 
.4 

II A" 

o 

.2 

o 
o 

o Spin-down 

o Spin-up 

Cy cle 1 , V
H 

86 knots 

o 
008 

r---- ------Cycle 2, V
H 

83 knots 

,----- Cycle 3, V 80 knots 
H 

[ CYCle 

o 

o~~~ 

4, V = 76 knots 
H 

a' , I I I 

.2 .4 .6 . 8 1.0 

Slip ratio, 51 

( c ) Run 3. 

Figure 52.- Concluded . 

.----.~----- ~- --.--~ 



!-----~-.- --- - _. 

I-' 
r\) 
I-' 

.L 
I 

. 2~ 

"" .L 
~. 

~ g 
o 

" .. 
u .... 
" ... 

. h 

. 2 

Q 

0 0 @0 8 
0 
0 
0 

I I 
. ? .L 

GJ o 

{) 0 8 o 

. 2 .L 

Cycle 1, VH :: li1l knots 

en 
0 

~ 
o 

I I 
.6 . 6 

Cycle t.. VH :: LI knot.s 

o 0 
o 0 0 

o 

Cycle 7, V H :: Ito knots 

o 
o 

° o 0 

.6 . 6 1. 0 

- ----._-._---- -----_ ._. ----- -------

o 

. 2 

@ 
o 

o 

o 

8 

. 2 

o 
c9 
o 

o 

.!J 

o 

0 0 

.2 

Cycle 2 , VH :: IJ2 knots 

;) 

o 
o 

.b . 6 

Cycle $, V
H 

:: uO knots 

o 
o o o o 

.L .6 .e 0 

Cycle 6, VH = )8 knot.s 

o 
§ 

. L .6 . 8 

Slip ratio , 81 

(a) Run 1. 

o 
o o 

0
0 00 

o 

.2 

° 
o 

1.c 

Cycle ), VH :: Ll knots 

o 
o D O 

Cycle 6 , vH :: LO knots 

Cb o 

.L .6 .8 

o Spin- down 

o Spin-up 

Figure 53.- Tire D2, dimple fabric-reinforced tread, fabric surface. 
ating; p == 260 lb/sq in.; dl = 0 to 0.3 inch. 

Antiskid unit oper-

-----" 



I-' 
f\) 
f\) 

Cycle 1 , V H :: 57 knots 

"'[ fa 0
0 

,0 a , 0 0, 0 6' 

Cycle 2, VH = 56 r ~cP CD 0

0
0 

"- 0 . 2 .tt . 6 . 6 l.C o . 2 . Ii .6 
~ 

~ 
t: 
13 Cycle h, -"H :: $) knots Cycle S, V

H 
:: 52 knots 

'r .OOOOOO~ O , 

o .< .L .6 

~O"0 
.2 .'L ' .6 

(b ) Run 2 . 

CO/de I , VH :: 6) knots C.vcle 2 J VH :: 61 knots Cycle ) , V H :: 61 knots 

. 2 

0" 00 eO :J 0 0 ~ ad' ~'~ , o 0 ~OO 'b0
, 0 \l 0° 

~- 0 

~ 
.2 .h o . 2 .L o . 2 . 10 .6 

~ 
2 
c 

~ ... 

r-vcle $, VH ::: 59 knots 

'Ill 0
00 

0'0 ~ 
o Spin- down 

o Spin- up 

o . 2 .h .6 

Sl i~ rat i o , 51 

( c ) Run 3. 

Figure 53.- Continued . 

.. 

knots Cycle ), VH :: S5 knots 

r& 'b 0 0 '" a 

o . 2 . It .6 

Cvclp II , VH :: 60 bets 

~0C\) o~ 0 00, c<b , 

o .2 .h .6 



l~-·- · 

~ 
r\) 
\)I 

I ... 
" :1 0 

" ' .., 
c c 
o " ........ .., " " .... ....... 
" '" 

I ... 
" :1 o 
" ' .., 
c c 
0" ........ .., " " .... ....... 
t; 

I ... 
" :1 o 
" ' c~ 
o " ........ .., " " .... ....... 
" '" 

----""" --~.-. --- - - - ~------- - , 

. 2 ~ Cycle 1, VH = 8) knots Cycle 2, VH = 80 kno t s Cycle ) , VH 16 knots 

I~CbO OO~ 1J OO@ 0 

I 

{j)ce> 
Q3 BCD ~ 

0 . 2 .4 .6 o . 2 .4 o . 2 .1. 

(d) Run 4. 

Cycle 1, VH 99 knots Cyc l e 2, VH = 96 kno t s Cycle 3, VB 93 kno t s Cycle I. , VH 92 knots 

.• 2 

° 0 
~ GO &0 ° qji'§9 db~~o~ 

o o .< .w . 6 

(e ) Run 5. 

Cycle 1, VH 100 kn ot s 
. 2 

8§9o~ OJ~ 

Cycle 2, V
H k~~~ J . ' " " 95 ,~" 

97 knots 

o Spin-down 

o Spin- up 

a .2 .1; a . 2 .1. o . ? .11 

Sl ip r atio , sl 

(f) Run 6. 

Figure 53.- Concluded . 

