\leadsto

Technical Report No. 32-345

SUBJECT: Errata for Technical Report No. 32-345

Gentlemen:

It is requested that the following changes be made in your copy of Jet Propulsion Laboratory Technical Report No. 32-345, entitled "The Ranger 4 Flight Path and Its Determination From Tracking Data," by T. W. Hamilton et al ${ }_{\text {o }}$ dated September 15, 1962:

1. On page 7 (Fig. 9, under call-out, LOCATION OF LUNAR IMPACT), change θ to equal 231.4 instead of 277.1.
2. On page 32 (upper half of Table 9, under column heading, Standard deviation), change the last three items to read
$X 0.648 \mathrm{~m} / \mathrm{sec}$ instead of $X 0.648 \mathrm{~m} / \mathrm{sec}$
Y $1.242 \mathrm{~m} / \mathrm{sec}$ instead of $Y 1.242 \mathrm{~m} / \mathrm{sec}$
$Z 2.225 \mathrm{~m} / \mathrm{sec}$ instead of $Z 2.225 \mathrm{~m} / \mathrm{sec}$
3. On page 33 (Fig. 30), change abscissa to read

$$
\frac{\Delta G M_{E}}{G M_{E}(\text { NOMINAL })} \times 10^{5} \text { instead of } \frac{\Delta G M_{E}}{\Delta G M_{E}(\text { NOMINAL })} \times 10^{5}
$$

4. On page 33 (last line of text), change the bias to be $6900-\mathrm{m}$ instead of $6000-\mathrm{yd}$.

Very truly yours,
JET PROPULSION LABORATORY

Technical Information Section

Technical Report No. 32-345

The Ranger 4 Flight Path And Its Determination From Tracking Data

T. W. Hamilton
W. L. Sjogren
W. E. Kirhofer
J. P. Fearey
D. L. Cain

National Aeronautics and Space Administration CONTRACT NO. NAS 7-100

Technical Report No. 32-345

The Ranger 4 Flight Path And Its Determination From Tracking Data

T. W. Hamilton
W. L. Sjogren
W. E. Kirhofer
J. P. Fearey
D. L. Cain

C. R. Gates, Chief Systems Analysis

JET PROPULSION LABORATORY
 CALIFORNIA INSTITUTE OF TECHNOLOGY
 Pasadena. California

CONTENTS

I. Introduction 1
II. Trajectory Description 2
A. Pre-injection Phase 2
B. Post-injection Phase 2
III. The Tracking Sequence of Events 9
A. Introduction 9
B. DSIF Tracking of Ranger 4 Transponder and Payload Beacon 9
C. AMR Tracking 11
IV. Flight Path Determination Using Transponder Tracking 13
A. Introduction 13
B. Flight Path Determination Using DSIF Tracking of the Spacecraft Transponder 13
C. Comparison of AMR and DSIF Tracking Results 33
V. Confirmation of the DSIF Transponder-based Orbit Accuracy by Tracking the Capsule Beacon Near Lunar Impact 39
A. Introduction 39
B. Data System 40
C. Verification by Time of Signal Loss 43
VI. Flight Path Analysis Operation and Policies 50
A. Introduction 50
B. Operational Description 50
C. In-flight Policies 52
Appendix A. Definition of the miss parameter B 53
Appendix B. Ranger 4 trajectory printout based on DSIF transponder orbit 54
Appendix C. Comparison of nominal flight trajectory and Ranger 4 trajectory based on DSIF transponder orbit 72
Appendix D. Tables related to trajectory printout 76
References 83

TABLES

1. Review of key event times 9
2. Deep space station locations 10
3. Nominal view periods at DSIF stations 10
4. Transmitter number and acquisition times 10
5. Summary of capsule beacon tracking 11
6. Summary of data used in orbit determination 13
7. Summary of weights, sample, and count times 14
8. Tracking noise statistics 32
9. Statistics of knowledge of injection conditions ignoring physical constant errors 32
10. Statistics of knowledge of target error ignoring physical constant errors 33
11. Variation in estimate of impact conditions with changes in GM of the Earth 33
12. Ship's orbit based on unadjusted location 36
13. Ship's orbit based on adjusted location 37
14. Comparison of original Ascension orbit with DSIF orbit 37
15. Comparison of adjusted Ascension orbit with DSIF orbit 38
16. Statistics of knowledge of target errors including physical constant errors 42
D-1. Ranger 4 trajectory key 76
D-2. Ranger 4 trajectory key definitions 77
D-3. Ranger 4 trajectory constants and conversion factors 81
FIGURES
17. Sequence of events 3
18. Geocentric distance to probe vs time from injection 3
19. Geocentric space-fixed inertial velocity of probe vs time from injection 3
20. Earth-track Ranger 4 trajectory 4
21. Ranger 4 frajectory 5
22. Earth-probe-Sun angle vs time from injection 6
23. Sun-probe-Moon angle vs time from injection 6

FIGURES (Cont'd)

8. Earth-probe-Moon angle vs time from injection 6
9. Lunar encounter Ranger 4 trajectory 7
10. Selenocentric altitude of probe vs GMT during lunar descent (last 2 hr) 8
11. Selenocentric space-fixed velocity of probe vs GMT during lunar descent (last 2 hr) 8
12. AMR station view periods and data spans 11
13. Station 1 residuals (from 21:00 GMT April 23, 1962) 15
14. Station 1 residuals (from 22:00 GMT April 23, 1962) 16
15. Station 1 residuals (from 23:00 GMT April 23, 1962) 17
16. Station 1 residuals (from 00:00 GMT April 24, 1962) 18
17. Station 4 residuals (from 22:00 GMT April 23, 1962) 19
18. Station 4 residuals (from 23:00 GMT April 23, 1962) 20
19. Station 5 residuals (from 21:00 GMT April 23, 1962) 21
20. Station 5 residuals (from 22:00 GMT April 23, 1962) 22
21. Station 5 residuals (from 23:00 GMT April 23, 1962) 23
22. Station 5 residuals (from 00:00 GMT April 24, 1962) 24
23. Station 5 residuals (from 01:00 GMT April 24, 1962) 25
24. Station 5 residuals (from 02:00 GMT April 24, 1962) 26
25. Station 5 residuals (from 03:00 GMT April 24, 1962) 27
26. Station 5 residuals (from 04:00 GMT April 24, 1962) 28
27. Station 5 residuals (from 05:00 GMT April 24, 1962) 29
28. Station 5 residuals (from 06:00 GMT April 24, 1962) 30
29. Station 5 residuals (from 07:00 GMT April 24, 1962) 31
30. Solving for $\mathbf{G M}_{\mathrm{E}}$ using Ranger 4 data 33
31. TFV (adjusted) residuals 35
32. Original Ascension Island orbit residuals 35
33. Original Ascension Island residuals based on DSIF orbit 36
34. Revised Ascension Island orbit (range bias removed) residuals 36
35. Actual recorded data from DSIF 2 39
36. Actual recorded data from DSIF 3 40
37. Sketch of $\boldsymbol{f}_{c b}$ system 40
38. Bias oscillator frequency vs time (Ranger 4 third pass) 41

FIGURES (Cont'd)

39. Residuals on reconstructed data using manual recordings vs residuals on extrapolated automatic recordings (Station 3) 42
40. Calculated beacon data-manual recordings vs automatic recordings of bias oscillator at Station 3 43
41. Actual data vs perturbations in T_{L} 44
42. Actual data vs perturbations in B•T 45
43. Actual data vs perturbations in Moon's GM 46
44. Station 2 residuals (from 09:00 GMT April 26, 1962) 47
45. Station 5 residuals (from 02:00 GMT April 26, 1962) 46
46. Station 3 residuals (from 09:00 GMT April 26, 1962) 48
47. Ranger 4 Pioneer DSIF 2 receiver functions 49
48. Oscillograph recording of receiver functions (Ranger 4 echo DSIF 3) 49
49. FPA functions 51
A-1. Definition of $\mathbf{B} \cdot \mathbf{T}, \mathbf{B} \cdot \mathbf{R}$ system 53

Abstract

16381 This Report describes the current best estimate of the Ranger 4 spacecraft flight path and the way in which it was determined. A comparison with independent information sources confirms the accuracy of the orbit based on the Deep Space Instrumentation Facility (DSIF) tracking of the spacecraft transponder for $10^{1 / 2} \mathrm{hr}$. The miss parameter, as determined by the transponder tracking, is believed to be within 30 km of the correct value. This error is well within the bounds expected and testifies to the accuracy potential of Earth-based tracking.

I. INTRODUCTION

This Report describes the current best estimate of the Ranger 4 spacecraft flight path and the way in which it was determined. A comparison with independent information sources confirms the accuracy of the orbit based on the Deep Space Instrumentation Facility (DSIF) tracking of the spacecraft transponder for $101 / 2 \mathrm{hr}$. The miss parameter, as determined by the transponder tracking, is believed to be within 30 km of the correct value. This error is well within the bounds expected and testifies to the accuracy potential of Earth-based tracking.

Section II describes the DSIF transponder orbit in terms of its trajectory parameters near the Earth, in trans-lunar flight, and near the Moon. Symbols used and definitions of key trajectory quantities are given.

Section III summarizes the key events in the tracking of the Ranger 4 mission and gives a general description of the DSIF stations and tracking modes.

Section IV describes the DSIF transponder orbit determination and compares that orbit with information obtained by the Atlantic Missile Range (AMR) tracking of the C-band transponder in the Agena booster stage.

While the spacecraft batteries were depleted at $101 / 2$ hr after launch, the radio beacon carried within the Ranger 4 spacecraft's payload, the "rough landing" capsule, continued to operate on its own power supply. The weak signals emitted from the tumbling capsule were tracked at the DSIF stations throughout the mission. Valuable data were taken at both Goldstone stations in the several hours prior to lunar impact. Both the doppler shift records and time of signal loss at the Goldstone stations confirm the accuracy of the previously determined orbit. The results are presented in this Report, Section V.

Section VI gives a functional description of the in-flight determination of the flight path together with the techniques used in editing and weighting the tracking data.

II. TRAJECTORY DESCRIPTION

The Ranger 4 trajectory was made up of a pre-injection and a post-injection phase. The pre-injection phase consisted of all powered flight and coast periods from launch to injection (burnout of the last booster stage). The postinjection phase consisted of the coast period from injection to lunar impact.

The trajectory characteristics of the pre-injection phase were obtained from observed flight data in combination with nominal flight conditions (Ref. 1). The trajectory characteristics during the post-injection phase corresponded to the DSIF transponder orbit (Section IV-B). The miss parameter \mathbf{B} was used to measure the miss distance for the lunar trajectory. The miss parameter \mathbf{B} is defined in Appendix A.

A. Pre-injection Phase

Using the Atlas D/Agena B boosters, the Ranger 4 spacecraft was launched from the Atlantic Missile Range on April 23, 1962 at $20 \mathrm{hr}, 50 \mathrm{~min}, 15 \mathrm{sec}$ (20:50:15) Greenwich Mean Time (GMT). The fact that the Ranger 4 spacecraft impacted the Moon without the aid of a midcourse maneuver demonstrated the adequacy of the performance obtained from the Atlas and Agena boost vehicles. The sequence of events from launch through injection is shown in Fig. 1.

After rising vertically for a short period, the Atlas booster rolled to a launch azimuth of 100.4 deg (east of north), as determined by the launch time, and performed a programmed pitch-down maneuver until the booster engines were cut off and jettisoned. During the subsequent Atlas sustainer and vernier stages, adjustments in vehicle attitude and engine cutoff times were commanded as required by the ground guidance computer to adjust the altitude and velocity at Atlas vernier engine cutoff. The protective shroud covering the Ranger 4 spacecraft was ejected during the Atlas vernier stage.

After the Atlas/Agena separation, there was a short coast period prior to the first Agena ignition. The Agena $B /$ Ranger 4 spacecraft was nearly horizontal throughout the first Agena burn. The attitude was maintained by horizon scanner instrumentation and gyros within the Agena booster. At a preset value of sensed velocity increase the Agena engine was cut off.

The Agena B/Ranger 4 spacecraft continued coasting in a circular parking orbit for 254 sec at an altitude of

185 km and a space-fixed velocity of $7.800 \mathrm{~km} / \mathrm{sec}$. The parking orbit was terminated by a stored command determined by the ground guidance computer and transmitted to the Agena during the Atlas vernier stage.

The second Agena ignition, which terminated the parking orbit, initiated the final increase in velocity prior to injection. During the second Agena burn (as was the case for the first Agena burn), the vehicle's horizontal attitude and engine cutoff were controlled by the horizon scanner instrumentation and the preset value of sensed velocity increase, respectively. The second Agena cutoff concluded all powered flight for the Ranger 4 spacecraft and represented the injection time.

B. Post-injection Phase

Prior to injection, the Agena/Ranger 4 spacecraft traveled in a southeasterly direction over the Atlantic Ocean. Injection occurred in the mid-Atlantic Ocean. Following injection, the Agena and Ranger 4 separated with the spacecraft continuing on its course over the South Africa continent. The Agena booster then, in turn, performed a programmed yaw maneuver and ignited its retro-rocket. The retro-rocket impulse was designed to eliminate interference with the spacecraft operation and reduce the chance of lunar impact by the Agena booster.

At injection, the spacecraft was traveling $10.958 \mathrm{~km} / \mathrm{sec}$ in geocentric space-fixed coordinates at a geocentric radius of $6,567.8 \mathrm{~km}$. The spacecraft geocentric distance (Fig. 2) increased while the space-fixed velocity (Fig. 3) was decreasing. This, in effect, reduced the geocentric angular rate of the spacecraft in inertial coordinates until at 1.5 hr after injection the angular rate of the Earth exceeded that of the spacecraft. This caused the Earth track of the spacecraft to reverse its direction from increasing to decreasing Earth longitude (positive easterly). The subsequent Earth track of the spacecraft was similar to that of the Sun except with a greater change in latitude. These characteristics are illustrated in Fig. 4, which shows the Earth track of the spacecraft from launch to 25 hr past injection.

For the Ranger 4 trajectory, injection occurred at 2.89 deg past perigee of the geocentric conic with a flight time from injection to lunar impact of 63.76 hr . During the first 40 hr past injection, the spacecraft was for the most part under the influence of the Earth's gravitational field

	EVENT
1.	LIFTOFF
2.	ATLAS BOOSTER ENGINE CUTOFF
3.	ATLAS SUSTAINER ENGINE CUTOFF
4.	ATLAS VERNIER ENGINE CUTOFF
5.	SPACECRAFT SHROUD EJECTION
6.	ATLAS AGENA-B SEPARATION
7.	AGENA-B FIRST IGNITION
8.	AGENA -B FIRST CUTOFF
9.	AGENA-B SECOND IGNITION
10.	AGENA-B SECOND CUTOFF
1.	SPACECRAFT SEPARATION
12.	INITIATE AGENA YAW MANEUVER
13.	COMPLETE AGENA YAW MANEUVER
14. IGNITE AGENA RETRO-ROCKET	

Fig. 1. Sequence of events
and essentially remained in an elliptical geocentric orbit. The trajectory during this period can be described by an ellipse having a perigee and apogee distance of 6,564 and $606,407 \mathrm{~km}$, respectively, an eccentricity of 0.978 , and an inclination of 29.70 deg to the Earth's equator.

Fig. 2. Geocentric distance to probe vs time from injection

As the spacecraft approached the Moon's gravitational field, a transition was made from the Earth to the Moon as the predominant force affecting the spacecraft's flight. After this transition, the trajectory can be described by a Moon-centered hyperbola. The hyperbola is inclined 13.5 deg to the lunar equator with the spacecraft approaching the Moon's surface in retrograde motion. Lunar impact occurred at 57.53 deg before perigee of the selenocentric

Fig. 3. Geocentric space-fixed inertial velocity of probe vs time from injection

Fig. 4. Earth-track Ranger 4 trajectory
(Moon-centered) hyperbola. The hyperbola perigee distance was $1,271 \mathrm{~km}$ (467 km below the Moon's surface) and the eccentricity was 1.380 .

