

JET PROPULSION LABORATORY California Institute of Technology • 4800 Oak Grove Drive, Pasadena, California

Recipients of Jet Propulsion Laboratory Technical Report No. 32-345

November 7, 1962

SUBJECT: Errata for Technical Report No. 32-345

Gentlemen:

It is requested that the following changes be made in your copy of Jet Propulsion Laboratory Technical Report No. 32-345, entitled "The Ranger 4 Flight Path and Its Determination From Tracking Data," by T. W. Hamilton et al., dated September 15, 1962:

- 1. On page 7 (Fig. 9, under call-out, LOCATION OF LUNAR IMPACT), change θ to equal 231.4 instead of 277.1.
- On page 32 (upper half of Table 9, under column heading, Standard deviation), change the last three items to read

X 0.648 m/sec instead of X 0.648 m/sec

Y 1.242 m/sec instead of Y 1.242 m/sec

Z 2.225 m/sec instead of Z 2.225 m/sec

3. On page 33 (Fig. 30), change abscissa to read

$$\frac{\Delta~GM_E}{GM_E~({\rm NOMINAL})}\times~10^5~{\rm instead~of}~\frac{\Delta~GM_E}{\Delta GM_E~({\rm NOMINAL})}\times~10^5$$

 On page 33 (last line of text), change the bias to be 6900-m instead of 6000-yd.

Very truly yours,

JET PROPULSION LABORATORY

. E. Newlan, Manager Technical Information Section

Sylvan 0-6811

Murray 1-3661

Twx 7486u

Technical Report No. 32-345

The Ranger 4 Flight Path And Its Determination From Tracking Data

T. W. Hamilton

W. L. Sjogren

W. E. Kirhofer

J. P. Fearey

D. L. Cain

OTS PRICE

XEROX

\$ 8,10 pl

MICROFILM

2.87 mf

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

September 15, 1962

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NO. NAS 7-100

Technical Report No. 32-345

The Ranger 4 Flight Path And Its Determination From Tracking Data

T. W. Hamilton

W. L. Sjogren

W. E. Kirhofer

J. P. Fearey

D. L. Cain

C. R. Gates, Chief Systems Analysis

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA. CALIFORNIA

September 15, 1962

Copyright® 1962 Jet Propulsion Laboratory California Institute of Technology

CONTENTS

I.	Introduction	•		•	1
II.	Trajectory Description				2
	A. Pre-injection Phase				2
	B. Post-injection Phase	•			2
111.	The Tracking Sequence of Events				9
	A. Introduction				
	B. DSIF Tracking of Ranger 4 Transponder and Payload Beacon				
	C. AMR Tracking				
IV.	Flight Path Determination Using Transponder Tracking				13
	A. Introduction				13
	B. Flight Path Determination Using DSIF Tracking of the				10
	Spacecraft Transponder				
	C. Comparison of AMR and DSIF Tracking Results	•	•	•	33
	Near Lunar Impact A. Introduction		•		39 40 43
VI.	Flight Path Analysis Operation and Policies				
	A. Introduction				
	B. Operational Description				
	C. In-flight Policies	•	•	•	52
Αp	pendix A. Definition of the miss parameter ${f B}$		•	•	53
	pendix B. Ranger 4 trajectory printout based on DSIF				54
Rar	pendix C. Comparison of nominal flight trajectory and nger 4 trajectory based on DSIF transponder bit			•	7 2
Αp	pendix D. Tables related to trajectory printout				76
Ref	ferences				83

TABLES

1.	Review of key event times			•	•	9
2.	Deep space station locations					10
3.	Nominal view periods at DSIF stations					10
4.	Transmitter number and acquisition times					10
5.	Summary of capsule beacon tracking					11
6.	Summary of data used in orbit determination					13
7.	Summary of weights, sample, and count times					14
8.	Tracking noise statistics					32
9.	Statistics of knowledge of injection conditions ignoring physical constant errors					32
10.	Statistics of knowledge of target error ignoring physical constant errors					33
11.	Variation in estimate of impact conditions with changes in GM of the Earth	5				33
12.	Ship's orbit based on unadjusted location					36
13.	Ship's orbit based on adjusted location					37
14.	Comparison of original Ascension orbit with DSIF orbit $% \left(\mathbf{r}^{\prime }\right) =\left(\mathbf{r}^{\prime }\right) $					37
15.	Comparison of adjusted Ascension orbit with DSIF orbit $% \left(\mathbf{r}^{\prime }\right) =\left(\mathbf{r}^{\prime }\right) $					38
16.	Statistics of knowledge of target errors including physical constant errors					42
D-1.	Ranger 4 trajectory key					76
D-2.	Ranger 4 trajectory key definitions					77
D-3.	Ranger 4 trajectory constants and conversion factors					81
	FIGURES					
1.	Sequence of events					3
2.	Geocentric distance to probe vs time from injection					3
3.	Geocentric space-fixed inertial velocity of probe vs time from injection					3
4.	Earth-track Ranger 4 trajectory					4
5 .	Ranger 4 trajectory					5
6.	Earth-probe-Sun angle vs time from injection					6
7.	Sun-probe-Moon angle vs time from injection					6

FIGURES (Cont'd)

8.	Earth-probe-Moon angle vs time from injection			6
9.	Lunar encounter Ranger 4 trajectory			7
10.	Selenocentric altitude of probe vs GMT during lunar descent (last 2 hr)			8
11.	Selenocentric space-fixed velocity of probe vs GMT during lunar descent (last 2 hr)		•	8
12.	AMR station view periods and data spans			11
13.	Station 1 residuals (from 21:00 GMT April 23, 1962)	٠		15
14.	Station 1 residuals (from 22:00 GMT April 23, 1962)			16
15.	Station 1 residuals (from 23:00 GMT April 23, 1962)			17
16.	Station 1 residuals (from 00:00 GMT April 24, 1962)			18
17.	Station 4 residuals (from 22:00 GMT April 23, 1962)			19
18.	Station 4 residuals (from 23:00 GMT April 23, 1962)			20
19.	Station 5 residuals (from 21:00 GMT April 23, 1962)			21
20.	Station 5 residuals (from 22:00 GMT April 23, 1962)			22
21.	Station 5 residuals (from 23:00 GMT April 23, 1962)			23
22.	Station 5 residuals (from 00:00 GMT April 24, 1962)			24
23.	Station 5 residuals (from 01:00 GMT April 24, 1962)			25
24.	Station 5 residuals (from 02:00 GMT April 24, 1962)			26
25.	Station 5 residuals (from 03:00 GMT April 24, 1962)			27
26.	Station 5 residuals (from 04:00 GMT April 24, 1962)			28
27.	Station 5 residuals (from 05:00 GMT April 24, 1962)			29
28.	Station 5 residuals (from 06:00 GMT April 24, 1962)			30
29.	Station 5 residuals (from 07:00 GMT April 24, 1962)			31
30.	Solving for $GM_{\rm E}$ using Ranger 4 data			33
31.	TFV (adjusted) residuals			35
32.	Original Ascension Island orbit residuals			35
33.	Original Ascension Island residuals based on DSIF orbit			36
34.	Revised Ascension Island orbit (range bias removed) residuals		•	36
35.	Actual recorded data from DSIF 2			39
	Actual recorded data from DSIF 3			
	Sketch of f_{cb} system			
38	Rigs ascillator fraguency vs time (Panger A third ness)			11

FIGURES (Cont'd)

39.	vs residuals on extrapolated automatic recordings (Station 3	3)				42
40.	Calculated beacon data—manual recordings vs automatic recordings of bias oscillator at Station 3					43
41.	Actual data vs perturbations in T_L					44
42 .	Actual data vs perturbations in $B \boldsymbol{\cdot} T$					45
43.	Actual data vs perturbations in Moon's GM					46
44.	Station 2 residuals (from 09:00 GMT April 26, 1962)					47
45.	Station 5 residuals (from 02:00 GMT April 26, 1962)					46
46.	Station 3 residuals (from 09:00 GMT April 26, 1962)					48
47.	Ranger 4 Pioneer DSIF 2 receiver functions					49
48.	Oscillograph recording of receiver functions (Ranger 4					
	echo DSIF 3)	•	•	•	•	49
49.	FPA functions		•		•	51
۸_1	Definition of R.T. R.R. system					53

ABSTRACT

This Report describes the current best estimate of the Ranger 4 spacecraft flight path and the way in which it was determined. A comparison with independent information sources confirms the accuracy of the orbit based on the Deep Space Instrumentation Facility (DSIF) tracking of the spacecraft transponder for 10½ hr. The miss parameter, as determined by the transponder tracking, is believed to be within 30 km of the correct value. This error is well within the bounds expected and testifies to the accuracy potential of Earth-based tracking.

I. INTRODUCTION

This Report describes the current best estimate of the Ranger 4 spacecraft flight path and the way in which it was determined. A comparison with independent information sources confirms the accuracy of the orbit based on the Deep Space Instrumentation Facility (DSIF) tracking of the spacecraft transponder for 101/2 hr. The miss parameter, as determined by the transponder tracking, is believed to be within 30 km of the correct value. This error is well within the bounds expected and testifies to the accuracy potential of Earth-based tracking.

Section II describes the DSIF transponder orbit in terms of its trajectory parameters near the Earth, in trans-lunar flight, and near the Moon. Symbols used and definitions of key trajectory quantities are given.

Section III summarizes the key events in the tracking of the Ranger 4 mission and gives a general description of the DSIF stations and tracking modes.

Section IV describes the DSIF transponder orbit determination and compares that orbit with information obtained by the Atlantic Missile Range (AMR) tracking of the C-band transponder in the Agena booster stage.

While the spacecraft batteries were depleted at 10½ hr after launch, the radio beacon carried within the Ranger 4 spacecraft's payload, the "rough landing" capsule, continued to operate on its own power supply. The weak signals emitted from the tumbling capsule were tracked at the DSIF stations throughout the mission. Valuable data were taken at both Goldstone stations in the several hours prior to lunar impact. Both the doppler shift records and time of signal loss at the Goldstone stations confirm the accuracy of the previously determined orbit. The results are presented in this Report, Section V.

Section VI gives a functional description of the in-flight determination of the flight path together with the techniques used in editing and weighting the tracking data.

II. TRAJECTORY DESCRIPTION

The Ranger 4 trajectory was made up of a pre-injection and a post-injection phase. The pre-injection phase consisted of all powered flight and coast periods from launch to injection (burnout of the last booster stage). The post-injection phase consisted of the coast period from injection to lunar impact.

The trajectory characteristics of the pre-injection phase were obtained from observed flight data in combination with nominal flight conditions (Ref. 1). The trajectory characteristics during the post-injection phase corresponded to the DSIF transponder orbit (Section IV-B). The miss parameter **B** was used to measure the miss distance for the lunar trajectory. The miss parameter **B** is defined in Appendix A.

A. Pre-injection Phase

Using the Atlas D/Agena B boosters, the Ranger 4 spacecraft was launched from the Atlantic Missile Range on April 23, 1962 at 20 hr, 50 min, 15 sec (20:50:15) Greenwich Mean Time (GMT). The fact that the Ranger 4 spacecraft impacted the Moon without the aid of a midcourse maneuver demonstrated the adequacy of the performance obtained from the Atlas and Agena boost vehicles. The sequence of events from launch through injection is shown in Fig. 1.

After rising vertically for a short period, the Atlas booster rolled to a launch azimuth of 100.4 deg (east of north), as determined by the launch time, and performed a programmed pitch-down maneuver until the booster engines were cut off and jettisoned. During the subsequent Atlas sustainer and vernier stages, adjustments in vehicle attitude and engine cutoff times were commanded as required by the ground guidance computer to adjust the altitude and velocity at Atlas vernier engine cutoff. The protective shroud covering the Ranger 4 spacecraft was ejected during the Atlas vernier stage.

After the Atlas/Agena separation, there was a short coast period prior to the first Agena ignition. The Agena B/Ranger 4 spacecraft was nearly horizontal throughout the first Agena burn. The attitude was maintained by horizon scanner instrumentation and gyros within the Agena booster. At a preset value of sensed velocity increase the Agena engine was cut off.

The Agena B/Ranger 4 spacecraft continued coasting in a circular parking orbit for 254 sec at an altitude of

185 km and a space-fixed velocity of 7.800 km/sec. The parking orbit was terminated by a stored command determined by the ground guidance computer and transmitted to the *Agena* during the *Atlas* vernier stage.

The second Agena ignition, which terminated the parking orbit, initiated the final increase in velocity prior to injection. During the second Agena burn (as was the case for the first Agena burn), the vehicle's horizontal attitude and engine cutoff were controlled by the horizon scanner instrumentation and the preset value of sensed velocity increase, respectively. The second Agena cutoff concluded all powered flight for the Ranger 4 spacecraft and represented the injection time.

B. Post-injection Phase

Prior to injection, the Agena/Ranger 4 spacecraft traveled in a southeasterly direction over the Atlantic Ocean. Injection occurred in the mid-Atlantic Ocean. Following injection, the Agena and Ranger 4 separated with the spacecraft continuing on its course over the South Africa continent. The Agena booster then, in turn, performed a programmed yaw maneuver and ignited its retro-rocket. The retro-rocket impulse was designed to eliminate interference with the spacecraft operation and reduce the chance of lunar impact by the Agena booster.

At injection, the spacecraft was traveling 10.958 km/sec in geocentric space-fixed coordinates at a geocentric radius of 6,567.8 km. The spacecraft geocentric distance (Fig. 2) increased while the space-fixed velocity (Fig. 3) was decreasing. This, in effect, reduced the geocentric angular rate of the spacecraft in inertial coordinates until at 1.5 hr after injection the angular rate of the Earth exceeded that of the spacecraft. This caused the Earth track of the spacecraft to reverse its direction from increasing to decreasing Earth longitude (positive easterly). The subsequent Earth track of the spacecraft was similar to that of the Sun except with a greater change in latitude. These characteristics are illustrated in Fig. 4, which shows the Earth track of the spacecraft from launch to 25 hr past injection.

For the Ranger 4 trajectory, injection occurred at 2.89 deg past perigee of the geocentric conic with a flight time from injection to lunar impact of 63.76 hr. During the first 40 hr past injection, the spacecraft was for the most part under the influence of the Earth's gravitational field

Fig. 1. Sequence of events

and essentially remained in an elliptical geocentric orbit. The trajectory during this period can be described by an ellipse having a perigee and apogee distance of 6,564 and 606,407 km, respectively, an eccentricity of 0.978, and an inclination of 29.70 deg to the Earth's equator.

Fig. 2. Geocentric distance to probe vs time from injection

As the spacecraft approached the Moon's gravitational field, a transition was made from the Earth to the Moon as the predominant force affecting the spacecraft's flight. After this transition, the trajectory can be described by a Moon-centered hyperbola. The hyperbola is inclined 13.5 deg to the lunar equator with the spacecraft approaching the Moon's surface in retrograde motion. Lunar impact occurred at 57.53 deg before perigee of the selenocentric

Fig. 3. Geocentric space-fixed inertial velocity of probe vs time from injection

Fig. 4. Earth-track Ranger 4 trajectory

(Moon-centered) hyperbola. The hyperbola perigee distance was 1,271 km (467 km below the Moon's surface) and the eccentricity was 1.380.

A general sketch of the Ranger 4 trajectory from injection to lunar impact is shown in Fig. 5. The inertial Earth-centered coordinates used are referenced to the Earth's equator and the vernal equinox direction. In addition, the position of the Moon during the Ranger 4 flight and the direction to the Sun are noted. This sketch illustrates how the initially elliptical path of the trajectory was altered as the spacecraft encountered the influence of the Moon's gravitational field.

The probe was in direct sunlight except for a brief period following injection. At 3 min past injection, the spacecraft entered the Earth's shadow and emerged 38.8 min later. The relative position along the trajectory at which these events occurred is shown in Fig. 4. The angular relations between Earth, Sun, and spacecraft from injection to lunar impact are graphically illustrated in Fig. 6, 7, and 8.

The portion of the Ranger 4 trajectory when the spacecraft encountered the Moon is shown in Fig. 9. As the spacecraft approached the Moon's surface, it was occulted by the Moon 70 sec before lunar impact at an altitude of 529 km. The actual impact could not be observed from Earth. Lunar impact occurred on April 26, 1962 at 12:50:00 GMT. The spacecraft impacted the Moon's surface at a velocity of 2.669 km/sec. The impact location was 121.3 deg from the Moon-Earth line at a selenocentric south latitude and east longitude of 12.0 and 231.4 deg, respectively. The spacecraft arrived at the

Fig. 5. Ranger 4 trajectory

Fig. 6. Earth-probe-Sun angle vs time from injection

Moon's surface in the forenoon of the lunar day. The relative position of the impact location to the Sun's terminator, sub-solar point, and sub-terrestrial point is shown in Fig. 9. The variation in the spacecraft's altitude and velocity relative to the Moon's surface during the last two hr prior to impact is shown in Fig. 10 and 11, respectively.

A detailed study of the Ranger 4 trajectory can be made by examination of the trajectory printout presented in Appendix B. In this printout the trajectory parameters are listed at selected times from the epoch of the DSIF transponder orbit to lunar impact. The printouts were obtained from the initial conditions corresponding to the DSIF transponder orbit using the Space Trajectory Program described in Ref. 2.

Trajectory printouts provided in Appendix C (a) and (b) demonstrate the closeness of the actual conditions to nominal flight conditions at injection and lunar impact. Printout in Appendix C (a) is the nominal flight trajectory. Trajectory printout in Appendix C (b) is just the

Fig. 7. Sun-probe-Moon angle vs time from injection

DSIF transponder orbit extrapolated back a few seconds for comparison at the nominal injection time (Ref. 3). Table D-1 (Appendix D) is a key to the trajectory print-out. Table D-2 contains the definitions of the printed quantities. Constants and conversion factors used in all Ranger 4 trajectory computations are listed in Table D-3.

Fig. 8. Earth-probe-Moon angle vs time from injection

Fig. 9. Lunar encounter Ranger 4 trajectory

Fig. 10. Selenocentric altitude of probe vs GMT during lunar descent (last 2 hr)

Fig. 11. Selenocentric space-fixed velocity of probe vs GMT during lunar descent (last 2 hr)

III. THE TRACKING SEQUENCE OF EVENTS

A. Introduction

This Section summarizes the key events in the tracking of the Ranger 4 and the Agena stage. Part B describes the DSIF post-injection tracking of the Ranger 4 transponder and the payload "rough landing" capsule beacon. Part C summarizes the AMR post parking-orbit tracking of the Agena C-band transponder by the Twin Falls Victory Ship and the Ascension Island FPS-16 Tracking Station.

To help interpret the results of the analysis of the tracking data given in Sections IV and V, Table 1 summarizes the key events of the launch to lunar impact sequence. When comparing the Agena orbit with the spacecraft orbit, it is important to note that all DSIF tracking after I_2 occurs after event 5 (Fig. 1) whereas some Agena C-band transponder tracking occurs under the following conditions:

- 1. Before I_2 , when the Agena rocket motor is thrusting.
- 2. Between I_2 and event 5, when the spacecraft and Agena are still mechanically attached (the path of the combination differs from the final spacecraft orbit due to the imparting of about 0.3 m/sec relative velocity at mechanical separation).

Table 1. Review of key event times

Event	Date	GMT ⁴	Remarks
Atlas liftoff, L	April 23	20:50:15	
Agena stage parking orbit injection, l ₁		20:58:33	L + 498*
Agena stage translunar orbit injection, I2		21:04:15	L + 840°
Reference epoch for orbit determination, E		21:04:19	12 + 4"
Mechanical separation of Agena and spacecraft		21:06:53	L + 998", l ₂ + 158 ^s
Ignite Agena retromotor ^c		21:13:23	ι + 1388°
Burnout of Agena retromotor		21:13:43	L + 1408"
Loss of spacecraft transponder due to battery depletion	April 24	07:22	ք + 10 ^հ 32 ^տ
Loss of capsule beacon signal due to occulta- tion by Moon	April 26	12:47:46 ^b	1 + 63 ^b 57 ^m 31 ^x

^{*}Universal time at event

- 3. Between event 5 and 6, when the Agena orbit is slightly changed by the mechanical separation velocity.
- 4. Between event 6 and 7, when the Agena orbit is being changed by the retro-rocket thrust.
- 5. After event 7, when the Agena orbit has undergone significant change from its orbit prior to event 6.

In using the Agena C-band transponder data it is quite important to employ only the data corresponding to the desired Agena orbit.

B. DSIF Tracking of Ranger 4 Transponder and Payload Beacon

1. General Information

The detailed characteristics of the Deep Space Systems employed in the Ranger 4 mission are given in Ref. 4. The names and locations of the stations used are summarized in Table 2. Stations 2, 3, 4, 5 use 85-ft diameter antennas whereas Station 1 (The Mobile Tracking Station) has a 10-ft diameter Az-El mounted antenna.

Table 3 indicates the nominal periods of visibility of the spacecraft to the participating DSIF stations during the course of the mission. Note that the view periods are labeled according to the *day* of "rise" and that the "set" times are often on the next day. Note that the signals may be received from the spacecraft somewhat before "rise" and somewhat after "set" times.

The DSIF tracking modes are defined as follows:1

- GM-1. Ground receiver tracks the *transponder* signal in the 2-way doppler mode. The transmitting station (designated by an integer q) receives the return signal and compares it with the current transmitter signal to generate 2-way doppler. At the present time this doppler is much more accurate than that taken in any other mode.
- GM-2. Ground receiver tracks the *transponder* signal in the 1-way doppler mode. The spacecraft return signal is obtained from a crystal reference in

Corrected by -1.25 sec to account for signal travel time to Stations 2, 3. The purpose of the retro-maneuver is to bias the Agena stage off of a nominal lunar impact trajectory. The resultant probability of the Agena stage impacting is thus significantly lowered.

^{&#}x27;Reference 6 plus Section IV of this Report. Times measured from "rise" refer to rise time at the receiving station listed.

Table 2. Deep space station locations^a

Station	Location	Geodetic latitude	Astronomic longitude
2,3	Goldstone, California, U.S.A.	35.4°N	116.8°W
1,5	Johannesburg, South Africa	25.9°\$	27.7°E
4	Woomera, Australia	31.4°S	136.9°E

Table 3. Nominal view periods at DSIF stations^a

Date of rise	Station	Rise GMT	Set GMT	View period
April 23	1,5	21:13:45	09:04:33 ^b	117.51"
•	4	22:03:16	00:53:58 ^b	2 ^h 51 ^m
April 24	2, 3	08:28:45	16:58:54	8* 30**
	4	13:22:51	02:26:19b	13 03 7
	1,5	21:01:54	09:38:22 ^b	12" 37"
April 25	2,3	08:42:25	17:31:54	8 ^h 49 ^m
·	4	13:49:29	02:36:52 ^b	12147"
	1,5	21:19:05	09:45:31 ^b	12h 26m
April 26	2, 3	08:44:08	12:47:46°	4 ^h 04 ^m

^aBased on 5-deg elevation angle and post-flight transponder-determined orbit. Universal time at spacecraft.

bSet occurs on the next day after rise.

^eLoss of capsule beacon signal due to occultation by Moon.

the spacecraft (q = 0). The accuracy of the doppler data obtained is limited by unknown small changes in the spacecraft crystal frequency. This doppler is termed 1-way because the doppler shift occurs only on the spacecraft-to-ground transit rather than in both directions as in GM-1.

GM-3. Ground receiver tracks the *transponder* signal in the 3-way doppler mode. One DSIF station is in GM-1 and another station is "listening in" on the return signal. The accuracy of doppler generated in GM-3 is being determined on the *Ranger* series of flights but is limited primarily by variations in the reference frequency of the transmitting station. Improvements are anticipated in the stability of the transmitter reference oscillators which will make 3-way doppler a primary data type in the future.

GM-4. Ground receiver tracks the capsule beacon signal in the 1-way doppler mode. The doppler limitations of GM-2 are present and the value of angle tracking is degraded because of the lower, and varying, signal level of the capsule beacon.