, 



- -_ .. - ----------

~ .~ 
~ Cycle 1 , VH = 14 knots l 0 0 Cycle iJ , VH = 14 knots 

o 0 0 0 0 
o 0 0 0 o 0 ~ 

.2 f- 0 0 0 0 0 -<..J 

o 

0 

.6 

I 
0 

.4 r 0 
0 

:1 

'2-

. 2
1 

~ 0 .~ 0 0 
U 
." ... 0 ... 
~ 
0 
u 
c 
.!l .., 10 
.~ 
to. 

0 

.h r 0 0 0 o 
0 

0 
0 

. 2 ~ 0 

n . 2 ·4 .6 

Cycle 7, V H = 12 knots 

o 
o o o Spin- <Iown 

o Spin-up 

Cycle 13, V
H 

= 9 knot s 

o 
o 

. 8 1.0 

Sl ip rat io, 51 

( a ) Run 1 . 

o 

o 

o 
o 
Cl 

Cycle 10, VH = 11 k .... ot s 

o 0 o 
o 0 o o o 

Cycle 16, VH = 8 knots 

o 0 
DO o § 

. 2 .4 .6 . 8 1. 0 

I 

l
' ~~ Figure 54 .- Tire D3, dimpl e fabric - reinforced tread, rubber surface . Anti skid unit oper­

ating; p = 260 lb / sq in .; dl = 0 to 0 . 3 inch . 

. -------- ..• -----~.-.--- ----"'-----.-. 



r--._-- --~----~---.--~---~ -~----~- --~-

.4 . 
Cycle 1, VH = 49 knots Cycle 2, VH = 48 knots Cycle ) , V

H 
= 46 knots 

0 
. 21--

0 
0 § 

0 
000 too 0 loo 0 o 0 

<m @ @ 

8
0 0 

0 0 o 0 

L .. 0 0 .2 .4 
" 

.6 . S 0 . 2 . ~ .6 

!: 
!! ... .. 
~ 
0 
u 

" $l 
~ . 4 .. 

Cycle 4, V ~ = 45 knots Cycl e S, VII = 44 knots " '" 
o Spin-down 

. 2 I-

8 0
0 

0 0 0 ~o~ 00 
0 0 o Spin-up 00 0 0 

€f 
1 

0 . 2 .4 . 6 0 . 2 .4 . 6 

(b) Run 2. 

Cycle 1, VH = 98 knots Cycle 2, VH = 96 knots Cycle ) , VH = 95 knots Cycle 4, vH = 9) kno ts Cycle S, V
H 

= 91 knots 

.'~ ~ { CO rc"", to~%~Ce , "- 0 

1 OOOOOC:OcP ~ '2Jeen e 0 

I 
0 . 2 . 4 0 . 2 .4 0 . 2 .4 0 . 2 . ~ 0 . 2 .4 

Slip ratio, "1 

(c) Run 3. 
~ 

~ Figure 54.- Concluded. 



...... 
f\) 
0\ 

0 .L I 0 
00 0 Cycle 1, Vp, = 2L knots 

00 
0 0 0 0 

0 0 0 
. 2 f- 0 0 

00 
o Spin-down 

0 
0 o Spin-up 

0 

0 

.L r 0 

[~ ° 
0 o 0 

0 
Cycle J J V H = 22 knots 

0 (; 
0 

0 
0 0 

. 2 J... 
"-

'2 

~ . 
8 0 

" 
.L r j Cycle 5, V H = 22 knots 

LO 
0 0 

.!:i 00 0 . 
r~ 

0 0 
0 0 00 0 

. 2 f-O 

0 
0 

L 
0 

.L r Cycle 1 , VH = 21 knots 

[00 °0 0 0 0 0 
0 0 

0 0 0 
. 2 I-~ 

o . 2 .L .6 . 8 1.0 o . 2 .L 

Slip ra tic , 9 1 

( a ) Run 1. 

Figure 55. - Tire D4, dimple fabric-reinforced tread (ice grip ). 
p = 260 lb/sq in.; dl = 0 to 0 . 3 inch. 

Cycle 2 , VH = 2) knots 

0 
0 0 

0 

Cycle L, VH = 22 knotso 
0 0 

Cycle 6 J V H = 2l knots 

0 
0 

0 
0 

Cycle 6 , VH = 20 kr.ots 

0 0 0 
0 

.6 .8 1.0 

Antiskid unit operating; 



l~ 

) 

I 

...... 
f\) 
--.l 

"-.. 
c 

] 
t 
8 
c 

~ 
~ ... 

---~~----.~-- ----

.4 

. 2 t-- CbO 

D 

~ 
0 

.4 r 

' ~ 0 00 

0 

.4 

. 2 f- 00 
° n 
~ 
0 

L 

.4 

J en 
0 0° 

0 

° ° o 

o 0 

00 

0 0 
0 

0 

c:;l 

0° 

.2 .4 

c:P 

0 

0 

.6 

Cycle 1, VH ::: 1.,9 knots 

o o Spin- down 

U Spin-up 

Cycle J, V
H 

::: u7 knots 

o 0 0 

----L_ 

Cycle 5, VH ::: L6 knots 

o 

Cycle 7, VH ::: LLa knots 

. 8 1. 0 

Slip ratio, 51 

(b ) Run 2 . 