A general sketch of the Ranger 4 trajectory from injection to lunar impact is shown in Fig. 5. The inertial Earth-centered coordinates used are referenced to the Earth's equator and the vernal equinox direction. In addition, the position of the Moon during the Ranger 4 flight and the direction to the Sun are noted. This sketch illustrates how the initially elliptical path of the trajectory was altered as the spacecraft encountered the influence of the Moon's gravitational field.

The probe was in direct sunlight except for a brief period following injection. At 3 min past injection, the spacecraft entered the Earth's shadow and emerged 38.8
\min later. The relative position along the trajectory at which these events occurred is shown in Fig. 4. The angular relations between Earth, Sun, and spacecraft from injection to lunar impact are graphically illustrated in Fig. 6, 7, and 8.

The portion of the Ranger 4 trajectory when the spacecraft encountered the Moon is shown in Fig. 9. As the spacecraft approached the Moon's surface, it was occulted by the Moon 70 sec before lunar impact at an altitude of 529 km . The actual impact could not be observed from Earth. Lunar impact occurred on April 26, 1962 at 12:50:00 GMT. The spacecraft impacted the Moon's surface at a velocity of $2.669 \mathrm{~km} / \mathrm{sec}$. The impact location was 121.3 deg from the Moon-Earth line at a selenocentric south latitude and east longitude of 12.0 and 231.4 deg , respectively. The spacecraft arrived at the

Fig. 5. Ranger 4 frajectory

Fig. 6. Earth-probe-Sun angle vs time from injection

Moon's surface in the forenoon of the lunar day. The relative position of the impact location to the Sun's terminator, sub-solar point, and sub-terrestrial point is shown in Fig. 9. The variation in the spacecraft's altitude and velocity relative to the Moon's surface during the last two hr prior to impact is shown in Fig. 10 and 11, respectively.

A detailed study of the Ranger 4 trajectory can be made by examination of the trajectory printout presented in Appendix B. In this printout the trajectory parameters are listed at selected times from the epoch of the DSIF transponder orbit to lunar impact. The printouts were obtained from the initial conditions corresponding to the DSIF transponder orbit using the Space Trajectory Program described in Ref. 2.

Trajectory printouts provided in Appendix C (a) and (b) demonstrate the closeness of the actual conditions to nominal flight conditions at injection and lunar impact. Printout in Appendix C (a) is the nominal flight trajectory. Trajectory printout in Appendix C (b) is just the

Fig. 7. Sun-probe-Moon angle vs time from injection
DSIF transponder orbit extrapolated back a few seconds for comparison at the nominal injection time (Ref. 3). Table D-1 (Appendix D) is a key to the trajectory printout. Table D-2 contains the definitions of the printed quantities. Constants and conversion factors used in all Ranger 4 trajectory computations are listed in Table D-3.

Fig. 8. Earth-probe-Moon angle vs time from injection
$x, y=\operatorname{LUNAR~EQUATORIAL~PLANE~}$
AXIAL DISTANCES IN $10^{2} \mathrm{~km}$

Fig. 10. Selenocentric altitude of probe vs GMT during lunar descent (last 2 hr)

GREENWICH MEAN TIME, ($\mathrm{hr}, \mathrm{min}$)

Fig. 11. Selenocentric space-fixed velocity of probe vs GMT during lunar descent (last 2 hr)

III. THE TRACKING SEQUENCE OF EVENTS

A. Introduction

This Section summarizes the key events in the tracking of the Ranger 4 and the Agena stage. Part B describes the DSIF post-injection tracking of the Ranger 4 transponder and the payload "rough landing" capsule beacon. Part C summarizes the AMR post parking-orbit tracking of the Agena C-band transponder by the Twin Falls Victory Ship and the Ascension Island FPS-16 Tracking Station.

To help interpret the results of the analysis of the tracking data given in Sections IV and V, Table 1 summarizes the key events of the launch to lunar impact sequence. When comparing the Agena orbit with the spacecraft orbit, it is important to note that all DSIF tracking after I_{2} occurs after event 5 (Fig. 1) whereas some Agena C -band transponder tracking occurs under the following conditions:

1. Before I_{2}, when the Agena rocket motor is thrusting.
2. Between I_{2} and event 5 , when the spacecraft and Agena are still mechanically attached (the path of the combination differs from the final spacecraft orbit due to the imparting of about $0.3 \mathrm{~m} / \mathrm{sec}$ relative velocity at mechanical separation).

Table 1. Review of key event times

3. Between event 5 and 6, when the Agena orbit is slightly changed by the mechanical separation velocity.
4. Between event 6 and 7, when the Agena orbit is being changed by the retro-rocket thrust.
5. After event 7, when the Agena orbit has undergone significant change from its orbit prior to event 6.

In using the Agena C-band transponder data it is quite important to employ only the data corresponding to the desired Agena orbit.

B. DSIF Tracking of Ranger 4 Transponder and Payload Beacon

1. General Information

The detailed characteristics of the Deep Space Systems employed in the Ranger 4 mission are given in Ref. 4. The names and locations of the stations used are summarized in Table 2. Stations 2, 3, 4, 5 use 85 -ft diameter antennas whereas Station 1 (The Mobile Tracking Station) has a 10 -ft diameter Az -El mounted antenna.

Table 3 indicates the nominal periods of visibility of the spacecraft to the participating DSIF stations during the course of the mission. Note that the view periods are labeled according to the day of "rise" and that the "set" times are often on the next day. Note that the signals may be received from the spacecraft somewhat before "rise" and somewhat after "set" times.

The DSIF tracking modes are defined as follows: ${ }^{\text { }}$
GM-1. Ground receiver tracks the transponder signal in the 2 -way doppler mode. The transmitting station (designated by an integer q) receives the return signal and compares it with the current transmitter signal to generate 2 -way doppler. At the present time this doppler is much more accurate than that taken in any other mode.

GM-2. Ground receiver tracks the transponder signal in the 1 -way doppler mode. The spacecraft return signal is obtained from a crystal reference in

[^0]Table 2. Deep space station locations ${ }^{\text {a }}$

Station	Location	Geodetic latitude	Astronomic longitude
2,3	Goldstone, California, U.S.A.	$35.4^{\circ} \mathrm{N}$	$116.8^{\circ} \mathrm{W}$
1,5	Johannesburg, South Africa	$25.9^{\circ} \mathrm{S}$	$27.7^{\circ} \mathrm{E}$
4	Woomera, Australia	$31.4^{\circ} \mathrm{S}$	$136.9^{\circ} \mathrm{E}$
a Ref. 5. Locations are approximate.			

Table 3. Nominal view periods at DSIF stations ${ }^{\text {a }}$

Date of rise	Station	Rise GMT	Set GMT	View period
April 23	$\begin{gathered} 1,5 \\ 4 \end{gathered}$	$\begin{aligned} & 21: 13: 45 \\ & 22: 03: 16 \end{aligned}$	$\begin{aligned} & \text { 09:04:33 } \\ & 00: 53: 58^{\mathrm{b}} \end{aligned}$	$\begin{array}{r} 11^{n} 51^{m} \\ 2^{h} 51^{m} \end{array}$
April 24	$\begin{gathered} 2,3 \\ 4 \\ 1,5 \end{gathered}$	$\begin{aligned} & 08: 28: 45 \\ & 13: 22: 51 \\ & 21: 01: 54 \end{aligned}$	$\begin{aligned} & 16: 58: 54 \\ & 02: 26: 19^{\mathrm{b}} \\ & 09: 38: 22^{\mathrm{b}} \end{aligned}$	$\begin{array}{r} 8^{h} 30^{m} \\ 13^{n} 03^{m} \\ 12^{h} 37^{m} \end{array}$
April 25	2,3 4 1,5	$\begin{aligned} & \text { 08:42:25 } \\ & \text { 13:49:29 } \\ & \text { 21:19:05 } \end{aligned}$	$\begin{aligned} & 17: 31: 54 \\ & 02: 36: 52^{b} \\ & 09: 45: 31^{b} \end{aligned}$	
April 26	2,3	08:44:08	12:47:46 ${ }^{\text {c }}$	$4^{n} 04^{m}$
a Based on 5-deg elevation angle and post-flight transponder-determined orbit. Universal time at spacecraft. ${ }^{\text {b }}$ Set occurs on the next day after rise. e Loss of capsule beacon signal due to occultation by Moon.				

the spacecraft $(q=0)$. The accuracy of the doppler data obtained is limited by unknown small changes in the spacecraft crystal frequency. This doppler is termed 1 -way because the doppler shift occurs only on the spacecraft-to-ground transit rather than in both directions as in GM-1.

GM-3. Ground receiver tracks the transponder signal in the 3 -way doppler mode. One DSIF station is in GM-1 and another station is "listening in" on the return signal. The accuracy of doppler generated in GM-3 is being determined on the Ranger series of flights but is limited primarily by variations in the reference frequency of the transmitting station. Improvements are anticipated in the stability of the transmitter reference oscillators which will make 3-way doppler a primary data type in the future.

GM-4. Ground receiver tracks the capsule beacon signal in the 1 -way doppler mode. The doppler limitations of GM-2 are present and the value of angle tracking is degraded because of the lower, and varying, signal level of the capsule beacon.

The only doppler data used to determine the Ranger 4 spacecraft orbit based on transponder data was 2 -way (GM-1), whereas angular data was used when the stations were in either GM-1, GM-2, or GM-3. Angular data from Station 1 (Table 2) was rejected because carefully calibrated, more accurate, data was available from Station 5.

2. Transponder Tracking

Table 4 summarizes the transmitter number q versus time during the mission, as well as the acquisition times on the first pass. The most critical times are initial acquisition in GM-2 and initial times in GM-1, in reverse order. After that, delays of under 10 min in transferring transmitting responsibilities from station-to-station have minor effect on the accuracy to which the spacecraft orbit can be determined.

The information in Table 4 is somewhat compressed in that the time of transition from $q=0$ to $q \neq 0$ is chosen to be the time when the first valid 2 -way doppler was received at the transmitting station; the transition from $q \neq 0$ to $q=0$ is chosen to be the time of the last valid 2 -way doppler point in that interval. Thus, Table 4 is more aptly a list of time intervals in which 2-way doppler was taken.

Table 4. Transmitter number and acquisition times ${ }^{\mathrm{a}}$

Transmitter, q	Time interval	Receiving station, i	Acquisition time (GMT on April 23, 24	Remarks
0	Lounch $\text { to } t_{1}=21: 29: 31$			
		1	21:13	Rise - 1^{m}
		5	21:15	Rise $+1^{m}$
1	t_{1} to $t_{2}=23: 05: 21$			
		1	21:29:31	Rise $+16^{\mathrm{m}}$
		4	22:23	Rise $+20^{m}$
0	t_{2} to $t_{3}=23: 16: 51$			$t_{:}-t_{2}=6^{m}$
5	t_{3} to $t_{4}=23: 35: 51$			
		5	23:16:51	
0	t_{4} to $t_{5}=23: 40: 11$			$t_{5}-t_{4}=4^{m}$
1	t_{s} to $t_{i}=23: 40: 11$			$t_{6}-t_{5}=26^{n 2}$
		1	23:40:11	
0	t_{6} to $t_{7}=00: 09: 51$			$\mathrm{t}_{\mathbf{i}}-\mathrm{t}_{6}=4^{\mathrm{m}}$
5	$t_{i} \text { to } t_{s}=07: 20: 51$			$t_{s}-t_{7}=7^{h} 11^{m}$
		5	00:09:51	
0	t_{8} on			
a Reference 6 plus Section IV of this Report. Times measured from "rise" refer to rise time at the receiving station listed.				

The shifting of the transmitting assignment from Station 1 to 5 and back to 1 and then back to 5 represents a successful execution of the preflight plan. After 96 min of good 2 -way doppler from previously flight-tested Station 1 , about 30 min were allowed to try to obtain good 2 -way doppler from Station 5 where no 2 -way doppler had been available previously, and then the transmitting job was handed back to Station 1 while Station 5 data quality was evaluated. Within 53 min after the first good 2 -way doppler point was received from Station 5, the data quality had been determined to be excellent and Station 5 was allowed to re-establish 2 -way lock.

As an example of the interpretation of Table 4, consider the first time $q=1$ appears in the left-hand column. From t_{1} to t_{2} Station I was transmitting; Station 1 achieved 2 -way lock (GM-1) at the time indicated to the right of " 1 " in the receiving station column. Station 4 achieved lock on the signal in GM-3 at the time indicated to the right of " 4 " in the receiving station column. The time from t_{2} to t_{3} was spent in transferring the transmitting assignment to Station 5.

3. Capsule Beacon Tracking

At 10 hr and 32 min after launch the spacecraft transponder signal was lost due to depletion of the spacecraft's batteries. For the remainder of the mission all DSIF stations tracked the capsule beacon, except for short periods of time during which unsuccessful searches were made for the transponder signal. Table 5 summarizes the periods of beacon tracking for the DSIFs.

C. AMR Tracking

1. Introduction

After burnout of the final stage, two AMR stations tracked the Agena Stage C-band transponder. The first data near final stage cutoff came from the Twin Falls Victory (TFV) ship. Shortly after the TFV lost the transponder the Ascension Island FPS-16 tracker acquired the transponder and tracked through the sequence of events described in Section III-A. Figure 12 illustrates the elevation angles at the two stations for the first 10 min after the reference epoch E (injection time +4 sec).

2. TFV Tracking

The TFV ship began tracking during the final burn and sent data to Jet Propulsion Laboratory (JPL) covering the interval from 21:03:19 GMT ($E-60 \mathrm{sec}$) to 21:08:16 GMT ($E+237 \mathrm{sec}$). The ship was reported "on station" at $326^{\circ} 45^{\prime}$ east longitude, $13^{\circ} 35^{\prime}$ north latitude

Fig. 12. AMR stations view periods and data spans
(astronomic) during the tracking interval. At E the probe's elevation was 12 deg at an azimuth of 280 deg east of north, at a range of 745 km . At closest approach to the ship the vehicle range and elevation were 332 km and 42 deg respectively. The azimuth angle to the vehicle when it was at the ship's horizon was 125 deg east. A total of 78 data sets (time-azimuth-elevation range), after E, was received at JPL. The data received were already corrected for ship's pitch and roll by means of an inertial reference and an onboard digital computer. The data were sampled every 3 sec and transmitted over Milgo 165 digital-radio teletype equipment at a rate of 1 sample per 6 sec .

3. Ascension Island Station Tracking

The Ascension Island tracker (7.9° south latitude, 14.4° west longitude) sent real-time data to JPL covering from 21:14:18 GMT ($E+9^{m} 59^{s}$) to 21:29:12 GMT ($E+24^{m}$ 53^{8}). Since these data were taken after the Agena retrorocket maneuver had begun (Table 1), it will not be

Table 5. Summary of capsule beacon tracking

Dafe	Station	Acquisifion GMT	End of frack GMT
April 24	2	$08: 32$	$17: 03$
	3	$09: 04$	$17: 40$
	4	$13: 52$	$01: 58$
April 25	5	$21: 40$	$09: 25$
	2	$08: 47$	$17: 30$
	4	$14: 23$	$02: 13$
April 26	5	$21: 40$	$09: 32$
	2	$8: 46$	$12: 47$
	3	$8: 33$	$12: 47$

discussed here. In non-real time, data covering the interval 21:10:42 GMT $\left(E+6^{m} 23^{8}\right)$ to 22:21:00 GMT $\left(E+76^{m} 41^{8}\right)$ were received at JPL. About 90 sec of this data was obtained prior to Agena retro-ignition. During this 90 -sec interval the elevation angle varied between

43 and 46 deg. The azimuth and range at the first and last point where $26^{\circ} \mathrm{E}, 1235 \mathrm{~km}$ and $71^{\circ} \mathrm{E}, 1648 \mathrm{~km}$, respectively. The data sets were sampled every 6 sec and contained the same measurement types as the TFV ship. Transmission was over the Milgo 165 equipment.