The only doppler data used to determine the Ranger 4 spacecraft orbit based on transponder data was 2-way (GM-1), whereas angular data was used when the stations were in either GM-1, GM-2, or GM-3. Angular data from Station 1 (Table 2) was rejected because carefully calibrated, more accurate, data was available from Station 5.

2. Transponder Tracking

Table 4 summarizes the transmitter number q versus time during the mission, as well as the acquisition times on the first pass. The most critical times are initial acquisition in GM-2 and initial times in GM-1, in reverse order. After that, delays of under 10 min in transferring transmitting responsibilities from station-to-station have minor effect on the accuracy to which the spacecraft orbit can be determined.

The information in Table 4 is somewhat compressed in that the time of transition from q=0 to $q\neq 0$ is chosen to be the time when the first valid 2-way doppler was received at the transmitting station; the transition from $q\neq 0$ to q=0 is chosen to be the time of the last valid 2-way doppler point in that interval. Thus, Table 4 is more aptly a list of time intervals in which 2-way doppler was taken.

Table 4. Transmitter number and acquisition times^a

Trans- mitter,	Time interval	Receiving station, i	Acquisi- tion time (GMT on April 23, 24	Remarks
0	Launch to t ₁ = 21:29:31			
		1	21:13	Rise — 1 ^m
	!	5	21:15	Rise + 1 m
1	t_1 to $t_2 = 23.05:21$			
		1	21:29:31	Rise + 16™
		4	22:23	Rise + 20 ^m
0	t_2 to $t_3 = 23:16:51$	1		$t_3-t_2=6^{\prime\prime\prime}$
5	t_3 to $t_4 = 23:35:51$			
		5	23:16:51	
0	t_4 to $t_5 = 23:40:11$			$t_5-t_4=4^m$
1	t_5 to $t_6 = 23:40:11$	ĺ		$t_6-t_5=26^m$
		1	23:40:11	
0	t_6 to $t_7 = 00:09:51$	[[$t_7-t_6=4^m$
5	t ₇ to t ₈ = 07:20:51			$t_8-t_7=7^h11^m$
		5	00:09:51	
0	t _s on			

Reference 6 plus Section IV of this Report. Times measured from "rise" refer to rise time at the receiving station listed.

The shifting of the transmitting assignment from Station 1 to 5 and back to 1 and then back to 5 represents a successful execution of the preflight plan. After 96 min of good 2-way doppler from previously flight-tested Station 1, about 30 min were allowed to try to obtain good 2-way doppler from Station 5 where no 2-way doppler had been available previously, and then the transmitting job was handed back to Station 1 while Station 5 data quality was evaluated. Within 53 min after the *first* good 2-way doppler point was received from Station 5, the data quality had been determined to be excellent and Station 5 was allowed to re-establish 2-way lock.

As an example of the interpretation of Table 4, consider the first time q=1 appears in the left-hand column. From t_1 to t_2 Station 1 was transmitting; Station 1 achieved 2-way lock (GM-1) at the time indicated to the right of "1" in the receiving station column. Station 4 achieved lock on the signal in GM-3 at the time indicated to the right of "4" in the receiving station column. The time from t_2 to t_3 was spent in transferring the transmitting assignment to Station 5.

3. Capsule Beacon Tracking

At 10 hr and 32 min after launch the spacecraft transponder signal was lost due to depletion of the spacecraft's batteries. For the remainder of the mission all DSIF stations tracked the capsule beacon, except for short periods of time during which unsuccessful searches were made for the transponder signal. Table 5 summarizes the periods of beacon tracking for the DSIFs.

C. AMR Tracking

1. Introduction

After burnout of the final stage, two AMR stations tracked the Agena Stage C-band transponder. The first data near final stage cutoff came from the Twin Falls Victory (TFV) ship. Shortly after the TFV lost the transponder the Ascension Island FPS-16 tracker acquired the transponder and tracked through the sequence of events described in Section III-A. Figure 12 illustrates the elevation angles at the two stations for the first 10 min after the reference epoch E (injection time + 4 sec).

2. TFV Tracking

The TFV ship began tracking during the final burn and sent data to Jet Propulsion Laboratory (JPL) covering the interval from 21:03:19 GMT (E-60 sec) to 21:08:16 GMT (E+237 sec). The ship was reported "on station" at 326° 45′ east longitude, 13° 35′ north latitude

Fig. 12. AMR stations view periods and data spans

(astronomic) during the tracking interval. At E the probe's elevation was 12 deg at an azimuth of 280 deg east of north, at a range of 745 km. At closest approach to the ship the vehicle range and elevation were 332 km and 42 deg respectively. The azimuth angle to the vehicle when it was at the ship's horizon was 125 deg east. A total of 78 data sets (time-azimuth-elevation range), after E, was received at JPL. The data received were already corrected for ship's pitch and roll by means of an inertial reference and an onboard digital computer. The data were sampled every 3 sec and transmitted over Milgo 165 digital-radio teletype equipment at a rate of 1 sample per 6 sec.

3. Ascension Island Station Tracking

The Ascension Island tracker (7.9° south latitude, 14.4° west longitude) sent real-time data to JPL covering from 21:14:18 GMT $(E + 9^m 59^s)$ to 21:29:12 GMT $(E + 24^m 53^s)$. Since these data were taken after the Agena retrorocket maneuver had begun (Table 1), it will not be

Table 5. Summary of capsule beacon tracking

Date	Station	Acquisition GMT	End of track GMT
April 24	2	08:32	17:03
	3	09:04	17:40
	4	13:52	01:58
	5	21:40	09:25
April 25	2	08:47	17:30
	4	14:23	02:13
	5	21:40	09:32
April 26	2	8:46	12:47
	3	8:33	12:47

discussed here. In non-real time, data covering the interval 21:10:42 GMT $(E+6^m\ 23^s)$ to 22:21:00 GMT $(E+76^m\ 41^s)$ were received at JPL. About 90 sec of this data was obtained prior to Agena retro-ignition. During this 90-sec interval the elevation angle varied between

43 and 46 deg. The azimuth and range at the first and last point where 26° E, 1235 km and 71° E, 1648 km, respectively. The data sets were sampled every 6 sec and contained the same measurement types as the TFV ship. Transmission was over the Milgo 165 equipment.

IV. FLIGHT PATH DETERMINATION USING TRANSPONDER TRACKING

A. Introduction

The real-time determination of the parking orbit is the responsibility of the AMR. Their pre-injection tracking of the Agena vehicle C-band transponder is important in establishing the parking orbit and detecting non-standard flight conditions. The AMR supplies JPL with parking orbit elements and initial acquisition information for transmittal to the DSIF stations and for preliminary estimation of the spacecraft injection conditions. The primary post-injection tracking of the spacecraft is done by the DSIF.

The pitfalls in utilizing AMR post-injection tracking of the Agena transponder were described in Section III-A. The primary functions of the AMR post-injection tracking coverage are: (1) evaluation of the Agena performance, (2) detection of non-standard flight path, and (3) assistance in improving the convergence of the Orbit Determination Program (ODP) when very limited amounts of DSIF data are available.

Our long-range objective is to utilize AMR postinjection tracking along with the DSIF tracking data to determine the spacecraft orbit. We are currently testing the consistency of the two data sources and determining the best ways to use this information. In Part B of this Section we describe the results of the flight path analysis of the Ranger 4 spacecraft as derived from the 10.5 hr of DSIF tracking of the spacecraft transponder. Part C describes the preliminary results of our investigation of the compatibility of the AMR Ascension Island and Twin Falls Victory Ship tracking data with the DSIF tracking results. The results of the comparison are very encouraging and suggest the lines along which our procedures must be modified to utilize the AMR data in the spacecraft orbit determination.

B. Flight Path Determination Using DSIF Tracking of the Spacecraft Transponder

1. Summary of Data Taken

The complete sequence of tracking events and ground tracking modes is described in Section III. Section VI-C discusses the estimation method used. Table 6 summarizes the data points used in the orbit determination.

Angle tracking data was used whenever the ground stations were in GM-1, GM-2, or GM-3 and the "data condition" code indicated good data. Only 2-way doppler data (GM-1) were used; the reasons were discussed in Section III-B1. Table 6 provides a gross picture of the performance of the data taking and handling system; Column 3 gives the total number of data points taken at each station during the life of the spacecraft transponder. The editing of the data, described in Section VI-B1, allowed the number of points (and percentage of total) listed in Column 4 to be used in the final orbit determination. Of particular interest is the number and percentage of data sets rejected for bad format or as "blunder

Station	Data types	Points received Points used Bad format rejection	Blunder points	Bad data condition	Rejection limits		
		% of received	% of received	% of received	% of received	% of received	on blunder points
1 Mobile tracker	2-way	881	703	39	2	137	
	doppler	100	79.8	4.4	0.2	15.6	3 cps
4	Hour angle,	87	35	15	2	35	0.15.4
Moomera	declination	100	40.2	17.2	2.3	40.2	0.15 deg
	2-way 428 377		377	0.14ª	11	26ª	
5	doppler	100	88.0	3.3	2.6	6.1	1.5 cps
Johannesburg	Hour angle,	960	719	29	53	159	0.15 do
	declination	100	74.9	3.0	5.5	16.6	0.15 deg

Table 6. Summary of data used in orbit determination

^{*}Doppler and angles are given on each data message and the entire message is rejected for any format errors or bad condition; thus, the 2-way doppler rejects of columns 5 and 7 are a sub-set of the angle rejects listed below them.

points." As discussed in Section VI-C, no attempt is made to unscramble data messages containing any format errors. "Blunder" points can create significant problems in converging on an orbit when very little data is available and hence are important in influencing the time required to establish our first estimate of the orbit. The number and percentage of the points omitted because of "bad data condition" are listed in Column 7. When the tracking station operators or automatic detectors recognized that the data being transmitted would not be usable, the data condition codeword reflected these situations. This situation occurred when re-tuning the ground transmitter to maximize the signal received at the spacecraft, when commands were being sent, and during the acquisition phase.

2. Weighting of the Data

The data weights were assigned in accordance with the policy described in Section VI-C. The weighting assigned to the data depends upon the sampling interval and, for doppler, the counting time and the range to the spacecraft. During the flight, the effective noise due to variation of the transmitter reference frequency was calculated from regular recordings of the transmitter frequency. The noise in the doppler due to this variation never became a dominant factor because the oscillator performance exceeded specifications and because transponder tracking ended prematurely. Table 7 summarizes the sample and counting intervals and weights used.

3. Discussion of Residuals

Once the data points and weights are fixed, the set of initial conditions which minimizes the weighted sum of the residuals squared is found by an iterative method. The physical constants described in Ref. 7 were used in the trajectory calculation. Subsequently the influence of

variation of GM-Earth on the resultant estimator was examined (Section IV-B4 below).

The differences between the vector of all observations and the calculated values based on the converged solution is called the vector of residuals. Figures 13 through 29 are the residual plots, by station, vs time for the data types used in the final orbit. The detailed analysis of the residuals will be published in another report. The Station 1 doppler residuals have a parabolic form due to the rounding of the data. Note that the oscillations in the Station 5 doppler data are due to the regular tumbling of the spacecraft which caused a variation in the equivalent phase center. The tumbling effect can also be seen in the angle data since there was a wide variation in return signal strength due to relative nulls in the antenna pattern.

4. Statistics of Data and Orbit Estimates

a. Tracking data statistics. The root-mean-squared noise (RMS) and mean of the residuals for each station is given in Table 8 for each data type used. Note that the RMS noise and weights of Table 7 differ significantly in most cases. The difference in angle weighting is due to the presence of low-frequency mechanical deflection of the DSIF antennas.

b. Statistics of orbit estimate; data noise. The accuracy of the orbit obtained depends on the statistics of the tracking noise and on the statistics of all error sources which influence the orbital estimate. The tracking noise statistics are represented by the "equivalent or worse" white noise method described in Section VI-C. The Ranger 4 ODP does not "solve for" nor directly include the effects of deviations in physical constants such as GM-Earth and station locations. Table 9 gives the covariance matrix describing the uncertainty in the space-fixed Cartesian coordinates at the reference epoch E,

		E to E + 80 min			F + 80 min on				
Station	Data type	Sample spacing, sec	Count time, sec	Weight, cps ^a or deg	Sample spacing, sec	Count time	Weight, cps³ or deg		
1	2-way doppler	10	1p	0.7	10	1	0.7		
4	Hour angle, declination	60		0.18	60		0.18		
5	2-way doppler			1	60	50	0.20		
i	HA, declination	10		0.45	60		0.18		

Table 7. Summary of weights, sample, and count times

^{*}E is reference epoch used for orbit determination (Table 6). 1 cps = c/2f = 0.156 m/sec where the transmitting frequency f is 96 \times 10⁷ cps. bStation 1 doppler is counted $\pm 1/2$ sec centered about the message time. All other stations time tag the data at the end of the counting interval.

Fig. 13. Station 1 residuals (from 21:00 GMT April 23, 1962)

Fig. 14. Station 1 residuals (from 22:00 GMT April 23, 1962)

Fig. 15. Station 1 residuals (from 23:00 GMT April 23, 1962)

Fig. 16. Station 1 residuals (from 00:00 GMT April 24, 1962)

Fig. 17. Station 4 residuals (from 22:00 GMT April 23, 1962)

Fig. 18. Station 4 residuals (from 23:00 GMT April 23, 1962)

Fig. 19. Station 5 residuals (from 21:00 GMT April 23, 1962)

Fig. 20. Station 5 residuals (from 22:00 GMT April 23, 1962)

Fig. 21. Station 5 residuals (from 23:00 GMT April 23, 1962)

Fig. 22. Station 5 residuals (from 00:00 GMT April 24, 1962)

Fig. 23. Station 5 residuals (from 01:00 GMT April 24, 1962)

Fig. 24. Station 5 residuals (from 02:00 GMT April 24, 1962)

Fig. 25. Station 5 residuals (from 03:00 GMT April 24, 1962)

Fig. 26. Station 5 residuals (from 04:00 GMT April 24, 1962)

Fig. 27. Station 5 residuals (from 05:00 GMT April 24, 1962)

Fig. 28. Station 5 residuals (from 06:00 GMT April 24, 1962)

Fig. 29. Station 5 residuals (from 07:00 GMT April 24, 1962)

considering only the noise on the tracking data. The covariance matrix is given in terms of its normalized correlation matrix and standard deviations of the coordinates. The coordinates at *E* are given in Section II. The lower part of Table 9 gives the corresponding quantities in Earth-fixed spherical (defined in Section IV-C 1) coordinates.

The covariance of errors in knowledge of the coordinates at E may be "mapped" to the target region using the miss parameter \mathbf{B} (Appendix A) and T_L , the linearized time-of-flight, as measures of target error. T_L may be considered to represent the flight time to a vertical impact (the influence of \mathbf{B} on the parameter T_L is thus removed). Table 10 represents the standard deviations and correlation matrix in the $\mathbf{B} \cdot \mathbf{R}$, $\mathbf{B} \cdot \mathbf{T}$, T_L system. The

Table 8. Tracking noise statistics

Station	Data types	No. of Points	RMS	Meana
1	2-way doppler, cps	703	0.639	-0.005
4	Hour angle, deg	35	0.009	-0.001
	Declination, deg	35	0.007	-0.002
5	2-way doppler, cps	377	0.078	-0.002
	Hour angle, deg	719	0.020	-0.002
	Declination, deg	719	0.012	-0.002

axes of the 1-sigma dispersion ellipse are found by evaluating the eigen-values of the 2×2 covariance matrix of $\mathbf{B} \cdot \mathbf{R}$, $\mathbf{B} \cdot \mathbf{T}$ uncertainties. The results are: major semi-axis = 22.9 km, minor semi-axis = 14.6 km, and orientation of major axis = 149.6 deg CCW from the R axis. The standard deviation of actual flight time to the estimated impact point is 18.8 sec. It was determined by using Table 10 data plus the relationships

$$\frac{\partial T_I}{\partial \mathbf{B} \cdot \mathbf{T}} = 0.656 \text{ sec/km} \text{ and } \frac{\partial T_I}{\partial \mathbf{B} \cdot \mathbf{R}} \simeq 0$$

c. Statistics of orbit estimate; physical constants. The only error source which could significantly degrade the target accuracies indicated in Section IV-B4b, above, appears to be GM-Earth. A systematic investigation utilizing the technique first suggested in Ref. 4 was carried out to determine the sensitivity of our target parameters to changes in the assumed GM-Earth as well as to form an independent estimate of that quantity from our tracking data.

Figure 30 shows the variation of the weighted sum of residuals squared (on second and third iterations) as a function of the *fractional* variation in GM from its nominal value. The minimum is at -0.7×10^{-5} and the standard deviation of this estimate is 3.2×10^{-5} . A wide range

Table 9. Statistics of knowledge of injection conditions ignoring physical constant errors

Space-fixed Cartesian Coordinates at Epoch E

	-			Correlation coeff	icients			
Standard deviation		х	Υ	Z	×	Ý	ż	
X 0.290 km	х	1	0.384	-0.106	-0.378	0.144	0.057	
Y 0.384	Y		1 1	-0.941	0.701	0.940	-0.874	
Z 0.676	z			1	-0.868	-0.983	0.973	
X 0.648 m/sec	х		Symmetrical		1	0.854	-0.941	
Y 1.242	Ÿ		1		}	1	-0.979	
Z 2.225	ż						1	
		Ec	erth-fixed Spherical C	oordinates at Epo	ch E			
	Correlation coefficients							
Standard deviation		r	ф	λ	v	γ	σ	
r 0.135 km	r	1	-0.682	0.031	-0.974	0.724	0.768	
φ 0.0063°	φ		[1]	0.614	0.518	-0.784	-0.971	
λ 0.0035°	λ			1	-0.177	-0.054	-0.466	
v 0.0943 m/sec	٧		1	ı	1	-0.585	-0.606	
γ 0.0015°	γ	1	Symi	metrical	1	1	0.867	
σ 0.0136°	σ					1] 1	

Table 10. Statistics of knowledge of target error ignoring physical constant errors

Standard		Correlation coefficients						
deviation		B · R	В•Т	T _L				
B • R 21.0 km	B·R	1	-0.375	0.697				
B • T 17.0 km	В∙Т		1	0.273				
T _L 18.5 sec	T _L	Symi	metrical	1				

of opinions as to the accuracy of our current knowledge of GM is available. The most pessimistic figures are around 1×10^{-5} . Thus, while our answer is encouragingly close to the adopted value, it affords no new information. We shall continue to assume the adopted values of Ref. 7 with an uncertainty of 0.5 part in 10^{5} .

The degradation of the orbit estimate due to a 0.5×10^{-5} fractional error in GM-Earth is described in Table 11. The change in the converged target coordinates estimate per 10^{-5} fractional change in GM is listed as obtained from the previously described computer runs.

Previous studies of the effect of station location errors indicate that less than a 15-km target error results from station location errors of 10⁻³ deg in latitude and longitude and 37 m in altitude.

We conclude that our estimate of the orbit should be accurate about a 22-km 1-sigma circle in the **B** plane and about 33 sec in linearized time-of-flight after allowing for uncertainties in the physical constants. Due to the favorable correlation between T_L and $\mathbf{B} \cdot \mathbf{T}$ errors (Tables 10 and 11) the 1-sigma impact time uncertainty is only 26 sec.

We plan to re-evaluate the Ranger 4 flight data using a more sophisticated orbit determination program which has just been completed. Here, the uncertainties in physical constants and station locations will be handled in a rigorous fashion in order to obtain a better estimate of the orbit and its uncertainties.

Fig. 30. Solving for GM_E using Ranger 4 data

C. Comparison of AMR and DSIF Tracking Results

1. Introduction

Section III has described the sequence of events necessary to understanding the use of AMR tracking data as well as a summary of the AMR tracking data available for comparison with the DSIF tracking results. Part IV-C2, below, summarizes our analysis of the TFV ship tracking results. First, we computed the orbital elements (see glossary of terms that follows) based on TFV data alone. Comparison with the DSIF orbital elements suggested that the ship's location required adjustment. The TFV orbital elements with adjusted ship's location showed good agreement with the DSIF-determined elements.

In Part IV-C3, below, we have applied the same approach to the analysis of the Ascension Island data. The initial disagreement of orbital elements derived solely from Ascension data led to a comparison of Ascension observation with those calculated on the basis of the DSIF-only orbit. The assumption of a 6000-yd bias in

Table 11. Variation in estimate of impact conditions with changes in GM of the Eartha

Fractional change in GM_E	ΔΒ·Τ, km	ΔB•R, km	Δ Lat, deg	Δ Long, deg	∆ Impact time, sec	ΔT_L , sec
+2 × 10 ⁻⁵	-55.7	-0.4	0.39	-2.25	-70	-108
$+6 \times 10^{-5}$	167.4	-0.8	1.26	7.13	206	-325
-6×10^{-5}	+ 169.2	0.0	-1.04	6.32	+ 222	+326

the Ascension range data puts all residuals and orbital elements within the range of expected variation.

We consider that the problems encountered are not serious and can be eliminated in the future so that our goal of using AMR data in assisting the determination of the spacecraft orbit in real time is not far off. Modifications in operational and computational procedures at JPL are indicated in order to make proper utilization of the potential of the AMR tracking data.

GLOSSARY OF TERMS

The two sets of orbital parameters used are Earth-fixed spherical coordinates and a set of Keplerian orbital elements. All elements are referred to true (instantaneous) equator and equinox of date.

Earth-fixed spherical coordinates

- r_a Earth center to probe distance, km
- ϕ_a geocentric latitude, deg
- λ_o longitude, east, deg
- v_o speed in Earth-rotating framework, km/sec
- γ_θ path angle of velocity, above local (geocentric) horizon, deg
- σ_0 azimuth angle of velocity, east of north, deg

Keplerian orbital elements

- a semi-major axis, km
- e eccentricity
- i inclination angle, deg
- Ω right ascension of ascending node, deg
- ω argument of perigee, deg
- $\omega + \nu$ sum of ω and true anomaly at epoch E

2. Twin Falls Victory Ship Tracking Results

The TFV data available (Fig. 12) brackets the time of mechanical spring-separation of the *Agena* stage from the spacecraft. Since the relative separation velocity is only about 0.3 m/sec, the *Agena* orbit and the post-separation *Ranger 4* spacecraft orbit were treated as one. As discussed in the Introduction, we first determined an orbit

using TFV data only. The weighting standard deviations used were 30 m in range and 0.3 deg in azimuth and elevation (by comparison with the RMS residuals it can be seen that we assumed correlated errors were present in both the range and angle data). Table 12 lists the Earth-fixed spherical orbital elements at the reference epoch E as well as the RMS error of the residuals.

Table 12 lists the corresponding orbital elements for the DSIF orbit found in Section IV-B. In interpreting the differences it is important to note that the ship's position estimate cannot normally be trusted to better than ± 2 nautical mi (± 0.034 deg). To illustrate the effect of ship's location on the orbit estimate, the latitude and longitude of the ship were varied by 0.1 deg in turn, with the following results:

Change in orbit	Change in sl	nip's location
estimate	0.1 deg latitude	0.1 deg longitude
$\delta r_o, { m km}$	-0.0055	0
$\delta\phi_o,\deg$	0.0993	0
$\delta \lambda_o, \deg$	-0.0030	0.100
δv_o , km/sec	-0.00002	0
$\delta \gamma_o, \deg$	0.0006	0
$\delta\sigma_o,\deg$	0.0132	0

Utilizing the above information, we made an approximate adjustment of the ship's location to better match the orbital elements; the latitude was changed by about 0.10 deg and the longitude by about 0.02 deg. Table 13 summarizes the results analogous to Table 12 with the ship's location adjusted. In columns 5 and 6 we have listed the expected 1- σ errors in each orbital element due to the data noise and a ± 2 nautical mi error in ship's location.

The residuals for the adjusted orbit are shown in Fig. 31. Note that the RMS of the residuals are essentially the same for both the adjusted and unadjusted orbits. This is because changes in ship's location can be so well compensated for by errors in the orbit parameters ϕ_0 , λ_0 , as illustrated previously.