<9 0 0 0 0 0 ° 
& 

~o 

o 
o 0 0 

o 

8 

o 

. 2 

8 
o ° 

o 
o 0

0 

.4 

Figure 55 .- Continued . 

---~-~.-. -

Cvcle 2, VH ::: L8 knots 

o 

Cycle L, "H = L6 knots 

Cycle 6 , VH ::: taL knots 

o 

.6 . 8 1. 0 

J 



f--' 
f\) 
OJ 

-_._----

"-

, 2 Cycle 1 , VH = 79 knots 

~~" Cb ~ cEO , 
..,' 0 
c 
~ 
" ...< 

t 
QI 

8 
g 
:;J 2 Cycle 5, VH = 7L knots 

E~ 
o 

, ., ~cP 00 '~ . • " '," ... " 

i 0 
QI 
...< 

" ...< ... ... 
QI 

8 
g 
...< 

~ 2 Cyel", 5, VH = 92 knots 

.~ 
o . 2 .L 

o 

k'O '.d, ' .• " • n ••• " I,-,. Cl nr

CYcle 

J , V -~~oo " . n '00" 

I 

~n.oo" 
o Spin- down 

o Spin- up 

( c ) Run 3. 

~'~d' ' . • " '," '"", b
o 
~" J •• " ', " '00" 

. 2 .L o . 2 .L 

Slip r atio, 51 

( d ) Run 4. 

Figure 55 .- Concluded . 

~'------. 

~"."''' 

~oo ;~ ' .• " • " _Co 

o . 2 .L 



~ 

~ 

" ... 
c 
~ 

~ .... 
8 
c 

~ 
.:: 

.L I 

~ 
000 0 

.2 I- 0 0 0 

o 

Cycle 1, V = la9 knot s 
H 

o 0 0 
::::J 0 0 0 0 

o 0 

o . 2 .4 . 6 . 8 1.0 

.4 r Cycle L, VH = 46 knot. 

o 

() 

~.--~----

Cycle 2 , V H = 1.!8 knots 

o 
ODS 00

0 
§ 

o 

. 2 .4 

Cycle 5 , V
H = UL knot.s 

.6 

. 2 ~il2>.lli 0 0 
0 0 0'-' 0 0 

o 
~ 000 0 0 

0 
0 0 0 

o 

.4 Cycle 7, V H = 41 knots 

. 2 f-~O OJ 
@:!.O DO&"" 

o 

o . 2 .4 .6 

0 . 2 

0 

-----L 
.4 .6 

G Spin- down 

o Spin-up 

Sl ip ratio, 51 

(a ) Run 1. 

.8 1.0 o 

f 0 ~ @:-::~'~-" 
~00 
I 

6 V = hI knots Cycl e J H 

ro o ~0Q§ 0 0 0 cP c 

I 
. 2 .4 

---- - -- ---, -"" 

.6 

Figure 56 .- Tire D5Ml, dimple fabric - reinforced tread modified by buffing the tire to remove the dimples. Antiskid unit operatingj p = 260 lb/sq in.j· d l = 0.2 to 0.5 inch (except where 
noted )j PB 1 = 50 l b/sq in. , 

J 



L 

I-' 
VJ o 

c 

~ 
t 
~ 

.4 r 
. 2 

~ .4 
~ 

.E 

Cycle 1 . V
H 

:: 54 knot.s 

00 0 
o 0 00 6>0 
000 

.2 .4 

Cycle S. vH :: 41 knot., 

. 6 

Cycle 2 J V H :: 52 knots 

DO 0 
o o Cb 000 

. 2 .4 

Cycle J, V
H 

:: SO knots 

o 0 0 0 0 o 0 0 0 0 

.2 . 4 .6 

C7cl. 6, V
H 

:: 45 knots 

.2 

Cycli!! 7. vH :: 43 knots 

o 
.21-~0 O~ 

<:b 0 0 0 0 
:J 0 0 0 08 B CCF l4.D 

o 
o 0 

o 
. 2 .4 .2 .4 .6 

o 0 0 
o 

.8 

(b) Run 2 . 

1. 0 . 2 .4 .6 

Cycle 4. VH :: 49 knot.s 

.4 .6 

.4 r "A" 

,>~ 
0 

0 0 0 
0 

Cycle I, VH :: 81., knot.s 

o 
o B 

o 
°co a 

Cycle 2 , V
H

:: 62 knots 

o 
o 0 

[j 

I ~~~."-" 
""'0 DO 

o Spin- down 

o Spin-up 

. 2 .4 .6 . 8 1 . 0 .2 .4 .6 .2 .4 

Cycle 4, V H :: 79 knots Cycle 6 , V
H 

= 76 knot.s Cycle 7. V
H 

:: 74 knot.s Cycle 6 , V
H 

:: 13 knots 

'~ [ \i,1> .~ I e:rlJ O~ 000 

~ 
[ ,a g 8 a 

.2 .4 .2 .4 .2 .4 .2 .4 .6 

SUp rat.io , III 

( c ) Run 3. 

Figure 56 .- Concluded . 