IV. FLIGHT PATH DETERMINATION USING TRANSPONDER TRACKING

A. Introduction

The real-time determination of the parking orbit is the responsibility of the AMR. Their pre-injection tracking of the Agena vehicle C-band transponder is important in establishing the parking orbit and detecting nonstandard flight conditions. The AMR supplies JPL with parking orbit elements and initial acquisition information for transmittal to the DSIF stations and for preliminary estimation of the spacecraft injection conditions. The primary post-injection tracking of the spacecraft is done by the DSIF.

The pitfalls in utilizing AMR post-injection tracking of the Agena transponder were described in Section IIIA. The primary functions of the AMR post-injection tracking coverage are: (1) evaluation of the Agena performance, (2) detection of non-standard flight path, and (3) assistance in improving the convergence of the Orbit Determination Program (ODP) when very limited amounts of DSIF data are available.

Our long-range objective is to utilize AMR postinjection tracking along with the DSIF tracking data to determine the spacecraft orbit. We are currently testing the consistency of the two data sources and determining the best ways to use this information. In Part B of this Section we describe the results of the flight path analysis of the Ranger 4 spacecraft as derived from the 10.5 hr of DSIF tracking of the spacecraft transponder. Part \mathbf{C} describes the preliminary results of our investigation of
the compatibility of the AMR Ascension Island and Twin Falls Victory Ship tracking data with the DSIF tracking results. The results of the comparison are very encouraging and suggest the lines along which our procedures must be modified to utilize the AMR data in the spacecraft orbit determination.

B. Flight Path Defermination Using DSIF Tracking of the Spacecraft Transponder

1. Summary of Data Taken

The complete sequence of tracking events and ground tracking modes is described in Section III. Section VI-C discusses the estimation method used. Table 6 summarizes the data points used in the orbit determination.

Angle tracking data was used whenever the ground stations were in GM-1, GM-2, or GM-3 and the "data condition" code indicated good data. Only 2 -way doppler data (GM-1) were used; the reasons were discussed in Section III-Bl. Table 6 provides a gross picture of the performance of the data taking and handling system; Column 3 gives the total number of data points taken at each station during the life of the spacecraft transponder. The editing of the data, described in Section VI-B1, allowed the number of points (and percentage of total) listed in Column 4 to be used in the final orbit determination. Of particular interest is the number and percentage of data sets rejected for bad format or as "blunder

Table 6. Summary of data used in orbit determination

Station	Data types	Points received	Points used	Bad format rejection	Blunder points	Bad data condition	Rajection limits on blunder points
		\% of received					
Mobile tracker	2-way doppler	881	703	39	2	137	3 cps
		100	79.8	4.4	0.2	15.6	
Woomera	Hour angle, declination	87	35	15	2	35	0.15 deg
		100	40.2	17.2	2.3	40.2	
5 Johannesburg	2-way doppler	428	377	0.14^{2}	11	26^{-}	1.5 cps
		100	88.0	3.3	2.6	6.1	
	Hour angle, declination	960	719	29	53	159	0.15 deg
		100	74.9	3.0	5.5	16.6	
- Doppler and angles are given on each data message and the entire message is reiected for any format errors or bad condition; thus, the 2-way doppler rejects of columns 5 and 7 are a sub-set of the angle rejects listed below them.							

points." As discussed in Section VI-C, no attempt is made to unscramble data messages containing any format errors. "Blunder" points can create significant problems in converging on an orbit when very little data is available and hence are important in influencing the time required to establish our first estimate of the orbit. The number and percentage of the points omitted because of "bad data condition" are listed in Column 7. When the tracking station operators or automatic detectors recognized that the data being transmitted would not be usable, the data condition codeword reflected these situations. This situation occurred when re-tuning the ground transmitter to maximize the signal received at the spacecraft, when commands were being sent, and during the acquisition phase.

2. Weighting of the Data

The data weights were assigned in accordance with the policy described in Section VI-C. The weighting assigned to the data depends upon the sampling interval and, for doppler, the counting time and the range to the spacecraft. During the flight, the effective noise due to variation of the transmitter reference frequency was calculated from regular recordings of the transmitter frequency. The noise in the doppler due to this variation never became a dominant factor because the oscillator performance exceeded specifications and because transponder tracking ended prematurely. Table 7 summarizes the sample and counting intervals and weights used.

3. Discussion of Residuals

Once the data points and weights are fixed, the set of initial conditions which minimizes the weighted sum of the residuals squared is found by an iterative method. The physical constants described in Ref. 7 were used in the trajectory calculation. Subsequently the influence of
variation of GM-Earth on the resultant estimator was examined (Section IV-B4 below).

The differences between the vector of all observations and the calculated values based on the converged solution is called the vector of residuals. Figures 13 through 29 are the residual plots, by station, vs time for the data types used in the final orbit. The detailed analysis of the residuals will be published in another report. The Station 1 doppler residuals have a parabolic form due to the rounding of the data. Note that the oscillations in the Station 5 doppler data are due to the regular tumbling of the spacecraft which caused a variation in the equivalent phase center. The tumbling effect can also be seen in the angle data since there was a wide variation in return signal strength due to relative nulls in the antenna pattern.

4. Statistics of Data and Orbit Estimates

a. Tracking data statistics. The root-mean-squared noise (RMS) and mean of the residuals for each station is given in Table 8 for each data type used. Note that the RMS noise and weights of Table 7 differ significantly in most cases. The difference in angle weighting is due to the presence of low-frequency mechanical deflection of the DSIF antennas.
b. Statistics of orbit estimate; data noise. The accuracy of the orbit obtained depends on the statistics of the tracking noise and on the statistics of all error sources which influence the orbital estimate. The tracking noise statistics are represented by the "equivalent or worse" white noise method described in Section VI-C. The Ranger 4 ODP does not "solve for" nor directly include the effects of deviations in physical constants such as GM-Earth and station locations. Table 9 gives the covariance matrix describing the uncertainty in the spacefixed Cartesian coordinates at the reference epoch E,

Table 7. Summary of weights, sample, and count times

Station	Data type	E to $E+80 \mathrm{~min}$			$E+80 \mathrm{~min}$ on		
		Sample spacing, sec	Count time, sec	Weight, cps ${ }^{\text {a }}$ or deg	Sample spacing, sec	Count time	Weight, cps ${ }^{\text {a }}$ or deg
1	2-way doppler	10	$1{ }^{\text {b }}$	0.7	10°	1	0.7
4	Hour angle, declination	80		0.18	60	50	0.18
5	2-way doppler	10		0.45	60		0.20
	HA, declination				60		0.18

${ }^{2} E$ is reference epoch used for orbit determination (Table 6). 1 cps $=c / 2 f=0.156 \mathrm{~m} / \mathrm{sec}$ where the transmisting frequency f is $96 \times 10^{\top}$ cps.
${ }^{\text {b }}$ Station 1 doppler is counted $\pm 1 / 2$ sec centered about the message time. All other stations time tag the data at the end of the counting interval.

Fig. 13. Station 1 residuals (from 21:00 GMT April 23, 1962)

Fig. 14. Station 1 residuals (from 22:00 GMT April 23, 1962)

Fig. 15. Station 1 residuals (from 23:00 GMT April 23, 1962)

Fig. 16. Station 1 residuals (from 00:00 GMT April 24, 1962)

Fig. 17. Station 4 residuals (from 22:00 GMT April 23, 1962)

Fig. 18. Station 4 residuals (from 23:00 GMT April 23, 1962)

Fig. 19. Station 5 residuals (from $21: 00$ GMT April 23, 1962)

Fig. 20. Station 5 residuals (from 22:00 GMT April 23, 1962)

Fig. 21. Station 5 residuals (from 23:00 GMT April 23, 1962)

Fig. 22. Station 5 residuals (from 00:00 GMT April 24, 1962)

Fig. 23. Station 5 residuals (from 01:00 GMT April 24, 1962)

Fig. 24. Station 5 residuals (from 02:00 GMT April 24, 1962)

Fig. 25. Station 5 residuals (from 03:00 GMT April 24, 1962)

Fig. 26. Station 5 residuals (from 04:00 GMT April 24, 1962)

Fig. 27. Station 5 residuals (from 05:00 GMT April 24, 1962)

Fig. 28. Station 5 residuals (from 06:00 GMT April 24, 1962)

Fig. 29. Station 5 residuals (from 07:00 GMT April 24, 1962)
considering only the noise on the tracking data. The covariance matrix is given in terms of its normalized correlation matrix and standard deviations of the coordinates. The coordinates at E are given in Section II. The lower part of Table 9 gives the corresponding quantities in Earth-fixed spherical (defined in Section IV-C 1) coordinates.

The covariance of errors in knowledge of the coordinates at E may be "mapped" to the target region using the miss parameter \mathbf{B} (Appendix A) and T_{L}, the linearized time-of-flight, as measures of target error. T_{L} may be considered to represent the flight time to a vertical impact (the influence of B on the parameter T_{L} is thus removed). Table 10 represents the standard deviations and correlation matrix in the $\mathbf{B} \cdot \mathbf{R}, \mathbf{B} \cdot \mathbf{T}, T_{L}$ system. The

Table 8. Tracking noise statistics

Station	Data types	No. of Points	RMS	Mean $^{\text {M }}$
4	2-woy doppler, cps	703	0.639	-0.005
	Hour angle, deg	35	0.009	-0.001
	Declination, deg	35	0.007	-0.002
	2-way doppler, cps	377	0.078	-0.002
	Hour angle, deg	719	0.020	-0.002
	Declination, deg	719	0.012	-0.002
antenna angle biases were calibrated out.				

axes of the 1 -sigma dispersion ellipse are found by evaluating the eigen-values of the 2×2 covariance matrix of $\mathbf{B} \cdot \mathbf{R}, \mathbf{B} \cdot \mathbf{T}$ uncertainties. The results are: major semiaxis $=22.9 \mathrm{~km}$, minor semi-axis $=14.6 \mathrm{~km}$, and orientation of major axis $=149.6$ deg CCW from the R axis. The standard deviation of actual flight time to the estimated impact point is 18.8 sec . It was determined by using Table 10 data plus the relationships

$$
\frac{\partial T_{I}}{\partial \mathbf{B} \cdot \mathbf{T}}=0.656 \mathrm{sec} / \mathrm{km} \text { and } \frac{\partial T_{I}}{\partial \mathbf{B} \cdot \mathbf{R}} \simeq 0
$$

c. Statistics of orbit estimate; physical constants. The only error source which could significantly degrade the target accuracies indicated in Section IV-B4b, above, appears to be GM-Earth. A systematic investigation utilizing the technique first suggested in Ref. 4 was carried out to determine the sensitivity of our target parameters to changes in the assumed GM-Earth as well as to form an independent estimate of that quantity from our tracking data.

Figure 30 shows the variation of the weighted sum of residuals squared (on second and third iterations) as a function of the fractional variation in GM from its nominal value. The minimum is at -0.7×10^{-5} and the standard deviation of this estimate is 3.2×10^{-5}. A wide range

Table 9. Statistics of knowledge of injection conditions ignoring physical constant errors

Standard deviation	Correlation coefficients						
		X	Y	Z	X	$\dot{\mathbf{Y}}$	$\dot{\mathbf{z}}$
$\times 0.290 \mathrm{~km}$	x	1	0.384	-0.106	-0.378	0.144	0.057
Y 0.384	γ		1	-0.941	0.701	0.940	-0.874
Z 0.676	z			1	-0.868	-0.983	0.973
$\times 0.648 \mathrm{~m} / \mathrm{sec}$	\dot{x}		Symmetrical		1	0.854	-0.941
Y 1.242	\dot{r}					1	-0.979
Z 2.225	\dot{z}						1
Earth-fixed Spherical Coordinates of Epoch E							
Standard deviation	Correlation coefficients						
		r	ϕ	λ	v	γ	σ
r 0.135 km	r	1	-0.682	0.031	-0.974	0.724	0.768
$\phi 0.0063^{\circ}$	ϕ		1	0.614	0.518	-0.784	-0.971
$\lambda 0.0035^{\circ}$	λ			1	-0.177	-0.054	-0.466
$\checkmark 0.0943 \mathrm{~m} / \mathrm{sec}$	\checkmark				1	-0.585	-0.606
$\gamma 0.0015^{\circ}$	γ					1	0.867
c 0.0136°	σ						1

Table 10. Statistics of knowledge of target error ignoring physical constant errors

Standard deviation	Correlation coefficients			
		$\mathbf{B} \cdot \mathbf{R}$	$\mathbf{B} \cdot \mathbf{T}$	\mathbf{T}_{L}
$\mathbf{B} \cdot \mathbf{R} \quad 21.0 \mathrm{~km}$	$\mathbf{B} \cdot \mathbf{R}$	1	-0.375	0.697
$\mathbf{B} \cdot \mathbf{T} \quad 17.0 \mathrm{~km}$	$\mathbf{B} \cdot \mathbf{T}$		1	0.273
$\mathbf{T}_{L} \quad 18.5 \mathrm{sec}$	\mathbf{T}_{L}	Symmetrical	1	

of opinions as to the accuracy of our current knowledge of GM is available. The most pessimistic figures are around 1×10^{-5}. Thus, while our answer is encouragingly close to the adopted value, it affords no new information. We shall continue to assume the adopted values of Ref. 7 with an uncertainty of 0.5 part in 10^{5}.

The degradation of the orbit estimate due to a $0.5 \times$ 10^{-5} fractional error in GM-Earth is described in Table 11. The change in the converged target coordinates estimate per 10^{-5} fractional change in GM is listed as obtained from the previously described computer runs.

Previous studies of the effect of station location errors indicate that less than a $15-\mathrm{km}$ target error results from station location errors of 10^{-3} deg in latitude and longitude and 37 m in altitude.

We conclude that our estimate of the orbit should be accurate about a $22-\mathrm{km}$ l-sigma circle in the B plane and about 33 sec in linearized time-of-flight after allowing for uncertainties in the physical constants. Due to the favorable correlation between T_{L} and $\mathbf{B} \cdot \mathbf{T}$ errors (Tables 10 and 11) the 1 -sigma impact time uncertainty is only 26 sec .

We plan to re-evaluate the Ranger 4 flight data using a more sophisticated orbit determination program which has just been completed. Here, the uncertainties in physical constants and station locations will be handled in a rigorous fashion in order to obtain a better estimate of the orbit and its uncertainties.

Fig. 30. Solving for $\mathbf{G M}_{\mathrm{E}}$ using Ranger 4 data

C. Comparison of AMR and DSIF Tracking Resulfs

1. Introduction

Section III has described the sequence of events necessary to understanding the use of AMR tracking data as well as a summary of the AMR tracking data available for comparison with the DSIF tracking results. Part IV-C2, below, summarizes our analysis of the TFV ship tracking results. First, we computed the orbital elements (see glossary of terms that follows) based on TFV data alone. Comparison with the DSIF orbital elements suggested that the ship's location required adjustment. The TFV orbital elements with adjusted ship's location showed good agreement with the DSIF-determined elements.

In Part IV-C3, below, we have applied the same approach to the analysis of the Ascension Island data. The initial disagreement of orbital elements derived solely from Ascension data led to a comparison of Ascension observation with those calculated on the basis of the DSIF-only orbit. The assumption of a 6000 -yd bias in

Table 11. Variation in estimate of impact conditions with changes in GM of the Earth ${ }^{\text {a }}$

Fractional change in $\mathbf{G M}_{E}$	$\underset{\mathrm{km}}{\Delta \mathbf{B} \cdot \mathbf{T}}$	$\underset{\mathrm{km}}{\Delta \mathrm{~B} \cdot \mathrm{R},}$	Δ Lat, deg	Δ Long, deg	Δ impact fime, sec	$\underset{\sec }{\Delta \boldsymbol{Y}_{L_{1}}}$
+2 $\times 10^{-5}$	-55.7	-0.4	0.39	-2.25	-70	-108
$+6 \times 10^{-5}$	-167.4	-0.8	1.26	-7.13	-206	-325
-6×10^{-5}	+169.2	0.0	- 1.04	6.32	+222	+326

the Ascension range data puts all residuals and orbital elements within the range of expected variation.