The only discrepancy between these two orbits which appears significant is the 1.7-m/sec difference in speed. We believe that this difference is accounted for by the ship's speed of 5 knots (2.6 m/sec) during the tracking

Fig. 31. TFV (adjusted) residuals

period. In the future, proper arrangements will be made for considering the effect of ship's velocity.

3. Ascension Transponder Tracking Results

The Ascension data were placed in the Orbit Determination Program and an orbit was found for the Agena vehicle (pre-retro) using these weights: azimuths and elevation angles 0.02 deg, range 30 m. The resulting orbit is given in Table 14 where comparison is made with the DSIF orbit. Two coordinate systems are shown, Earthfixed sphericals and Keplerian orbital elements, in order to emphasize separate features. Note how conspicuous is the excessive semi-major axis and r_0 associated with the Ascension orbit.

The residuals of this orbit are shown in Fig. 32 indicating errors of a systematic nature.

In order to detect possible errors, we calculated the Ascension Island observations based on the DSIF orbit. The residuals are shown in Fig. 33. It appears that the Ascension data had range readings which were 5.5 km too high.

A second Ascension orbit was then computed, the same as before except 6900 m were subtracted from the Ascension range data. This range adjustment was chosen after several tries. The results are shown in Table 15. Residuals of this orbit are shown in Fig. 34. The fit to the equations of motion is better and the discrepancies between DSIF and the range-adjusted orbit are smaller. It should be noted that if a timing discrepancy existed between Ascension and the DSIF, and this were the only error, then comparison of orbital elements would show discrepancies only in two of the elements, Ω and $(\omega + \nu)$. Such does not appear to be the case.

Fig. 32. Original Ascension Island orbit residuals

GREENWICH MEAN TIME

Fig. 33. Original Ascension Island residuals based on DSIF orbit

Table 12. Ship's orbit based on unadjusted location

Earth-fixed spherical coordinates at epoch E (E = April 23, 1962 21:04:19 GMT)

Coordinates		ro, km	ϕ_o , deg	λο, deg	vo, km/sec	γ₀, deg	σο, deg	
Ship's orbit (unadjusted)		6568.7855	14.4806	320.2411	10.5416	1.6847	117.3531	
DSIF		6568.8833	14.5741	320.2590	10.5433	1.6688	117.2733	
Difference		-0.0978	0.0935	-0.0179	-0.0017	0.0159	0.0798	
1-σ ship's orbit errors ^a		0.290	0.0044	0.0013	0.0003	0.013	0.034	
Data type	No. of points	RMS		Ship's (estimated) position				
AZ	78	0.019	4 deg	(From Section III-C)				
EL	78	0.0188	3 deg	13.4948°N latitude (geocentric)				
Range	78	0.089	5 km] :	326.7500°E longitu	de		

Table 13. Ship's orbit based on adjusted location^a Earth-fixed spherical coordinates at epoch E (E = April 23, 1962 21:04:19 GMT)

Coordir	nates	ro, km	ϕ_o , deg	λ₀, deg	vo, km/sec	γα, deg	σ₀, deg	
Ship's orbit (adjusted)	6568.7814	14.5735	320.2563	10.54155	1.6852	117.3408	
DSIF		6568.8833	14.5741	320.2590	10.54329	1.6688	117.2773	
Difference		-0.0109	-0.0006	-0.0027	-0.00174	0.0164	0.0635	
1-σ ship orbit errors*		0.290	0.044	0.0013	0.00027	0.013	0.034	
1- σ ship orbit errors, location errors $^{ m b}$		0.002	0.035	0.035	0.00001	0.0002	0.005	
Data type	No. of points	RM	5	Ship's (adjusted) position				
AZ	78	0.0194	deg	13.5884°N latitude (geocentric)				
EL	78	0.0196	deg	;	326.7680°E longitue	de		
Range	78	0.00897	7 km					

Table 14. Comparison of original Ascension orbit with DSIF orbit Earth-fixed spherical coordinates at epoch E (E = April 23, 1962 21:04:19 GMT)

Coordinates	r _o , km	φ₀, deg	λ₀, deg	v₀, km/sec	γ₀, deg	σ₀, deg
Ascension (original)	6581.141	14.6300	320.2565	10.5579	1.5080	117.3326
DSIF	6568.883	14.5740	320.2590	10.5433	1.6688	117.2773 0.0553
Difference	12.258	0.0560	-0.0025	0.0146	−0.1608	
1-σ Ascension orbit errors ^a	1.32	0.013	0.004	0.015	0.018	0.017
	Kepler	ian orbital elemen	ts at epoch E			
Coordinates	a, km	e	i, deg	Ω , deg	ω, deg	(ω + ν), de
Ascension (original)	537,275	0.987759	29.7699	334.9101	146.5029	149.4230
DSIF	306,500	0.978588	29.6988	334.8 797	146.2298	149.4764
Difference	230,775	0.009171	0.0711	0.0304	0.2731	-0.0534
Data type	No. of points	RMS				
ΑZ	16	0.031 c	leg			
EL	16	0.0098	deg			
Range	16	0.025	m			

Table 15. Comparison of adjusted Ascension orbit with DSIF orbit

Earth-fixed spherical coordinates at epoch E (E = April 23, 1962 21:04:19 GMT)

Coordin	ates	ro, km	ϕ_o , deg	λ_o , deg	v _o , km/sec	γο, deg	σο, deg
Ascension (adjusted)		6569.574	14.5643	320.2552	10.5427	1.6652	117.3006
DSIF		6568.883	14.5740	320.2590	10.5433	1.6688	117.2773
Difference		-0.691	-0.0097	-0.0038	-0.0006	-0.0036	0.0233
$1-\sigma$ Ascension orbit err	ors ^a	1.32	0.013	0,004	0.015	0.018	0.017
	<u> </u>	Keple	rian orbital elemen	ts at epoch E			
Coordinates		a, km	e	i, deg	Ω, deg	ω, deg	$(\omega + \nu)$, de
Ascension (adjusted)	:	306,277	0.978567	29.0134	334.8381	146.2739	149.5135
DSIF		306,500	0.978588	29.6988	334.8797	146.2298	149.4764
Difference		223	-0.000021	0.0146	-0.0417	0.0442	0.0372
Data type	No. of points		RMS				
AZ	16	0.00	97 deg				
EL	16	0.00)57 deg				
Range	16	0.00	061 km				

V. CONFIRMATION OF THE DSIF TRANSPONDER-BASED ORBIT ACCURACY BY TRACKING THE CAPSULE BEACON NEAR LUNAR IMPACT

A. Introduction

Our analysis of the doppler-shift data received from the capsule beacon just prior to impact has confirmed that the orbit determined using the DSIF transponder data is consistent with these observations. As indicated in Section III-B1, the pass of April 26 at the two Goldstone Deep Space Stations began about 4 hr and 4 min before the time the spacecraft was occulted by the Moon's leading edge. Figures 35 and 36 show the actual doppler values recorded at Stations 2 and 3 during the last hour before impact with the Moon. In subsequent comparisons, the discrete data points are not shown.

In Part B of this Section we review the data-taking system and the formulae relating the observations with

the spacecraft orbit, capsule transmitter frequency, and ground station bias oscillator frequency. Estimates are made of the necessary quantities and the actual observations are compared to the values derived from the DSIF transponder orbit described in Section IV-B. We show that the expected variations in the capsule doppler data due to errors in our orbit estimate (Section IV-B4) bracket the actual observations, indicating consistency of these two information sources.

In Part C of this Section the records at Station 2 and 3 which define the time-of-signal loss are shown and discussed. Again the deviation in the actual loss time from that predicted is well within the expected bounds. Plots

Fig. 35. Actual recorded data from DSIF 2

Fig. 36. Actual recorded data from DSIF 3

are presented which indicate the sensitivity of the timeof-signal loss to deviation in coordinates near impact.

B. Data System

1. Recordings

The frequency recorded at the tracking station in GM-4 (Section III-B1) is f_{cb} and is a function of the beacon crystal frequency and the bias oscillator frequency at the receiving station. Recordings of f_{cb} were made throughout the entire mission as described in Section III-B3. The formula used in the orbit determination program to calculate f_{cb} at the *i*th receiving station is given in Fig. 37. Thus,

$$f_{cb_i}' = 930.15 \times 10^6 + (f_0 + D_o \Delta_{t_i} - 0.455 \times 10^6)$$

$$- (f_t + D_t \Delta_t) \left(1 - \frac{\dot{r}_i}{c} + \text{higher order terms} \right)$$

where

 f'_{cb_i} = calculated capsule beacon frequency in cps

 f_0 = bias oscillator frequency in cps

 f_{t_0} = capsule crystal frequency at a reference time in cps

 D_0 = bias oscillator drift rate in cps/min

 $D_t = \text{capsule crystal drift rate in cps/min}$

 $\hat{r}_i = \text{range rate}$

Fig. 37. Sketch of f_{cb} system

c = velocity of light

 $\Delta t_i = \text{difference in min between reference time and recording time } f_{cb}$.

Since the capsule crystal-derived frequency is not precisely known, and varies significantly with temperature and other factors, a value of the crystal frequency as a function of time was obtained by studying residuals at different stations. By using the relationship $f_t = f_{t_0} + D_t \Delta t_i$, calculated values of $f_{cb_i}^{\prime}$ were generated. These values showed close agreement to actual data taken at Stations 3 and 5 where bias oscillators were steady. The value for drift rate $(D_t = +1.54 \text{ cps/min})$ in f_t corresponds to a temperature change of -5.3° F/day. Thus, having now estimated f_t with data prior to the last two hours before impact, we must now include the bias oscillator drift into the final calculation.

Periodically, values of the bias oscillators at the various DSIF stations were automatically recorded. Other times

the values were observed, noted as steady or unsteady, and manually recorded. Figure 38 shows the oscillator recordings at Stations 2 and 3 during the final pass. Note that Station 2 recordings were oscillating quite widely and were sparse in the last half hour before impact. Station 3's lack of recordings prior to 11^h20^m was due to visual observation of a steady oscillator. When it did start to drift, the operator switched to automatic recording and then at 11^h55^m to manual recordings. The recordings have been represented by the three lines indicated in Fig. 38. Since the Orbit Determination Program (ODP) can use but one drift constant D_0 , the solid line represents the drift D_0 used for the calculated values. Note that the solid line passes through all the automatic recorded values and deviates from the manual recordings. Therefore, to bring the manual recordings (dash lines) into the evaluation, the actual data cards were reconstructed to simulate the difference between recorded oscillator frequency and the values used in the ODP calculations.

Fig. 38. Bias oscillator frequency vs time (Ranger 4 third pass)

Residuals were generated $[f_{cb_i} \text{ (observed)} - f'_{cb_i} \text{ (calcu-}$ lated) on both the original data and the reconstructed data using the converged transponder orbit injection conditions and the previously estimated values of f_t , D_t , and D_0 (Fig. 39). The Station 2 residuals were in agreement with Station 3 residuals between 11:30 and 12:00 GMT where bias oscillator recordings were available. Since adequate recordings were not available after this time, we shall concentrate on the Station 3 doppler information. In most of the discussion that follows we have chosen the solid line (Fig. 38) as the representation of the bias oscillator frequency. Figure 40 shows the effect of the different assumptions on the calculated values f'_{cb} . The agreement in both cases is discussed in the following paragraphs. The manual recordings are considered to be questionable since they were derived from a counter in a non-standard patch condition.

2. Discussion of Results

In order to interpret the accuracy of the transponder determined orbit using either of the two curves in Fig. 40, it is necessary to describe the expected variation of the observable doppler during the last hour of flight. We will use the parameters $\mathbf{B} \cdot \mathbf{T}$, $\mathbf{B} \cdot \mathbf{R}$, and T_L described in Section IV-B4 to describe the expected variations. Table 16 gives the correlation matrix and standard devia-

Table 16. Statistics of knowledge of target errors including physical constant errors

Standard	Correlation coefficients								
deviation		B · R	B · T	T_L					
B • R 21.0 km	B•R	1	-0.290	0.391					
B • T 22.0 km	В∙Т		1	0.646					
T_L 32.8 sec	T _L	Symi	1						

tions associated with our estimate of total accuracy (Section IV-B4c).

We have perturbed these parameters in turn by their 1-sigma uncertainty. Changes of ± 20 km in $\mathbf{B} \cdot \mathbf{R}$ caused no significant change in the doppler curves. Variation of T_L , the linearized flight time, causes a shift of the time axis equal to the negative of T_L . The resulting doppler curves for ± 33 sec variation in T_L are shown in Fig. 41. Figure 42 depicts the effect of ± 20 km variation in $\mathbf{B} \cdot \mathbf{T}$ while holding T_L , $\mathbf{B} \cdot \mathbf{R}$ constant. One additional variation was made to determine the change in the doppler curve caused by a $\pm 0.2\%$ variation in the GM of the Moon (Fig. 43). It should be noted that this effect is nearly identical with an error in ΔT_L .

Figures 41-43 are based upon the extrapolation of the automatic recordings of the bias oscillator. Also plotted is the curve representing the individual data

Fig. 39. Residuals on reconstructed data using manual recordings vs residuals on extrapolated automatic recordings (Station 3)

Fig. 40. Calculated beacon data—manual recordings vs automatic recordings of bias oscillator at Station 3

points taken at Station 3. It appears evident that these observations are consistent with their expected variation based on the uncertainties in the transponder orbit. No more careful comparison can be made at this time until our computing programs have added flexibility.

Referring to Fig. 40, the assumption that the manual recordings give the correct bias oscillator frequency leads to a moderately different doppler curve. Since the offset of the beacon transmitter frequency f_{T_0} is uncertain to ± 20 cycles, the calculated doppler frequency curves have a constant offset uncertainty of ± 20 cycles. This is due to lack of complete calibrations of the bias oscillator frequency in the region where the slope was evaluated. Considering this additional factor, it appears that either of the two doppler curves in Fig. 40 is reasonably consistent with the predicted values.

Figures 44, 45, and 46 show some of the residual plots for Stations 2, 3, and 5. Figure 44 shows the wide

oscillations due to the (uncompensated) effect of the bias oscillator frequency variations evident in Fig. 38. Figure 45 shows the residuals at Station 5 (South Africa) during an interval where the bias oscillator was reported steady. It can be seen that the slope chosen to represent the capsule crystal frequency fits the observations well; the bias is due to fixed offset in a reference oscillator. Figure 46 shows the Station 3 residuals during the final pass. Note that they are stable for the first two hours and then start drifting off as indicated by the bias oscillator log (Fig. 38).

C. Verification by Time of Signal Loss

1. Observational Records

The primary evidence of occultation of the capsule by the Moon is the loss of received signal at the ground station. Various functions related to the received signal are recorded by the DSIF on magnetic tape and independently on direct-write oscillographs.

Fig. 41. Actual data vs perturbations in T_L

Figure 47 is a recording of the receiver functions recorded on magnetic tape at DSIF-2 for the last few seconds prior to occultation. Figure 48 is a reproduction of the DSIF-3 direct-write oscillograph record for the same time. It is included to illustrate both types of records from which occultation time was determined.

In Figure 47, the trace labeled *signal strength* is the one of critical interest. At the time noted by the arrow 124747, the signal started to decay. The rate of decay is characteristic of the 10-sec time constant of the receiver.

The time associated with the event is determined from a binary-coded-decimal (BCD) time code which records days, hours, and minutes, and from a 1-pps time code. Both the BCD code and the 1-pps code are derived from the station secondary standard which is synchronized to WWV. In Fig. 48, the BCD code may be seen at the top of the trace. In the case of Fig. 47, which is a playback of the magnetic tape, the mechanization of the playback recorder precludes the recording of the BCD code, so that only the 1-pps code appears at the top of the trace.

In Fig. 48, the channel labeled Acquisition Relay is an event channel which marks loss of receiver lock, i.e., loss of signal. The time shown on the figure is the time of change of state of this relay. It is consistent with the time of signal tail-off as shown on Fig. 47. The rate of tail-off is lower at Station 3 since the AGC time constant is longer, i.e., 300 sec.

The conclusion is that, neglecting signal time-of-flight, the capsule signal was occulted by the Moon at 124747. The accuracy to which this time can be determined is approximately $\pm 0.3~{\rm sec/RMS}$.

2. Discussion of Results

The actual and predicted times of signal loss are:

Actual $12^{h}47^{m}46^{s}$ GMT April 26, 1962 Predicted $12^{h}48^{m}10^{s}$ GMT April 26, 1962

when corrected for light-time. The error of -24 sec is consistent with the expected 1-sigma variation of 26 sec described in Section IV-B4c. The confirmation given by the time the capsule beacon signal was lost significantly enhances our confidence in the accuracy of the DSIF transponder determined orbit.

45

Fig. 43. Actual data vs perturbations in Moon's GM

Fig. 45. Station 5 residuals (from 02:00 GMT April 26, 1962)

Fig. 44. Station 2 residuals (from 09:00 GMT April 26, 1962)

Fig. 46. Station 3 residuals (from 09:00 GMT April 26, 1962)

Fig. 47. Ranger 4 Pioneer DSIF 2 receiver functions

Fig. 48. Oscillograph recording of receiver functions (Ranger 4 echo DSIF 3)

VI. FLIGHT PATH ANALYSIS OPERATION AND POLICIES

A. Introduction

The Flight Path Analysis (FPA) group is the part of the Spaceflight Operations team which performs the real-time radio guidance calculations as well as the post-flight determination of the spacecraft orbit. The functions performed are depicted in Fig. 49. It should be noted that the functions are sometimes carried on simultaneously in a single digital computer program.

B. Operational Description

1. Data Editing, Analysis, and Evaluation

Editing, analysis, and evaluation of the tracking data is accomplished in several ways.

- Teletype (TTY) printed display of incoming data are visually scanned in real time to detect any systematic errors.
- b. Station reports, both printed and verbal, are analyzed to detect any abnormalities. In addition, critical information on oscillator drift statistics, frequency changes, and changes in transmitter assignment is evaluated.
- c. Newly received TTY data is periodically entered, in batches, into a large digital computer program called the Tracking Data Editing Program (TDEP). The TDEP checks the format, data condition code, data range, station, and time sequence against the input master format and control cards. All data are listed along with the reason for rejection of any data point. The new data which have not been rejected are added to the TDEP's Master Data Tape which contains all accepted data.
- d. Once the orbit is reasonably well known, the deviations of the values of new observations from their predicted values (the residuals) are tested to determine whether they are within selected rejection limits. In this way "blunder points" are easily detected before they influence the estimate of the orbit.
- e. The residuals and rejected data points are analyzed to determine the validity of the noise models and to locate any systematic error source. On the basis of the information gained from the evaluation of the incoming station reports and tracking data, corrective action is recommended to the Tracking Director.

2. Orbit Determination

The tracking data placed on the TDEP's master data tape is the basis for forming an Orbit Determination Program (ODP) data tape. Control of the information placed on the ODP data tape is exercised through input to the TDEP. The ODP and TDEP are linked in such a way that the ODP can call the TDEP to add new data to the ODP tape. The most important ODP inputs are the edited tracking data, the data weights, and rejection limits.

The policies used in editing the data, and in selecting weights and rejection limits, are described in Section VI-C. During the flight, new data points are continually being added to the ODP tape, weights are revised, and residuals from selected converged orbits are plotted and printed. The converged ODP output provides an estimate of the initial conditions and physical constants (parameters, in general) describing the flight path as well as a statistical description of the uncertainties in the parameter vector. The estimated covariance of the parameter vector is then *mapped* to other regions useful for interpretation of results. Typically, the properties of the "error ellipse" in the impact parameter plane (*B*-plane) are computed as well as other quantities useful in considering maneuver alternatives.

3. Trajectory Information

At all times of a typical mission trajectory, information is essential to the analysis of spacecraft performance and scientific data, to assist in tracking station acquisition, for antenna pointing, and for general information. As suggested in Fig. 1, the basis for forming these trajectory estimates varies with the amount of information available and is continually updated.

4. Maneuver Alternatives

Since the examination of the midcourse and terminal maneuver alternatives was not necessary on this flight, this function will not be discussed at length. As suggested in Fig. 49, the trajectory estimate(s), information on expected spacecraft performance and current status, statistics of current and future knowledge of the flight path, spacecraft restraints, and mission objectives dependent on the flight path are input into a digital computer program which is designed to examine the detailed results of following the available alternative maneuvers (trajectory corrections). Commands necessary to implement any of

the various alternate maneuvers are also computed and checked.

C. In-flight Policies

The IPL Ranger Orbit Determination Program (ODP) is designed to find the set of initial conditions at injection epoch which causes the weighted sum of squares of the residuals (observed minus computed) to be minimized. We call our method *modified*-least-squares (MLS) to call attention to the method used in obtaining the weights. In the usual least squares (LS) method, the individual data points are weighted inversely proportional to their expected (or measured) variances in forming the weighted sum of the squared residuals. In MLS, the independent weighting values are determined by the expected (or measured) effective variances2. In arriving at the effective variance for each data type at each station (vs time), consideration is given to the effective correlation width of all recognized error sources, the sampling rates, range to the spacecraft, counting time, and elevation angle. The ODP-calculated covariance matrix of injection errors will always give a conservative estimate of the accuracy when effective variances ("equivalent-or-worse uncorrelated noise") are used. In editing the data, our policy is that it is better to reject a data set with questionable format than to attempt the real-time correction of the error. An analogous policy is used in weighting the data; there is a maximum weight which can be assigned to any data point independent of whether it appears that the data may be dramatically better in a particular time interval. By sacrificing our possibility of extracting the maximum possible information during the flight we reduce the sensitivity to "blunder points" or small "hidden" errors whose effect may be very significant. Section IV-B summarizes our experience on Ranger 4 in terms of the fraction of the received data which was rejected for various reasons.

² This approach was first used at JPL by A. R. M. Noton in August, 1959 in a JPL internal Technical Memorandum 312-522, Effect of Correlated Data in Orbit Determination from Radio Tracking Data. Further discussion was given by A. R. M. Noton, E. Cutting, F. Barnes (Ref. 8). T. A. Magness and J. B. McGuire have developed mathematical expressions to contrast the performance of LS, MLS, and minimum covariance estimators (under JPL Contract 950045) in terms of the eigenvalues and eigen-vectors of the data noise covariance matrix (Ref. 9).

APPENDIX A

Definition of the miss parameter \boldsymbol{B}

The miss parameter **B** is used at the Jet Propulsion Laboratory to measure miss distances for lunar and interplanetary trajectories and is described by W. Kizner in Ref. 10. **B** has the desirable feature of being very nearly a linear function of changes in injection conditions.

The osculating conic at closest approach to the target body is used in defining \mathbf{B} . \mathbf{B} is the vector from the target's center of mass perpendicular to the incoming asymptote. Let \mathbf{S}_l be a unit vector in the direction of the incoming asymptote. The orientation of \mathbf{B} in the plane normal to \mathbf{S}_l is described in terms of two unit vectors \mathbf{R} and \mathbf{T} , normal to \mathbf{S}_l . \mathbf{T} is taken parallel to a fixed reference plane and \mathbf{R} completes a right-handed orthogonal system. Figure A-1 illustrates the situation.

Our Ranger 4 work has used the orbital plane of the Moon as the reference plane. If W is a unit vector normal to the orbital plane (W in direction of $R_M \times V_M$, where R_M is radius vector to Moon from Earth and V_M is the space-fixed velocity of the Moon relative to the Earth's center) then $T = S_I \times W$ defines our coordinate system.