-~,,- ---- - "- --_._---- --------~---- ---- ----' 



I-' 
\)l 
I-' 

" 
~ 
c . 
~ 

u ... 
l 
c 
0 
~ 
~ 
0 

E 

"A" 

.4 r 

~I 
Cycle 1 , VH = 51 knots 

r Cycle 2 J V H = 49 knots r 
Cycle 3 , V H = 1&8 knots 

0 
0 

r~O 0 000 ~ 
0 

0 0 0 0 0 0 .2 I- 0 0 O~ 0 
0 0 0 0 0 0 00 0 

0 
0 0 

0 . 2 .4 .6 .8 1.0 0 .2 .4 .6 . 8 0 .2 .4 

.4 r Cycle L, IIH = ta6 knot s r Cycle 5 , v
H 

= 45 knots r Cycle 6 , V
H 

= La) knots 

0 0 .2~ <@ 00 
00 0 0 

0 .2 

.4 

. 2 r O@::;C0 o (jJ 

o 

o . 2 

0 

.4 

.4 

0 
~ 0 0 <n:P O~ 00 Q:) 

.6 0 

Cycle 7, V H = L2 knot.s 

% 0 0 0 
o 

.6 . S 1.0 

.2 . 4 

Cycle 6 , V H = 41 knots 

o 0 00 
0

00 

.2 

Slip ratio , 3
1 

( a ) Run 1. 

.4 

fc~no~ 00 C6 

0 .2 .4 .6 

o Spin-dow n 

o Spin- up 

.6 

Figure 57 .- Tire D5Ml, dimple fabric - reinforced tread modified by buf fing the tire to remove the 
dimple s . Antiskid unit operating; p = 260 lb/sq in.; dl = 0 to 0 . 3 inch (except whe r e noted ) ; 
PB,l = 50 lb / sq in. 

~ 1 



....... 
\>I 
I\) 

"-
.; 
c 
~ 
.~ 

U 
." .... .... 
~ 
0 
u 
c 
0 
.~ 

+' 
U 
.~ .. 
c.. 

. 1. r "A" 

0 

Eg& o 

. 2 I-
01 o DOD o 

0 

0 . 2 .1. 

. 1. Cycle I. , V
H 

82 knots 

. 2 

We~ °Cb 

o . 2 . 1. 

. _-- -- -----~------

.6 

Cycl e 1, VH 87 knots 

o 

o 

o 0 0 

.8 1.0 

Cycle 5, vH = 81 knot s 

£ Cb:P § IQl 
0 

0 .2 .L 

Cycle 2, V H 86 knots 

o 

o ~ 0 0r::teJ 8 0 
o 

. 2 . 1. 

o Spin-do,," 

o Spin-up 

Cycl e 6, vH = 79 knots 

cg) ~&O 
0 

I 

0 . 2 . 1. 

Slip r atio , 51 

(b ) Run 2 . 

.6 

Figure 57 .- Concluded . 

Cycle 3, V H 81. knots 

~ 

o . 2 

Cycle 7, V H 78 knots 

~~ Q)D 
~O GJO 

o . 2 . 1. .6 



1-

f-J 
\..>I 
\..>I 

---.----~ -. ....... ~~- ~-- ----v 

"-

"l 
Cycle 1 , VH = 61 knots ~o ,~;. '. ' •• " ,." .. :ycle ) , 'H = 52 knots 

,,- 0 0 0 c 

. 2 (h ~~ 00 0()J 0 ~c900 ~ 

8 '" 0 0 <0 0 c§J u 

Cb 000 0 '" 0 o 0 0 .... .... 
~ 
0 
u 
c 
~ 
" 

~ ~ ... 
I I I I I I ... I 

0 . 2 .4 .6 .e 0 . 2 .4 .6 0 . 2 . 4 . 6 

( a ) Run 1 . 

:I. 

,,-
. 41 Cycle 1, V H = 89 knots 

I Cycle 2 , V H = 87 knots I Cycle ) , VH = 35 knots Cycle L J V H = 8) knot s Cycle 5, V H ;;: 78 knots 

c 
..!l 

IO~ r gbO~ t~~D8 ~ ~ ' )" ~ 

'l~OJO~ 
.... .... 'J O~ ~ 
0 
u 
c 
0 

'" " " .~ 
ct 

0 0 . 2 . 4 0 , 2 . 4 

(b ) Run 2 . 

"- ,4r Cycle 1, VH ;;: 10) knots Cycle 2 J V H ;;: 100 knots Cycle ) , V
H 

= 97 knots 
,,-
c 
~ 

'" u 

! 
'" 

OD'd 
o Spin-down .... 0 .... 00 ~ COO 0 0 (; 00~ o Spin-up u o 0 0 c 0 0 ~ 0 

~ 0 ... ... 
0 . 2 .4 0 . 2 . 4 0 . 2 . 4 

Slip ratio, 31 

(C) Run 3· 

Figure 58.- Tire D6Ml, dimple fabric-reinforced tread modified by 5 circumferential grooves . 
Antiskid unit operating; p = 260 lb/sq in.; dl = 0 to 0.3 inch. 



f-' 
VI 
~ 

~-.-------

.4 I 000 
0 0 

~o 0 

cP 0 0 0 0 0 0 
0 0 0 

00 0 08 0 

. 2 r 0 

Cycle 1, VH = 26 kno ts Cycle 5, vH = 25 knots 

I 
0 

o Spin- dovn 

o Spin- up 

"- .4 
., f 0 0 

DO 0 0 0
0 en <tJO c 

00 " 0 0 00 0 0 .... 0 0 u .... o 0 .... .... 
" . 2 
0 
u 
c 

Cycle 9 J V
H 

= 23 knots ~:vcle 1) , Vii = 21 kr.ots 0 .... ., 
.~ 

" ... 
0 0 . 2 .4 . 6 .8 l.0 

.4 r 0iQ) 
0 0 

0 
o © 

0 
0 0 

, ~ 
Cvcle 1'(, VH = 19 knots 

0 . 2 .4 .6 .8 1 . 0 

Slip ratio, ::11 

(a) Run 1. 