We consider that the problems encountered are not serious and can be eliminated in the future so that our goal of using AMR data in assisting the determination of the spacecraft orbit in real time is not far off. Modifications in operational and computational procedures at JPL are indicated in order to make proper utilization of the potential of the AMR tracking data.

GLOSSARY OF TERMS

The two sets of orbital parameters used are Earth-fixed spherical coordinates and a set of Keplerian orbital elements. All elements are referred to true (instantaneous) equator and equinox of date.

Earth-fixed spherical coordinates

r_{o} Earth center to probe distance, km
ϕ_{0} geocentric latitude, deg
λ_{0} longitude, east, deg
v_{0} speed in Earth-rotating framework, $\mathrm{km} / \mathrm{sec}$
γ_{0} path angle of velocity, above local (geocentric) horizon, deg
σ_{o} azimuth angle of velocity, east of north, deg

Keplerian orbital elements

a semi-major axis, km
e eccentricity
i inclination angle, deg
Ω right ascension of ascending node, deg
ω argument of perigee, deg
${ }_{\omega}+\nu$ sum of ω and true anomaly at epoch E

2. Twin Falls Victory Ship Tracking Results

The TFV data available (Fig. 12) brackets the time of mechanical spring-separation of the Agena stage from the spacecraft. Since the relative separation velocity is only about $0.3 \mathrm{~m} / \mathrm{sec}$, the Agena orbit and the post-separation Ranger 4 spacecraft orbit were treated as one. As discussed in the Introduction, we first determined an orbit
using TFV data only. The weighting standard deviations used were 30 m in range and 0.3 deg in azimuth and elevation (by comparison with the RMS residuals it can be seen that we assumed correlated errors were present in both the range and angle data). Table 12 lists the Earth-fixed spherical orbital elements at the reference epoch E as well as the RMS error of the residuals.

Table 12 lists the corresponding orbital elements for the DSIF orbit found in Section IV-B. In interpreting the differences it is important to note that the ship's position estimate cannot normally be trusted to better than ± 2 nautical $\mathrm{mi}(\pm 0.034 \mathrm{deg})$. To illustrate the effect of ship's location on the orbit estimate, the latitude and longitude of the ship were varied by 0.1 deg in turn, with the following results:

Change in orbit estimate	Change in ship's location	
	0.1 deg latitude	0.1 deg longitude
$\delta r_{o}, \mathrm{~km}$	-0.0055	0
$\delta \phi_{o}, \mathrm{deg}$	0.0993	0
$\delta \lambda_{0}, \mathrm{deg}$	-0.0030	0.100
$\delta v_{0}, \mathrm{~km} / \mathrm{sec}$	-0.00002	0
$\delta \gamma_{o}, \mathrm{deg}$	0.0006	0
$\delta \sigma_{0}, \mathrm{deg}$	0.0132	0

Utilizing the above information, we made an approximate adjustment of the ship's location to better match the orbital elements; the latitude was changed by about 0.10 deg and the longitude by about 0.02 deg . Table 13 summarizes the results analogous to Table 12 with the ship's location adjusted. In columns 5 and 6 we have listed the expected 1-a errors in each orbital element due to the data noise and a ± 2 nautical mi error in ship's location.

The residuals for the adjusted orbit are shown in Fig. 31. Note that the RMS of the residuals are essentially the same for both the adjusted and unadjusted orbits. This is because changes in ship's location can be so well compensated for by errors in the orbit parameters $\phi_{\theta}, \lambda_{\theta}$, as illustrated previously.

The only discrepancy between these two orbits which appears significant is the $1.7-\mathrm{m} / \mathrm{sec}$ difference in speed. We believe that this difference is accounted for by the ship's speed of 5 knots ($2.6 \mathrm{~m} / \mathrm{sec}$) during the tracking

Fig. 31. TFV ladjusted) residuals
period. In the future, proper arrangements will be made for considering the effect of ship's velocity.

3. Ascension Transponder Tracking Results

The Ascension data were placed in the Orbit Determination Program and an orbit was found for the Agena vehicle (pre-retro) using these weights: azimuths and elevation angles 0.02 deg , range 30 m . The resulting orbit is given in Table 14 where comparison is made with the DSIF orbit. Two coordinate systems are shown, Earthfixed sphericals and Keplerian orbital elements, in order to emphasize separate features. Note how conspicuous is the excessive semi-major axis and r_{0} associated with the Ascension orbit.

The residuals of this orbit are shown in Fig. 32 indicating errors of a systematic nature.

In order to detect possible errors, we calculated the Ascension Island observations based on the DSIF orbit. The residuals are shown in Fig. 33. It appears that the Ascension data had range readings which were 5.5 km too high.

A second Ascension orbit was then computed, the same as before except 6900 m were subtracted from the Ascension range data. This range adjustment was chosen after several tries. The results are shown in Table 15. Residuals of this orbit are shown in Fig. 34. The fit to the equations of motion is better and the discrepancies between DSIF and the range-adjusted orbit are smaller. It should be noted that if a timing discrepancy existed between Ascension and the DSIF, and this were the only error, then comparison of orbital elements would show discrepancies only in two of the elements, Ω and $(\omega+v)$. Such does not appear to be the case.

GREENWICH MEAN TIME
Fig. 32. Original Ascension Island orbit residuals

greenwich mean time

Fig. 33. Original Ascension Island residuals based on DSIF orbit

Table 12. Ship's orbit based on unadjusted location
Earth-fixed spherical coordinates at epoch E (E = April 23, 1962 21:04:19 GMT)

Table 13. Ship's orbit based on adjusted location ${ }^{\text {a }}$ Earth-fixed spherical coordinates ot epoch E (E = April 23, 1962 21:04:19 GMT)

Coordinates	$r_{\text {or }}, \mathrm{km}$	ϕ_{a}, deg	$\lambda_{0}, \operatorname{deg}$	$\mathrm{v}_{\mathrm{o}}, \mathrm{km} / \mathrm{sec}$	γ_{a}, deg	σ_{0}, deg
Ship's orbit (adjusted)	6568.7814	14.5735	320.2563	10.54155	1.6852	117.3408
DSIF	6568.8833	14.5741	320.2590	10.54329	1.6688	117.2773
Difference	-0.0109	-0.0006	-0.0027	-0.00174	0.0164	0.0635
1-a ship orbit errors ${ }^{\text {a }}$	0.290	0.044	0.0013	0.00027	0.013	0.034
1- σ ship orbit errors, location errors ${ }^{\text {b }}$	0.002	0.035	0.035	0.00001	0.0002	0.005
Data type No. of points				hip's ladius	sition	
AZ 78				5884 ${ }^{\circ} \mathrm{N}$ latit	ocentric)	
EL 78				$7680^{\circ} \mathrm{E}$ long		
Range 78						
: Theoretical noise due to data noise implied by the weighting sigmas used. ${ }^{b}$ Theoretical noise due to uncorrelated 2 nautical mi latitude and longitude errors.						

Table 14. Comparison of original Ascension orbit with DSIF orbit
Earth-fixed spherical coordinates at epoch $E(E=$ April 23, $1962 \quad 21: 04: 19$ GMT)

Coordinates	$r_{0}, \mathbf{k m}$	ϕ_{0}, deg	λ_{0}, deg	$v_{0}, \mathbf{k m} / \mathbf{s e c}$	γ_{0}, deg	σ_{0}, deg
Ascension (original)	6581.141	14.6300	320.2565	10.5579	1.5080	117.3326
DSIF	6568.883	14.5740	320.2590	10.5433	1.6688	117.2773
Difference	12.258	0.0560	-0.0025	0.0146	-0.1608	0.0553
1-б Ascension orbit errors*	1.32	0.013	0.004	0.015	0.018	0.017
Keplerian orbital elements at epach E						
Coordinates	a, km	e	i, deg	Ω, deg	ω, deg	$(\omega+\nu)$, deg
Ascension (original)	537,275	0.987759	29.7699	334.9101	146.5029	149.4230
DSIF	306,500	0.978588	29.6988	334.8797	146.2298	149.4764
Difference	230,775	0.009171	0.0711	0.0304	0.2731	-0.0534
Data type	No. of points	RMS				
AZ	16	0.031 deg				
EL	16	0.0098 deg				
Range	16	0.025 km				
- Theoretical error expected from data errors consistent with the weights assumed.						

Table 15. Comparison of adjusted Ascension orbit with DSIF orbit
Earth-fixed spherical coordinates of epoch E (E = April 23, 1962 21:04:19 GMT)

Coordinates		$\mathrm{r}_{0}, \mathrm{~km}$	ϕ_{0}, deg	λ_{o}, deg	$\mathrm{V}_{0}, \mathrm{~km} / \mathrm{sec}$	$\gamma_{\text {or deg }}$	σ_{o}, deg
Ascension (adjusted) DSIF Difference 1- σ Ascension orbit errors ${ }^{\text {a }}$		6569.574	14.5643	320.2552	10.5427	1.6652	117.3006
		6568.883	14.5740	320.2590	10.5433	1.6688	117.2773
		-0.691	-0.0097	-0.0038	-0.0006	-0.0036	0.0233
		1.32	0.013	0.004	0.015	0.018	0.017
Keplerian orbital elements at epoch E							
Coordinates		a, km	e	i, deg	Ω, deg	ω, deg	$(\omega+\nu)$, deg
Ascension (adjusted) DSIF Difference		306,277	0.978567	29.0134	334.8381	146.2739	149.5135
		306,500	0.978588	29.6988	334.8797	146.2298	149.4764
		223	-0.000021	0.0146	-0.0417	0.0442	0.0372
Data type No. of points RMS AZ 16 0.0097 deg EL 16 0.0057 deg Range 16 0.0061 km							
${ }^{\text {a }}$ Theoretical error expected from data errors consistent with the weights assumed.							

V. CONFIRMATION OF THE DSIF TRANSPONDER-BASED ORBIT ACCURACY BY TRACKING THE CAPSULE BEACON NEAR LUNAR IMPACT

A. Introduction

Our analysis of the doppler-shift data received from the capsule beacon just prior to impact has confirmed that the orbit determined using the DSIF transponder data is consistent with these observations. As indicated in Section III-B1, the pass of April 26 at the two Goldstone Deep Space Stations began about 4 hr and 4 min before the time the spacecraft was occulted by the Moon's leading edge. Figures 35 and 36 show the actual doppler values recorded at Stations 2 and 3 during the last hour before impact with the Moon. In subsequent comparisons, the discrete data points are not shown.

In Part B of this Section we review the data-taking system and the formulae relating the observations with
the spacecraft orbit, capsule transmitter frequency, and ground station bias oscillator frequency. Estimates are made of the necessary quantities and the actual observations are compared to the values derived from the DSIF transponder orbit described in Section IV-B. We show that the expected variations in the capsule doppler data due to errors in our orbit estimate (Section IV-B4) bracket the actual observations, indicating consistency of these two information sources.

In Part C of this Section the records at Station 2 and 3 which define the time-of-signal loss are shown and discussed. Again the deviation in the actual loss time from that predicted is well within the expected bounds. Plots

Fig. 35. Actual recorded data from DSIF 2

Fig. 36. Actual recorded data from DSIF 3
are presented which indicate the sensitivity of the time-of-signal loss to deviation in coordinates near impact.

B. Data Sysfem

1. Recordings

The frequency recorded at the tracking station in GM-4 (Section III-B1) is $f_{c b}$ and is a function of the beacon crystal frequency and the bias oscillator frequency at the receiving station. Recordings of $f_{c b}$ were made throughout the entire mission as described in Section III-B3. The formula used in the orbit determination program to calculate $f_{c b}$ at the i th receiving station is given in Fig. 37. Thus,

$$
\begin{aligned}
f_{c b_{i}}^{\prime}= & 930.15 \times 10^{6}+\left(f_{0}+D_{o} \Delta_{t_{i}}-0.455 \times 10^{6}\right) \\
& -\left(f_{t}+D_{t} \Delta t_{i}\right)\left(1-\frac{\dot{r}_{i}}{c}+\text { higher order terms }\right)
\end{aligned}
$$

where
$f^{\prime} b_{i}=$ calculated capsule beacon frequency in cps
$f_{v}=$ bias oscillator frequency in cps
$f_{t_{1,}}=$ capsule crystal frequency at a reference time in cps
$D_{0}=$ bias oscillator drift rate in cps $/ \mathrm{min}$
$D_{t}=$ capsule crystal drift rate in $\mathrm{cps} / \mathrm{min}$
$\dot{r}_{i}=$ range rate

Fig. 37. Sketch of $\boldsymbol{f}_{c b}$ system

$$
\begin{aligned}
c= & \text { velocity of light } \\
\Delta t_{i}= & \text { difference in min between reference time and } \\
& \text { recording time } f_{c b} .
\end{aligned}
$$

Since the capsule crystal-derived frequency is not precisely known, and varies significantly with temperature and other factors, a value of the crystal frequency as a function of time was obtained by studying residuals at different stations. By using the relationship $f_{t}=f_{t_{0}}+$ $D_{t} \Delta t_{i}$, calculated values of $f_{c b_{i}}^{\prime}$ were generated. These values showed close agreement to actual data taken at Stations 3 and 5 where bias oscillators were steady. The value for drift rate ($D_{t}=+1.54 \mathrm{cps} / \mathrm{min}$) in f_{t} corresponds to a temperature change of $-5.3^{\circ} \mathrm{F} /$ day. Thus, having now estimated f_{t} with data prior to the last two hours before impact, we must now include the bias oscillator drift into the final calculation.

Periodically, values of the bias oscillators at the various DSIF stations were automatically recorded. Other times
the values were observed, noted as steady or unsteady, and manually recorded. Figure 38 shows the oscillator recordings at Stations 2 and 3 during the final pass. Note that Station 2 recordings were oscillating quite widely and were sparse in the last half hour before impact. Station 3's lack of recordings prior to $11^{h} 20^{m}$ was due to visual observation of a steady oscillator. When it did start to drift, the operator switched to automatic recording and then at $11^{h} 55^{m}$ to manual recordings. The recordings have been represented by the three lines indicated in Fig. 38. Since the Orbit Determination Program (ODP) can use but one drift constant D_{0}, the solid line represents the drift D_{0} used for the calculated values. Note that the solid line passes through all the automatic recorded values and deviates from the manual recordings. Therefore, to bring the manual recordings (dash lines) into the evaluation, the actual data cards were reconstructed to simulate the difference between recorded oscillator frequency and the values used in the ODP calculations.

Fig. 38. Bias oscillator frequency vs time (Ranger 4 third pass)
\qquad

Residuals were generated [$f_{c b_{i}}$ (observed) - $f_{c b_{i}}^{\prime}$ (calculated) on both the original data and the reconstructed data using the converged transponder orbit injection conditions and the previously estimated values of f_{t}, D_{t}, and D_{0} (Fig. 39). The Station 2 residuals were in agreement with Station 3 residuals between 11:30 and 12:00 GMT where bias oscillator recordings were available. Since adequate recordings were not available after this time, we shall concentrate on the Station 3 doppler information. In most of the discussion that follows we have chosen the solid line (Fig. 38) as the representation of the bias oscillator frequency. Figure 40 shows the effect of the different assumptions on the calculated values $f_{c c_{i}}^{\prime}$. The agreement in both cases is discussed in the following paragraphs. The manual recordings are considered to be questionable since they were derived from a counter in a non-standard patch condition.