Fig. A-1. Definition of B · T, B · R system

3146991 APRIL 23, 1962

21 09 19.000

JULIAN DATE 2437778.38146991

0 DAYS 0 HRS. 5 MIN. 0.000 SEC.

APPENDIX B

Ranger 4 trajectory printout based on DSIF transponder orbit

1		400	0		0		01 03 03	. 0 0	2 2 2		004 003 000 000 000 003 003 003	25
-		50 04 00 09 60 09	000.6	01	04 19.000	ATES			37 61 52	IATES	5636683 04 9947350 02 9000000 03 7539724 00 1621723 00 1621723 00 162172 00 1630829 03 1651616 03 1651616 03 1651618	ή & 0 &
		.63781650 .14959900 .12671060	04 19	2463	04 1	COURDINAT	45972462 -11616584 -11727733	.11693229 -11693229	.101320 .897715 .187235	COORDINAT	.65636683 .33947350 .18000000 .27539724 .21829694 42678172 62537497- 62537497- .14551616 .11450829 .145543703 .10071303 .30295306	106160
		.63	21	1654	21		11.	11693	31			• •
		REM GAU	1962	02045972463	23,1962	QUATORIAL	DZ AZ AZE	02M 02M 02T	VI LOM DEM	EQUATORIAL	03 TEP 06 TFP 03 MTA 00 PZ 00 RZ 00 MZ -02 NDD EQUATORIAL 02 DZ 02 DZ 02 DZ 02 DZ 03 VST 00 MEP	S
		004 -02 -00	23,1	4 01 4 03	23,	EQUA	01001	000	06 03 02	EQUA	000 000 000 000 000 000 000 000	
		63781650 41780741 00000000	APRIL	4030 5568	PR 1L		48240301 16057194 16687783	4919 4919 4919	2139 7293 0225		4622976 0652344 2472946 2472946 9007062 4978968 61342373 61842373 9809485 7782121 0333709 2958091 3096740 5072798	61360
		.63781650 .41780741-	A)48240304) .21055684	∢		48240301 16057194 16687783	1386 1386	.38822139 .25727293 .12590225	œ	40404000 40404000 40404000 40404000 40404000 40404000 40404000 40404000 40404000 40404000 40404000 40404000 404040000 40404000 40404000 40404000 40404000 404040 404040 40	.3926
		RE UME GMB		01 DY0-			DY -	. E X C	RT RAM DES	AND B.F	APPO RADO PY RYY RYY DY DY DY EMP	RPI
		1-05 29 05	œ		80		01 02 02	200	01 02 04	-	000 000 000 000 000 000 000 000 000 00	
	>	999- 998 799	9166	6979 6750	9266		755 222 285	747	037 181 625	AL B	3437900 3487900 348796 35985688 3608478 360894 3751032 3751032 3161546 8151174 0815117	2655 1360
S	TA ONLY	.78749999- .88800998 .42977799	437778.3779976	DXO86979759 GHA .16750137	2437778.3779976		86979755 -10957222 -10543285	-1582541 -99683747 -99683747	.10132037 .31002181 .65584625	ORBITAL	54767970 12986796 15985688 54767205 33828478- 77751032 77751032 77751032 77751032 77552656 32161174 15823241 15823241 15823241 15823241 15823241	.1344
TRAJECTORIES	ER DATA	G WA C	24377	04	24377		DX					RPM
AJEC	ON TRANSPONDER	5 6 5 9	ATE	529350 859000	ATE		04 03 03	80 00 00 00 00	00	ONIC	000 000 000 000 000 000 000 000 000 00	00
E TR	RANS	999-(998-2 950-(JULIAN DATE	.169	JULIAN DATE					000		0.0
SPACE		-,57499999-05 ,88763998 29 ,32476950 06	100	70 70	JUL		.16529350 .12776034 .32025897	-32795152 -12461998 -12461998	.38822139 .22350081 .30703719		32793499 327934974 41184609 27539724 41184611 41184611 32793499 32793499 32793499 32793499 32793499 32793499 32793499	3160 0397
	ASED	•		5 04							•	• •
	ORBIT BA	H GMV		.50261205			Z RA LON	2 Z X X X X X X X X X X X X X X X X X X	LOS DR		INC C1 MAA WZ 902 S20 82 B 2 C2 C1 C1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TEP EST
	4 ORI ES	0-02 18 29 14 12	z				04 02 02	000	02 03 02		000 000 000 000 000 000 000 000 000 00	
	1, 1	4500- 5998 1544	MOON	٧٥	SEC		1202 4050 4050	0276 4251 4251	6391 4352 0000		3150 22285 22285 8062 0829 0832 0832 8554 8554 8554 8512- 3118	2454
	RANGER VELOCIT	.16234500 .88745990 .1327154		4 04	• 000		5026 1457 1457	.756302 358642 358642	.29606391 .19204352 .15000000		-1300315 -33782281 -33782281 -417808 -417808 -417808 -1337855 -756252 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302 -756302	.716824 .447505
				30894	0			, ,			R	а ш
	TH VENUS	J A GMS	40	X0-138930894	NI N		<u> </u>		4		A A B B C C C C C C C C C C C C C C C C	STI
	H	96-1-9	I CN	-0×			4000	002	62 63			8 02 3 03
	1DES	0320 9998 7589	NC II		HRS		0893 8828 8828	1605	5252 9099		PERICEI 3065435 11865435 2103242 2103242 8098264 8098265 6166063 11258629 11258629 11258629 1125960 11	4768042
	EPHEMERIDES	.39860320 0. .66709998-19	00 N	O N	%	2	.38930893 .65688828 .65688828	1258 8100	3 .15045252 09 1 .14669099 02 1 .34000000 02) I C	CF PERICENTER .30654356 06 .31862434 00 .31862434 00 .31862434 00 .21032427 00 .20982647 00 .24767205 00 .24767205 00 .2586294 C9 .12585905 09 .12585905 03 .13442655 03 .13442655 03	.135
-	EPH	шю́⋝	INJECTICN CCNCITICNS	GECCENTRI GARTESIAN	DAYS	GECCENTR 1C	,	5) <u>E</u> 1	RS I	ECCENTRI	ن ب	
GASE		2 3 0 0	FAJE	GECC	ပ	GECC		K K)	RS GED DUT	GECC	THE BEST THE STANDS TO STANDS THE	Ξ.

RANGER-4 ORBIT BASED ON TRANSPONDER DATA ONLY

EQUATORIAL COORDINATES	DY64815417 01 DZ49746107 01 PTH .15044831 02 AZ .11966262 03 PTE .15693767 02 AZE .12115274 03 DYS .22957216 02 DZS .99539900 01 DYM13790786 00 DZM11667509 00 DYT13790786 00 DZT11667509 00 RT .38820868 06 VT .10132304 01 RAM .25731982 03 LOM .88555025 02 DES .12591378 02 DEM18729649 02	EQUATORIAL COORDINATES DY29438758 02 DZ14928601 02 PTH .1741512 02 AZ .11342649 03 DYE22957216 02 DZE99539900 01 DYT23095124 02 DZI10070665 02 RST .15072792 09 VST .30294767 02 EMP .99933908 00 MEP .10502122 03 EMS .44791637 02 ESM .10397499 00 TSP .10630134 00 STP .45788267 02 RPT .39009368 06 SPN46357050 01	APRIL 23,1962 21 14 19.000 EQUATORIAL COORDINATES	DY71467783 01 DZ48363469 01 PTH .25814556 02 AZ .11840662 03 PTE .27170303 02 AZE .12031673 03 DYS .22956341 02 DZS .99536096 01 DYM13716637 00 DZM11641779 00 DYT13716637 00 DZT11641779 00 RT .38819596 06 VT .10132572 01 RAM .25736671 03 LOM .87358497 02 DES .12592531 02 DEM18735735 02	EQUATORIAL COORDINATES	DY30103119 02 DZ14789956 02 PTH .14885906 02 AZ .11261123 03 DYE22956341 02 DZE99536096 01 UYT23093507 02 DZE90536096 01 UYT23093507 02 DZT10070027 02 RST .15072785 09 VST .30294227 02 EMP .11939682 01 MEP .83587386 02 EMS .44832692 02 ESM .10397499 00 TSP .10630134 00 STP .46014623 02 KPT .38737287 06 SPN12434074 02	APRIL 23,1962 21 24 19.000
	Z .20109286 03 DX67168266 01 RA .15200649 03 V .10576998 02 LON .34325170 03 VE .10149963 02 ZS .32798139 08 DXS15824710 02 ZM12465502 06 DXM .99699762 00 ZT12465502 06 DXI .99699762 00 RM .38820868 06 VM .10132304 01 LOS .22225064 03 RAS .31005439 02 DR .27455219 01 SHA .61156154 04	Z32797937 08 DX .91078836 01 LON .21100308 03 V .34241161 02 ZE32798139 08 DXE .15824710 02 ZT32922794 08 DXT .16821708 02 LTT12616561 02 LDT .21110900 03 SEP .11975145 03 EPM .73979462 02 SMP .45788267 02 SEM .13510420 03 TEP .10502122 03 TPS .13410525 03 EST .10397499 00 RPM .39009368 06	JULIAN DATE 2437778.38494213	Z12793959 04 DX47286271 01 RA .17111244 03 V .98400510 01 LON .11042298 01 VE .93837070 01 ZS .32801124 08 DXS15826180 02 ZM12468998 06 DXM .99715717 00 ZT12468998 06 DXT .99715717 00 RM .38819596 06 VM .10132572 01 LOS .22100048 03 RAS .31008697 02 DR .42849467 01 SHA .51456417 04		Z32802404 08 DX .11097552 02 LON .21100669 03 V .35328406 02 ZE32801124 08 DXE .15826180 02 ZI32925814 08 DXT .1682337 02 LTT12617743 02 LOT .21111232 03 SEP .14069143 03 EPM .95218637 02 SMP .46014623 02 SEM .13506307 03 TEP .83587386 02 TPS .13387923 03 EST .10397499 00 RPM .38737287 06	JULIAN DATE 2437778.39188657
GECCENTRIC	X62174357 04 Y .33049653 04 R .70441281 04 CEC .16358781 01 R .70441281 04 LAT .16358781 01 X3 .12585430 09 YS .75637164 08 XM80702529 05 YM35868400 06 XT80702529 05 YT35868400 06 RS .15045266 C9 VS .29606370 02 GED .16470201 01 ALT .66593945 03 CUT .34000C00 C2 DT .30000000 02	HELIQCENTRIC X12586052 C9 Y75633859 08 R .15045616 09 LAT12591003 02 XE12585430 09 YE75637164 08 XT12593501 C9 YT75995848 08 LTE12591378 02 LOE .21100543 03 EPS .60246223 02 ESP .27453512-18 MPS .13410525 03 MSP .10630134 00 EPT .73979462 C2 ETP .99933908 00 SET .13510420 C3 STE .44791637 02	G DAYS O FRS. 10 MIN. 0.000 SEC.	X79249C38 04 Y .12392433 04 R .81226028 04 CEC90624323 01 R .81226028 04 LAI90624323 01 X9 .12584956 09 YS .75644051 08 XM80403405 05 YM35872525 06 XI80403405 05 YI35872525 06 R3 .15045281 09 VS .29606349 02 GED91231555 01 ALT .17449321 04 CUT .34000C00 02 DT .59999999 02	HELIOCENTRIC	X12585748 С9 Y75642812 ОВ R .15045909 О9 LAT12592496 О2 XE12584956 О9 Y75644051 ОВ XT12592996 О9 Y76002776 ОВ LTE12592531 О2 LOE .21100869 О3 EPS .39306611 О2 ESP .27463512-18 MPS .1387923 ОЗ MSP .10630134 ОО EPT .95218637 О2 ETP .11939682 О1 SET .13506307 ОЗ STE .44832692 О2	C DAYS 0 HRS. 20 MIN. 0.000 SEC.

RANGER-4 ORBIT BASED ON TRANSPONDER DATA UNLY SPACE TRAJECTORIES

EQUATORIAL COURDIVATES	39737249 04 DX21721846 01 DY69795193 01 DZ41297783 0119711843 03 V .83956622 01 PTH .39454631 02 AZ .11151251 0324603373 02 VE .78704131 01 PTE .42677909 02 AZE .11425754 0332807096 08 DXS15829118 02 DYS .22954590 02 DZS .99528489 0112475968 06 DXM .99747449 00 DYM13568290 00 DZM11590289 0012475968 06 DXI .99747449 00 DYT13568290 00 DZM11590289 0012475968 06 DXI .99747449 00 DYT13568290 00 DZM11590289 0012475968 06 DXI .99747449 00 DYT13568290 00 DZM11590289 0012475968 06 DXI .39747449 00 DYT13568290 00 DZM11590289 0012475968 06 DXI .30053763 04 DES .12594837 02 DEM18747871 02	EQUATORIAL COGRDINATES	32811070 08 DX .13656933 02 DY29934109 02 DZ14082627 02 .21101424 03 V .35789427 02 PTH .10790595 02 AZ .11158371 0332607096 08 DXE .1582918 02 DYT22954590 02 DZE99528489 0132931856 08 DXI .16826592 02 DYT23090273 02 DZI10068752 0212620108 02 LDI .21111898 03 RSI .15072773 09 VSI .30293145 02 .16428875 03 EPM .12215708 03 EMP .13869862 01 MEP .56455892 02 .46261606 02 SEM .13498081 03 EMS .10514460 00 STP .46261606 02 .10544440 00 STP .46261606 02 .10544440 00 STP .46261606 02 .105444440 00 STP .46261606 02 .105444440 00 STP .19366312 02		EQUATORIAL COCRDINATES	82415521 04 DX26653217 00 DY58720259 01 DZ30956743 01 .22398046 03 V .66434122 01 PTH .51839502 02 AZ .10016676 03 .46451707 02 VE .60243257 01 PTC .60121647 02 AZE .10397080 03 .32819040 08 DXS15834994 02 DYS .22951087 02 DZS .99513268 01 .12489314 06 DXM .99810191 00 DYM13271403 00 DZM11487191 00 .12489314 06 DXI .99810191 00 DYI13271403 00 DZI11487191 00 .38811962 06 VM .10134180 01 RT .38811962 06 VI .10134180 01 .21349949 03 RAS .31028244 02 RAM .25764821 03 LDM .60119457 02 .52236027 01 SHA .58845663 04 DES .12599449 02 DEM18772010 02	EQUATORIAL COORDINATES	32827281 08 UX .15568462 02 DY28823113 02 DZ13047001 02 .21102959 03 V .35261496 02 PTH .70486006 01 AZ .11075582 0332819040 08 DXE .15834994 02 DYE22951087 02 DZE99513268 0132943938 08 DXI .16833096 02 DYT23083801 02 DZI10066199 0212624835 02 LDI .21113228 03 RST .15072747 09 VST .30290978 02 .16038241 03 EPM .14643047 03 EMP .14308762 01 MEP .32138665 02 .2593138665 02 TPS .13481625 03 TSP .10302974 00 STP .46390941 02 .16491172 00 STP .46390941 02 .17241495 01	JULIAN DATE 2437778.41966435 APRIL 23,1962 22 04 19.000
	2 39 RA -19 LON -24 ZS -32 ZM 12 ZM 12 ZM 12 ZM 12 ZM 12 ZM 12 ZM 12		232 LON 21 ZE32 ZI32 LIT12 SEP16 SMP46 TEP56			282 RA22 LON -466 2S -32 2M12 ZI12 RM -38 LOS -21		2 32 LDN 21 ZE 32 ZT 32 LTT 12 SFP 16 SFP 46 SFP 16	
GECCENTRIC	X99037209 C4 Y30502711 04 R .11098573 C5 GEC20979827 02 R .11098573 C5 LAT20979828 02 X3 .12584C06 C9 YS .75657824 08 XM79805C17 C5 YM35880711 06 XT79805C17 C5 YM35880711 06 RS .15045309 C9 VS .29606306 02 GED21110246 C2 ALT .47231348 04 CLT .340C0C00 C2 DT .12000000 03	HELIOCENTRIC	X12584997 09 Y75660874 08 R .15046377 09 LAT12595478 02 XE12584C06 09 YE75657824 08 XT12591987 09 YT76016631 08 LTE12594837 02 LDE .21101521 03 EPS .15710104 C2 ESP .98911702-02 MP9 .13363325 C3 MSP .1C514460 00 EPT .12215708 03 ETP .13869862 01 SET .13498C81 C3 STE .44914813 02	C DAYS 0 PRS. 40 MIN. 0.000 SEC.	GECCENTRIC	X11130819 05 Y1C741573 05 R .17527113 05 CEC28048405 02 R .17527113 05 LAT28048405 02 X3 .12582106 09 YS .75685370 08 XM78607664 05 YM35896815 06 XT78607664 05 YT35896815 06 RS .15045366 09 VS .29606221 02 GED28210197 02 ALT .11153682 05 DUT .34000000 02 DT .12000000 03	HELIOCENTRIC	X12583219 09 Y75696111 08 R .15047017 09 LAT12601260 02 XE12582106 09 YE75685370 08 XT12589967 09 YI76044338 08 LTE12599449 02 LGE .21102824 03 EPS .19615343 C2 ESP .27453512-18 PPS .1350451 C3 PSP .10302974 00 EPT .14643647 03 ETP .14308762 01 SET .13481625 03 STE .45079091 02	C DAYS 1 PRS. 0 MIN. 0.000 SEC.

RANGER-4 ORBIT BASED ON TRANSPONDER DATA ONLY

NATES	556 02 748 02 748 02 042 01 934 00 734 00 550 02	WATES	788 02 925 03 042 01 643 02 805 02 544 02 460 00 176 02	22 34 19.000 COORDINATES	878 01 832 02 615 02 196 01 756 00 756 00 867 01 876 02	NATES	207 02 1772 03 196 01 807 02 531 02 772 02 881 00 016 02	0 04 19.000
L COURUINAT	25379840 93630356 97093748 11383934 11383934 11135253	L COORDINA	12487788 11042925 99498042 10063643 .30288805 .21360544 .10514460 .46353176		2065687888012832 .72775615 .994751961122875611228756 .10136867 .68054876	L COURDINA	12013 10119 99475 10059 30285 .13693 .10560	00 04
EUUATORIAL	D2 A2E A2E D2S D2M V1	EQUATORIAL	DZ DZE DZE DZT VST WEP ESM STP SPN	APRIL 23,1962 EQUATORIAL	D2 A2E D2S D2M D2T VT LOM	OUATORIA	DZ DZ DZ DZ T NZ T NZ T S T P S T P	24,1962
EGU	000 000	EUU	02 02 03 03 00 00 00 00	23 EQU,	02 02 00 00 00 03 03	E0N	02 01 02 02 03 01 01 06	
	50917754 .57595638 .71972711 .25947584 12974261 12974261 .38806867 .25783599		28039359 -54239385 22947584 23077326 .15072721 .13418254 .154243419	APRIL	43524158 .62293094 .86480850 .22942325 12528077 12528077 12528077 .38799218		27294741 41957698 22942325 23067606 .15072682 .1505427 .45490004	APRIL
	DY PTH PTH DYS DYM NYT RAM DES		P D P T D C C C C C C C C C C C C C C C C C C		DY PTH PTE DYS DYM DYT RAM RAM		DYTH DOYTH RSST EMB EMB FEET SEET SEET SEET SEET SEET SEET SEET	
	00 01 02 00 00 01 01		02 02 03 03	89	00 00 00 00 00 00 00		005 003 003 003	80
	.37217164 .57014077 .50621289 -15840870 .99871972 .10135253 .31041276		.16213042 .34713301 .15840870 .16839590 .21114559 .15729757 .13465163	2437778.44049768	.74596762 .48751468 .43243049 15849682 .99962838 .99962838 .10136887 .31060826		.16595649 .34128223 .15849682 .16849310 .21116555 .13440462 .13370281	2437778.50299768
	DX CE CX CX CE CX CX CE CX		DX DX DX DX CX		DX C C C C C C C C C C C C C C C C C C C		DX DXE DXT LOT EPM SEM RPS	
	05 03 08 06 06 06		08 00 00 00 00 00	DATE	03 03 06 06 06 01		08 00 00 00 00 00	DATE
	11591394 .23750690 .54964453 .32830981 12503537 12503537 .38806867 .20849883		32842572 -21104483 32830981 32956016 12629563 -15021136 -46353176 -21360544	JUL IAN	15692801 24886189 58798922 32848889 12523888 12523888 12523888 20099785		32864581 -21106742 32848889 32974127 12636651 1109494 46199016 13693772	JULIAN DATE
	RA LUN 2S ZM ZM ZT RM LOS DR		2 2E 2E 21 21 21 21 27 26 28 28 26 26 27		LON LON LON ZA ZT RM LOS DR		2 LON 2E 2T LTT SEP SMP TEP	
	05 02 06 06 06 05 03		08 00 08 00 00 00 00		05 00 00 00 00 00 00 00		08 02 08 03 03 01 01	
	17287770 29489661 29489662 35912562 35912562 35912562 35912562 35912562 35912662		-,75730197 -,12606844 -,75712910 -,76072035 -,27453512 -,10111274 -,13418254	0.000 SEC.	25732368 29631764 29631764 .75754214 35935516 35935516 .29606010 .25366646		75779946 12614996 75754214 76113569 .21106082 .13988277- .98167074-	0.000 SEC.
	CEC LAT YS YM YT VS ALT		LAY ECOE FSP STE STE	Z 2 2	CEC LAT VAS VAT DT		LAT YE YT TOE ESP ETP STE	Ζ Σ
	05 05 05 06 05		03 03 03 03 03	30	02 02 03 03 03		03 03 03 03	0
ECCENTRIC	11010598 23546989 23546589 77409564 77409564 77409564 77409564 29656693	CCENTRIC	12581306 12580206 12587546 12687546 125978478 13545915	C DAYS 1 HRS.	99489607 -31739574 -31739574 -12577353 75611041 75611041 75611041 75611041 75611041 75611041 75611041 75611041 75611041 75611041	HELIDCENTRIC	12578348 12677353 12577353 12584914 12610976 .38897466 .13370281 .15510102	DAYS 3 FRS.
GECCE	K K K K K K K K K K K K K K K K K K K	HEL IC	SE PER X X X X X X X X X X X X X X X X X X X	C DA GECCENT	K K K K K K K K K K K K K K K K K K K	HEL 10	SEPSSET X X X X EPSSET X X EPSSET X X EPSSET X X EPSSET X	ပ

SPACE TRAJECTORIES	STATE OF CHARACTER AND STREET AND STREET

DRBIT BASED ON TRANSPONDER DATA ONLY	EQUATORIAL COORDINATES	1275824 05 DX .10017071 01 DY22810636 01 DZ93442374 00 CX 26607923 01 PTH .73391331 02 AZ .74896993 02 CX 2778177 01 VE .60396120 01 PTE .24972075 02 AZE .27207423 03 CX 27207423 02 CX 2720742423 02 CX 27207423 02 CX 27207423 02 CX 27207423 02 CX 2720742423 02 CX 272074242424 02 CX 2720742424 02 CX 2720742424 02 CX 272074242424 02 CX 272074242424 02 CX 2720742424 02 CX 2720742424 02 CX 2720742424 02 CX 2720742424 02 CX 272074242424 0	EGUATORIAL COORDINATES	33086884 C8 DX .16948196 02 DY25165368 02 DZ10856733 02 21130609 03 V .32224303 02 PTH .18078751 01 AZ .10978058 03 23045608 08 DXE .15946488 02 DYE22884305 02 DZE99223094 01 23172899 08 DXT .16954669 02 DYT22960157 02 DZT10017303 02 LZT14496 02 LDT .21138500 03 RST .15072217 09 VST .30248570 02 11756598 03 EPM .15943452 03 EMP .49231942 01 MEP .15642283 02 13914970 02 SEM .10992114 00 LSE42283 02 LPS .13600656 03 TSP .77883157-01 STP .43914970 02 LSE42283 02 LPS .13600656 03 TSP .77883157-01 STP .43914970 02 LSE42283 02 LPS .13600656 03 TSP .77883157-01 STP .43914970 02 LSE42283 0	JULIAN DATE 2437778.79466435 APRIL 24,1962 07 04 19.000	EQUATORIAL COORDINATES	0422303 05 DX .95040084 00 DY19449705 01 DZ77328204 00 8070760 03 V .22987251 01 PTH .74914331 02 AZ .73115670 02 2279551 03 VE .77128150 01 PTE .16724410 02 AZ .77134796 03 3152698 08 DXS15999195 02 DYS .22852518 02 DZ .99084986 01 2826582 06 DXM .10117180 01 DYM48651097-01 DZM85396571-01 2826582 06 DXT .10117180 01 DYT48651097-01 DZT85396571-01 8667742 06 VM .10164806 01 RT .38667742 06 VT .10164806 01 RT .38667742 06 VT .10164806 01 3481204 02 RAS .31393293 02 RAM .26294221 03 LDM .30503012 03 2195059 01 SMA .10989418 06 DES .12728314 02 DEM19372764 02	EQUATORIAL COORDINATES	3203121 08 DX .16949596 02 DY24797488 02 DZ10681781 02 11143313 03 V .31879533 02 PTH .1552569 01 AZ .10972620 03 3152698 08 DXE .15999195 02 DYE22852518 02 DZE99984986 01 3280964 08 DXT .17010913 02 DYT22901169 02 DZT99938951 01 2756853 02 LOT .21150464 03 RST .15071938 09 VST .3027679 02 1390383 03 EPM .15518852 03 EMP .74955759 01 MEP .17315907 02 2816222 02 SEM .13018869 03 EMS .49699011 02 ESM .11234211 00 17315907 02 TPS .13711282 03 TSP .71326247-01 STP .42816222 02 1234211 00 RPM .27426440 06 RPT .27426440 06 SPN .63012817 02	JULIAN DATE 2437779.00299768 APRIL 24,1962 12 04 19.000
RANGER-4 DRBIT BASE	GEOGENTRIC	X .97321565 04 Y84542879 05 Z4 R .94582802 05 CEC25874336 02 LON .3 X8 .12545873 09 YS .76207924 08 ZS .3 XM55729271 05 YM36134740 06 ZM1 XI55729271 05 YY36134740 06 ZM1 RS .15046446 09. X .29604630 02 RM .31 GED26027451 02 ALT .88208707 05 LOS .1 CUI .34000000 02 DI .9599999 03 DR .2	HELIGCENTRIC	X12544900 09 Y76292466 08 Z3 R .15050825 09 LAT12699304 02 LON .2 XE12545873 C9 YE76207924 08 ZE3 XT12551446 09 YT76569271 08 ZT3 LTE12686950 02 LOE .21127592 03 LTT1 EPS .62402102 02 ESP .32051055-01 SEP .1 MPS .13600656 03 MSP .77883157-01 SMP .4 EPT .15943452 03 ETP .49231942 01 TEP .1 SET .13168628 03 STE .48209799 02 EST .1	0 DAYS 10 FRS. C MIN. 0.000 SEC.	GECCENIRIC	X .20273767 05 Y10721795 06 Z56 R .12020450 06 DEC24801194 02 LDN .3. XS .12528621 09 YS .76454913 08 ZS .3. XM44821058 05 YM36201986 06 ZM11 XI44821058 05 YY36201986 06 ZI11 RS .15046957 C9 VS .29603887 02 RM .3 GED24949696 02 ALT .11383010 06 LOS .77 CMT .34000000 02 DT .9599999 03 DR .22	HELIOCENTRIC	X12526594 09 Y76562130 08 Z33 R .15051831 09 LAT12743800 02 LON .21 XE12528621 09 YE76454913 08 ZE3 XI12533104 09 YI76816932 08 ZI3 LIE12728314 02 LOE .21139329 03 LIT15 EP3 .66054334 02 ESP .42543532-01 SEP .11 MP3 .1371282 03 MSP .71326247-01 SMP .45 EP1 .15518852 03 ETP .74955759 01 TEP .1 SEI .13018869 03 STE .49699011 02 EST .11	0 DAY\$ 15 FRS. 0 MIN. 0.000 SEC.