Figure 59.- Tire DTM1, dimple fabric-reinforced tread modified by 37 lateral grooves. Antiskid 
unit operating; p = 260 lb/sq in.; dl = 0 to 0.3 inch. 

- /' 



r-.------------------......... ~ .. --- --~-~--
,~------- ------' ----- - - - -

. [ ~~l,~=~~~ Cycle L, VH 5) knots Cycle 7, VH 51 knots 

~ 
~ 
\J1 

~ 
c 
~ 
~ 
u 
~ 
~ 
~ 
~ 

2 
c 
~ 

~ 
H 
~ 

:1 

.; 
c • .... 
.~ 
'-< 
'-< 
~ 
0 
u 
c 
0 
j 
.~ 
;!; 

.. ' 
c 
!: 
~ 
" " ~ 0 u 
c 
~ .. 
~ 
H 
~ 

0 
0 

0 

. ? 0 0 0 
0 

0 0 

0 .2 .L 

.L I Cycle 1 , VH :::: 72 knot.s 

0 

+%l c:P 000 
o 0 

0 

0 

.L Cycle 1, VH = 98 knots 

. 2 

~EbQ:@ 

0 . 2 .L o 

0 

.6 

r 

~ 
o 
o 

o 

o 
o 

. 2 

Cycle 2, VH = 71 knots 

r .Qd0 0 00 
DO 0 

. Cycle 2, VH = 95 knots 

o 
~cPcP>~ 

. 2 .L 

o 
o 

o 

8 o 

.L . 6 o 

(b ) Run 2. 

© 
08@ 

80 

. • 2 .L 

o 

o 

Cycle ), VH = 70 knots Cycle L. VH = 69 knots 

. 0 DB 
o§J@ 0 

09 

(c ) Run 3. 

Cycl e ) , V H = 9L knots 

o 
a CO 

. 2 .L 

Slip ra tio , 51 

(d) Run 4. 

~ COD 
0 00 DO 

:0 

Cycle L, VH = 93 knots 

~M 

o . 2 .L 

Figure 59.- Concluded . 

'1 

I 
Cycle 10 , VH 50 knots 

Oo0cf)0 B °0 

. 2 .1, 

o Spi., - down 

o Spin- up 

C\"cl e S, VH =. 92 knots 

Se~O 

o . 2 .L 



t: 
0\ 

"--

.4 r 
O«ilO 

0 0 

.2 t- 0 

EID 

o 

.4 r-

'" ., 
c 

, ~ 00 

.~ 0 0 
!:l 0 .., .., 
" 0 
u 
c 
0 
'j 
u .... 
,t 

0 

.4 

[l) 
§ 

dJ 
. 2 

00 

o . 2 .4 

Cycle 1, VH = 47 knots 

0 
0 0 

0 
0 0 

o Spin- down 

o Spin-up 

Cycle 3 , VH = 45 knots 

0 [j) 
0 

Cycle 5, v
H 

= 43 knots 

o 
o o 

.6 .e 1.C 
Slip ra tio , s l 

(a) Run 1. 

00 0 0 0 
o 

o 
a 0 0 

o . 2 .4 

o 

Cycle 2 , VH = L6 knot s 

o 
o o 

Cycle 4, V H = 44 knots 

o 0 c 

.6 .e 

Figure 60.- Tire DBMl, dimple fabric-reinforced tread modified by 2 zigzag circumferential 
grooves . Antiskid unit operating; p = 260 lb/sq in.; dl = 0 to 0. 3 inch. 

--------- ---" 



I--' 
\..N 
-..J 

i . L I Cycle 1 , V
H 

= 7L knots 

QJ ... 
" 
~ ., r '2l dl 0 0 

i 8 0 
" " ... 
" rx. 

0 . 2 .4 

Cycle 1 , VH = 9L knots 

. 2 ~CffCn c9 ~ 0 0 0 
:1 ' ~-D ° 
~' 
... I QJ 

" ... ... ... 
QJ 
o 
" c 
o ... 
t ... 
" 

o 

rx. . 2 

o 

. 2 .l! 

Cycle 5, VH = 89 knots 

0Cb08 ° 

. 2 .L 

.6 

0 

I 
Cycle 2 , VH = 73 knots 

Ir § °0° 

. 2 .l! o 

r Cycle 3 , VH 72 knots 

o 0 

00 ° ° ° 

. 2 .L 

(b) Run 2. 

Cycle 2 , V H 92 knots 

o 0 

2JO ° Qj 

o . 2 .L 

Cycle 3, VH = 91 knots 

~ 
o . 2 

Cycle 6 , V H = 67 knots 

r:: 
o . 2 

Slip ratio, sl 

(c) Run 3. 