2. Discussion of Results

In order to interpret the accuracy of the transponder determined orbit using either of the two curves in Fig. 40, it is necessary to describe the expected variation of the observable doppler during the last hour of flight. We will use the parameters $\mathbf{B} \cdot \mathbf{T}, \mathbf{B} \cdot \mathbf{R}$, and T_{L} described in Section IV-B4 to describe the expected variations. Table 16 gives the correlation matrix and standard devia-

Table 16. Statistics of knowledge of target errors including physical constant errors

Standard deviation	Correlation coefficients			
		$\mathbf{B} \cdot \mathbf{R}$	$\mathbf{B} \cdot \mathbf{T}$	\boldsymbol{T}_{L}
$\mathbf{B} \cdot \mathbf{R} 21.0 \mathrm{~km}$	$\mathbf{B} \cdot \mathbf{R}$	1	-0.290	0.391
$\mathbf{B} \cdot \mathbf{T} 22.0 \mathrm{~km}$	$\mathbf{B} \cdot \mathbf{T}$		1	0.646
$\boldsymbol{T}_{L} \quad 32.8 \mathrm{sec}$	\boldsymbol{T}_{L}		Symmetrical	1

tions associated with our estimate of total accuracy (Section IV-B4c).

We have perturbed these parameters in turn by their 1 -sigma uncertainty. Changes of $\pm 20 \mathrm{~km}$ in $\mathbf{B} \cdot \mathbf{R}$ caused no significant change in the doppler curves. Variation of T_{L}, the linearized flight time, causes a shift of the time axis equal to the negative of T_{L}. The resulting doppler curves for $\pm 33 \mathrm{sec}$ variation in T_{L} are shown in Fig. 41. Figure 42 depicts the effect of $\pm 20 \mathrm{~km}$ variation in $B \cdot T$ while holding $T_{L}, \mathbf{B} \cdot \mathbf{R}$ constant. One additional variation was made to determine the change in the doppler curve caused by a $\pm 0.2 \%$ variation in the GM of the Moon (Fig. 43). It should be noted that this effect is nearly identical with an error in ΔT_{L}.

Figures 41-43 are based upon the extrapolation of the automatic recordings of the bias oscillator. Also plotted is the curve representing the individual data

Fig. 39. Residuals on reconstructed data using manual recordings vs residuals on extrapolated automatic recordings (Station 3)

Fig. 40. Calculated beacon data-manual recordings vs automatic recordings of bias oscillator at Station 3
points taken at Station 3. It appears evident that these observations are consistent with their expected variation based on the uncertainties in the transponder orbit. No more careful comparison can be made at this time until our computing programs have added flexibility.

Referring to Fig. 40, the assumption that the manual recordings give the correct bias oscillator frequency leads to a moderately different doppler curve. Since the offset of the beacon transmitter frequency $f_{T_{0}}$ is uncertain to ± 20 cycles, the calculated doppler frequency curves have a constant offset uncertainty of ± 20 cycles. This is due to lack of complete calibrations of the bias oscillator frequency in the region where the slope was evaluated. Considering this additional factor, it appears that either of the two doppler curves in Fig. 40 is reasonably consistent with the predicted values.

Figures 44,45 , and 46 show some of the residual plots for Stations 2, 3, and 5. Figure 44 shows the wide
oscillations due to the (uncompensated) effect of the bias oscillator frequency variations evident in Fig. 38. Figure 45 shows the residuals at Station 5 (South Africa) during an interval where the bias oscillator was reported steady. It can be seen that the slope chosen to represent the capsule crystal frequency fits the observations well; the bias is due to fixed offset in a reference oscillator. Figure 46 shows the Station 3 residuals during the final pass. Note that they are stable for the first two hours and then start drifting off as indicated by the bias oscillator \log (Fig. 38).

C. Verification by Time of Signal Loss

1. Observational Records

The primary evidence of occultation of the capsule by the Moon is the loss of received signal at the ground station. Various functions related to the received signal are recorded by the DSIF on magnetic tape and independently on direct-write oscillographs.

Fig. 41. Actual data vs perturbations in T_{L}

Figure 47 is a recording of the receiver functions recorded on magnetic tape at DSIF-2 for the last few seconds prior to occultation. Figure 48 is a reproduction of the DSIF-3 direct-write oscillograph record for the same time. It is included to illustrate both types of records from which occultation time was determined.

In Figure 47, the trace labeled signal strength is the one of critical interest. At the time noted by the arrow 124747, the signal started to decay. The rate of decay is characteristic of the 10 -sec time constant of the receiver.

The time associated with the event is determined from a binary-coded-decimal (BCD) time code which records days, hours, and minutes, and from a $1-\mathrm{pps}$ time code. Both the BCD code and the 1-pps code are derived from the station secondary standard which is synchronized to WWV. In Fig. 48, the BCD code may be seen at the top of the trace. In the case of Fig. 47, which is a playback of the magnetic tape, the mechanization of the playback recorder precludes the recording of the BCD code, so that only the 1-pps code appears at the top of the trace.

In Fig. 48, the channel labeled Acquisition Relay is an event channel which marks loss of receiver lock, i.e., loss of signal. The time shown on the figure is the time of change of state of this relay. It is consistent with the time of signal tail-off as shown on Fig. 47. The rate of tail-off is lower at Station 3 since the AGC time constant is longer, i.e., 300 sec .

The conclusion is that, neglecting signal time-of-flight, the capsule signal was occulted by the Moon at 124747. The accuracy to which this time can be determined is approximately $\pm 0.3 \mathrm{sec} /$ RMS.

2. Discussion of Results

The actual and predicted times of signal loss are:

$$
\begin{array}{ll}
\text { Actual } & 12^{h} 47^{m} 46^{s} \text { GMT April } 26,1962 \\
\text { Predicted } & 12^{h} 48^{m} 10^{s} \text { GMT April } 26,1962
\end{array}
$$

when corrected for light-time. The error of -24 sec is consistent with the expected 1 -sigma variation of 26 sec described in Section IV-B4c. The confirmation given by the time the capsule beacon signal was lost significantly enhances our confidence in the accuracy of the DSIF transponder determined orbit.

(108,300

Fig. 42. Actual data vs perturbations in $\mathbf{B} \cdot \mathbf{T}$

Fig. 43. Actual data vs perturbations in Moon's GM

Fig. 45. Station 5 residuals (from 02:00 GMT April 26, 1962)

Fig. 47. Ranger 4 Pioneer DSIF 2 receiver functions

VI. FLIGHT PATH ANALYSIS OPERATION AND POLICIES

A. Introduction

The Flight Path Analysis (FPA) group is the part of the Spaceflight Operations team which performs the realtime radio guidance calculations as well as the post-flight determination of the spacecraft orbit. The functions performed are depicted in Fig. 49. It should be noted that the functions are sometimes carried on simultaneously in a single digital computer program.

B. Operational Description

1. Data Editing, Analysis, and Evaluation

Editing, analysis, and evaluation of the tracking data is accomplished in several ways.
a. Teletype (TTY) printed display of incoming data are visually scanned in real time to detect any systematic errors.
b. Station reports, both printed and verbal, are analyzed to detect any abnormalities. In addition, critical information on oscillator drift statistics, frequency changes, and changes in transmitter assignment is evaluated.
c. Newly received TTY data is periodically entered, in batches, into a large digital computer program called the Tracking Data Editing Program (TDEP). The TDEP checks the format, data condition code, data range, station, and time sequence against the input master format and control cards. All data are listed along with the reason for rejection of any data point. The new data which have not been rejected are added to the TDEP's Master Data Tape which contains all accepted data.
d. Once the orbit is reasonably well known, the deviations of the values of new observations from their predicted values (the residuals) are tested to determine whether they are within selected rejection limits. In this way "blunder points" are easily detected before they influence the estimate of the orbit.
e. The residuals and rejected data points are analyzed to determine the validity of the noise models and to locate any systematic error source. On the basis of the information gained from the evaluation of the incoming station reports and tracking data, corrective action is recommended to the Tracking Director.

2. Orbit Determination

The tracking data placed on the TDEP's master data tape is the basis for forming an Orbit Determination Program (ODP) data tape. Control of the information placed on the ODP data tape is exercised through input to the TDEP. The ODP and TDEP are linked in such a way that the ODP can call the TDEP to add new data to the ODP tape. The most important ODP inputs are the edited tracking data, the data weights, and rejection limits.

The policies used in editing the data, and in selecting weights and rejection limits, are described in Section VI-C. During the flight, new data points are continually being added to the ODP tape, weights are revised, and residuals from selected converged orbits are plotted and printed. The converged ODP output provides an estimate of the initial conditions and physical constants (parameters, in general) describing the flight path as well as a statistical description of the uncertainties in the parameter vector. The estimated covariance of the parameter vector is then mapped to other regions useful for interpretation of results. Typically, the properties of the "error ellipse" in the impact parameter plane (B-plane) are computed as well as other quantities useful in considering maneuver alternatives.

3. Trajectory Information

At all times of a typical mission trajectory, information is essential to the analysis of spacecraft performance and scientific data, to assist in tracking station acquisition, for antenna pointing, and for general information. As suggested in Fig. 1, the basis for forming these trajectory estimates varies with the amount of information available and is continually updated.

4. Maneuver Alternatives

Since the examination of the midcourse and terminal maneuver alternatives was not necessary on this flight, this function will not be discussed at length. As suggested in Fig. 49, the trajectory estimate(s), information on expected spacecraft performance and current status, statistics of current and future knowledge of the flight path, spacecraft restraints, and mission objectives dependent on the flight path are input into a digital computer program which is designed to examine the detailed results of following the available alternative maneuvers (trajectory corrections). Commands necessary to implement any of

Fig. 49. FPA functions
the various alternate maneuvers are also computed and checked.

C. In-flight Policies

The JPL Ranger Orbit Determination Program (ODP) is designed to find the set of initial conditions at injection epoch which causes the weighted sum of squares of the residuals (observed minus computed) to be minimized. We call our method modified-least-squares (MLS) to call attention to the method used in obtaining the weights. In the usual least squares (LS) method, the individual data points are weighted inversely proportional to their expected (or measured) variances in forming the weighted sum of the squared residuals. In MLS, the independent weighting values are determined by the expected (or measured) effective variances ${ }^{2}$. In arriving at the effective variance for each data type at each station (vs time), consideration is given to the effective correlation width of all recognized error sources, the sampling rates, range to the spacecraft, counting time, and elevation angle. The ODP-calculated covariance matrix of injection errors will always give a conservative estimate of the accuracy when
effective variances ("equivalent-or-worse uncorrelated noise") are used. In editing the data, our policy is that it is better to reject a data set with questionable format than to attempt the real-time correction of the error. An analogous policy is used in weighting the data; there is a maximum weight which can be assigned to any data point independent of whether it appears that the data may be dramatically better in a particular time interval. By sacrificing our possibility of extracting the maximum possible information during the flight we reduce the sensitivity to "blunder points" or small "hidden" errors whose effect may be very significant. Section IV-B summarizes our experience on Ranger 4 in terms of the fraction of the received data which was rejected for various reasons.

[^1]
APPENDIX A

Definition of the miss parameter B

The miss parameter B is used at the Jet Propulsion Laboratory to measure miss distances for lunar and interplanetary trajectories and is described by W. Kizner in Ref. 10. B has the desirable feature of being very nearly a linear function of changes in injection conditions.

The osculating conic at closest approach to the target body is used in defining $\mathbf{B} . \mathbf{B}$ is the vector from the target's center of mass perpendicular to the incoming asymptote. Let S_{I} be a unit vector in the direction of the incoming asymptote. The orientation of B in the plane normal to S_{I} is described in terms of two unit vectors \mathbf{R} and \mathbf{T}, normal to $\mathbf{S}_{I} . \mathbf{T}$ is taken parallel to a fixed reference plane and \mathbf{R} completes a right-handed orthogonal system. Figure A-1 illustrates the situation.

Our Ranger 4 work has used the orbital plane of the Moon as the reference plane. If \mathbf{W} is a unit vector normal to the orbital plane (W in direction of $\mathbf{R}_{M} \times V_{M}$, where \mathbf{R}_{M} is radius vector to Moon from Earth and V_{M} is the space-fixed velocity of the Moon relative to the Earth's center) then $\mathbf{T}=\boldsymbol{S}_{I} \times \mathbf{W}$ defines our coordinate system.

Fig. A-1. Definition of $B \cdot T, B \cdot R$ system
APPENDIX B
Ranger 4 trajectory printout based on DSIF transponder orbit

space trajectories

RANGER－4 ORBIT BASED ON TRANSPONDER DATA ONLY
VELOCITIES
EPHEMERICES WITH VENUS VELOCITIES
GASE

GN

 MOON JULIAN DATE 2437778．37799768APRIL 23，1962 210419.000

APRIL 23．1962 210419.000
EQUATORIAL COURDINATES

CONIC ORBITAL B．T ANO B．R

すNNo゚ロ～～MN
.50261202

＞出にのざっのにち
EQUATORIAL COORDINATES
$\begin{array}{rlll}\text { APRIL } & 23,1962 & 210345.053 \\ .14622976 & 03 & \text { RCA } & .6563668304\end{array}$ $\begin{array}{lllll}.14622976 & 03 & \text { RCA } & .65636683 & 04 \\ .60652344 & 06 & \text { TFP } & .33947350 & 02\end{array}$ $\begin{array}{rrrrr}.12472946 & 03 & \text { MTA } & .18000000 & 03 \\ .79007062 & 00 & \text { PZ } & .27539724 & 00\end{array}$ $\begin{array}{rllll}.39078968 & 00 & \text { RZ } & -.9362172300 \\ .3497893 & 0 & \\ .50342379 & 00 & T Z & .2182969400\end{array}$.2182969400
-.4267817600 $\begin{array}{rrrr}\text { MY }-.4618820300 \quad M Z & -.4267817600 \\ \text { OMD } & .99809485-02 \quad \text { NOD } & -.62537497-02\end{array}$ EQUATORIAL COURDINATES
$\begin{array}{lll}4 & 0 \\ \frac{a}{4} & 0 \\ 4 & \frac{2}{4} \\ 4\end{array}$

NMJNNMONN

जNNNMNMMO

かMoñoño のーN～がN～N

20
20
60
50
50
60
+0
+0
+0
$\begin{array}{rr}X & -.38930893 \\ R & .65688828 \\ R & .65688828 \\ X S & .12585905 \\ X M & -.81001605 \\ X I & -.81001605 \\ R S & .15045252 \\ \text { GED } & .14669699 \\ \text { DUT } & .34000 C 00\end{array}$

BPCCH CF PERICENTER PASSAGE

GECCENTRIC

ヨ1ロロ NVITกT

日PCCH $\quad 3065435606$

85：8888～
$\begin{array}{rr}\text { SNA } & .30654356 \\ \text { VH } & .11862434 \\ \text { TA } & .32465848 \\ \text { WX } & -.21032427 \\ \text { GX } & -.80982647 \\ \text { SXG } & -.54767205 \\ \text { BX } & .80982652 \\ \text { B．T } & .61660632\end{array}$
CASE

 がーがo ONMN

$\begin{array}{rrr}D Z & -.14928601 & 02 \\ A Z & .11342649 & 03\end{array}$ $\begin{array}{rrr}A Z & .11342649 & 03 \\ D Z E & -.99539900 & 01\end{array}$ $\begin{array}{lll}\text { DZT } & .10070665 \\ \text { VST } & .3029476702\end{array}$ $\begin{array}{lll}\text { VST } & .30294767 \\ \text { MEP } & 1050212203\end{array}$
 SPN－． 4635705001

NNNNOONOO

$$
\text { JULIAN DATE } 2437778.38494213 \quad \text { APRIL } 23,1962 \quad 211419.000
$$

 797937
100308
798139
922794
616561
975145
788267
502122
397499

-.6481541701 DZ -.4974610701 00000000 .11966262
.12115274
.99539900 0
0
i
\sim
0
0
-
\vdots
i

EQUATORIAL CODRDINATES

NNN～ロッチ゚ロ

NNNNMNMmo 000000000	
	NOONNNNMN
	in 0 mmmon
	uns－mNomon
	$\rightarrow \infty 0 m \rightarrow \infty \quad 0 \sim N$
	かNNNHーO 0 m
	$\rightarrow m \rightarrow-N 0 \rightarrow m m$
	－•••••••
¢mmoncono	
	totammmoo
	OoNmatnomo
	＋0－ct－0mv
	NO－nNotNN
	OOONか0－mo
	$\infty-\infty 0000 \mathrm{~m}$