SPACE TRAJECTORIES

RANGER-4 ORBIT BASED ON TRANSPONDER DATA ONLY

EQUATORIAL COORDINATES	16096418 01 DZ61847980 00 .76291296 02 AZ .71416859 02 .10590101 02 AZE .27083278 03 .22799319 02 DZS .98853865 01 30068058-02 DZM69167291-01 30068058-02 DZT69167291-01 .38589193 06 VT .10181731 01 .26580777 03 LOM .23269034 03 .12797133 02 DEM19632984 02	EQUATORIAL COORDINATES	24408961 02 DZ10503866 0213394556 01 AZ .10966281 0322799319 02 DZE98853865 0122802325 02 DZT99545538 0115071434 09 VST30191749 0211607531 02 MEP .18068777 0252189969 02 ESM .11682475 0061373100-01 STP .41215747 02	APRIL 24,1962 17 04 19.000	EQUATORIAL COORDINATES	13971235 01 DZ52346106 00 .77056952 02 AZ .70358207 02 .76559094 01 AZE .27059498 03 .22745844 02 DZS .98621568 01 .42938872-01 DZM52673470-01 .38509798 06 VT .10199042 01 .26869250 03 LDM .16036974 03 .12865800 02 DEM19848546 02	EQUATORIAL COORDINATES	24142968 02	APRIL 24,1962 22 04 19.000
	DY1 PTH -7 PTE -1 DYS -2 DYM3 DYM3 RT3 RAM -2		072 PTH -1 DYE2 DYI2 WXI -1 EMP -1 EMS -5 TSP -6			DY1 DYS -2 DYM -4 DYY -4 DYT -4 DYT -4 DYT -4		DY2 DYE1 DYT2 DYT2 EMP1 EMS1 TSP1	
	756999 39								
	00 01 02 01 01 02 00		02 02 03 03 03 06	02		00 01 02 02 01 01 02		02 02 03 03 03	35
	.87394933 .19331972 .10219343 16086888 .10158166 .10158166 .10181731 .31588982		.16960838 .31524571 .16086888 .17102705 .21170394 .15032368 .12769395	437779.21133102		.81187177 .16985586 .12425759 -16174392 .10176376 .10199042 .31784757		.16986264 .31293403 .16174392 .17192029 .21190311 .14686502 .12518819 .14010828	2437779.41966435
	DXX OXX OXX OXX OXX OXX OXX OXX OXX OXX		N N N N N N N N N N N N N N N N N N N	7		DX C C C C C C C C C C C C C C C C C C C		DX CDX CX	
	05 03 06 06 06 01		08 00 02 00 00 00	DATE		05 03 06 06 06 01		00 00 00 00 00 00 00 00	DATE
	62814099 .28478470 .25166726 .33330851 12965732 12965732 .35847155		33393665 21164268 33330851 3460508 12827280 .41215747 .1806818747	JULIAN		73034156 28734960 17902684 33508587 13075425 38509798 28346199		33581621 -21185046 33508587 33639341 12897493 .10807814 .39839732 .17615181	JULIAN DATE
	RA LON ZS ZM ZT RM LOS DR		Z LON ZE ZT LTT SEP SMP TEP			RA LON 2S 2M 2T RM LOS DR		2 LON ZE ZT LTT SEP SMP TEP	
	005 005 006 006 006 007		08 00 03 01 02 02			00 00 00 00 00 00 00 00 00 00		08 008 003 001 002	
	13893836 23611685 23611685 36248532 36248532 36248532 36248532 15045040		77004743 12816939 76865805 77228290 -21158898 -56820448- -61373100- 11607531	0.000 SEC.		16587884 22794798 22794798 36212632 36212632 3621461 .18213341		77441613 (1289219 (7727573 (77637861 (.21178475 (.67810450-(.51396029-(.15519797 (0.000 SEC.
	CEC LAT YS YM YT YT ALT		LAT YE YE YE ESP MSP ETP STE	Z Z E		DEC LAT YS YM YT VS ALT		LAT YE YE COE MSP ETP STE	Z E
	005 005 005 005 005		003 003 003 003 003	0		05 06 06 07 07 07 07		009 009 003 003 003	0
GEDCENTRIC	x .36669410 0 R 115682514 0 R 115682514 0 X3 .12692742 0 XM26569782 0 XI -126569782 0 RS 115047808 0 GEB23754827 0 DNI .34000000 0	HEL JOCENTRIC	X12496075 C R15053258 C XE12499742 C XT12502399 C LTE12797133 C EPS69637732 C PPS1372362 C EPT15032368 C	0 DAYS 20 HRS.	GEOCENTRIC	X .51823C88 C R .18850838 C XS .12470706 C XM82551769 C XI82551769 C XI82551769 C XI82551769 C XI32593416 C GED2293416 C	HEE IGCENTRIC	X12465523 R15054519 XE12470706 XT12471532 LTE12865800 EPS .71853656 MPS .14010828 EPT .14686502 SET .12518819	1 DAYS 1 HRS.

GASE

RANGER-4 ORBIT BASED ON TRANSPONDER DATA ONLY

S	00 02 01 02 02	S	02 03 01 02 02 02	00	S	000 002 003 001 001 002	Ŋ	005 005 005 005 005	00
COORDINATE	3056 7521 3094 3094 3019- 3019- 3755	NATE	640 268 3094 584 870 735 410 561	04 19.000	NATE	102 990 415 442 268- 268- 888 922	ATE	659414575 639414575	19.000
00KD1	.45683(.695777 .27046(.98388(.35949(.10216 .88067(COORDINA	.10295 .10956 .98388 .98747 .30115 .16540 .12314 .38636	3 04	COORDINATE	.40646 .68924 .27037 .98153 .19029 .10234 .15780	COORDIN	-105218 -105218 -981534 -983437 -150905 -150905 -126282 -375671	40
	1 1 1	٩٢	1 1 1	0	AL CO		Ą.		08
QUATORIAL	DZ AZE DZS DZM VI LOM	ATORI	DZ DZE DZE VST WEP STP STP	1962	EQUATORI	DZ AZE AZE DZS DZM DZT VT LOM	OR I	02 02 02 02 02 02 02 02 02 03 03 04 05 05 05 05 05 05 05 05 05 05 05 05 05	25, 1962
EQU/	3 01 3 02 0 01 5 02 3-01 7 06 7 03	EQUA	9 02 9 02 9 03 9 03 1 02 9 05	. 25,	EQUA	9 01 9 02 9 02 9 03 9 03	EQUAT	002 002 005 005 005 005 005 005 005 005	
	48643 39643 65590 92095 85963- 29607 34316		3695 2332 9209 0300 7028 7326 78226	APRIL 25,1962		80128 74104 12250 38069 33162 33162 48678 51440		56081 32270 38069 3273 59652 59652 30583	APRIL
	-12448 -77546 -59465 -89086 -89086 -38426 -27159		23936959 11623325 22692095 22603008 .15070289 .19273261 43678226-			-11280 -77874 -48312 -22636 -13533 -3834 -27451		Y23766081 11202270 E22638069 T2502737 T15069652 P .22904786 S .59730583 P .3766454-	
	DY PTH PTH DYS UYM DYY RAM RT		DY - DYE - UYT - EMP EMS RPT			DY - PTH - PTE DYS DYM DYT RAM		DY - DYE - DYE - DYT - RST - EMP RPT - RPT	
	00 01 02 01 01 05		000 000 000 000 000	80		00 02 02 01 01 05		000000000000000000000000000000000000000	
			053 704 704 353 353 300 35 301	39266					33102
	76034877 15285652 14406845 16261704 10171491 10216755 31980620		.170220 .31124 .162617 .172788 .212102 .14186 .12671	437779.6279976		.11625490 .13966547 .16213235 .16348826 .10143237 .10143237 .10234888 .32176573		.17055081 .30992400 .16348826 .17363150 .21230102 .14200467 .12014333 .14239521	2437779.83633102
				97778		•			9717
	DX V DX V DX V DX V DX V DX V DX		DX C C C C C C C C C C C C C C C C C C C	7		D X X X X X X X X X X X X X X X X X X X		DX DX DX CX	
	05 03 05 06 06 06 06 06 06 00 06 00 00 00 00 00		00 00 00 00 00 00	DATE		03 04 06 06 03		00 00 00 00 00 00 00	DAT
	25897 18320 65509 85904 55216 55216 29607 45252		57729 05706 35904 17456 57491 52327 36561 14410	JUL I AN		16488 58536 58536 58536 52800 52800 54722 54931		33952376 21226278 33862800 33994847 3037269 (0536387 7567158 15090534	JULIAN DATE
	.8182 .2891 .1056 .3368 .1315 .1315 .3842 .2084		-337677 -212057 -3386859 338174 129674 -386365 -165407	=		89576488 29059201 31858536 33862800 13204722 13204722 1344309			3
	2 - LON 2S - ZN - Z		2 - LON ZE - ZE - ZT - ZT - ZT - ZT - ZT - ZT -			R Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		Z ZE ZE ZI ZI ZI ZI ZI ZI ZE P. SRP SRP SRP EST	
	20083044 1					<u>,</u>			
	20 000 001 000 001 000 000 000 000 000 0		289 08 867 02 699 08 637 08 362 03 368-01 226-01 558 02	EC.		10 06 63 02 63 02 94 08 63 06 63 06 79 06		3598 08 2004 02 2694 08 1612 08 7657 03 4872-01 4786 02 0583 02	EC.
			78742 76846 80456 110456 111980 91293 92732	S				30359 32200 3269 39269 51765 29487 56445 30478	S
	189590 221772 221777 360938 360938 296002 210398		77874; 129606; 76845; 78045; 211986; 791293; 43678; 19273;	000.0		210904 216822 2168226 358918 358918 236077		-, 783035 -, 130320 -, 786926 -, 784516 -, 212176 -, 892948 -, 229047	000 • 0
	CEC LAT YS YM YT VS ALT		LAT YE YT LOE ESP MSP STE	Z Z Z		CEC LAT YS YM YT VS DT		LATY YE SP ESP ETP STE	Z H E
	05 05 05 05 05 05		00 00 00 00 00 00 00 00	0		00 00 00 00 00 00 00 00 00 00 00		09 00 00 00 00 00 00 00	0
	323 323 512 512 462 552 000			6 HRS					HRS.
2	.21677323 .21677323 .21647512 .10051462 .10051462 .15049510	R IC	24413 24413 24413 2413 2413 2413 2413		ပ္	*79240100 *24245305 *24245305 *12412160 *28338321 *28338321 *28338321 *28338321 *34000000	R IC	-12404236 -15056801 -12412160 -12409326 -13002680 -14547165 -14239521 -1420467	11 HRS
ECCENTR 1C	•	CENTR		DAYS	ENTR		SCENT		DAYS
GECC1	X X X X X X X X X X X X X X X X X X X	HEL 1GC	S E E E E E E E E E E E E E E E E E E E		GEOGENTA	D C C C C C C C C C C C C C C C C C C C	HEL JOCENTRIC	S E P S S E L E P S E L E	-

	ES	00 03 03 03 03	ES	02 03 01 02 02 02	• 000	ES	00 02 03 01 -01 02	ES	02 03 01 01 02 02 02	000
		30733578 66812306 27023872 -97442411 -32534580- -32534580- -10291883 -15900703		10051577 10937824 97442411 97117065 29949500 94665521 13398797 34758723	19.	NAT	28574185 .65500513 .27021272 .97203037 .49861484- .49861484- .10311756 .86771829	NAT	10006046 97203037 95704422 29905212 -73102176 -13580115 -33705053	19.000
	COORDINAT	733 812 023 7442 7442 534 534 534 534 1291	COORDINAT	0051 7442 7442 1117 1117 1117 1117 1158 1758	04 19	COORDINAT	574 500 021 021 2203 861 861 861 146	COORDINAT	0006 2003 2003 2005 2005 2005 047	40
	000	- 30 - 24 - 27 - 32 - 32 - 10	000	10 97 97 97 97 97	23	000	27 65 67 97 97 97 98 98	000	.10 .10 .96 .29 .73 .73	04
	IAL	DZ - AZ = DZ S DZ M DZ T V T L C D M -	ORIAL	DZ - AZ DZE - DZT - VST - WEP ESM STP SPN	8	IAL	DZ - AZ AZE DZS DZM VT LOM -	IAL	DZ - DZE - DZE - DZT - WEP MEP STP SPN	N.
	TOR		TOR	N. M. Z. C. D.	196	TOR	000000	TORIA	NO MERCODI	26,1962
	EQUATORIAL	00 00 00 00 00 00 00 00	EQUAT	02 02 02 03 03 04	25, 1962	EQUATORIA	00 00 00 00 00 03	EQUAT	02 02 02 02 03 05	26,
	ш	39557925 78699008 30311004 22474329 27360205 27360205 38102148 13206844		23369908 10719529 22474329 22200727 15067519 33479822 57375211 19782341-	APRIL	w	84662575 79215463 26910979 22419194 31917130 38019001 28632666	ш	819 238 1194 1022 1743 1421 1421 1227–	APRIL
		5557 200 200 200 200 200 200 200 200 200 20		369 471 471 474 479 479 980	AP		662 215 215 910 917 917 019 274		265 791 791 100 100 106 947 988 049	AP
		. 89 					. 88 . 31 . 38 . 38 . 38 . 38		2326581 -1079123 2241919 2210002 .150674 .3716442 .6994718	
		DY - PTE DYS DYM DYT RTAM DES		DY - DYE - DYT - DYT - EMP EMS RPT			DY - PTE PTE DYS DYM DYT RAM DES		DY DY DY BY	
		00 00 00 00 00 00 00		02 03 03 03 03	2		00 00 00 00 00 00 00		003	55
-		.60960381 .11261147 .20883545 -16609034 .99162086 .99162086 .10291883		.17218638 .30719184 .16609034 .17600655 .21289670 .13705361 .11249092	3310		.57747397 .10639078 .22259605 .16695382 .97926839 .97926839 .3191756		856 682 650 650 650 650 650 650 688 688	5643
5		960 883 609 162 162 162 162 162 038		218 6009 7009 7009 7009 7009 7009	461		747 639 259 695 926 926 311 961		.172728 .306556 .166953 .176746 .213094 .135525 .195916	699
		111111111111111111111111111111111111111		.17 .30 .16 .17 .11	80.		57 10 10 10 10 10 10 10			80.
2		DX VE DXX V VE DXX V VE VX V V V V V V V V V V V V V V V		DX C DX C C C C C C C C C C C C C C C C	2437780.46133102		DX VE V V V V V V V V V V V V V V V V V V		D C C C C C C C C C C C C C C C C C C C	2437780.66966435
		2 200 2 3 2		_ 00Jmwts			2000.52		997525	
I KANSPUNDER DAIA		06 03 06 06 06 03		08 03 08 02 03 00	DATE		06 03 06 06 03 01		08 03 02 03 00 00	JULIAN DATE
A Y		10858206 .29345055 .16910105 .34390941 13168670 13168670 .38102148 .26841547		34499523 .21287634 34390941 34522628 13245239 .34758723 .34758723	IAN		- 11391189 - 29411615 - 94561318 - 34566132 - 13094517 - 13094517 - 13094617 - 13094617 - 13094618		34680043 21308002 3456132 34697077 13314096 .10271590 .33705053 .73102176	AA
		858 345 345 108 108 102 042		499 390 390 390 391 398 398	JULIAN		391 561 561 561 561 561 561 561 561 561 56		680 308 566 697 271 705 102 580	JUL
ב ב		101 101 101 101 101 101 101 101 101 101		414460446			10000000000000000000000000000000000000		44460666	
A C				2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			Z - LON Z - Z - Z - Z - Z - Z - Z - Z - Z - Z		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
URBII BASED UN		43,444,43		27778822			23,442			
Š		000 000 000 000 000 000 000 000		08 00 00 00 00 00 00 00 00 00 00 00 00 0	_		00 00 00 00 00 00 00 00 00 00 00 00 00		00 00 00 00 00 00 00 00 00 00 00 00 00	_
K K		6491318 0607444 930810 4310810 4787059 4787059 9595704 9200000		723 975 810 810 497 497 822 211	SEC.		101 8897 873 502 502 599 0000		995444 3312608 3714873 3057408 296128 1154476 1164421 1164421	SEC.
ANGER		491 607 607 310 787 787 787 200 200		9575723 3242975 3310810 3658680 156497 1513766 1782341- 1479822	OO SEC		28873887 28873887 2887387 2887 2887 2887		995 312 714 714 95 95 96 96 96 96 96 96 96 96 96 96 96 96 96	00
Ľ		111 11		1111	0.0		111 11		7-11-80 01-11-60	0.0
		FULWELWEL		LAT LOE ESP MSP STE	•		>115 10 F F 10 F F		LAT - Y YE - YE - YE - YE - YT - YT - YT - YT -	;
		P C C C C C C C C C C C C C C C C C C C		2/288888	Σ NI NI NI				7, 7, 7, 8, 6, 2,	Z E
		06 05 05 05 05 05		03 03 03 03 03 03 03 03	0		000 000 000 000 000 000 000 000 000 00		03 03 03 03 03	0
		575 394 394 1168 612 612 903 900		677 964 168 909 844 181 132 361	HRS.		039 841 192 728 728 749 013		632 999 1192 1192 588 633 688	FRS.
		02232200	21	1122 123 123 133 143 153 153 153 153 153 153 153 153 153 15	2		12569 32782 32782 32782 12293 10033 15053 34000	21		~
	R 3 C	11.00.00.00.00.00.00.00.00.00.00.00.00.0	ENTR	** * * * * * * * * * * * * * * * * * *	DAYS	7K 1C	4000000 40000000	ENTR	15060 112293 112293 112293 112293 113274 11355 11355	× 3
	EN	SARWET SUD	u	8 E E E E E E E E E E E E E E E E E E E	2 DA	CCENTR	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	IGCE	* * * * * * * * * * * * * * * * * * * *	2 DAY:
	GECCENTR		HEL JO		•••	0 E C (HEL 10C	N M Z M C	.•
	_		æ.,					**		