Figure 60.- Concludea . 

-- --- Y. 

Cycle 0 , VH 71 knots 

°0 
@ c9 ° 

° 
o .2 .L 

Cycle L, V H = 90 knots 

fug
d'8, 

o . 2 



L 

~ 
\)J 
OJ 

.L r Cycle 1, V
H 

= 56 knots 

I COo 00 . 2 r~ o o 0 o 

f 
o . 2 .L .6 .8 1 . 0 

.4 r Cycle 4, vH = 53 knots 

r 
"-
..; 
c 

" 

r~ 
"" b " 

., ~ <b fl <g "" 0 .... .... 0 " o 0 8 
c 
0 .,., ., 
" .,., ... 
r.. 0 .2 .4 .6 0 . 2 

.4 Cycle 7, VH = 51 knot s 

00 
.2 1-0 § <TIl o 0 0 o 

8 

o .2 .4 .6 .s 1.0 

Cycle 2 , V H = 5L knot s 

o 
o 0 % 0 CO 0 0 

o 

o . 2 . 4 .6 

Cycl e 5, vH = 53 knots r 

l eOO 
0 CIJ 0 0 

.L .6 .8 0 

o Spin- down 

o Spin- up 

Sl ip rat io , 51 

(a ) Run 1 . 

. 8 o 

0 0 

.2 

o 
00 0 

Cycle 3, V H = 5L knot ' 

o Cb o 
o 0 

. 2 .L .6 

Cycl e 6, V H = 52 knot s 

C 
0 

.L .6 .8 

Figur e 61 . - Tire DBM2, tire DBM1 modified by removing rib between the 2 zi gzag grooves . Ant i skid 
unit operating; p = 260 1b/ sq in . ; d1 = 0 to 0. 3 inch. 

----.----~------------ --~---..,--<-. -~~----- ____ - -II. 



I-~--~ 

I 
I 

~ 
\0 

• 4 Cycle 1, VH = 78 knot • 

. 2 rOO 0 
eO[§) 0 0 0 

:1 0 
...,' 
<: 
.~ 
.~ .... .... 
CI> 

8 

" o 
·ri ..., 
.~ 
r!: .4 

. 2 

o 

.2 .4 . 6 

Cycle 5, V H 75 knot. 

~OcD 0 00 

. 2 .4 o 

Cycle 2, V H 76 knot. r Cycle 3, VH = 76 knot. 

o 

00° 
@DoDO 

. 2 

Cycle 6, V
H 

73 knots 

° 0 

1 
. 2 . 4 

.4 o 

0
0000 

DO -z) 

. 2 

Cycle 7, V H 72 knots 

~ go o ° 

0 .2 .4 
Slip ratio, '1 

(b) Run 2. 

Figure 61.- Concluded. 

.4 o 

o Spin-down 

o Spin- up 

Cycle 4, V H 75 knot, 

ro ° 

. 2 .4 

- -'"' 
I 



f--' g · ~ r c9 
Cycle 1, V

H 
• 23 knots 

00 
Cycle 2, V

H 
• 22 knot s 

0 
en 0 .0 00 0 

0 0 
0 o Spin-down 

0 0 0 0 c9 0 o Spin- up 0 

t a . 

. ~ . 

o 0 0 
Cycle 5 , V H • 21 knots Cycle 6 , v

H 
• 21 knots 

0 ~ Ooe 0 0 0 
0 0 00 

0 

. 2 [0 
0 § 

0 0 0 

"-.,' 
~ 0 

11 ... ... 
'OJ 
g 

100 
Cycle 8 , V

H 
• 20 knots Cycle 11 , V

H 
• 19 knots 

c 
0 ... 
t 0 0 0 ... 0 

~ 0° t: 
0 [jJ 0 0 0 0 

0 0 0 

$ 
0 

.L r 0 
0 

Cycle lL , V
H 

• 18 knots 

III g 
0 Cycle 16, V

H 
- 17 knots 

0 0 
0 0 0 0 

. 2 1- 0 0 0 0 o 0 
0 0 J 

0 

t 
a . 2 . L .6 . 8 1.0 0 . 2 .4 .6 . 8 1.0 

Slip ratio, 8 1 

( a ) Run l j P = 260 lb/ sq in . 

Figure 62 .- Tire 81) smooth) all- rubber tread . Antiskid operatipgj dl o t o 0 .3 inch. 

----~_..._z..__~ ___ . 



f-J 
-F" 
f-J 

~ _ _____ • __ ~-~ .. "__.i-- - • • ¥_.-.-_ .. -

. 2 fJ 
o ° ° Cbc9 @o 

00 

cP ° D:) 

0 0 
8 'e 0 0 

DC Cyclll 1, VH = 56 knC'fS Cyele 2. V H S5 knots 
Cycle J, V H • 5lL knots Cycle L. V

H 
= :, kn'.l 

. 2 .I, 

'f ;'; ~ .:' -. 

. 2 

. 2 . b 

Cycle 1, VI{ • 66 knot.s 

o ° 0 0 0 ° o o 
QJ 0 

o 

.2 .L 

'~~'~'~' ..... " 
-, , 

Cycle 1 V • 89 knot.3 

loo ~~DO. 
2 Cycle 5 . V • 84 knots . ba~~~ tb 

.2 .I, 

., . 2 . /, 

ott? o B ° 
Cycle 6 , V

H 
• 52 knots 

. 2 .L .6 

(b ) Run 2; p 

.6 . ? ., 

o ° 0 ° ° 0°0 C 
o Cycle 7. V

H 
• 52 knots 

. 2 .L .6 

260 lb/sq in. 

. 2 

Cycle 2 V 

E
'" .7'no,", 

C ©i 0 

° 
. 2 

Cycle J. V -

~Jl d' • B~ " '~" 
Cycle L. V -

~ C ~ : "'":" 
. 6 .L . 2 .L . 2 .L 

fg~·~· ~··-" ~ -"','" .~" ~~~,~ ." ~' em <ru e § 0 
, , 

(c) Run 3; p = 260 lb/sq in. 

Cycle 2, V • 61 knot.s 

~00~8 , 

Cycle ) , Vii • 66 knot.s 

~o~ ncB , 
to ;'~:~ .. "~" 

. 2 .L .2 .L 

Cycle 6, V • 62 knots 

~o%o~o~ , 
o Spin- down 

o Spin-up 

. 2 . /, 

SHp ratio, -I 

( d ) Run 4; p = 260 lb/sq in. 

Figure 62 .- Continued. 

--------------------

. /, 

-~YI 

\ 

I 
I 

I 

\ 

_J 



I-' 
+"" .4

i 
Cycle 2 , VH :: 26 knots Cycle L, VH :: 25 knots 

I\) 

0 0 0 0 0 
DO 00 0 

0 0 0 0 
0 0 0 

. 21- o Spin-down 0 0 0 
0 o Spin- up 

O· 

.4 ,.... Cycle 6, VH :: 25 knots r Cycle 8 , V H = 2L knot.s 

00 
0 

0 
0 0 0 0 0 0 0 0 0 0 0 

. 2' D 

i 
~ 

0 .... .... . 
8 
c 

'T 
Cycle 12 , VH = 2) knots 

fo ~o 
Cycle 16, VH :: 22 knots 

~ 
" 0 0 0 0 0 ... 0 0 0 D 0 0 D D 

0 

0 
I~ I 

0 

. 4,.... Cycle 11 , 1H :: 21 knot.s r Cycle 19 , V H :: 20 knot.s 

00 
0 0 0 

0 0 0 

~:o 
0 

0 
0 0 0 0 0 0 

.2f-- 0 
(]I 

0 

I 

. 2 .4 .6 .8 1 . 0 0 . 2 .4 .6 .8 1.0 

Sl ip ratio , lSI 

(e) Run l' , P = 120 1b/sq in. 

Figure 62 .- Continued. 

_ -_ _ _ ---A 



_______ ~-...• - --- _ _ __ __ --..,.,---- I ~ ...... -- .. ---~ ----- .---

~ 
VI 

---- _._--

, ' ~'l9 dO ~'~~~:'~' 
~ .2 .L .6 

Cycle ), V
H 

:: 51 knot,s 

(IlDO ~ ° 
Cycle 6, vII :: L9 knot.s 

roO ° <tJ ° 00 

Cycle 1, V -b 9,0 cP ° ~-.9 knoto 

~ 
~ 

~ 

'~ :;':;" .. ;~" 
! I 

. 2 ." 

'F~~'~~-~ 
. 2 . h 'i ,," .. ', ~ .. ,." 

OOIlD ° ° 00 

' ~:~'o:' 
.2 . 1: 

. 2 ." 

!Jl U ° 
~O 

.6 . 2 ." 

08°00 0 0 • '""~.' ~ .. ~ 
Cycle 11, VH : 47 knots 

.2 ." 

(f) Run 2; P = 120 1b/sq in. 

Cycle 2 V 

[£f ",:~:~" 
Cycle J. V H :: 6S knots 

E
cy" ••. V - " H - I14.L knoUi 

~o ~ 000 cw 
.6 . ? .. . 2 .L ., ." 

Cycle 6 V 

~e&o,E"=~" 
Cyde 7 , VII :;: 62 knots 

k;~,~'~~" 
Cycle 9 . V H :: 61 knots 

~ 8 0° ° ° r§)0 00 rID 00 

. 2 .L . 2 .1: .2 .L . 2 . J, 

- ( g ) Run 3; p = 120 1b/sq in. 

~ o ""~'~ ~"~: 
Cycle J. VH :;: 78 knot. 

[ ° °o°cRJ ~ 0' 
o Spin-dcnm 

.:: .L .6 . 2 ., . 6 o Spin-up 

. 2 Cycle L, VH :: 71 lmot.a 

[ 000000 Il1)IOC(p 

Cyele 5. VH :: 75 knoU 

[ 0[))00 0 0 00c:P1Q) 

. 2 .L .6 . ! . 2 .L .~ .8 

Slip roaUo, 51 

(h) Run 4; p = 120 1b/sq in. 

Figure 62. - Continued. 

-'- 1 

I 

I 

I 

I 

I 

I 
I 

I 



f-' 
+=­
+=-

~-------------~ 

,-_________ vij = 93 knots 

.,' I V
H 

= 91 kn;::le 1, V
H 

= 90 knots 

.~ I Cycle 2, VH = 88 knots 

l'T I rCYcle 
3. VH = 87 

$ I 000 ~o OOr.§D 00 0000 oS OO~ 
t ~ I I I 
''''; 
~ 0 . 2 . ~ . 6 .8 

J'r.< 

:i 

1.0 

Slip ratio, sl 

(i) Run 4; P 120 Ib/sq in. 

Figure 62.- Concluded. 

--__ ~..O-<.-___ ~__ ______ ____ _____ _ ____ .• __ _ __ 

knots 

-------._---



I 

I 
L_ 

...... 
+ 
\Jl 

:i. 

+' 
r: 

" .... 
o .... ... ... 
" o 
o 
r: 
o .... 
+' o 

.4 

0 
. 2 l-- 00 C Cb 

0 

~ 
I 

0 . 2 .4 

.~ 4 Cycle 7, vH 57 knots r.. • r 

. 2 c§) 
00 00 

o . 2 .4 

----~------ ----------

Cycle 1, VH = 62 knots I Cycle J, V H 59 knots Cycle 5, VH = 5tl knots 

0 
00 0 (l# o 8 

OQ) ~o 

c9 
.6 . 8 o . 2 .4 o . 2 .4 

o Spin- down 

o Sr in-up 

Cycle 9, V
H 

56 knots Cycle 11, VH 54 knots 

~ § 0 

CO 
O© 0 0 

o . 2 .4 o .2 .4 

Slir rat io, sl 

Figure 63.- Tire 8lMl, tire 81 modified by 1/2-inch-wide circumferential groove. Run 1; antiskid 
unit operating; p = 260 lb/sq in .; d1 = 0 to 0.3 inch . 

-- - Yj 



t: 
0\ 

'---. 

"-

+' 
C 

" .~ 

" .~ .... .... 
" o 
" c 
o 
.~ 

+' 

" .~ ... 
r~ 

. J.. Cycle 1, VH 71 knots 

. 2 f-

000 0 
0

0 I() 
0 

0 00 

0 . 2 . /' . 6 

.0 r Cycle /" V
H 

= 69 knots 

. 2 

~[!l)00 

o 

.L Cycl e 7, V H = 66 knots 

. 2 

c5D o m o 
o 

o . 2 .L o 

Cycle 2, VH 70 knots 

ir 0 0 o 0 0 0 0 

o Spi n- doyn 

o Spin- up 

Cycle 5, VH = 68 knots 

o I]J) r§> o 

Cycle 8 , V
H 

65 knots 

o °eo ctJ 
Cb 

. 2 .0 

Slip ratio , 51 

o 

Cycle :> , V H 69 knot s 

o noCb 0 o 

Cycl e 6 , \ = 66 knots 

~g cP 0 0 

Cycle 9 , V H 6/' knots 

8 0 0 o 
§ 

. 2 

o 

.L 

Figure 64 . - Tire S1M2, tire Sl modified by 3/4- inch- wide circumferential groove . Run 1; anti­
skid unit operating; p = 260 lb/s q in. ; dl = 0 t o 0 . 3 inch. 

.-------.~---~------ - -
.. ' 



I-' 
-F' 

.....;J 

'" 
.; 
c 

" ·rl 

~ 
'-< 
'-< 

" 0 
u 
c 
0 
j 
u 
'J: ... 

.4 

• 2 

Cycle 1 , VH = 78 knot s 

o Ql 0 

°CfJ o 
o 

On o 

o . 2 .4 . 1) 

. 4 r Cycle 5, V H = 74 knots 

., til °0 OJ 
CO 

0 

.4 ! 

. 2 Ot3 

o 

Cycle 9 , V H 71 knots 

o 
<0 0 

. 2 .4 

Cycle 2 , VH = 77 knots Cycl e ) , VH 76 knots 

o o o <[j Dr . co OJ 0 

o . 2 

r Cycle 6 , V H = 7) knots r C:rcle 7, VH = 73 knots 

la° 'iJ o loo@ [!j) ° 

0 . 2 . 4 0 . 2 . 4 

o Spin-down 

o Spin- up 

Slip rat i o, 51 

Figure 65 .- Tire 81M3, tire 81M2 modified by adding two 3/ 8- inch-wide circumfe rent ial grooves . 
Run 1; antiskid unit operating; p = 260 1b/ sq in.; dl = 0 t o 0. 3 inch . 



.4 Cycle 1 , VH = 79 knots 

o 

.2 

Cycle 2, V
H 

= 78 knots 

8 
") 

o 
o 

Cycle ) , V
H 

= 76 knots 

(]> 00 

o 

. 4 

:!. 

. 2 

o 

.4 

. 2 

o 

Cycle 5, V = 74 knots 
H 

. 2 .4 

Cycle 9, VH = 71 knots 

0 

0°0 0 

0 
0 

. 2 

Cycle 6, VH = 74 knots Cycle 8, V
H 

= 72 knots 

° 

o .2 .4 o .2 .4 

0 Spin- down 

0 Spin- up 

Slip ratio, sl 

Figure 66 .- Tire 81M3 . Run lj antiskid unit operatingj p = 260 lb/sq in. 

148 

For this run, the wet runway was broomed free of water, that is, the 
runway was l eft damp with no standing puddles of water; dl ~ o. 
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