$\infty \sim \infty$
NNGNOMOMN
＋ounmanmo
¢ ${ }^{\circ}$
$i \quad i i i$
$\times \times \times$－ロ ，

MーけのかのN下～
∞ in m $\infty \times \infty$ ¢
－Mn moommit
二さining
$コ ゙ こ こ ゚ さ か$
1 1 i
べいへさート
$0<N N N 入 口$
00000000
Mーのooom～N
，
ロッNーツN．
入エ山のさに上さの
－－¢ らすゝ

士 m～o oosomb

$$
\begin{aligned}
& \text { すNNか゚ONはM }
\end{aligned}
$$

か～onmNo

NN～NMmmmo

 n
0
0
0
n
n
0
0
\vdots
\cdots

GgOONNMMm
$\rightarrow-104$

HELIOCENTRIC

ningoing on o

बgog～NMmm

 がローロロこ』～

 $\stackrel{4}{0} 0 \times \infty$

N゚ー～～～ロ～N

NーN～0かNOO がいのーさのざ

APKIL 23，1962 $22 \quad 3419.000$

さんngingoiñ

EQUATORIAL COORDINATES

べ～～～ローデロー

gigonnmmm HELIOCENTRIC

GECENTRIC

HELICCENTRIC
SPACE TRAJECJORIES
RANGER－4 ORBIT BASED ON TRANSPONDER DATA ONLY

 $\begin{array}{llll}\infty & \sim \\ 0 & \sim & N & 0 \\ 0 & 0 & 0 & \infty \\ 0 & 0 & 0 & 0\end{array}$

$\cdots \underset{0}{\infty} 0 \infty \times \infty$

gogonnmmm

HELICCENTRIC

20โをと985＊8LLLEわて
2437778.58633102

NNND．ONMM

Jin ing ingo N

SヨIVNIOYOOS TVI甘OIVกOヨ
NMッÑ～OÑ
$m=0$
0
0
5
5
0
0
0
$=0$
-1

 NーNNOMNOO

 in No

－JJS $000^{\circ} 0$ •NINO
APRIL 24，1962 020419.000 $\mathfrak{N} \because$

0	0	0	1	0	0
0	0	0	0	0	∞

かMo mNMNNO

$\begin{array}{rrrrrr}\text { DY } & -.19449705 & 01 & \text { DZ } & -.77328204 & 00 \\ \text { PTH } & .74914331 & 02 & \text { AZ } & .73115670 & 02 \\ \text { PTE } & .16724410 & 02 & \text { ALE } & .27134796 & 03 \\ \text { DYS } & .22852518 & 02 & \text { DZS } & .99084986 & 01 \\ \text { DYM } & -.48651097-01 & \text { DZM } & -.85396571-01 \\ \text { DYT } & -.48651097-01 & \text { DZT } & -.85396571-01 \\ \text { RT } & .38667742 & 06 & \text { VT } & .10164806 & 01 \\ \text { RAM } & .26294221 & 03 & \text { LDM } & .30503012 & 03 \\ \text { DES } & .12728314 & 02 & \text { DEM } & -.19372764 & 02\end{array}$
EQUATORIAL COORDINATES

$$
\begin{aligned}
& \text { NMームNNONN }
\end{aligned}
$$

$$
\begin{aligned}
& \infty \sigma \infty \rightarrow \infty=000
\end{aligned}
$$

かMm NomNNO
NMGO～MNNM＝

 MNMMNHNHM

ヘN～Mットローツ

ロMロロ～NONNO

にロ゚ロ゚すずロ～N
$\begin{array}{llll}\infty & \infty & \infty & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \infty & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

APRIL 24．1962 170419.000

かigig NNMMM

2

$\underset{0}{x}>\boldsymbol{\sim}$

○Oーのmmooo NOO～MMN～ー
 Ni．FMMN．

NNN～NMMMM：
mmさm

APRIL 25.1962030419 .000
EQUATORIAL COORDINATES

0
0
0
0
0
0
0

gogañommm

－

ㅇNㅇNOONOG

 GEDEENTRIC

SPACE TRAJECTORIES

Nㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

EQUATORIAL CODRDINATES
σ
EQUATORIAL COORDINATES

EQUATORIAL COORDINATES

HELICCENTRIC

かgogñMmm

EQUATORIAL CODRDINATES

	$61 \rightarrow 081$	2961＇92 71 ¢dv			
20	0てを9く8ヶで	NdS	90	ST166ヶ11＊	Idy
20	9ちを089ちを＊	dis		0こを8ててヶで	dSI
00	6ヶし0ヶ｜を1＊	WS 3	20	612518ヶ9＊	SW 3
20	08を66ヶ11＊	d 3 W	20	82をEG66て＊	dw
20	GLL26662＊	15A	60	૬92890¢1＊	1SH
T0	560825 L6 $^{\circ}-$	120	20	88ちし0とてて＊	110
10	£0908916 ${ }^{\circ}-$	370	20	L8【6こらてで－	\exists 人0
\＆0	て9ャてカ601•	7∇	10	をカち¢LLOI＊	Hid
20	てヵIて0I0！＊	20	20	をIEL8ヶ¢て＊－	

ONJNO80MN

oo o ginng No

DAYS 16 FRS

 heliocentric

EQUATORIAL COORDINATES

NONNOMNMMn

ロNNm゚ロ゚Not

HELICEENTRIC

웅Nㅇㅇํ№

 ∞
\boldsymbol{m}
$\boldsymbol{\sigma}$
m
$=$
$=$

ロロロロロ゚ロロ～～～

EQUATORIAL COORDINATES

 mッ心mmommm

$\cdots N \infty$

－ニ～NOO～N0

出号

EQUATORIAL CORRDINATES

$$
\begin{aligned}
& \text { NNNNMMMMíN }
\end{aligned}
$$

○ロッがロO～NO
－

EQUATORIAL COORDINATES

ッロッミNさ゚ッN

gigognNmmm

$\begin{array}{rrrrrrrrrrr}2 & .47970751 & 04 & \text { DX } & -.4644119400 & \text { DY } & -.12522102 & 01 & \text { DL } & -.35486295 & 00 \\ \text { RA } & .62541845 & 02 & V & .13818960 & 01 & \text { PTH } & -.82705871 & 02 & A Z & .25041630 \\ 03 \\ \text { LON } & .30620179 & 03 & \text { VR } & .13903579 & 01 & \text { PTR } & -.80356925 & 02 & \text { AZR } & .26295117 \\ \text { LTE } & -.26100637 & 01 & \text { LNE } & .35415975 & 03 & & & & \\ \text { ALP } & .15835751 & 02 & \text { DR } & -.13707130 & 01 & \text { DP } & .45475220-03 & \text { ASD } & .45094291 & 01\end{array}$

$$
\begin{gathered}
\text { APRIL } 26,1962 \text { 1004 } 19.000 \\
\text { EQUATORIAL COORDINATES }
\end{gathered}
$$

$$
\begin{aligned}
& \text { JULIAN DATE } 2437780.91966435
\end{aligned}
$$

○ $\infty \infty 0 \infty \infty \infty$

응NㅇㅇㅇㅇㅇN

EQUATORIAL COURDINATES

Honnooñon

OGOGNNMMM

J181N3フ0173H

EQUATORIAL COORDINATES
$\begin{array}{rllrrr}\text { OY }-.12918217 & 01 & \text { DZ } & -.36445362 & 00 \\ \text { PTH } & -.80900482 & 02 & A Z & .24997222 & 03 \\ \text { PTR } & -.79150392 & 02 & A Z R & .26246749 & 03 \\ \text { OP } & .75632159-03 & \text { ASD } & .58314165 & 01\end{array}$

さ～NOONOM

入出に运ざ至し
 $\rightarrow \infty$ に コ141N3JONヨ13s

APRIL 26．1962 $11 \quad 04 \quad 19.000$

 ホんラニ

 응ㅇㅇㅇㅇㅇㅇ

ロロロロロロロ～～～

JUL IAN DATE 2437780.96133102

NNNNMMMMn

EQUATORIAL CODRDINATES

옹

10 ع008Z8を8＊OSV 20－S86LEGSI＊dO
DP

JULIAN DATE 2437780.98216435
APRIL 26．1962 113419.000

응ㅇㅇㅇㅇㅇ

 응옹ㅇㅇㅇㅇ

SELENOCENTRIC

$$
\begin{aligned}
& \begin{array}{rrr}
X & .64199328 & 04 \\
R & .11921581 & 05 \\
R & .11921579 & 05 \\
\text { LIS } & -.15092472 & 01 \\
\text { ALI } & .10183581 & 05 \\
\text { HGE } & .28234211 & 03
\end{array}
\end{aligned}
$$

GECEENTRIC

EQUATORIAL COORDINATES

 士No －••••••• がっだびら ミスOのすOOMn i•i！•••• るエヅったのになった白希めひル上の

N～NNMMMMNo
MNMONNNJ を9TLてLI．

Nてい

ggogñmmm

EQUATORIAL COORDINATES
8 Om

N～～
0

O－

$\underset{\sim}{x}>\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\alpha}$

さNomNo

サーNMJo

$\begin{array}{lllll}\infty & 4 & \infty & 4 & + \\ \infty & m & -\infty & m & 4\end{array}$
SELENOCENTRIC

$\cdots \alpha a \operatorname{mos}$

ONNMOBONOM

ON TRANSPONDER DATA ONLY

NNNNMMMMは
N 0 Omon n n
のかのざにが
¢ ¢ ¢ ¢ ¢ O
\bigcirc
山ひトの
©
のローのがN＋
－
¢OON－NNN以
こさのNのMO
inc～osoo
的mOさのさ
のNmmッn－mor
！11
くひゆトロのロに
－NNに出染出出

SELENCCENTRIC
$\begin{array}{rlrrrr}\text { DY }-.15422154 & 01 & D Z & -.41515847 & 00 \\ \text { PTH } & -.69605808 & 02 & A Z & .24778885 & 03 \\ \text { PTR }-.69095312 & 02 & A Z R & .26391489 & 03 \\ \text { DP } & .54231367-02 & A S D & .15811263 & 02\end{array}$
APRIL 26， 1962

EQUATORIAL COORDINATES

Nㅡㅇㅇㅇㅇㅇㅇ́ㅇ

응ㅆㅇㅇㅇㅇㅇ응

15
EQUATORIAL COORDINATES
SPACE TRAJECTORIES

goggNNMNM

HELIOCENTRIC

guatorial coordinates

Oㅇ́o	O	ㅇ	～	
～～～	$\stackrel{\square}{0}$	－	$\stackrel{\leftarrow}{\leftarrow}$	
－＋	－	－	z	
－ 00	n		\cdots	のよの心NNNNM
moso	\％	m	－	
Mさか	$\xrightarrow{-}$		－	miNosoong
＋～N	m	\sim	O	$m \sim$
－	－	－	\checkmark	－
$N \sim$			『	NNWのミトト玉
$0<0$	\sim	N	$\stackrel{\square}{8}$	－4NNN
		5	\％	
$\rightarrow \sim$		$\stackrel{\square}{\circ}$	3	HNHNOOOMN
000	0	\sim	－	000000000
のー	－			
¢5	∞	$\underline{\square}$		
man	∞	a		moonN下のmに
－¢ ¢ ¢	$\stackrel{\infty}{\sim}$	4		
－00	\cdots			
\rightarrow n	\cdots			\rightarrow
i				
エ뜬	a			
				$00 \times$

SELENDCENTKIC

すすずずす。

2 DAYS 15 HRS． 35 MIN． 0.000 SEC．

응NOONO

EQUATORIAL CODRDINATES

\section*{

 | ∞ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| mo ${ }^{\text {ton }}$ | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
 }

©NomionnN

gig gNNMNM

Mッ，

ㅇo． 0
oNoooom－

ECCENIRIC

SヨIVNIOy00つ רVI8OIVnOヨ

$\underset{\sim}{N}$
2919918を＊
N～～

なエ边 号

ث～NMMN

さすするす。

SELENOCENTRIC

いNTット
くホッのにか
EQUATORIAL COOROINATES

\[

\]

ÑÑ̃̃̃oñód

发웅NN	Nさき
～o ${ }^{\infty}$	
$\underset{\sim}{N}$	
	ご出べ出号

®n®oñ ñois

ロロロロ゚ロロ～～

EQUATORIAL CODRDINATES

$8 \text { 응 }$	$\underset{\mathbf{N}}{\mathbf{N}}$
$\cdots 0 \mathrm{~m}$	N
0 mm	N
050	0
∞ uno	\cdots
$\rightarrow 0 \rightarrow$	m
$\rightarrow N \sim$	\cdots
$\rightarrow+$	σ
－N	\checkmark
－	－
1	
$N \sim$	0
	\cdots
4	4
$-\mathrm{N}$	－
000	0
0 mm	0
mom	เก
Nmor	－
$\cdots \infty$	n
000	N
min	0
On	5
－	－
111	
\cdots Ia	a
0にに	0

124919.000

APRIL 26,1962
EQUATORIAL COORDINATES

○○○～～ロロロ～～ロ

ロロックロッロロロロ゙ロ

EECENTRIC

NNONMNMMJ

GO89NNMNM

HELIOCENTRIC

EQUATORIAL COORDINATES

| DY -.19787661 | 01 | $D Z$ | -.34817082 | 00 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| PTH -.35543846 | 02 | $A Z$ | .25065415 | 03 |
| PTR -.35484836 | 02 | $A Z R$ | .27579008 | 03 |
| | | | | |
| OP | $.68058841-01$ | $A S D$ | .74854369 | 02 |

JULIAN DATE 2437781.03472778

APRIL 26，1962 $1250 \quad 00.481$ EQUATORIAL COORDINATES

EQUATORIAL COORDINATES

NNNNMNMMJ

 MNMmッ～ホN～

©～No mos．
 SEC．

すすすこべ

$$
\begin{aligned}
& \text { monomon }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 边与示 }
\end{aligned}
$$

JIVIN3JONZ73s

$\begin{array}{rrrrrr}\text { DY }-.19757287 & 01 & \text { DZ } & -.33307951 & 00 \\ \text { PTH }-.33775504 & 02 & A Z & .25131446 & 03 \\ \text { PTR }-.33721780 & 02 & A Z R & .27641459 & 03\end{array}$
.8941704602 $\stackrel{0}{\sim}$

DP ．73037905－01

$\underset{0}{x} \underset{\sim}{x} \underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{n}$

 $N \lll L_{2} \frac{0}{4}$

MNOMホN

[^2]$\begin{array}{rlr}\text { APRIL } & 26,1962 \\ 27521114 & 03 & \text { RC } \\ 0000000 & 00 & \text { TF }\end{array}$
 $\stackrel{\infty}{-}$
CONIC ORBITAL B.T AND B.R

SPACE TRAJECTORIES

39

SELENCCENTRIC

APPENDIX C

Comparison of nominal flight trajectory and Ranger 4 trajectory based on DSIF transponder orbit a．Nominal flight trajectory printout at injection and lunar impact only
CASE

$$
\text { RA-4 } 04 / 23 / 62
$$

\[

\]

GECCENTRIC CARTESIAN

O CAYS O FRS．
geccentric
C MIN． 0.000 SEC．
$\begin{array}{ll}n & t \\ 0 & 0 \\ m & 0 \\ m & 0 \\ t & 0 \\ m & m \\ 0 & 0 \\ m & 0 \\ n & \end{array}$
VELCCITIES

SPACE TRAJECTORIES

INJECTIGN CCNCITICNS 1950.0 NCON

210416.602

ORBITAL B．T AND B．R
EQUATORIAL COORDINATES $N m$
0
0
n
n
0
0
n
n
n
0
n
n
n
n
m $n o$
00
0
0
0
0
0
0
0
0
∞
\cdots
\cdots
09
0
0
0
0
0 0
$\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 4 \\ 0 & 4 \\ 0 & 0 \\ 0 & n \\ 2 & 5 \\ n & 0 \\ 4 & \\ i & \end{array}$
EQUATORIAL COORDINATES