RANGER-4 ORBIT BASED ON TRANSPONDER DATA ONLY

13564718 C. C. C. C. C. C. C. C		00 03 01 01 02 02		01 03 01 02 02 02	00	s	00 02 03 01 01 03	s	00 00 00 00 00 00 00 00 00 00
ECUATIONIA CE 4. 229550269 06 7 - 11890233 06 0	ATES		T E	m 4 0 m 0 r 4 f 0	9.00	ATES		ш	
ECUATIONIA CE 4. 229550269 06 7 - 11890233 06 0	NIO	2402 5126 5126 3191 1907 1907 1907 2320	VIO>	60000000000000000000000000000000000000	04 1	RD IN	0383 1043 0172 7207 4799 4799 4799 8495	RDIN	4245 9212 7207 7207 8759 8138 8138 9241 9181
ECUATORIAL ECC. T. 199550269 06 711890533 06 05 .54210080 00 DY81677631 00 DZ642248 05 05 EEC20006248 02 08 A 2.446891 05 02 NS23581037 02 NS -	COUF		COU	99. 96. 96. 96. 97. 97.	60	000	277 277 96 96 84 84 100	000	- 996 - 956 - 295 - 295 - 295 - 295 - 295 - 295 - 295 - 295 - 395 - 395
CC CEC -29550269 06 7 -111890533 06 0X -54210080 00 DY -81677631 CC Y -29550269 06 7 -111890533 03 VE -25581097 20 PT -25353479 CC X -25581057 20 VE -25581097 20 PT -25353479 CC X -25581057 20 VE -25581097 20 PT -25353479 CC X -2558105 00 CC X -2558105 00 VC -25581097 20 PT -25353479 CC X -2558105 00 CC X -2559360 00 CC X -2558105 00 CC X -2559360 00 CC X -2559305 00 CC X -2559	TOR I AL	DZ AZE AZE DZS DZZM DZZM VI	I OR I AL		1962	TORIAL		TORIAL	
CC CEC -29550269 06 7 -111890533 06 0X -54210080 00 DY -81677631 CC Y -29550269 06 7 -111890533 03 VE -25581097 20 PT -25353479 CC X -25581057 20 VE -25581097 20 PT -25353479 CC X -25581057 20 VE -25581097 20 PT -25353479 CC X -2558105 00 CC X -2558105 00 VC -25581097 20 PT -25353479 CC X -2558105 00 CC X -2559360 00 CC X -2558105 00 CC X -2559360 00 CC X -2559305 00 CC X -2559	€GUA]	00 02 00 00 00 00 00 03	. VODE	02 01 02 02 03 02 05 05	26,	EQUA	00 02 00 00 00 03	EQUA	02 02 02 02 02 02 02
\$568718 C. F. C. 20986249 0. F111890333 C. DX .554210080 0. DV 462243 C. C. EC20086449 0. Z. P12969166 0. DX .574210080 0. DV 462243 C. C. EC20086448 0. Z. P12969166 0. DX12969142 0. DV 1753910 C. V1295910 C. DX12969166 0. DX12969142 0. DV 1753910 C. V12969166 0. DX12969166 0. DX122226 0. DX12969166 0. DX .		$\sim \sim $		556 1779 1486 1939 1612 1512- 1512-	'R 1L		5940 7335 7128 3085 3081 5081 1873 9093		1445 1909 1085 110 110 1672 1702
\$568718 C. F. C. 20986249 0. F111890333 C. DX .554210080 0. DV 462243 C. C. EC20086449 0. Z. P12969166 0. DX .574210080 0. DV 462243 C. C. EC20086448 0. Z. P12969166 0. DX12969142 0. DV 1753910 C. V1295910 C. DX12969166 0. DX12969142 0. DV 1753910 C. V12969166 0. DX12969166 0. DX122226 0. DX12969166 0. DX .		1677 0320 0320 4363 2363 6429 6429 7935 3342		3180 11112 2363 2363 1999 1390 1390 7453 7453	A		433 374 306 2308 088 088 088 185 1		3151 240 2306 2306 1899 506 512 512 512 2105
\$568718 C. F. C. 20986249 0. F111890333 C. DX .554210080 0. DV 462243 C. C. EC20086449 0. Z. P12969166 0. DX .574210080 0. DV 462243 C. C. EC20086448 0. Z. P12969166 0. DX12969142 0. DV 1753910 C. V1295910 C. DX12969166 0. DX12969142 0. DV 1753910 C. V12969166 0. DX12969166 0. DX122226 0. DX12969166 0. DX .				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			887744671		29.74.65
CASCAGO CONTRACTOR CON		PTH PTH DYS DYT RTA RTA DES		DY PTH DYE DYT RST EMP TSP RPT			DY PTH PTE DYS DYM OYT RAM DES		DYE DYE DYT RST EMP EMS TSP TSP
CC CEC -20086248 02		00 02 02 00 00 01 02		002	88		00 01 02 00 00 01 02		
CC CEC -20086248 02				635 834 534 609 609 653 319	166.		484 653 098 490 679 679 679 1776 1776		9445 1152 490 490 1857 1970 1310 1985
CC CEC -20086248 02		4210 0169 3581 6781 6451 6451 0332 3157		7323 0606 6781 7746 1329 3357 0733	.877		8295 0087 4914 4914 4736 4736 9352 3354		7350 0592 6867 6867 7814 7814 7814 2923 5168
CC CEC -20086248 02		71.0001.66			780		4 - 4 - 6 - 6 - 6 - 6		
CC		DX C C C C C C C C C C C C C C C C C C C		DXC DXC CDXT CDXT CDXT SEPAT TPS			DX VE DX VE DX VE DX VE DX VE DX VE		DX C DX C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C		06 03 06 06 06 06 06			DAT		06 03 08 06 06 06 06		
C C C C C C C C C C C C C C C C C C C		533 336 155 166 166 166 537 747		795 343 891 714 714 159 937 044	NA		945 722 168 215 653 653 633 644		944 672 215 742 090 947 155 1155
C C C C C C C C C C C C C C C C C C C		890 966 9903 989 989 989 935 1935		1859 1328 1740 1740 1870 1838 1838 184 184 185 185 185	JUL		2372 9504 9508 1915 2852 2852 2852 3388		5038 1348 4915 5043 3451 3217 3306 3918
C C C C C C C C C C C C C C C C C C C		122461111		1 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3			1 1 1		1 1 1 1
C C C C C C C C C C C C C C C C C C C				2 LON 2E 21 LTT SEP SMP TEP					LON ZE ZI ZI LITT SEP SMP TEP
C C C C C C C C C C C C C C C C C C C		7 5 5 6 6 7 7 7 7 7		25 20 33 25 25 25 25 25 25 25 25 25 25 25 25 25			36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		222 222 223 224 225 225 225 225 236 236 236 236 236 236 236 236 236 236
C				1	EC.				
C 4622439 C6 CEC - 4622439 C6 CEC - 4622439 C6 CEC - LAT - 1783501 06 YR - 1783501 09 YR - 1783501 09 YR - 1783501 09 YR - 1783501 09 YR - 1782653 C9 YR - 1782650 C6		5502 0862 0862 0862 1179 5383 5383 5935		1134 1179 1179 1179 1573 3157 3394 5312			3276 3633 8633 9423 9423 7772		
C 4622439 C6 CEC - 4622439 C6 CEC - 4622439 C6 CEC - LAT - 1783501 06 YR - 1783501 09 YR - 1783501 09 YR - 1783501 09 YR - 1783501 09 YR - 1782653 C9 YR - 1782650 C6		7778, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		.800 .801 .801 .211 .277 .722	•		1910 1920 1920 1930 1930 1930 1930 1930 1930 1930 193		800 800 800 113 113 153 153 153 153 153 153 153 153
C 4622439 C 6 4622439 C 6 4622439 C 6 1783501 C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		FORSTEGER		> = W = W & & & W	•		1111		
C 4622439 C6 4622439 C6 4622439 C6 4622439 C6 6422439 C6 65 2263C62 C9 1783501 O6 0212C87 C2 4000C00 O2 22512174 C9 22512716 C9 22512716 C9 22512716 C9 22512716 O9 22519271 O		PA CO		SIES	2.		97, 4		7 7 7 8 6 8
C 2568718 4622439 4622439 4622439 4622439 4622439 62243626 62264560 62264560 62264560 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 62264660 622640 6226460 622		60 60 60 60 60 60 60		03 03 03 03			00 00 00 00 00 00 00 00 00 00 00 00 00		
CCGNTRIC X		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		25 25 25 25 25 25 25 25 25 25 25 25 25 2	v		51112 5 5 5 11 15		276 164 776 776 271 604 136 985 985 310
CG G TR H C C C G TR H C C C G TR H C C C G C C C C C C C C C C C C C C C	, ,	A 01 01 40 40 40 40 41	21∠	262 262 272 272 273 273	2		1499 5414 5414 5232 3504 3504 5055 1000	_	2218 5063 2232 2219 3409 3409 5168 5168
C C C C C C C C C C C C C C C C C C C	TR #C		ENT		(A)	-		ENT	
9 H	GECCEN	K K K K K K K K K K K K K K K K K K K	HEL 10C	S S S S S S S S S S S S S S S S S S S		GECCEN	*********	EL 10C	NE PROPERTY X

٠	V

CASE 1	SPACE TRAJECTORIES	
LENDCENTRIC	KANGER-4 OKBIT BASED ON IRANSPONDER DATA ONLY EQUATOR	QUATORIAL CO

ES	00 03 03	• 000	ES	00 03 03 03	ES	01 02 02 02 02 02	S	00 03 03	000	S	00 03 01 01 02
NAT	295 630 1117 291	19.	DINATE	4460 459 832 244 218- 218- 209 732	INAT	488 022 244 952 565 145 134 163	NATE	362 222 749 165	19.0	NATE	947 245 478 704 867- 867- 175 901
COORDINAT	486 041 295 094	40	RDI	652 1265 1016 1016 1016 1016 1016 1016 1016 10		9437 0919 6672 5792 9804 9804 9366 6366	COORDI	445 997 246 314	40	OORDI	958 946 016 523 374 361 361
000	25. 26. 26.	10	COOR	-276 -302 -270 -966 -879 -103 -103	COUR	- 99 - 10 - 29 - 29 - 20 - 26	000	26. 26. 26.	11	003	28 33 27 27 91 10 10 10 10 10
IAL	D2 - A2 ZR ZR	7	IAL	DZ - AZ AZE DZS DZM DZT VT LOM	IAL	DZ - DZE - DZT - VST - SPN	IAL	222 0	~	I A L	DZ 4 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3
QUATORIA	4 4	, 196	TORIA	∢ ⊖⊖⊖ ,	TOR	N N W Z C C C	TORI	D, AZ, AZ,	,1962	TORI	A A A A A A A A A A A A A A A A A A A
EQUA	01 02 02 -03	26,	EQUAT	00 00 00 00 00 00 00 00 00	EQUA	02 02 02 02 02 03	EQUAT	02 02 02 03	26,	QUAT	00 00 00 00 03
	102 871 925 220	PRIL		708 618 625 625 459 459 128 871	_	050 656 656 913 941 433 702-	_	217 482 392 159-	PRIL	•	694 195 1729 1729 1729 1729 1729 1729 1729 1729
	356 356 3475	ΑÞ		413 202 202 203 708 768 768 835 835 423		3171 3160 3160 22296 11879 5064 0832 5648 8911		918 900 150 632	A		737 770 770 770 770 770 770 770 770 770
	12 82 80			-87 -23 -22 -41 -41 -37		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 80 79			
	P 4 1 0			PTH PTH PTE DYS DYM OYT RAM DES		DYTH OVE DYT RST EMP FPT RPT		PTH PTR -			DY - PTH PTE DYS DYM DYT RAM RAM DES
	a a			44000 40		# O C X M M ⊢ X		<u> </u>			##000 X0
	00 01 03 03	35		00 02 00 00 00 00 00 00		000000000000000000000000000000000000000		00 01 03 03	02		00 00 00 00 00 00 00 00 00
	194 960 579 975 130	664		656 620 079 028 028 968 489		534 657 657 307 036 106 022 998		371 879 788 200 194 964	331		424 1175 931 817 840 840 1175 623
	6441 3818 3903 5415 3707 2473	0.919		687 2243 2208 208 884 365 365 356 335 393		7341 6884 6884 7828 1353 1353 2710 5363		677 277 354 417 098	961		1856 1627 1901 1983 1983 1981 1951
	4	7780.		24 25 25 25 25 25 25 25 25 25 25 25 25 25		100111111111111111111111111111111111111		- 148 - 148 - 149 - 12	780.		. 10 . 10 . 10 . 93 . 93 . 33
	N V V V V V V V V V V V V V V V V V V V	43		S C C C C C C C C C C C C C C C C C C C		PPEPEK O		DX VR V	4377		DXX C C C C C C C C C C C C C C C C C C
	S L	TE 2		000 %%		001#8+8		S	TE 2		000 %
	04 03 01 02 03	DA		06 03 03 06 06 06 01		08 03 08 02 03 00 00		04 03 03 03 03	DAI		06 03 06 06 06 00 01
	751 845 179 179 751 566	IAN		252 865 865 619 619 619 734		741 739 734 734 734 734 734		678 935 993 379 962 704	UL 1AN		850 259 823 823 823 1118 230
	7970 2541 0620 6100 5835 5265	JUL		2471 9508 9007 4950 2821 2821 7835 8386		135273 1495002 1495003 150782 134647 1021774 163668 16651 1397073		5036 0512 0353 5504 57941 5478	JUL		2572 2575 2509 2789 2789 2789 3385 0598
	4.0 % 7.11					1 111		115,36,3			722644644
	RA LON LTE ALP HNG			RA LON 2S 2M 2T 2T COS		LON ZE ZT LTT SEP SMP TEP		RA LON LACE LACE HNG			RA LON 2S 2M 2T 2T COS DR
	7741					J 7000EB		7741			_
	05 03 03 05	•		06 02 08 06 06 03		08 08 08 00 00 00 00 00 00		05 02 03 04 01	-•		00 00 00 00 00 00 00 00 00 00 00 00 00
	785 1400 1785 1196 1023	SEC		151 408 408 302 1604 604 000		664 302 302 302 302 302 302 403 403 403		524 0022 062 379 1728 098	SEC		725 304 304 555 651 661 664 664
	191477 125334 981627 278981 104820 763199	• 000		13361 98214 98214 98214 57936 77936 17936		09136 09136 09003 09282 16393 36698 089117 56484		.1457452 .1181902 .1015306 .2784737 .7597072	000*		1166072 978030 978030 1068055 1264165 1264166 959200 400000
	115211	•		3133 1982 1982 3279 3279 3614		1111		11777	0	•	
	CEC LAT LNS SHA SVL	Z		CEC Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		1 S S D T T T T T T T T T T T T T T T T T		CEC LAT LNS SHA	N		CEC Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
	0 2 2 0 0	O M I		A LD		T THEM O		8000	I A		A CD
	05 05 05 05 03	•		00 00 00 00 00 00 00 00 00 00 00 00 00		09 09 09 09 09 09 09 09 09 09 09 09 09 0		05 05 05 03 03			000000000000000000000000000000000000000
	386 444 444 468 468 469 486	FRS		100 648 648 700 700 948 608 866		031 700 700 855 855 813 813 813 822 8022		261 998 995 470 419	HRS		973 221 221 221 618 980 980 980 176 176
7.R. 3.C	9499 2105 2105 2105 5096 10367 18231	13	ں	669 178 178 178 178 178 178 178 178 178 178	R I C	2212 5063 2226 2212 3423 3423 7685 5363 0421	7.R.1C	241526 710599 710599 509447 536799	14		.14825 .331152 .331152 .12220 .14183 .15065 .34000
ENDCENTR	, , , , , , , , , , , , , , , , , , ,	DAYS	ď	400 H H H H H H H H H H H H H H H H H H	ENI		CEN	0 H H H H H	ΑΥS	TR IC	
ENG	X X X S L H	2 0	CENT	KKKKE KE K	L 10C	※※TPPP ほうりてす	SELENOCENTRI	KKKKS II II	2 D	ECCENT	KKKKED KKKEELSCH
SEL	₩ ₹ Ĭ		GEC	u a	포	- m z m w	3E1	TAT		GEC	90

14		000	ES			1 1	03	UZ ES			01 02	000	05	ES	00		02	000	ES	00			
		04 19.000	COURDINATE	34195 15526	16532 75118		65398 99610	2 2	18537		3.5	72	92527 92270	COORDINATE	15847	11489	.15811263	34 19.00	COORDINATE	.27787098 .27787098 .27018604	35736-	7515	7471 97871
		12 0	COUR	-,32034195 ,28815526	.965	948	.2589	C00RI	997789	9657511	. 2978	.890	.14892	COURE	.415158	•263	.1581	12 34	COORE	.3407 .277 .270	9653	.1036	.25177471
		962	EQUATORIAL	D2 A2	02S	120 D21	L 0 4	OZ DEM . EQUATORIAL				A E D	SPN	EQUATORIAL	- 70 AZ	AZR	ASD	962	EQUATORIAL	D2 - A2 A2E	D28		•
		26, 1962	QUAT				03	UZ QUAT	0.5	02	02	02	1.8	QUAT	01002	02	0.2	26, 1962	QUAT	01 02 01	200	99	03
		APR IL		9486	1047	6684 6684	1634 8485	7,900 E	1483	4535	9268	2472	3512- 6975	ш	2154 5808	5312	4231367-02	APR IL	ш	7238 0876 9565	8933 4395	3260	8399 6710
		∢		-11069486	.2227	.4352	.2940	* * * * * * * * * *	2338	2227	2183 -1506	.6616	.27453512-		15422154 69605808	-•6069	.5423	₹		13567238 .63280876 .26969565	.4396	.3779	.2943
				PTH	DYS	DY1	A A Ω	000	ν Δ.	DYE	DYT .	EMP	TSP RPT		PIH.		d 0			•	2 X X		RAM DES
		89		00	200	38	01	9	02				03		00			2		01 01 02	200	35	05
	۲	2997		0588 3132	8968	3130	5398	1	17183374	8968	4899	4718 5855	3685 5975		5542	3775	3496 5919	38310		3460- 363 7083	16927541	7515	1780 2055
v	ra only	2437781.00299768		.26440588	1691	9359	3347	9996	1718	1691	.2136	.1129 .1031	16510685		67152542	1738 3541	1623 9713	2437781.02		# (A)	9339	10367515	.3349
SPACE TRAJECTORIES	R DATA	4377		× > :									RPM		× >		•	43776		DX -	•		•
JECT	ON TRANSPONDER																						
TRA	ANSP	JULIAN DATE		00 2	080	90	2003	5	90 6		3 08				03		02 03	DATE		5 06			
ACE	I TR	IL I A		180	960	585	833(641	960	11998	252	2418		4028640	3051	4111	JULIAN		1616 1956 1027	960	3260	545
S		₹ 1		Z12681801 C	3501	1275	3780		3514	3501	3514	1022	.89032418		. 7402	2880	.44334111	3		12741616 .29491956 .25231027	3503 1273	3779	3508 1250
	BASED			7 V	 z	I E :	Σ ν c	•	7 7	: ш (: ; 	••	٠.			•				7 4 Z	• • • • •	• • • •	S OC
	ORBIT			~ (7	771	. G)	_	7	71 LTT	S S	TEP		RA RA					2 RA LON	<i>~</i> ~ ~ ~	۱ مد ۱	٥٥
		•		06					0.8	08	03	087-	02		04	03	A16393683 04 10207121 02			000			
	GER-4	SEC		2712	0768 0768	5534 5534	1787 3801 3000		9660	2768	5634 7211	2922 3512	2472 1451		2219 5408	5858 5742	3683 7121	SEC		0909 8045 8045	7791	1681	7472 9999
	RAN	000		32022712	076	248	6916	, ,	349	920	134	388	.66162472		638	205	020	• 000		3224(19718 19718	240	956	717 999
		o			•	, ,		•	8 7		1	- ~	9 F		4.0		77	o		<i>i</i> i i		77	
		Z		VEC.	γ. Υ.S.		ALT A	5	γ 1	۳!	LOE	R S P	ETP STE		CEC	LAI	SHA	Σ		Y DEC LAT	ν Σ	S > :	P. 1 0. 1
		0		90	60	90	60 03	*	60			03	03		400		03	30			60		
		HRS.			530	622	945 614	•	577	530	986 986	4 8	718 855		443158611 -63786975	500	918	HRS.		.37765C47	484 912	620	000
		15	()	14953	122149	.1452162	9863	81C	112199577	2214	3449	.165106	.11294	TRIC	1431586 -637869	5090	6406 8243	15	L)	4979 7765 7765	2211 4689 4689	5056	9841 4000
-		DAYS	VIR 1	- m in i	,		- 1	Z	111	-	12200C08 13449986	٠.٠	7.7	OCEN		,		DAYS	E WIZ			-	٠ ٣
GASE		5 [GECCENT	× α α	K 20 3	E F C	2 G 8	HEL 100	×α	K	Z # :	m 3: or or or or	EPT SET	SELENOCENTRIC	× œ 1	L T S	AL T HGE	2 0	GECCENTRIC	* ~ ~	9 E F	• 50 (C

12 44 19•0	EQUATORIAL COURDINATES 14986226 01 DZ31407841 00 50464530 02 AZ -27594241 03 225953626 01 AZE -27022193 03 42110129 00 DZ -97108557-01 44110129 00 DZT -97108557-01 37790470 06 VT -10368222 01 29448372 03 LDM -24936759 03 13458952 02 DEM19690031 02	EQUATORIAL COORDINATES 23765688 02 D299683486 01 22267065 02 D2E96542701 01 21825964 02 DZT95571616 01 1506498 09 VST95779571 02 10229306 03 MEP33890842 00 77039567 02 ESM .14057998 00 27453512-18 STP28476004 02	EQUATORIAL COORDINATES19397239 01 DZ41118697 0045469393 02 AZ .24795506 0345368411 02 AZR .27210633 03 .42023159-01 ASD .49331622 02	APRIL 26,1962 12 49 19.000 EQUATORIAL COORDINATES	15369364 01 0Z25077590 0039273950 02 AZ27541572 0322988393 01 AZE27026547 0322266131 02 DZS96538648 0144182965 00 DZM97394919-0144182965 00 DZT97394919-0137789074 06 VT .10368575 0129453358 03 LDM24816403 0313460072 02 DEM19686090 02
	DY19 PTH -5 PTE -2 DYS -4 DYT -4 DYT -4	DY - 2 PTH - 3 DYE - 2 DYT - 2 RST - 1 EMS - 1 TSP - 2 RPT - 2	DY 19 PTH 49 PTR 46		DY15 PTH -39 PTE -22 DYS -22 DYN -44 UYT -44 DYT -31 RAM -29
BIT BASED ON TRANSPONDER DATA ONLY JULIAN DATE 2437781.03077546	Z12761582 06 DX41257302 00 RA .29484320 03 V .15857905 01 LON .24972756 03 VE .27008661 02 ZM12732798 06 DXM .99327372 00 ZT12732798 06 DXT .99327372 00 RM .37790470 06 VM .10368222 01 LOS .34838220 03 RAS .33498333 02 DR .12230103 01 SHA .36944343 06	Z35170391 08 DX .16517825 02 LON .21363608 03 V .30610691 02 ZE35042775 08 DXE .16930398 02 ZI35170104 08 DXI .17863672 02 LIT13501077 02 LDI .21363579 03 SEP .10249032 03 EPM .77367941 02 SMP .28476004 02 SEM .10282028 03 TEP .33890842 00 TPS .15152358 03 EST .14057998 00 RPM .22913823 04	Z - 28783891 03 DX - 13458467 01 RA . 13960857 02 V . 23964363 01 LON . 25096862 03 VR . 24006019 01 LTE - 23900053 01 LNE . 35420674 03 ALP . 15662508 03 DR - 17083618 01 HNG . 20559680 03 SIA . 28036319 02	JULIAN DATE 2437781.03424768	Z12770218 06 DX76191926 00 RA .29478727 03 V .17336617 01 LUN .24841771 03 VE .27360133 02 ZS .35045671 08 DXS16931827 02 ZM12729881 06 DXM .93293856 00 ZT12729881 06 DXT .93293856 00 RM .37789074 06 VM .10368575 01 LOS .34713206 03 RAS .33501610 02 DR .10974582 01 SHA .36970918 06
2 DAY	GECCENTRIC X 11966537 06 R .37839917 06 CEC19709528 02 R .37839917 06 LAT19709528 02 XS .12210468 09 YS .80814220 08 XM .14745929 06 YM32381369 06 XT .14745929 06 YM32381369 06 RS .15056057 09 VS .29591646 02 GED19833400 02 ALT .37202342 06 DUI .34000000 02 DUI .59999999 02	HELIOCENTRIC X - LEZ195501 09 Y - 81137485 08 X - LEZ1064286 09 LAT - 13501373 02 X - LIZ2210468 09 YE - 80814220 08 XT - LEZ19572 09 YE - 80814620 08 XT - LIZ19572 09 YE - 21349833 03 EPS LIZ195852 02 LOE - 21349833 03 EPS LIZ195856 03 KSP LIZ10097 00 WPS LIS152358 03 KSP LIZ29306 03 EFT LIZ29306 03 SET LIOZ82028 03 STE LIOZ9567 02 CETP LIZ29306 03 SET LIOZ82028 03 STE LIZ29306 LIZ29306 LIZ	SELENGCENTRIC X & 22060820 04 Y54843752 03 R & 22913823 04 CEC72164482 01 R & 22913819 04 LAT13396486 02 LT315089168 C1 LNS27711860 03 ALT .\$5338226 03 SHA10925097 04 HGE & 288263083 03 SVL12923142 02	2 DAYS 15 HRS: 45 MIN. 0:000 SEC.	X 114949351 06 Y32372244 06 R 137875107 06 CEC19704336 02 X3 122209960 09 YS -80820899 08 XM 114773922 06 YM32368125 06 XT 114773922 06 YT32368125 06 R3 15056071 09 VS -29591628 02 GED19828181 02 ALT -37237532 06 CUT 134000000 02 DT -5999999 02

DOL

	EQUATORIAL COORDINATES	12 58 45.829 •12713306 04 •52534771 03 •13642876 03 •29133909 00 •5908450 00 •63907452 02 •16962587 00 •20354674 00	
	ORIAL (1 1	
	EQUAT	APRIL 26,1962 -2752114 03 RCA -00000000 00 TFP -25004857 03 MTA -83037508 00 PZ -29953260 00 RZ -16191528 03 TF -29317712 00 TZ -29317712 00 TZ	1.0
	AND B.R	APP RAI PY RAY TY MY	603445451541 000000000000
ONL Y	ORBITAL B.T AND B.R	2437781.04080820 LAN .21119683 03 SLR .30260565 04 DAI15006681 02 PX .39664958 00 RX .1794677-01 DAO .1794677 02 HX91989552 00 MX91989552 00 PER .88998181 03	
DER DATA	0	2437781 LAN 781 SLR .3 DAI -11 PX .3 RX -7 DAO .1 IX -9 MX -9	603463165640
GER-4 ORBIT BASED ON TRANSPONDER DATA ONLY	CONIC	JULIAN DATE 2437781.04080820 .15686098 03	604426727545 419000
BIT BA		INC C1 C1 WZ WZ Q2 S20 S21 82	9090
RANGER-4 DR		ASSAGE ECC .13802279 01 C3 .14657126 01 EA25556837 02 WY .33613800 00 QY44439669 00 SYO .29531871 00 SYI90792473 00 BY25036746 00 B.R .42650115 03	213636320606
		PASSAGE C3 C3 WY WY SYO BY 1 BY 1	215472620534 62C402321
	SELENCCENTRIC	BPCCH CF PERICENTER PASSAGE SMA33436015 04 ECC VH -12106662 01 C3 TA57528145 02 EA WX20354709 00 WY CX89511878 00 QY SXO90434562 00 SYO SXI32958607 00 SYO BX -92192277 00 BY BX -92192277 00 BY	614744547542 21

APPENDIX C

Comparison of nominal flight trajectory and Ranger 4 trajectory based on DSIF transponder orbit

																							_		
	1		000	602	_	• 602	ES				010		ES	303 04 02				ES	0 0	00	0	0	000	0	
			3781650 (4959900 (2671060	16.	0	16.	-				2035		NAT	43.3 5660 3825	385	906	906	-	62	73	3 ~	73	1440	48	
			3781 4959 2671	04	7201	40	COORDINA	460725	1735 9543	693	0132	3723	COORDI	03 535 298	200	506 729	2776 0455	COORDINA	561	543)0/1)295	3183	.10444	1841	
=			.14	21	4597	21	202	4e	1.6			7.	5	21.	.27	93 .21	42	000	14	6	 		7.	.10	
<u>o</u>			E D T	~	·	~	IAL				LOM - 1		IAL	62 RCA TFP	T A P 2	72 72		IAL				- d.	STP	<i>Z</i>	
on DSIF transponder orbit ar impact only			S A E	1962	070	3,1962	UVATORI		ΑÖ	۵ ۵	· _	۵	TORI	196. R(Σ	-	Ž	TORIAL		0	ລັ>	Σ	iii o	<u>.</u>	
Ğ			04 02 00	23,	01 03	23,	ųU.	01	01 02	000	900	02	QUA	23 , 03 06	03	88	00	EQUA	05	020	200	00	00	90	
ransp			50 741-	RIL	8583 5684	APRIL	щ	545)42)99	511	149	217	ш	PRIL 8212 4029	347	568	334-	ш	553	660	5 2	157	256 338	335	
₽₽			.41780741- .00000000	APF	7558	APF		5729797	347(958(865	822	290		AP 618 994(.2456347 79134724	023(1102	7606	•	737	958(960	408	.44750256 .10698938	263	
₹ B			63 41 000		4.2			.15	.16	7.		•12		14.	,	111	.11		.27		. 23. 15.	F	.10	•39	
בָּ <u>יב</u>		¥	ய ய த		DY0 GH0			1		1 1	RAM		B.R	r 0	RAU PY	<u>≻</u> ≻	1 <u>≻</u>			ι E Ψ (-	<u>.</u>	EMS TSP	<u>_</u>	
used on DSIF t lunar impact		6 0	S S S		01003			_ <u>_</u>	<u> </u>	66	2 2	0.6	AND	AP	× 4	α -	2 5		3 [56	ćά	, <u>m</u>	<u> </u>	R	
			05 29 05	2	651 135	2		01	02	00	01	40	-	200	00	00	00		010	020	205	05	03	90	
and a			9 8 6	6992	7296	.37796992					35		ار B	845 38 40	= 5	- 4-	3 6		50,	53	62	13	999	135	
မှ မ			8749999 8800998 2977799	37796	8.7	8778		1145	3232	5836	.1013203	3965	BITAL	3347363	5169	3002 7664	9493		1177	3232	3200	4485	5145	2633	
4 trajecto injection	s		. 787 . 888 . 429	78.3	DX0-GHA	78.3		.871 .109	105	966	101	.655	ORE	334	160	333	.250		.711	.158	.168	724	.1351	.39	
ini	RIE		Q ∪ ∢	377	04 0	37778		1						1	,		•								
ger † at	CT0		S	24	~ ~	. 24		٥	۲ ۵	čč	RAS	SE		E 243 LAN SLR	DA 9	∝ ⊢	₹ . (T)		۵	Š	ă :	E P	SEM	o∓ o−	
and Ranger 4 trajectory based printout at injection and lunc	TRAJECTORIE		05 29 06	DATE	686919 856601	DATE		94	60	90	90	000	CONIC	DATE 02 05	00	000	00						02		
ᅙᆤ					.75								00										820		
2 Z	SPACE		17499999- 18763998 12476950	JUL I AN	07 10	JULIAN		402	951	619	38822149 22351080	651		JULIAN 811932 915869	029	041 693	3041 5234		1934	1997	1197	913	1638 1837	444	
ᅙᇵ	S		.574 .887 .324	7	4 00	7		166	320	124	388	300		2982	798	413	413		327	327	326	926	.454638	104	
trajectory trajectory			ı		63					1 1						ŀ			- 1	,	, ,				
∓ ∓		762	E B A S		04922			ď	107	7	2 X Z	٥٥		Ž	M M	\$2	20			7	7	SE	SMP	ES	
Comparison of nominal flight trajectory a. Nominal flight trajectory		23	262		S			4.0	2 8	9 4	0 2 6	2.2		0.5	000	0.0	200		80	2 8	8 6	2 2	000	20	
<u>a</u> =		04/ ITIES	500-0 998 2 544 1	¥ CON	٠ ٥٨	EC.					9100				30 08								938 (
nominal Nominal		ST ()	4 C	Σ		S		88	46	42	246 263 253	000		127	33,	301	01 52		3	Σ. O.	80 0	? =	8 8	.0	
<u> </u>		RA-	1623 8874 1327	0	7 04	000		.5038	.1467	3586	2966.	150		3E -9768	344	414	4143		756	125 756	759	686 117	. 1069	441	
<u>a</u>		S	• • •	50.	768	0				1	ı			AGE C .		•	• ;								
Sor		VENU	L A GMS	19	855	Z		Y CFC	LAT	Σ F	- S - 1	AL.		SS	M Z	7 7	87 8.R		> !	LAT	> 2	ESP	MSP FTP	STE	
pa		I .	204	S	€:-0x	∑		.+ .+	.+ 7	. 10 1	non	N (N		~	0		0.10		6	ው ው	т (v ~	۳ ۸	ım	
E		S	070	CCNCITICN	×	S.		00	100	, , ,	, O c	n 0		NTER 3 06	· ~ o	ں ہے	400		9	9 0 0	9,1	- w	2, 2,	• •	
Ŭ		I C E	19860320 6709998 19007589	NC I		4		285	574	350	525 525 525	000		ERICE 32519 84348	٠ ٠ ٠	~ ~ ~	· 10 · 00 ·		629	528 590	400	021 613	295	456	
		PHEMERIC	986) _Z	0	ں	8 7	100	303	2007	4 0	U	0.000	. .	3	- 6	R1C					344		
	-	ЕРНЕ	 W 0 4	110N	TR!	CAYS	TR I	. 4	9 -	80.5	0	• • •	NTRI	F.	1	1 1	ω in	CENT					1,		
	SE	_	GME GMM	INJECTI	OCENTR I	0	ECCENT	× a	:	ξ. Σ.	× & 0	DOT	EOCEN	POCH SMA	Z 4 ×	X S	BX B•1	רונ	×	ж ж ш	× i	EPS	M P S	SET	
	Š			Z	CAL		6 E						6E	H.				#							

13 50 54.946

APRIL 26,1962

JULIAN DATE 2437781.07702482 --23819936 02 .40002120 02 .17113297 02

2 DAYS 16 HRS. 46 MIN. 38.343 SEC. RECTIFICATION

				R A-4	04/23/62	3/62						8 ¥					
GEOCENTR	TRIC												U	QUAT	EQUATORIAL	COORDINATE	S
GERKKK CEDSTERSER	.15150742 .37625213 .37625213 .12203594 .15123707 .15123707 .15123707 .1512333	000000000000000000000000000000000000000	CEC LAT YS YAS VI	320412 196108 196108 322003 322003 322003 3295914	239 06 3380 02 3380 02 3382 06 3382 06 335 06 335 06	2 LON LON 2S 2M 2T 2T RM LUS DR	12628168 .29530719 .23323726 .35081942 12692607 .37771595 .33147273	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DXX C DXX C DXX C XX C XX C XX X X X X X	.14345329 .20753538 .26626081 -16949715 .92868439 .10373011 .33542656	00 02 00 00 00 00 00 00 00	PTH PTE DYS DYM DYM DYT RAM DES	19627122 -70014106 -42006961 -22254425 -45093478 -37771595 -29515826	00 00 00 00 00 03	DZ AZE AZE DZS DZM VT LOM	65899561 .2696337 .26998993 .96487845 .10097914 .103730111 .23308834	000 000 000 000 000
HEL 10C	ENTRIC						÷						: :	QUAT	ORIAL	COORDINATE	·
SE PER RESE	-121988443 -15064175 -12203594 -12188476 -13474104 -134731548 -13492652 -10223094	000000000000000000000000000000000000000	LAT KESP RSSP STP STP	812249 135165 809045 813265 .1397042 .274535	365 08 276 02 08 557 08 265 03 12-18 15-18 15-18 15-18	2 LON 2E 2T LIT SEP SMP TEP	35208224 21367987 35081942 3520868 13516417 -10208852 -45073012 -14196504	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DX D	.17093168 .31383060 .16949715 .17878400 .21368033 .14730171 .10223094 .13492652	00000000	PTH DYE DYE RST EMP TSP TSP TSP	24217138 29895655 22254425 21803491 .15064295 .3255884 .37628651 .27453512-	002 002 002 003 004	DZ DZE DZE DZT VST WEP ESM STP STP	10307780 10900878 96487845 95478054 .29768943 .14196504 .14057998 -45073012	000 000 000 000 000
SELENOCENTR	CENTRIC														QUATORIAL	COORDINATE	·
X R LTS ALT HGE	.27035696 .17380990 .17380897 .15086531 .89965820-0	03 04 01 03	DEC LAT LNS SHA SVL	.159141 .217618 261196 .276545 123058	199 04 360 02 525 01 579 03 103 04	RA RA LON LTE ALP HNG	.64439634 .80358404 .32163675 23215855 .13721987	4 03 5 03 7 01 0 03	DX V V VR LNE DR SIA	78523111 .26494983 .26488368 .3542238 26138713	00 01 03 03	PTH PTR OP	24136470 80593375 80680092 .14274872-	01 02 02 -01	DZ AZ AZR ASD	-,75997475 ,58669845 ,61299505	00 2 00 00 00 00 00 00 00 00 00 00 00 00
SELEND	CENT						J	CONIC		ORBITAL	B.T A	ND B.	ω 	QUATORI	DRIAL	COORDINATE	S
EPCCH SADA SXOX SXOX SXDX SXDX SXDX SXDX	OF PERICEN -35497447 -11749871 -115673065 -45958366 -3483104 -34883424 -34883424 -58306234	7ER 04 00 00 00 00 00	PASSAG ECC C33 EA EA SYU BY B R	GE 101615 - 138059 - 533615 - 399302 - 318547 - 789467 - 902605 - 16652494	512 01 548 01 556 02 537 00 725 00 716 00 632 00 645 00	1NC C1 C1 C2 C2 S2 C2 S2 C1 B2	JULIAN .37504072 .75265164 -90476774 .79331006 -55909723 .42642305- .55411288 .64056144	DAT 03 00 00 03	E 2437 LAN SLR DAI PX DAO TX PER	7781.0832623 .49014741 .11559118 -14609313 -48833380 -80118201- .93375359 -79449637	34 02 03 03 00 00 00 00	A A A A A A A A A A A A A A A A A A A	APRIL .19424544 .00000000 .24886973 -85970073 .29686801 .52202886 .31172583	26,1 003 000 000 000 000	P62 RCA TFP MTA P2 TF T7	13 59 53.8 .57332594 47706601 .16977089 14981572 95155159 .64927017 .17587284	000000000000000000000000000000000000000
6147	614741761145	215	215473447174 F20402321	1	213641130440	30440	604427262653 416602	2653	6034	603460277756	6034	603446161053 000000000000	053 000				

SPACE TRAJECTORIES

APPENDIX C (Cont'd)

2 50 00.481	17		. COORDINATES	23564498 00 .27537969 03 .27027413 03 .96538088 01 .97434513-01 .97434513-01 .10368624 01 .24799761 03	. COORDINATES	98894539 01 0859573 03 96538088 01 95563744 01 29778677 02 2268643 00 46413474 02 76341209 02	COORDINATES	33307950 00 -25131446 03 .27641459 03 .89417003 02	COORDINATES	12 58 45.829 .12713305 04 .52534769 03 .13642876 03 .39133909 00 .59088451 00 .6907452 02 .16962588 00 .20354191 00	
-			QUATORIAL	02 A2E A2E D2S D2M V1T LOM DEM	QUATORIAL	DZ DZE DZT VST WEP ESM STP SPN	TORIAL	D2 A2 A2R ASD	EQUATORIAL	1962 RCA TFP - MTA - PZ - TZ - MZ - MZ	
26,1962			#OD:	01 02 00 00 00 03	QUA	02 02 03 03 03 04	GUA	02 02 02 02 02	OUA	000 000 000 000 000	
APRIL 26				15337984 -37296633 -22260056 -22266002 -44193034 -37788881 -29454048		23799801 39435377 22266002 21824072 .15064472 .12134841 .77089117 .27453512-	ш	19757287 33775506 33721782 .73037903-	α,	APRIL .27521114 .00000000 .25004857 83037509 .2953260 .16191528 .29317715	15 41 1000
				PTTH PTTH DYYM DYYM RAM RAM		DYE DYTH DYT RYT EMB TSP TSP TSP		PTH PTR PTR	AND B	APP RAPO RAPO RAPO RAPO RAPO RAPO RAPO R	60344545154 00000000000
				00 02 00 00 00 01 02		000000000000000000000000000000000000000		01 01 03 03 01	В.Т	000 000	603
1.03472778	IES		٠	82509349 17575111 27417908 16932024 93289217 10368624 33502063		.16106930 .30391857 .16932024 .17864916 .21363954 .58427066 .103737071		17579857 .266925129 .26692558 .35420805 14818661	ORBİTAL	7781.0408082 .21119683 .30260564 15006681 .39664958 780946787 94089012 92157583	603463165640
2437731	AJECTORI	8K		0 > XXX O O O XXX O YXX Y Y Y Y Y Y Y Y Y Y		D XX D X X X X X X X X X X X X X X X X		OX VR VR LNE DR		E 2437 CLAN SLAN DAI RXX DAO TXX PER	6034
DATE	TRA	BIT		06 03 06 06 06 07		00 00 00 00 00 00 00		03 03 03 03	CONIC	000 000 000 000 000 000	545
JULIAN DA	SPACE	CUT RA-4 ORBIT		12771228 29477818 24823531 35046072 12729476 12729476 37788881 34695920		35173785 -21363994 35046072 35173367 13502368 -46413474 -22468434		-,41751612 -,35581155 -,23145102 -,23842619 -,16926349	J	JULIAN .15686098 .38509704 10898818 919554143- 3081376 25893169	604426727545 419000
		PRINTCUT		LCRA ZSS ZSS ZSS LCS		LCN ZE ZI LIT SEP SEP SEP		Z RA LGN LTE ALP HNG		1NC C1 MA WZ WZ 02 S20 S20 S21 S21 BB	3636320606
		ORY		000000000000000000000000000000000000000		008800000000000000000000000000000000000		00000		000000000000000000000000000000000000000	3632
.879 SEC.		TRAJECTORY		32378615 19703527 19703527 -80821825 32366292 32391626 .37242019		81145611 13502641 80821825 81145488 21350206 1459205 14592152 17089117		12322813 13899258 11964484 .27707041 12589577		E .13802279 .14657127 .25556839 .33613800 .29531872 .29531872 .255036748 .42650113	534 21 321
IN. 43				CE		L K A K A K A K A K A K A K A K A K A K		CEC LAT LNS SHA SVL		PASSAGECC ECC EA WY QY SYC SYL BY BY	547262 C 620402
4 7 8				999999999999999999999999999999999999999		000000000000000000000000000000000000000		04 004 01 03		1ER 04 01 00 00 00 00 00	215
S 15 FRS.	1		VTRIC	.14946C61 .37875594 .37875594 .122C9896 .14777792 .14777792 .15056074	CENTRIC	12194944 15064352 12205890 12195112 13460227 13356604 133560766	CCENTRIC	.16826918 .1738C906 .1738C897 15088572 .8996582C	CCENTRIC	CF PERICEN33436013121066625752814920354708904919227731521456	614744547542
2 CAY	CASE		GECCENT	S X X X X X X X X X X X X X X X X X X X	HEL I OC	SEPPORT XXX	SELENC	LT R R X HGETS	SELENC	# 0	6141

APPENDIX D

Tables related to trajectory printout

Table D-1. Ranger 4 trajectory key

CO!		N 1	2	3		4	5	6	
GROUP A		GME G	J A	H B		D C	RE OME	REM AU	
		GMM	GMS	GMV		GMA	GMB	GMJ	
	IN	JECTION CON			JULI	AN DATE		NTH DAY, YEAR	HR. MIN. SEC.
GROUP B		GEOCENTRIC CARTESIAN	хо	YO	ZO TO	DXC GHA		YO DZÓ HO	
		TIME PAST	INJECTION		JUL	AN DATE	МО	NTH DAY, YEAR	HR. MIN. SEC.
		GEOCENTRIC						EQUATORIAL COC	RDINATES
	6	X	Y	z		DX	DY	DZ	
GROUP C	7	R R	DEC LAT	RA LON		V VE	PTH PTE	AZ AZE	
SKOOF C	9	xs x	YS	ZS		DXS	DYS	DZS	
	1Ó	XM	YM	ZM		DXM	DYM	DZM	
	11	XT	YT	ΖŤ		DXT	DYT	DZT	
	12	RS	VS	RM		VM	RT	VT	
	13	GED	ALT	LOS		RAS	RAM	LOW	
	14	DUT	DT	DR		SHA	DES	DEM	
		GEOCENTRIC			CONIC	ORBITAL	B • T AND B • F	R EQUATORIAL	COORDINATES
		EPOCH OF PER	RICENTER PASSAGE		JUL	IAN DATE	MC	NTH DAY, YEAR	HR. MIN. SEC.
	15	SMA	ECC	INC		LAN	APF	RCA	
	16	VH	C3	C1		SLR	APO	TFP	
GROUP D		TA	EA	MA		DAO	RAO	MTA	
	18	WX	WY	WZ		PX	PY	PZ	
	19	QX	QY	QZ		RX	RY Ty	RZ Tz	
	20 21	SXO BX	SYO BY	SZO BZ		TX MX	MY	MZ	
		B•T	B•R	B		PER	OMD	NOD	
		HELIOCENTRIC						EQUATORIAL COC	RDINATES
	23	X	Υ	Z		DX	DY	DZ	
	24	R	LAT	LON		٧	PTH	AZ	
	25	XE	YE	ZE		DXE	DYE	DZE	
GROUP E	26	XT	YT	ZT		DXT	DYT	DZT	
	27	LTE	LOE	LTT		LOT	RST	VST	
	28	EPS	ESP	SEP		EPM	EMP	MEP	
	29	MPS	MSP	SMP		SEM	EMS	ESM	
	30 31	EPT SET	ETP STE	TEP Est		TPS RPM	TSP RPT	STP SPN	
	•	SELENOCENTR		201		K	K. 7	EQUATORIAL CO	OPDINATES
	32	X	Y	z		DX	DY	DZ	SKUIITATES
	33	Ř	DEC	RA.		Ŷ	PTH	AZ	
GROUP F		R	LAT	ron		√R	PTR	AZR	
	35	LTS	LNS	LTE		NE			
	36	ALT	SHA	ALP		DR	DP	ASD	
	37	HGE	SVL	HNG	;	SIA		_	
		SELENOCENTR	RIC		CONIC	ORBITAL	B . T AND B .	R EQUATORIAI	COORDINATES
			RICENTER PASSAGE		JULIAN	DATE	WC	NTH DAY, YEAR	HR. MIN. SEC.
		SMA	ECC	INC		AN	APF	RCA	
CDC!!	39	VH TA	C3	C1		SLR	APO	TFP	
GROUP G		TA	EA	MA		DA1	RAI	MTA P7	
	41 42	QX QX	WY	WZ		PX	PY	PZ RZ	
	43	SXO	QY SYO	QZ SZO	n	RX AO	RY RAO	KZ TF	
	44	SXI	SYI	SZI	υ.	TX	TY	TZ	
	45	BX	BY	BZ		ΜX	MY	MZ	
		B·T	B•R	В		PER			
GROUP H	47	XOCTAL	YOCTAL ZOCTAL	XOCTAL	YOCTAL	ZOCTAL			
			YY MM DDD HH			SOCTAL			

Table D-2. Ranger 4 trajectory key definitions

Gre	oup	Trajectory constant	Gr	oup	Trajectory constant
Group A Row 1	GME	Universal gravitational constant times the mass of Earth, km³/sec²	Row 6	X Y Z	Cartesian components of the probe radius vector, km
	J	Coefficient of the second harmonic in the Earth's potential function		DX DY DZ	Cartesian components of the probe space-fixed velocity vector, km/sec
	н	Coefficient of the third harmonic in the Earth's potential function	Row 7	R	Probe radius distance, km
	D	Coefficient of the fourth harmonic in the Earth's	, ROW/	DEC	Probe declination angle, deg
	RE	potential function		RA	Probe right Ascension angle, deg
	REM	Earth radius, km Conversion factor for converting lunar ephemerides		٧	Probe space-fixed velocity, km/sec
	KEM	into km, 1 e.r. = 6378.150 km		PTH	Pitch angle of the probe space-fixed velocity vector with respect to the local horizontal, deg
Row 2	G	Universal constant of gravitation, km³/kg sec²		AZ	Azimuth angle of the probe space-fixed velocity vector measured East of true North, deg
	A B	Moments of inertia about principal axis for the	Row 8ª	R	Probe radius distance, km
	Č	Moon, kg km²		LAT	Probe geocentric latitude, deg
	OME	Sidereal rotation rate of the Earth, deg/sec		LON	Probe East longitude, deg
	ΑU	Astronomical unit, km		VE	Probe Earth-fixed velocity, km/sec
				PTE	Pitch angle of the probe Earth-fixed velocity vector with respect to the local horizontal, deg
Row 3	GMM	Universal gravitational constant times the mass of Moon, km³/sec²		AZE	Azimuth angle of the probe Earth-fixed velocity vector measured East of true North, deg
	GMS GMV	Universal gravitational constant times the mass of Sun, km³/sec² Universal gravitational constant times the mass of	Row 9	XS YS	Cartesian components of the Sun radius vector, km
		Venus, km³/sec²		ZS DXS	
	GMA	Universal gravitational constant times the mass of Mars, km³/sec²		DYS DZS	Cartesian components of the Sun space-fixed velocity vector, km/sec
	GMB	Universal gravitational constant times the mass of Earth-Moon, km³/sec²	Row 10	XM	
	GMJ	Universal gravitational constant times the mass of Jupiter, km³/sec²		YM ZM	Cartesian components of the Moon radius vector, km
Group B		Injection conditions are vernal equinox cartesian		DXM DYM DZM	Cartesian components of the Moon space-fixed velocity vector, km/sec
		coordinates in a geocentric equatorial system. The principal direction (X) is the vernal equinox direction of date and the principal plane XY is the equatorial plane of date. Z is along	Row 11	XT YT ZT	Cartesian components of the target radius vector, km
Row 4		the direction of the Earth's spin axis of date.		DXT DYT DZT	Cartesian components of the target space-fixed velocity vector, km/sec
KOW 4	XO YO	Cartesian components of the probe radius vector, km	Row 12	RS	Sun radius distance, km
	ZO	105101, 1111		٧S	Sun space-fixed velocity, km/sec
	DXO DYO	Cartesian components of the probe space-fixed		RM	Moon radius distance, km
	DZO	velocity vector, km/sec		VM 27	Moon space-fixed velocity, km/sec
				RT ∨T	Target radius distance, km Target space-fixed velocity, km/sec
Row 5	то	Time of injection in seconds past midnight of day	<u> </u>		
	C114	before launch, sec	Row 13	GED ALT	Geodetic latitude of the probe, deg Altitude of the probe above the Earth's surface, km
	GHA GHO	HA of Greenwich at injection epoch, deg HA of Greenwich at midnight of day before		LOS	East longitude of the Sun in coordinate system defined in Row 8, deg
		launch, deg		RAS	Right ascension of the Sun, deg
				RAM	Right ascension of the Moon, deg
Group C		Inertial position and velocity of the probe, Sun, Moon and target body in a geocentric equa- torial system. The principal direction (X) is the		row	East longitude of the Moon in coordinate system defined in Row 8, deg
		vernal equinox direction of date and the principal plane XY is the equatorial plane of date. Z is along the direction of the Earth's spinaxis of date. Miscellaneous parameters are also included.	tem. The intersect The prin	e principo ion of the scipal pla	xed spherical coordinates in a geocentric equatorial system of the coordinates in a geocentric equatorial system existing a graph of the coordinate of the c

Table D-2 (Cont'd)

Group		Trajectory constant	Gro	up	Trajectory constant	
Row 14	DUT	Ephemeris time minus Universal Time, sec	Row 22	B•T	Projection_of the impact parameter $\mathbf{B}^{\mathtt{b}}$ upon the	
	DŦ	Adams-Moulton step size, sec			vector T, km	
	DR	Radial velocity of probe, km/sec		B•R	Projection of the impact parameter ${f B}^{ m b}$ upon the	
	SHA	Sun shadow parameter, km	İ		vector R, km	
	DES	Declination of the Sun, deg		В	The magnitude of the impact parameter, ^b km	
	DEM	Declination of the Moon, deg		PER	Period, min	
		2 4 months of the control of the con		OMD	Rate of change of argument of perigee, deg/day	
Group D		Characteristics of the Earth conic in the geocentric equatorial system described under Group B		NOD	Rate of change of RA of the ascending node, deg/day	
Row 15	SMA	Semi-major axis, km	Group E		Inertial position and velocity of the probe, Sun	
	ECC	Eccentricity	1		Moon, and target body in a heliocentric equa- torial system. The principal direction X is the	
	INC	Inclination of the orbit plane to the equatorial plane, deg			vernal equinox direction of date and the prin cipal plane XY is the equatorial plane of date	
	LAN	Longitude of the ascending node, deg	1		Z is along the direction of the Earth's spir	
	APF	Argument of pericenter, deg			axis of date. Miscellaneous parameters are also	
	RCA	Magnitude of the closest approach vector, km			included.	
Row 16	VH	Hyperbolic excess speed, km/sec	Row 23	X Y	Cartesian components of the probe radius vector,	
	C3	Twice the energy (vis viva energy integral,		T Z	km	
		km²/sec²)	-	DX		
	C1	Angular momentum, km²/sec	İ	DY	Cartesian components of the probe space-fixed	
	SLR	Semi-latus rectum, km		DZ	velocity vector, km/sec	
	APO	Apagee distance, km				
	TFP	Time from pericenter passage, sec	Row 24	R	Sun probe radius distance, km	
				LAT	Probe celestial declination, deg	
Row 17	TA	True anomaly, deg		LON	Probe celestial right ascension, deg	
	EA	Eccentric anomaly, deg		٧	Probe space-fixed velocity, km/sec	
	MA	Mean anomaly, deg		PTH	Pitch angle of the probe space-fixed velocity	
	DAO	Declination of the outgoing asymptote, b deg			vector with respect to the local horizontal, deg	
	RAO	Right ascension of the outgoing asymptote, b deg		ΑZ	Azimuth angle of the probe space-fixed velocity	
	MTA	Maximum true anomaly, deg			vector measured East of true North, deg	
Row 18		Components of a unit vector normal to the conic	Row 25		Cartesian components of the Earth radius vector,	
KOW 18	WY			YE Ze	km	
	wz	$\mathbf{W} = \frac{\mathbf{R} \times \mathbf{V}}{ \mathbf{R} \times \mathbf{V} }$	· ·	DXE		
		$ \mathbf{R} \times \mathbf{V} $		DYE	Cartesian components of the Earth-space-fixed	
	PX	Components of a unit vector in the direction of		DZE	velocity vector, km/sec	
	PY PZ	perigee	ļ			
			Row 26	XT	Cartesian components of the target radius vector	
Row 19	QX	Components of a unit vector perpendicular to the		YT	km	
	QY	perigee direction, vector P, and being in the		ZT		
	QZ	orbit plane $\mathbf{Q} = \mathbf{W} imes \mathbf{P}$		DXT DYT	Cartesian components of the target space-fixed	
	RX RY	Components of the unit vector R ^b		DZT	velocity vector, km/sec	
	RZ	components of the only vector at				
	• • •		Row 27	LTE	Celestial latitude of the Earth, deg	
Row 20	SXO SYO	Components of the unit vector $\mathbf{S_0}^{\mathbf{b}}$ along the direc-		LOE	Celestial longitude of the Earth, deg	
	SZO	tion of the outgoing asymptote		LTT	Celestial latitude of the target, deg	
	TX			LOT	Celestial longitude of the target, deg	
	ΤΫ́	Components of the unit vector Tb	'	RST	Sun-target range, km	
	TZ			VST	Sun-target velocity, km/sec	
Row 21	вх				Furth make Con and de-	
	BY	Components of the impact parameter \mathbf{B} , km	Row 28		Earth-probe-Sun angle, deg	
	BZ		- [ESP	Earth-Sun-probe angle, deg	
	ΜX	Components of a unit vector which lies in the	1	SEP	Sun-Earth-probe angle, deg	
	MY MZ	orbit plane and is normal to the radius vector R.		EPM	Earth—probe—Moon angle, deg	
	m4	$\mathbf{M} = \mathbf{W} \times \frac{\mathbf{R}}{ \mathbf{R} }$	Į.	EMP	Earth—Moon—probe angle, deg	
		R	1	MEP	Moon–Earth–probe angle, deg	

Table D-2 (Cont'd)

Moon—probe—Sun angle, deg Moon—Sun—probe angle, deg Sun—Moon—probe angle, deg Sun—Earth—Moon angle, deg Earth—Moon—Sun angle, deg Earth—Sun—Moon angle, deg Earth-Tope-target angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the Earth's spin axis of date.	Row 36 Row 37	LTS LNS LTE LNE ALT SHA ALP DR DP ASD HGE SYL HNG	Selenocentric latitude of the Sun, deg Selenocentric longitude of the Sun, deg Selenocentric latitude of the Earth, deg Selenocentric longitude of the Earth, deg Altitude of the probe above the Moon's surface, kn Sun shadow parameter, km Illuminated crescent orientation viewing angle, deg First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system,° deg Declination of the Moon in probe coordinate system,° deg
Sun-Moon-probe angle, deg Sun-Earth-Moon angle, deg Earth-Moon-Sun angle, deg Earth-Sun-Moon angle, deg Earth-sun-Moon angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe-Sun angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	LITE LINE ALT SHA ALP DR DP ASD HGE SYL	Selenocentric longitude of the Sun, deg Selenocentric latitude of the Earth, deg Selenocentric longitude of the Earth, deg Selenocentric longitude of the Earth, deg Altitude of the probe above the Moon's surface, kn Sun shadow parameter, km Illuminated crescent orientation viewing angle, der First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Sun-Moon-probe angle, deg Sun-Earth-Moon angle, deg Earth-Moon-Sun angle, deg Earth-Sun-Moon angle, deg Earth-sun-Moon angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe-Sun angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	ALT SHA ALP DR DP ASD	Selenocentric latitude of the Earth, deg Selenocentric longitude of the Earth, deg Altitude of the probe above the Moon's surface, kn Sun shadow parameter, km Illuminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Earth-Moon-Sun angle, deg Earth-Sun-Moon angle, deg Earth-probe-target angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	ALT SHA ALP DR DP ASD	Altitude of the probe above the Moon's surface, known shadow parameter, kmulluminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, deg Declination of the Moon in probe coordinate
Earth-Sun-Moon angle, deg Earth-probe-target angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	SHA ALP DR DP ASD HGE SVL	Altitude of the probe above the Moon's surface, known shadow parameter, km Illuminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Earth-Sun-Moon angle, deg Earth-probe-target angle, deg Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	SHA ALP DR DP ASD HGE SVL	Sun shadow parameter, km Illuminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system,c deg Declination of the Moon in probe coordinate
Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Row 37	SHA ALP DR DP ASD HGE SVL	Sun shadow parameter, km Illuminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system,c deg Declination of the Moon in probe coordinate
Earth-target-probe angle, deg Target-Earth-probe angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		ALP DR DP ASD HGE SVL	Illuminated crescent orientation viewing angle, de First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Target-Earth-probe angle, deg Target-probe-Sun angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		DR DP ASD HGE SVL	First time derivative of the probe radius distance, km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Target-probe-Sun angle, deg Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		DP ASD HGE SVL	km/sec First time derivative of the probe radius direction, deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Target-Sun-probe angle, deg Sun-target-probe angle, deg Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		ASD HGE SVL	deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Sun-target-probe angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		HGE SVL	deg/sec Angular semidiameter of Moon as seen from the probe, deg Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Sun-Earth-target angle, deg Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		HGE SVL	Right ascension of Earth in probe coordinate system, ^c deg Declination of the Moon in probe coordinate
Sun-target-Earth angle, deg Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		SVL	Right ascension of Earth in probe coordinate system,° deg Declination of the Moon in probe coordinate
Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		SVL	system, ^c deg Declination of the Moon in probe coordinate
Earth-Sun-target angle, deg Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the		SVL	system, ^c deg Declination of the Moon in probe coordinate
Moon probe radius distance, km Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G		Declination of the Moon in probe coordinate
Target probe radius distance, km Sun-probe-near limb of Earth angle, deg Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G		
Inertial position of probe in a selenocentric equatorial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G	HNG	j system, deg
torial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G		Right ascension of the Moon in probe coordinate system," deg
torial system. The principal direction X is the vernal equinox direction of date and the principal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G	SIA	Earth-probe-Moon angle minus ASD, deg
cipal plane XY is the geocentric equatorial plane of date. Z is along the direction of the	Group G		
corn a apin unia Ul UUIC.			Characteristics of the selenocentric conic in the geocentric equatorial system described under Group B except centered at the Moon
Selenocentric-fixed spherical coordinates of the	Row 38	SMA	Semimajor axis, km
probe, Sun and Earth in a selenocentric equa-		ECC	Eccentricity
torial system. The principal direction X is in the direction of the mean Moon-Earth line. The		INC	Inclination of the orbit plane to the equatorial plane, deg
principal plane XY is the mean selenocentric		LAN	Longitude of the ascending node, deg
equatorial plane. Z is along the direction of		APF	Argument of pericenter, deg
the Moon's mean spin axis. Miscellaneous pa- rameters are also included.		RCA	Magnitude of the closest approach vector, km
	Row 39	VH	Hyperbolic excess speed, km/sec
Cartesian components of the probe radius vector,	100 37	C3	Twice the energy (Vis viva energy integral,
•		CJ	km²/sec²)
Cartesian components of the probe velocity vector,		C1	Angular momentum, km²/sec
km/sec		SLR	Semi-latus rectum, km
		APO	Apogee distance, km
Probe radius distance, km		TFP	Time from pericenter passage, sec
Probe declination angle, deg			
Probe right ascension angle, deg			
Probe space-fixed velocity, km/sec	Row 40	TA	True anomaly, deg
Pitch angle of the probe space-fixed velocity vec-		EA	Eccentric anomaly, deg
tor with respect to the local horizontal, deg		MA	Mean anomaly, deg
Azimuth angle of the probe space-fixed velocity		DAI	Declination of the incoming asymptote, b deg
vector measured East of true North, deg		RAI	Right ascension of the incoming asymptote, b deg
		MIA	Maximum true anomaly, deg
·			
	Row 41	WX	Components of a unit vector normal to the conic
rrope selenocentric East longitude, deg			$\mathbf{w} = \frac{\mathbf{R} \times \mathbf{V}}{ \mathbf{R} \times \mathbf{V} }$
			$ \mathbf{R} \times \mathbf{V} $
Probe selenocentric-fixed velocity, km/sec		PY PZ	Components of a unit vector in the direction of perigee
Probe selenocentric-fixed velocity, km/sec Pitch angle of the probe selenocentric-fixed velocity vector with respect to the local horizontal, deg	ı	ndix A.	
	Probe radius distance, km Probe selenocentric latitude, deg Probe selenocentric East longitude, deg Probe selenocentric-fixed velocity, km/sec Pitch angle of the probe selenocentric-fixed velocity vector with respect to the local horizontal, deg	Probe radius distance, km Probe selenocentric latitude, deg Probe selenocentric East longitude, deg Probe selenocentric-fixed velocity westor with respect to the local horizontal, deg Azimuth angle of the probe selenocentric-fixed velocity vector measured East of the Moon's Row 41 Row 41 Row 41 For a selenocentric-fixed velocity vector measured East of the Moon's	Probe radius distance, km Probe selenocentric latitude, deg Probe selenocentric East longitude, deg Probe selenocentric-fixed velocity, km/sec Pitch angle of the probe selenocentric-fixed velocity vector with respect to the local horizontal, deg Azimuth angle of the probe selenocentric-fixed

Table D-2 (Cont'd)

Group		Trajectory constant	Gro	υp	Trajectory constant	
Row 42	QX QY QZ RX RY	Components of a unit vector perpendicular to the perigee direction, vector P , and being in the orbit plane $Q=W\times P$	Row 46	B•T B•R B PER	Projection of the impact parameter B^b upon the vector T , km Projection of the impact parameter B^b upon the vector R , km The magnitude of the impact parameter, km Period, min	
Row 43	SXO SYO SZO	Components of the unit vector S_0^{b} along the direction of the outgoing asymptote	Group H		Cartesian coordinates and epoch of injection conditions in the geocentric equatorial system described under Group B.	
	DAO RAO TF	Declination of the outgoing asymptote, ^b deg Right ascension of the outgoing asymptote, ^b deg	Row 47	XOCTAL YOCTAL ZOCTAL	Cartesian components of the probe radius vector at injection in octal representation, km	
		Time from injection to epoch of pericenter passage, hr		XOCTAL YOCTAL ZOCTAL	velocity vector at injection in octal representa-	
Row 44	SXI SYI SZI	SYI direction of the unit vector 5, dlong the direction of the incoming asymptote TX TY Components of the unit vector Tb		YY	Epoch of injection Years past 1900	
	TX TY TZ			MM DDD HH	Month Day of month Hours	
Row 45	BX BY BZ	Y Components of the impact parameter B , b km		TT SSSSS SOCTAL		
	MX MY MZ	Components of a unit vector which lies in the orbit plane and is normal to the radius vector ${f R}$ ${f M}={f W} imesrac{R}{ R }$			The time past midnight Greenwich Meridian Time on (DD), month (MM) and year (YY + 1900) at which the injection epoch occurs is the time determined by the sum of HH, TT, SSSSS, and SOCTAL.	
^b See appe	endix A.		^b See appe	andix A.		

Table D-3. Ranger 4 trajectory constants and conversion factors

Constants	Conversion factors	Constants	Conversion factors			
GM _{Sun}	$1.32715445 \times 10^{11} \mathrm{km}^3/\mathrm{sec}^2$	Moon moments of inertia about	$A = 0.88746 \times 10^{29} \mathrm{kg} \mathrm{km}^2$			
GMvenus	$3.247695 imes10^5\mathrm{km^3/sec^2}$	principal axis	$B = 0.88764 \times 10^{29} \text{kg km}^2$			
GM _{Earth}	$3.986032 imes 10^5 \mathrm{km}^3/\mathrm{sec}^2$		$C = 0.88801 \times 10^{29} \text{kg km}^2$			
GMEarth-Moon	4.03503 × 10 ⁵ km ³ /sec ²	Lunar and solar ephemerides	The Moon and Sun positions are			
GM _{Moon}	$4.900759 \times 10^3 \mathrm{km}^3/\mathrm{sec}^2$	i i	obtained from the joint JPL-STL			
GM _{Mars}	$4.297780 imes 10^4 \mathrm{km}^3/\mathrm{sec}^2$		ephemerides. For purposes of converting into kilometers, the			
GM _{Jupiter}	1.267106 × 10 ⁸ km ² /sec ²		conversion factors are:			
M _{Sun} /M _{Venus}	408645		1 AU = 1.495990 × 10 ⁸ km			
M _{Sun} /M _{Earth}	332951.3	Geometrical Earth model, used in	1 e.r. = 6378.165 km			
MEarth/MMoon	81.335	locating tracking and launching	Clarke spheroid of 1866 a = 6378.2064 km			
M _{Sun} /M _{Earth-Moon}	328908	facilities upon the Earth	b = 6356.5838 km			
M _{Sun} /M _{Mars}	3,088,000		$e^2 = 0.006768657997291$			
M _{Sun} /M _{Jupiter}	1047.39	Earth potential function:				
Equatorial radius of Earth	6378.165 km	GM _E	$3 \sin^2 \phi) + \frac{H}{5} \frac{R_E^3}{R^3} (3 - 5 \sin^2 \phi) (\sin \phi)$			
1 AU	1.495990 × 10 ⁸ km	$\Phi(R,\phi) = \frac{1}{R} \left[1 + \frac{3R^2}{3R^2} (1-3s) \right]$				
Ellipticity of Earth	1/298.3	D R t 2 - 3	0 5:-2 4 + 25 ::-4 ()			
Conversion from feet to meters	0.3048	$+ \frac{D}{35} \frac{R_{\pm}^{4}}{R^{1}} (3 - 30 \sin^{2} \phi + 35 \sin^{4} \phi)$				
Atmospheric model	1959 ARDC	where				
Sidereal rotation rate of Earth	$4.1780742 \times 10^{-3} \text{deg/sec}$	$ extsf{R} = extsf{geocentric}$ distance $\phi = extsf{geocentric}$ latitude				
Universal constant of gravitation	$6.671 \times 10^{-20} \mathrm{km^3/kg sec^2}$	$J = 1.62345 \times 10^{-3}$				
Speed of light	2.997925 × 10 ⁵ km/sec	$H = -0.575 \times 10^{-5}$				
Mean Moon radius	1738.09 km	$D = 0.7875 \times 10^{-5}$				

ACKNOWLEDGMENTS

The analyses presented in this Report represent the work of many people besides the authors. Section VI-A, B has illustrated the nearly complete dependence of the flight path analysis upon several complex digital computer programs. The steps in the development of such computing programs include the formulation of the physical and mathematical models of the processes, input and output requirements, programming and coding, checkout, continual modification and verification, and development and execution of in-flight operational procedures.

The development of the digital computer programs is a joint responsibility of the Systems Analysis Section (312) and the Computer Applications and Data Systems Section (372) at the Jet Propulsion Laboratory. While these responsibilities often considerably overlap, Section 372's responsibility includes programming the numerical analysis aspects, while Section 312 is responsible for the physical models, specification of operational output, inflight control, and overall coordination.

JPL's basic trajectory program has been developed almost completely by D. B. Holdridge of Section 372. His work includes the physical model as well as the programming. Additional contributors are acknowledged in Ref. 2.

The Ranger 4 Orbit Determination Program (ODP) represents a continuous modification of the program orig-

inally developed by R. H. Hudson and R. E. Carr of JPL (Ref. 11) for the *Pioneer IV*.

K. Oslund and R. H. Hudson of Section 372 and M. S. Johnson and T. W. Hamilton of Section 312 are responsible for initiation and execution of the improvements which have been made continually throughout the *Ranger* series of flights.

The Tracking Data Editing Program represents the work of M. S. Johnson (312) and J. H. Brown (372).

The very broad interface with the DSIF has involved the Communications Engineering and Operations Section (332) and Section 312 in joint efforts, including the noise models, calibration of antennas, physical and mathematical models of the systems used, accuracy requirements, data format and condition coding, prediction and acquisition information. Primary contributions in these areas have been made by J. P. Fearey, C. W. Johnson, and D. D. Meyer of Section 332 and D. L. Cain, M. S. Johnson, O. Asderian, J. Reuyl, and T. W. Hamilton of Section 312.

Additional contributions to the analysis and programming were made by various members of Section 312, 372, and 332, O. Asderian, D. L. Cain, H. Lass, C. B. Solloway, C. L. Thomas, V. C. Clarke, F. L. Barnes, W. L. Sjogren of 312, C. A. Seafeldt, and R. E. Holzman of 372. The authors regret that the above list is not complete and extend their appreciation to all other contributors.

REFERENCES

- NASA/AGENA-B Ranger Program Launch Report for Atlas 133D/Agena-B 10205-6004 Ranger Spacecraft RA-4, Lockheed Missiles and Space Company, Space Systems, AMFTC Test Operations, Control No. AF 04(647)-592, LMSC-271596 (CONFIDENTIAL).
- Holdridge, D. B., Space Trajectories Program for the IBM 7090 Computer, Technical Report No. 32-223, Jet Propulsion Laboratory, Pasadena, March 2, 1962.
- Post-Launch Nominal Trajectory-Ranger IV First Month, Vol. IV, 8990-6003-0C004, Space Technology Laboratories, Inc., Redondo Beach, Calif., April 25, 1962 (CONFIDENTIAL).
- Space Technology Laboratories, Inc., A Dynamical Determination of the Astronomical Unit by Least Squares Fit of the Orbit of Pioneer V, by J. B. McGuire and L. Wong, STL Report 2301-0004-RV-000, Space Technology Laboratories, Inc., Redondo Beach, Calif., May 15, 1961.
- Jet Propulsion Laboratory, Capability of the DSIF for Lunar Missions of Project Ranger—1961 through Mid-1963, External Publication Document 48 (Rev. 1), Jet Propulsion Laboratory, Pasadena, April 20, 1962.
- Jet Propulsion Laboratory, Ranger 4 Tracking Information Memorandum 332-4, External Publication Document 63, Jet Propulsion Laboratory, Pasadena, March 26, 1962.
- Clarke, V. C. Jr., Constants and Related Data Used in Trajectory Calculations at the Jet Propulsion Laboratory, Technical Report No. 32-273, Jet Propulsion Laboratory, Pasadena, May 1, 1962.
- Noton, A. R. M., E. Cutting, and F. L. Barnes, Analysis of Radio-Command Midcourse Guidance, Technical Report No. 32-28, Jet Propulsion Laboratory, Pasadena, September 8, 1960.
- Magness, T. A., and J. B. McGuire, "Comparison of Least Squares and Minimum Variance Estimates of Regression Parameters," The Annuals of Mathematical Statistics, Vol. 33, No. 2, June 1962.
- Kizner, W., A Method of Describing Miss Distances for Lunar and Interplanetary Trajectories, External Publication No. 674, Jet Propulsion Laboratory, Pasadena, August 1, 1959.
- Carr, R. E., and R. H. Hudson, Tracking and Orbit-Determination Program of the Jet Propulsion Laboratory, Technical Report No. 32-7, Jet Propulsion Laboratory, Pasadena, February 22, 1960.