EQUATORIAL COORDINATES
$\underset{\sim}{\boldsymbol{D}}$

 $\left.\begin{array}{lll}0 & N & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

EQUATORIAL COORDINATES

NNN～MMMmt

ogogñNMn

HELIDCENTRIC
EQUATORIAL COORDINATES
$\begin{array}{rrrrrr}\text { DY }-.24136470 & 01 & \text { DZ } & -.75997475 & 00 \\ \text { PTH }-.80593375 & 02 & A Z & .58669845 & 02 \\ \text { PTR }-.80680092 & 02 & A Z R & .61299505 & 02 \\ \text { DP } & .14274872-01 & A S D & .89417003 & 02\end{array}$

우웅

$$
x>\alpha \underset{\sim}{x} \underset{\sim}{x} \underset{\sim}{\infty}
$$

CONIC
AND B．R
EQUATORIAL COORDINATES

VVL－98113103－0

 08
08
08
08
08
08
58
58
08

31＊O NVI7กr

$$
\begin{aligned}
& \exists 90
\end{aligned}
$$.4840429102

6034461610
0000000000

603460277756

ミUミアNONNO

EPCCH CF PERICENTER PASSAGE

APPENDIX C (Cont'd)

b. Ranger 4 trajectory based on the DSIF transponder orbit printout at the nominal injection epoch and at lunar impact only

0	CAYS O HRS.		MIN.	0 SEC.			JULIAN	DATE	2437778.37796992			APRIL 23,1962				210416.602	
ECCEN	TRIC													QU	RIAL	COQRDINA	
X	-: 38722156	04	Y	. 50376674	C4	L	.16639526	04	DX	-. 87110835		OY	-. 48070404	01	D2	-. 45916293	01
R	- $\quad .65681721$	04	CEC	. 14674990	02	RA	. 12754777	03	v	. 10957813		PTH	. 14925457	01	AL	. 11611209	03
R	. 65681721	C4	LAT	.14674990	02	LON	. 32005641	03	VE	. 10543888	02	PTE	. 15511530	01	AZE	. 11722071	03
XS	$\bigcirc 12585904$	09	YS	.75630222	08	ZS	. 32745128	08	DXS	-. 15823229	02	UYS	. 22358099	. 42	DZS	- 99543735	01
XM	-:81003597	05	$Y \mathrm{M}$	-. 35864219	06	2 M	-. 12461970	06	DXM	. 99683619	00	DYM	-. 13865511	0	DZM	-. 11693435	00
X'	-.81003997	05	YT	-. 35864219	C6	2 T	-. 12461970	06	DXT	. 99683619	00	DYT	-. 13865511	00	DLI	-. 11693435	00
-R S	.15045252	09	VS	. 29606391	02	RM	. 38822149	06	VM	-10132035	01	RT	. 38822149	06	\checkmark T	-1	2
GED	.14770638	C 2	ALT	.19135132	03	LOS	. 22351080	03	RAS	.31002155	02	RAM	. 25727255	03	LDM	. 89781204	
DUT	$\bigcirc 34000000$	C2	OT	.13020000	01	DR	. 28541718	00	SHA	. 65591476	04	DES	. 12590217	2	DEM	. 1	2

SPACE TRAJECTORIES

GEOCENTRIC					CONIC		ORBITAL B.T AND B.R			EQUATORIAL		COORDINATES
EPOCH	CF PERICENTER	DASSAGE			JULIAN DATE	2437	7778.37760473		APRIL		62	210345.050
SMA	. 3065C169 06	ECC .97858521	00	INC	. 2969870602	LAN	. 3348797803	APF	. 14622939		RCA	.65636671 04
VH	$\bigcirc 11864 C 6100$	C3 -. 13004926	Cl	Cl	.7194838405	SLR	. 1298677505	APO	. 60643972		TFP	. 3155246002
TA	. 3017764 Cl	EA . 31402306	CC	MA	.67263107-02	DAO	.1598581202	RAO	. 12472918		MTA	. 1800000003
WX	-.21032319 C0	WY -.44858 CO	CO	WZ	. 8686427000	PX	-. 5476678700	PY	. 79007280		PZ	. 2753993500
QX	-:8C982561 00	QY - . 41780482	co	U2	-. 4118435000	RX	. 33827630-01	RY	. 34979038		RL	.9362170100
SXO	-. 5476678700	SYC . 79007280	00	SLU	. 2753993500	TX	.8360117100	ry	. 50341991		TZ	. 2182952600
BX	:8C982964 00	BY . 41780484	co	$B 2$.4118435200	MX	-. 7798743400	MiY	-. 45881927		MZ	-. 4257709500
B. T	. 6165638405	B. $\mathrm{R}-.13377566$	C5	B	.6309095805	PER	.2814540805	OMD	. 99830454	-02	NOD	-. 62550562-02

$-.1533798401 \quad D Z-.2356449800$

$\begin{array}{rrr}\mathrm{DZ} & -.23564498 & 00 \\ \mathrm{AL} & .27537969 & 03 \\ \mathrm{ALE} & .27027413 & 03\end{array}$ ALE $\quad 2702741303$ D2M ．97434513－01
 $\begin{array}{lll}\text { VT } & .10368624 & 01 \\ \text { LOM } & .24799761 & 03\end{array}$ DEM $=.1968554402$

EQUATORIAL COORDINATES

$$
\begin{aligned}
& N \sim N N m N M M \\
& 000 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

2676
0265
1898
$9 \angle ヶ 6$
$9 \angle 76$
$2 \angle 09$
$1 E 5 E$
$918 L$
8221
9492

CUT

－jvoñaray

－IOCENTRIC
SPACE TRAJECTORIES

ONNOかONON

66656
0272
91656
$299 E$
$299 E$
81280
$5 E J L 6$
GEOL6
$98 L E$

フUにいさにいにに

$$
\begin{array}{ll}
\infty m \infty & \infty \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0
\end{aligned} \infty
$$

googanNMN
000000000

SヨIVNIOYOOJ 7VI甘OIVOOJ

$628^{\circ} 5 \downarrow$ 85 2I 2961 ＇92 7Iydv

MNNMJN

$\angle 918$
$\angle 56$
$1+02$
$87 カ$
8526
182
$185 E$
5685
0202
hク
Z6S
BZZE

入出に运完

すすすが馬

2437781.04080820		
LAN	.21119683	03
SLR	.30260564	04
DAI	-.15006681	02
$P X$.39664958	00
$R X$	$-.78094678-01$	
DAO	.17946737	02
$T X$	-.94089012	00
$M X$	-.92157583	00
PER	.88998175	03

ヨ」もO NVITกก
.156860980

0
0
4
a
4
un
un
a
i
i

 $\begin{array}{ll}0 & 4 \\ 0 & 0 \\ n & 0 \\ \infty & \infty \\ -1 & 0 \\ n & 0 \\ i n & 0 \\ n & -1 \\ n & \\ i & \end{array}$
 CONIC

OZ8080ヶ0＊T8LLEヶてコ」VONVIก
$\underset{\sim}{2}$

$$
\begin{aligned}
& \text { जЈ~응ㅇㅇㅇㅇ́ㅇ }
\end{aligned}
$$

넝ㅇㅇㅇㅇㅇㅇㅇㅇ
\qquad

APPENDIX D

Tables related to trajectory printout
Table D-1. Ranger 4 trajectory key

Table D-2. Ranger 4 trajectory key definitions

Table D-2 (Cont'd)

Group		Ephemeris time minus Universal Time, sec Adams-Moulton step size, sec Radial velocity of probe, $\mathrm{km} / \mathrm{sec}$ Sun shadow parameter, km Declination of the Sun, deg Declination of the Moon, deg	Group		Trajectory constant
Row 14 Group D	DUT DT DR SHA DES DEM		Row 22	$\mathbf{B} \cdot \mathbf{T}$ $\mathbf{B} \cdot \mathbf{R}$ B PER OMD NOD	Projection of the impact parameter $\mathbf{B}^{\text {b }}$ upon the vector T, km Projection of the impact parameter $B^{\text {b }}$ upon the vector $R, \mathrm{~km}$ The magnitude of the impact parameter, ${ }^{\text {b }} \mathrm{km}$ Period, min Rate of change of argument of perigee, deg/day Rate of change of RA of the ascending node, deg/day
Row 15	SMA ECC INC LAN APF RCA	Semi-major axis, km Eccentricity Inclination of the orbit plane to the equatorial plane, deg Longitude of the ascending node, deg Argument of pericenter, deg Magnitude of the closest approach vector, km	Group E		Inertial position and velocity of the probe, Sun, Moon, and target body in a heliocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the equatorial plane of date. Z is along the direction of the Earth's spin axis of date. Miscellaneous parameters are also included.
Row 16	VH C3 Cl SLR	Hyperbolic excess speed, km/sec Twice the energy (vis viva energy integral, $\mathrm{km}^{2} / \mathrm{sec}^{2}$) Angular momentum, $\mathrm{km}^{2} / \mathrm{sec}$ Semi-latus rectum, km	Row 23	$\begin{aligned} & \text { X } \\ & \text { Y } \\ & \text { Z } \\ & \text { DX } \\ & \text { DY } \\ & \text { DZ } \end{aligned}$	Cartesian components of the probe radius vector, km Cartesian components of the probe space-fixed velocity vector, $\mathrm{km} / \mathrm{sec}$
	APO TFP	Apogee distance, km Time from pericenter passage, sec	Row 24	R	Sun probe radius distance, km
Row 17	TA EA MA DAO RAO MTA	True anomaly, deg Eccentric anomaly, deg Mean anomaly, deg Declination of the outgoing asymptote, ${ }^{\text {b }}$ deg Right ascension of the outgoing asymptote, ${ }^{\text {b }}$ deg Maximum true anomaly, deg		LON v PTH AZ	Probe celestial right ascension, deg Probe space-fixed velocity, $\mathrm{km} / \mathrm{sec}$ Pitch angle of the probe space-fixed velocity vector with respect to the local horizontal, deg Azimuth angle of the probe space-fixed velocity vector measured East of true North, deg
Row 18	$w x$ WY WZ PX PY PZ	Components of a unit vector normal to the conic $\mathbf{w}=\frac{\mathbf{R} \times \mathbf{V}}{\|\mathbf{R} \times \mathbf{V}\|}$ Components of a unit vector in the direction of perigee	Row 25	XE YE ZE DXE DYE DZE	Cartesian components of the Earth radius vector, km Cartesian components of the Earth-space-fixed velocity vector, $\mathrm{km} / \mathrm{sec}$
Row 19	$\begin{aligned} & \text { QX } \\ & \text { QY } \\ & \text { QZ } \\ & \text { RX } \\ & \text { RY } \\ & \text { RZ } \end{aligned}$	Components of a unit vector perpendicular to the perigee direction, vector P, and being in the orbit plane $\mathbf{Q}=\mathbf{W} \times \mathbf{P}$ Components of the unit vector $\mathbf{R}^{\text {b }}$	Row 26	YT ZT DXT DYT DZT	Cartesian components of the target radius vector, km Cartesian components of the target space-fixed velocity vector, $\mathrm{km} / \mathrm{sec}$
Row 20	$\begin{aligned} & \text { SXO } \\ & \text { SYO } \\ & \text { SZO } \\ & \text { TX } \\ & \text { TY } \\ & \text { TZ } \end{aligned}$	Components of the unit vector $\mathbf{S}_{0}{ }^{\text {b }}$ along the direction of the outgoing asymptote Components of the unit vector $\mathbf{T}^{\text {b }}$	Row 27	LTE LOE LIT LOT RST VST	Celestial latitude of the Earth, deg Celestial longifude of the Earth, deg Celestial latitude of the target, deg Celestial longitude of the target, deg Sun-target range, km Sun-farget velocity, km/sec
Row 21	$\begin{aligned} & B X \\ & B Y \\ & B Z \\ & M X \\ & M Y \\ & M Z \end{aligned}$	Components of the impact parameter $\mathbf{B},^{\text {b }} \mathrm{km}$ Components of a unit vector which lies in the orbit plane and is normal to the radius vector \boldsymbol{R}. $\mathbf{M}=\mathbf{W} \times \frac{\mathbf{R}}{\|\mathbf{R}\|}$	Row 28	EPS ESP SEP EPM EMP MEP	Earth-probe-Sun angle, deg Earth-Sun-probe angle, deg Sun-Earth-probe angle, deg Earth-probe-Moon angle, deg Earth-Moon-probe angle, deg Moon-Earth-probe angle, deg
${ }^{\text {b }}$ See appendix A.			${ }^{\text {b }}$ See appendix A .		

Table D-2 (Cont'd)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Group} \& Trajectory constant \& \multicolumn{2}{|c|}{Group} \& Trajectory constant \\
\hline \multirow[t]{2}{*}{Row 29} \& \begin{tabular}{l}
MPS \\
MSP \\
SMP \\
SEM \\
EMS
\end{tabular} \& \multirow[t]{2}{*}{Moon-probe-Sun angle, deg Moon-Sun-probe angle, deg Sun-Moon-probe angle, deg Sun-Earth-Moon angle, deg Earth-Moon-Sun angle, deg Earth-Sun-Moon angle, deg} \& Row 35 \& \begin{tabular}{l}
LTS \\
LNS \\
LTE \\
LNE
\end{tabular} \& Selenocentric latitude of the Sun, deg Selenocentric longitude of the Sun, deg Selenocentric latitude of the Earth, deg Selenocentric longitude of the Earth, deg \\
\hline \& ESM \& \& Row 36 \& \& \\
\hline Row 30 \& \begin{tabular}{l}
EPT \\
ETP \\
TEP \\
TPS \\
TSP \\
STP
\end{tabular} \& \begin{tabular}{l}
Earth-probe-target angle, deg \\
Earth-target-probe angle, deg \\
Target-Earth-probe angle, deg \\
Target-probe-Sun angle, deg \\
Target-Sun-probe angle, deg \\
Sun-target-probe angle, deg
\end{tabular} \& \& \begin{tabular}{l}
SHA \\
ALP \\
DR \\
DP \\
ASD
\end{tabular} \& \begin{tabular}{l}
Sun shadow parameter, km \\
lliuminated crescent orientation viewing angle, deg \\
First time derivative of the probe radius distance, km/sec \\
First time derivative of the probe radius direction, deg/sec \\
Angular semidiameter of Moon as seen from the
\end{tabular} \\
\hline \multirow[t]{2}{*}{Row 31} \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Sun-Earth-target angle, deg \\
Sun-target-Earth angle, deg \\
Earth-Sun-target angle, deg \\
Moon probe radius distance, km \\
Target probe radius distance, \(k m\) \\
Sun-probe-near limb of Earth angle, deg
\end{tabular}} \& \multicolumn{2}{|r|}{ASD} \& Angular semidiameter of Moon as seen from the probe, deg \\
\hline \& \begin{tabular}{l}
STE \\
EST \\
RPM \\
RPT \\
SPN
\end{tabular} \& \& Row 37 \& \begin{tabular}{l}
HGE \\
SVL \\
HNG
\end{tabular} \& \begin{tabular}{l}
Right ascension of Earth in probe coordinate system, \({ }^{\text {c }}\) deg \\
Declination of the Moon in probe coordinate system, \({ }^{\text {c }}\) deg \\
Right ascension of the Moon in probe coordinate
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Group \(F\) \\
Row 32, 33
\end{tabular}}} \& \multirow[b]{2}{*}{Inertial position of probe in a selenocentric equatorial system. The principal direction \(\mathbf{X}\) is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. \(Z\) is along the direction of the Earth's spin axis of date.} \& \& SIA \& \begin{tabular}{l}
system, deg \\
Earth-probe-Moon angle minus ASD, deg
\end{tabular} \\
\hline \& \& \& \multicolumn{2}{|l|}{Group G} \& Characteristics of the selenocentric conic in the geocentric equatorial system described under Group B except centered at the Moon \\
\hline \multicolumn{2}{|l|}{Row 34, 35, 36} \& Selenocentric-fixed spherical coordinates of the probe, Sun and Earth in a selenocentric equatorial system. The principal direction \(X\) is in the direction of the mean Moon-Earth line. The principal plane XY is the mean selenocentric equatorial plane, \(Z\) is along the direction of the Moon's mean spin axis. Miscellaneous parameters are also included. \& Row 38 \& \begin{tabular}{l}
SMA \\
ECC \\
INC \\
LAN \\
APF \\
RCA
\end{tabular} \& \begin{tabular}{l}
Semimajor axis, km \\
Eccentricity \\
Inclination of the orbit plane to the equatorial plane, deg \\
Longitude of the ascending node, deg \\
Argument of pericenter, deg \\
Magnitude of the closest approach vector, km
\end{tabular} \\
\hline Row 32 \& X
\(\mathbf{Y}\)
Z
DX
DY
DZ \& \begin{tabular}{l}
Cartesian components of the probe radius vector, km \\
Cartesian components of the probe velocity vector, km/sec
\end{tabular} \& \multirow[t]{2}{*}{Row 39} \& \begin{tabular}{l}
VH \\
C3 \\
Cl \\
SLR
\end{tabular} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Hyperbolic excess speed, km/sec \\
Twice the energy (Vis viva energy integral,
\[
\mathrm{km}^{2} / \mathrm{sec}^{2} \text {) }
\] \\
Angular momentum, \(\mathrm{km}^{2} / \mathrm{sec}\) \\
Semi-latus rectum, km \\
Apogee distance, km \\
Time from pericenter passage, sec
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Row 33} \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Probe radius distance, km \\
Probe declination angle, deg \\
Probe right ascension angle, deg \\
Probe space-fixed velocity, \(\mathrm{km} / \mathrm{sec}\) \\
Pitch angle of the probe space-fixed velocity vector with respect to the local horizontal, deg \\
Aximuth angle of the probe space-fixed velocity vector measured East of true North, deg
\end{tabular}} \& \& TFP \& \\
\hline \& RA
V
PTH

AL \& \& \[
Row 40

\] \& TA EA MA DAI RAI MTA \& | True anomaly, deg |
| :--- |
| Eccentric anomaly, deg |
| Mean anomaly, deg |
| Declination of the incoming asymptote, deg |
| Right ascension of the incoming asymptote, ${ }^{\text {b }}$ deg |
| Maximum true anomaly, deg |

\hline \multirow[t]{2}{*}{Row 34} \& \[
$$
\begin{aligned}
& \text { R } \\
& \text { LAT } \\
& \text { LON } \\
& \text { VR } \\
& \text { RTR }
\end{aligned}
$$

\] \& \multirow[t]{2}{*}{| Probe radius distance, km |
| :--- |
| Probe selenocentric latitude, deg |
| Probe selenocentric East longitude, deg |
| Probe selenocentric-fixed velocity, $\mathbf{k m} / \mathbf{s e c}$ |
| Pitch angle of the probe selenocentric-fixed velocity vector with respect to the local horizontal, deg |
| Azimuth angle of the probe selenocentric-fixed velocity vector measured East of the Moon's mean spin axis, deg |} \& Row 41 \& | wX |
| :--- |
| WY |
| WZ |
| PX |
| PY |
| PZ | \& | Components of a unit vector normal to the conic $\mathbf{W}=\frac{\mathbf{R} \times \mathbf{V}}{\|\mathbf{R} \times \mathbf{V}\|}$ |
| :--- |
| Components of a unit vector in the direction of perigee |

\hline \& AZR \& \& \multicolumn{3}{|l|}{| ${ }^{-}$See appendix A. |
| :--- |
| c Same coordinate system as defined under B except centered of the probe. |}

\hline
\end{tabular}

Table D-2 (Cont'd)

Group		Trajectory constant	Group		Trajectory constant
Row 42	$\begin{aligned} & \text { QX } \\ & \text { QY } \\ & \text { QZ } \\ & \text { RX } \\ & \text { RY } \\ & \text { RZ } \end{aligned}$	Components of a unit vector perpendicular to the perigee direction, vector P, and being in the orbit plane $\mathbf{Q}=\mathbf{W} \times \mathbf{P}$ Components of the unit vector $\mathbf{R}^{\text {b }}$	Row 46	$\begin{aligned} & \mathbf{B} \cdot \mathbf{T} \\ & \mathbf{B} \cdot \mathbf{R} \\ & \mathbf{B} \\ & \text { PER } \end{aligned}$	Projection of the impact parameter $\mathbf{B}^{\text {b }}$ upon the vector T, km Projection of the impact parameter $\mathbf{B}^{\text {b }}$ upon the vector R, km The magnitude of the impact parameter, ${ }^{\text {b }} \mathrm{km}$ Period, min
Row 43	SXO SYO sZo	Components of the unit vector $\mathrm{S}_{0}{ }^{\text {b }}$ along the direction of the outgoing asymptote	Group H		Cartesian coordinates and epoch of injection conditions in the geocentric equatorial system described under Group B.
	DAO RAO TF	Declination of the outgoing asymptote, ${ }^{\text {b }}$ deg Right ascension of the outgoing asymptote, ${ }^{\text {b }}$ deg Time from injection to epoch of pericenter passage, hr	Row 47	XOCTAL YOCTAL ZOCTAL $\dot{\text { X OCTAL }}$ YOCTAL ŻOCTAL	Cartesian components of the probe radius vector at injection in octal representation, km Cartesian components of the probe space-fixed velocity vector at injection in octal representation, $\mathrm{km} / \mathrm{sec}$
Row 44	$\begin{aligned} & \text { SXI } \\ & \text { SYI } \\ & \text { SZI } \\ & \text { TX } \\ & T Y \\ & T Z \end{aligned}$	Components of the unit vector $S_{I}{ }^{\text {b }}$ along the direction of the incoming asymptote Components of the unit vector $\mathrm{T}^{\text {b }}$	Row 48	YY MM DDD HH	Epoch of injection Years past 1900 Month Day of month Hours
Row 45	BX BY BZ $M X$ MY $M Z$	Components of the impact parameter B, ${ }^{\text {b }} \mathrm{km}$ Components of a unit vector which lies in the orbit plane and is normal to the radius vector \mathbf{R} $\mathbf{M}=\mathbf{W} \times \frac{\mathbf{R}}{\|\mathbf{R}\|}$		TT SSSSS SOCTAL	Min Msec Sec in octal representation The time past midnight Greenwich Meridian Time on (DD), month (MM) and year (YY +1900) at which the injection epoch occurs is the time determined by the sum of HH, TT, SSSSS, and SOCTAL.
${ }^{\text {b See appendix }} \mathrm{A}$.			${ }^{\text {b }}$ See appendix A .		

Table D-3. Ranger 4 trajectory constants and conversion factors

Constants	Conversion factors	Constants	Conversion factors
GMsun GMrinus GMEarth GMEarth-Moon GMatoon GMMar: GMinditer Msun/Mirens $M_{\text {sun }} / M_{\text {Earth }}$ $M_{\text {Earth }} / M_{\text {moon }}$ Msun/ MEarth-Moun $M_{\text {sun }} / M_{\text {Mars }}$ Msun/Mfupiter Equatorial radius of Earth 1 AU Ellipticity of Earth Conversion from feet to meters Almospheric model Sidereal rotation rate of Earth Universal constant of gravitation Speed of light Mean Moon radius	$\begin{aligned} & 1.32715445 \times 10^{11} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 3.247695 \times 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 3.986032 \times 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 4.03503 \times 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 4.900759 \times 10^{3} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 4.297780 \times 10^{4} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 1.267106 \times 10^{8} \mathrm{~km}^{3} / \mathrm{sec}^{2} \\ & 408645 \\ & 332951.3 \\ & 81.335 \\ & 328908 \\ & 3.088,000 \\ & 1047.39 \\ & 6378.165 \mathrm{~km} \\ & 1.495990 \times 10^{4} \mathrm{~km} \\ & 1 / 298.3 \\ & 0.3048 \\ & 1959 \mathrm{ARDC} \\ & 4.1780742 \times 10^{-3} \mathrm{deg} / \mathrm{sec}^{2} \\ & 6.671 \times 10^{-20} \mathrm{~km}^{3} / \mathrm{kg} \mathrm{sec} \\ & 2.997925 \times 10^{5} \mathrm{~km} / \mathrm{sec} \\ & 1738.09 \mathrm{~km} \end{aligned}$	Moon moments of inertia about principal axis Lunar and solar ephemerides Geometrical Earth model, used in locating tracking and lounching facilities upon the Earth Earth potential function: $\begin{aligned} \Phi(R, \phi)=\frac{G M_{L}}{R}[1 & +\frac{J R_{E}^{2}}{3 R^{*}}\{1-3 \mathrm{~s} \\ & +\frac{D}{35} \frac{R_{E}^{4}}{R^{4}}(3-3 \end{aligned}$ where $\mathbf{R}=$ geocentric distance $\phi=$ geocentric latitude $J=1.62345 \times 10^{-3}$ $H=-0.575 \times 10^{-3}$ $D=0.7875 \times 10^{-5}$	$\begin{aligned} & A=0.88746 \times 10^{29} \mathrm{~kg} \mathrm{~km}^{2} \\ & B=0.88764 \times 10^{39} \mathrm{~kg} \mathrm{~km}^{2} \\ & C=0.88801 \times 10^{29} \mathrm{~kg} \mathrm{~km}^{2} \end{aligned}$ The Moon and Sun positions are obtained from the joint JPL-STL ephemerides. For purposes of converting into kilometers, the conversion factors are: $\begin{aligned} & 1 \mathrm{AU}=1.495990 \times 10^{8} \mathrm{~km} \\ & 1 \text { e.r. }=6378.165 \mathrm{~km} \end{aligned}$ Clarke spheroid of 1866 $\begin{aligned} a & =6378.2064 \mathrm{~km} \\ b & =6356.5838 \mathrm{~km} \\ e^{2} & =0.006768657997291 \end{aligned}$ $\begin{aligned} & \left.2^{2} \phi\right)+\frac{H}{5} \frac{R_{E}^{3}}{R^{3}}\left(3-5 \sin ^{2} \phi\right)(\sin \phi) \\ & \left.\left.\sin ^{2} \phi+35 \sin ^{4} \phi\right)\right] \end{aligned}$

ACKNOWLEDGMENTS

The analyses presented in this Report represent the work of many people besides the authors. Section VI-A, B has illustrated the nearly complete dependence of the flight path analysis upon several complex digital computer programs. The steps in the development of such computing programs include the formulation of the physical and mathematical models of the processes, input and output requirements, programming and coding, checkout, continual modification and verification, and development and execution of in-flight operational procedures.

The development of the digital computer programs is a joint responsibility of the Systems Analysis Section (312) and the Computer Applications and Data Systems Section (372) at the Jet Propulsion Laboratory. While these responsibilities often considerably overlap, Section 372's responsibility includes programming the numerical analysis aspects, while Section 312 is responsible for the physical models, specification of operational output, inflight control, and overall coordination.

JPL's basic trajectory program has been developed almost completely by D. B. Holdridge of Section 372. His work includes the physical model as well as the programming. Additional contributors are acknowledged in Ref. 2.

The Ranger 4 Orbit Determination Program (ODP) represents a continuous modification of the program orig-
inally developed by R. H. Hudson and R. E. Carr of JPL (Ref. 11) for the Pioneer IV.
K. Oslund and R. H. Hudson of Section 372 and M. S. Johnson and T. W. Hamilton of Section 312 are responsible for initiation and execution of the improvements which have been made continually throughout the Ranger series of flights.

The Tracking Data Editing Program represents the work of M. S. Johnson (312) and J. H. Brown (372).

The very broad interface with the DSIF has involved the Communications Engineering and Operations Section (332) and Section 312 in joint efforts, including the noise models, calibration of antennas, physical and mathematical models of the systems used, accuracy requirements, data format and condition coding, prediction and acquisition information. Primary contributions in these areas have been made by J. P. Fearey, C. W. Johnson, and D. D. Meyer of Section 332 and D. L. Cain, M. S. Johnson, O. Asderian, J. Reuyl, and T. W. Hamilton of Section 312.

Additional contributions to the analysis and programming were made by various members of Section 312, 372 , and 332, O. Asderian, D. L. Cain, H. Lass, C. B. Solloway, C. L. Thomas, V. C. Clarke, F. L. Barnes, W. L. Sjogren of 312, C. A. Seafeldt, and R. E. Holzman of 372. The authors regret that the above list is not complete and extend their appreciation to all other contributors.

REFERENCES

1. NASA/AGENA-B Ranger Program Launch Report for Atlas 133D/Agena-B 10205 6004 Ranger Spacecraft RA-4, Lockheed Missiles and Space Company, Space Systems, AMFTC Test Operations, Control No. AF 04(647)-592, LMSC-271596 (CONFIDENTIAL).
2. Holdridge, D. B., Space Trajectories Program for the IBM 7090 Computer, Technical Report No. 32-223, Jet Propulsion Laboratory, Pasadena, March 2, 1962.
3. Post-Launch Nominal Trajectory-Ranger IV First Month, Vol. IV, 8990-6003-0C004, Space Technology Laboratories, Inc., Redondo Beach, Calif., April 25, 1962 (CONFIDENTIAL).
4. Space Technology Laboratories, Inc., A Dynamical Determination of the Astronomical Unit by Least Squares Fit of the Orbit of Pioneer V, by J. B. McGuire and L. Wong, STL Report 2301-0004-RV-000, Space Technology Laboratories, Inc., Redondo Beach, Calif., May 15, 1961.
5. Jet Propulsion Laboratory, Capability of the DSIF for Lunar Missions of Project Ranger-1961 through Mid-1963, External Publication Document 48 (Rev. 1), Jet Propulsion Laboratory, Pasadena, April 20, 1962.
6. Jet Propulsion Laboratory, Ranger 4 Tracking Information Memorandum 332-4, External Publication Document 63, Jet Propulsion Laboratory, Pasadena, March 26, 1962.
7. Clarke, V. C. Jr., Constants and Related Data Used in Trajectory Calculations at the Jet Propulsion Laboratory, Technical Report No. 32-273, Jet Propulsion Laboratory, Pasadena, May 1, 1962.
8. Noton, A. R. M., E. Cutting, and F. L. Barnes, Analysis of Radio-Command Midcourse Guidance, Technical Report No. 32-28, Jet Propulsion Laboratory, Pasadena, September 8, 1960.
9. Magness, T. A., and J. B. McGuire, "Comparison of Least Squares and Minimum Variance Estimates of Regression Parameters," The Annuals of Mathematical Statistics, Vol. 33, No. 2, June 1962.
10. Kizner, W., A Method of Describing Miss Distances for Lunar and Interplanetary Trajectories, External Publication No. 674, Jet Propulsion Laboratory, Pasadena, August 1, 1959.
11. Carr, R. E., and R. H. Hudson, Tracking and Orbit-Determination Program of the Jet Propulsion Laboratory, Technical Report No. 32-7, Jet Propulsion Laboratory, Pasadena, February 22, 1960.

[^0]: ${ }^{1}$ Reference 6 plus Section IV of this Report. Times measured from "rise" refer to rise time at the receiving station listed.

[^1]: ${ }^{2}$ This approach was first used at JPL by A. R. M. Noton in August, 1959 in a JPL internal Technical Memorandum 312-522, Effect of Correlated Data in Orbit Determination from Radio Tracking Data. Further discussion was given by A. R. M. Noton, E. Cutting, F. Barnes (Ref. 8). T. A. Magness and J. B. McGuire have developed mathematical expressions to contrast the performance of LS, MLS, and minimum covariance estimators (under JPL Contract 950045) in terms of the eigenvalues and eigen-vectors of the data noise covariance matrix (Ref. 9).

[^2]:

