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by 
Karl Stumpff 
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SUMMARY 

A short  report  is presented on a method for  calculating un- 
disturbed ephemerides (coordinates of location and velocity) of a 
planet o r  a comet when its initial time values a r e  given. Thus far 
this method has  been available only in German language publica- 
tions. The orbital elements need not be known for this method, 
which is applicable without formal variations for  all types of or -  
bits. In particular, the singularity of classical methods is avoided 
by the transfer f rom elliptical to hyperbolic orbits. In place of 
Kepler's equation, a transcendent main equation appears which is 
valid for  all types of orbits and becomes rational for  circular 
and parabolic orbits. The formulas for  the calculation of location 
and velocity coordinates a r e  simple and especially well suited 
for  electronic computers. The optimal a rea  for  application (small 
and medium intermediate times) coincides with the requirements 
for  orbit determination, orbit correction, and the calculation of 
special perturbations. 
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CALCULATION OF EPHEMERIDES FROM INITIAL VALUES 

by 
Karl Stumpff* 

Goddard Space Flight Center 

THE PROBLEM 

The undisturbed orbit of a celestial body orbiting around the sun is definitely deter- 
mined if the coordinates of its location and velocity are given in relation to the sun. From 
these six quantities, x0, yo ,  z0, io,  Go, io - the local elementst of the orbit - the six clas- 
sical  orbital elements, i ,  a, W, a, e ,  T, can be derived. And then x, . , can be computed 
for any other given time t with the help of the orbital elements. This process requires the 
solution of the transcendental Kepler equation for every t if the orbit is an ellipse with a 
relatively small eccentricity. For parabolas, near-parabolic ellipses and hyperbolas, as 
well as for greatly eccentric hyperbolas ( e  >> I), other relationships occur in place of the 
Kepler equation, so  that very different computational processes must be used for these 
orbits. 

The possibility of arriving at  a solution without using the classical orbit elements and 
without variations owing to individual case differences is indicated by the Taylor develop- 
ment of coordinates; for  instance 

where 7 = k (t - to) denotes the "intermediate time" expressed in units of l/k = 58d13244, 
and the higher derivatives co, xo, - 0 .  , valid for to, can be derived from the equations of 
motion 

But these formulas which are independent of orbit shape are only sufficiently convergent 
for  small  intermediate times 7 ,  and thus are utilized only occasionally for first orbit 

"AS-NASA Research Associate; Professor Emeritus, Gottingen University. 
?The local elements of the orbit are so  named because their values depend upon the location of the orbit. 
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determination. The method described herein shows that it is also possible to  develop ex- 
act closed formulas where the coordinates x ( r )  - - .  2 ( r )  can be represented directly as 
functions of the local elements and an intermediate t ime of any given length, r . 

THE LOCAL INVARIABLES 

Two-body motion occurs in a plane given by the two 
vectors po (x,, y o ,  z,) , po (k, , $, , 2,) , which define the lo- 
cation and velocity of the planet at the time t,. With the 

p ( r )  

, 

Po 

exception of the situation wherein po and io are coinci- 
dental o r  oriented opposite to one another (and this case, 
which indicates straight-line motion either directly toward 
o r  away from the sun, shall be discounted). Since p ( 7 )  , 
and also p ( r )  , can be broken down into components ac- 
cording to  the directions po and P o ,  we have 

r O  

Figure 1-Geometric repre- 
sen tat i on of two-bod y motion 

p ( 7 )  = poF + poG, p ( r )  = poF + poG , (3) 

where F and G are functions of the local elements and the intermediate time T .  

Further, it is clear that the relative locations of the vector p ( 7 )  and the scalar  
quantities F and G for any given value of r ,  depend only upon the geometric character- 
ist ics of Figure 1, defined by po and Po - in other words, by the values r, or  V, of these 
vectors and the angle 6 between them - and not upon the orientation of this figure in an 
area, or space, coordinate system. From this, however, it follows that F and G contain 
the local elements only in such form as 

(POPO) = P I ,  = 2 =  xf + y,' + z ,  0 ,  

xoXo+ yo$,  + zoio = (popo) = p12 = rev, cos6  , 

2,' + $; + io' = (popo) = p,, = v; , 

1 
I 

which we call local invariables, because they are independent of the coordinate system 
selected, although they vary from point to point of the orbit. In actuality, if we set 

- _  1 -  
r 3  

then, according to  Equation 2, 

(5) 
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and we find that, in the development of Equation 1, all higher derivations of x can be rep- 
resented linearly through x and i ,  with coefficients which a r e  dependent only upon p ,  ;, 
p ... 

Again, these quantities can be expressed through the invariables (Equation 4) as can 
be demonstrated easily through step by s tep differentiation of Equation 5. We introduce 
the quantities 

as the fundamental invariables. By differentiating them and substituting - p x ,  - p  z for 
x, . . i', we find the relations: .. 

and also 

etc. 

Thus, all derivations of p (or r),  U ,  u are themselves functions of these quantities. It fol- 
lows that F and G a r e  functions of the intermediate time T and of po, u0,  wo, if these are the 
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values of the invariables for t = t o  ( T = 0 ) .  Finally, from Equation 1 (when Equations 6 
and 9 are introduced, we see that P and o always occur in connection with T ~ ,  and that u al- 
ways occurs in connection with 7, and that F and ( 1 h ) G  can be written as power series of 
p o ~ 2  , m o r ,  and ~ ~ 7 ~ .  

However, experience has shown that it is advantageous to introduce, in addition to 
Equation 7, other complex invariables such as 

which have a special meaning in two-body motion, and can replace one o r  the other of the 
invariables (Equation 7) if  necessary. The derivatives of Equation 10 a r e  

In particular, by the elimination of m from i = ru? ,6 = - 2pa, 9 = -49u, we obtain 

whose integration yield the integrals of energy and areas:  

(12) 1 
r 2 p  = constant = - ,  and r49 = constant = p = a(I - e’) . 

It follows f rom this that the quantity p serves as a criterion for the orbit shape, since 
p>Ofor  ellipses (a>O), P = Ofor parabolas (a = a )  and p<Ofor  hyperbolas ( a < O ) .  

All geometric quantities of a conic-section orbit can be expressed in more o r  less  
simple form by means of the invariables (Equations 7 and 10); f o r  example, we readily 
find that 

e cosv - - -  - a 1 ;  P e cosE r -  1 - 2  - 
E - .  
P ’  
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Finally, we obtain 

.. r = r(E-Oz) , 

... 1 

f rom which, by the elimination of o and E  TU^, there follows 

. .. . ... r r  r 
r + 3 - + -  = 0 .  

r3  

i (14) 

INTRODUCTION OF A NEW INDEPENDENT VARIABLE 

In order to integrate Equation 15, we introduce a new variable q in place of the time 7 : 

For the initial epoch T = 0, and also q = 0 ;  since 1/r is essentially positive as long as r 

remains finite, q increases proportionally in the same sense as T ,  so  that q(7)represents  
a definitely reversible function. Therefore, if we set* 

7 
r ' r "  r ' 3  r 'I' r ' r "  r r 3  

r 3  r4  r5 
i 3 +  = - -  4- + 3 -  9 

... r - - ( 5 - 4 7  

then Equation 15 becomes 

*Derivations with respect to q are indicated by primes. 
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However, 

thus a2 .= ( l ' - r ' ' ) / r  is constant and Equation 17 assumes the simple form 

whose complete integral, with three constants a, b ,  c is, in closed form, 

7 r = a t b c o s a q  t c s i n a q  (for a2 > 0) , 

J r = a t b  cosh Pq t c s i n h h  (for - ~2 = a2 < 0) , 

The integrals (Equation 19) still contain the case variations of the classic two-body theory. 
Our requirements for  formulas applicable without difference to all orbit shapes can be 
satisfied by utilizing the following expedient: 

The differential Equation 18 has the particular integral 

r = cos aq . 

By continued integration with respect to q ,  a 

cn = 1 [ - - *  

series of auxiliary functions are obtained: 

The beginning of this series of auxiliary functions (which we shall term c-functions) is: 

By setting h = aq, we can also write the c-functions in the form of the constantly con- 
vergent power series 



7 

For  this there applies the differential relationship 

d q (.,+, q"+l) = cnqn 

and the recurrence formula 

Now we can write r ( q  1 as a Taylor series: 

1 1 
r ( q )  = ro  t ro' q + r,.,"q2 t 3 r'" q3 t , 

or ,  by substituting Equation 24 for the reciprocal factorials 

If we again substitute hZ = a2q2 and arrange the preceding equation according to powers of 
q ,  we obtain 

in which all t e rms  of third and higher orders  disappear because of Equation 18. 

We now have the closed expression 

r ( q )  = ro t c l r o ' q  t c2ro"q2 

But now, because of Equations 12, 14, and 16, 
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we obtain 

as the argument of the c-functions. The closed expression of Equation 25 can now be 
written 

where cn = cn [p, (roq)z] . 

Finally, if we set 

and, in place of q, introduce the variable 

- roq 
z - -  7 '  

we obtain, instead of Equation 26: 

r = r o  (I + c l  T ,  z + c 2  5 , ~ ' )  , 

where cn = cn (xozz) ; o r  

r = r o  (c, + C ~ T ,  z + c 2  E, 2') , 

where c ,  = 1 - c 2 x 0 z 2  and 2, = E ,  - 5 , .  

THE MAIN EQUATION 

To clarify the relationship between z and T ,  consider that 

d7 = r dq = r, (1 + c l q  * r o c o  + c 2 q 2  * r: 6,) dq 

Upon integrating and setting 
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1 = z -k c 2  qoz2 + c3  5, z 3; for cn = cn(Xoz2)  . 

according to Equation 23, Equation 30 becomes 

(314  

r .= roq  + c2r,, '-uoq2 + c3r: coq3 . 

If we divide this by T and substitute z (Equation 28), w e  finally obtain 

1 = z + c2 U 0 T Z 2  i c3 E o  7 2 2 3  

o r  

I 

If we add 0 = z c1 + c 3 x 0 z 2  - 1) to the above equation, where x o  = 5, - C,, it can also be 
written: 

( 

(31b) 1 = c1 z + c2 q o z 2  + c3  go z 3  , 

This transcendental equation represents the Kepler equation as developed here and 
the analogous equations for parabolic and hyperbolic motion. The Equations 29 and 31 are 
valid for all forms of orbits: in hyperbolic motion, the argument of the c-functions becomes 
negative, since p, and x0 = p,r2 become negative, but the functions themselves remain 
real .  In the case of the parabola, the cn a r e  approaching their constant te rm b'n!; thus 
X 2  = x 0 z 2  becomes zero; and the main equation becomes a rational third degree equation: 

(32) 
1 1 

1 = z + 3 q 0 z 2  i - 5  6 0  2 3  . 

For  circular orbits ( e  = 01, 0, = E, = 0 from Equation 13, and q o  = 5, 
Equation 31 has the trivial form z = 1. 

0; therefore 

Equation 31a, termed the main equation of the two-body problem, can also be developed 
directly f rom the Kepler equation. If we write to and t for  two times, 

and 

t o  - T 
E, - e s i n E ,  = M, = k- 

P 



10 

where T is the time of passage through the perihelion, and then set  A = E -E,, the differ- 
ence of both equations is 

A - e [sin (Eo + A )  - sinE,] = - T 9 

P 
o r  

T (1 - e  cosE,) sinA + e s i n E o ( l  -cos A )  + ( k - s i n h )  = - - 
P 

By substituting in the foregoing the expressions of Equation 13 for  e cosE, , e s inE, ,  

.-3/2, and the c-functions 

c1 (A2) = s i n  A/A, c2 (A') = (1  -cos A)/A2, and c3 (A2) = ( A  - sin A)/A3 , 

we obtain 

I€ we then divide through by t e rm on the right side and put 

we obtain the main equation in the form of Equation 31. The quantity A = &E, = ZT p, , 
introduced in the argument of the c-functions, is real only for positive p, o r  for elliptical 
orbits, and is identical with A = aq (which we used in the previous section) since 
u = l / ~  = r0& and A = roqflo = zrf i , f rom Equation 28. 

From z = (r0/r)  q and q = dr/r it follows that 

or ,  if we set 

that 

r = r,A = r, (1 f C 1  T,Z+ c2 5, z') , (33) 

(34) 
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Therefore z is the mean value fo r  l/A = ro/r over the time interval (0, 7 )  and is always 
a positive quantity. For  circular orbits r = ro ,  and therefore A = 1 f rom Equation 33 and 
z = 1 from Equation 34, which values we could also ascertain f rom the main equation. 

The form of the main equation valid for parabolic orbits (Equation 32) can be derived 
from the well known cubic equation for the tangent of the half true anomaly, which replaces 
the Kepler equation for e = 1: 

v 1  V t - T  , tan 7 + 3 tan3 3 = 2k ___ 
fl 

where p = the parameter of the parabola. By subtracting 

vo 1 v O  t o  - T 
tan 7 + -  tan3 2 = 2k -~ 

@ 3 

(for t = t o )  from the above equation and by letting 

A =  
V v O  

t a n 3  - tan 2 , 

v v o  
B = 1 f tan 1 tan 2 7 

we obtain the relation 

Since, from Equation 13, 

we deduce as a solution of this quadratic equation 

] (35) 

- 79 f Jp2 - 0 (2p - 79 - d,] V 
tan = __ co 
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According to Equation 10, 

but in the case of the parabola p = 0, either 

or 

Here the first of these solutions applies,  since.^ and v disappear in the perihelion. 

NOW, from Equation 16 r '  = dr/dq = r2u,r" = ~ J E ;  and from Equation 25 

= 
r; (couo + cIeOz7)  . 

Therefore in the case of the parabola (co = c 1  = 1, p = p - E = 0) , we have 

Furthermore r49 = r:90 from Equation 12, thus 

Since 
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and 

we find from Equation 35 that 

Now, because P = 0 ,  we may set 

u 2 + a0 = 2p0 
0 

Equation 36 then has the form 

or 

where we let .go = p 0 4 ,  q0 = o0r according to Equation 27. This equation is identical with 
Equation 32; however, 

so that 

and therefore the right side of Equation 37 equals unity. Furthermore, for parabolas, 
po = e o ;  thus 5, = 5 , .  
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F AND G AS FUNCTIONS OF T 

If, with the help of the main equation, z has been determined as a function of T and of 
the local invariables of the initial epoch, the quantities F and G as well as their derivatives 
i! and G can be expressed easily as functions of Z. If in the vectorial differential equation 

.. 
P = -PP 

we set  

.. .. - P = p0F + PoG , p - p o i  + poG 

in the manner of Equation 3, there follows that the identity 

.. 
p, (F  + pF) + p,CG + 4) = 0 

is fulfilled only if 

.. .. 
F + p F  = 0 ,  C + @  = 0 .  

If a new variable q is introduced (with ;1 = l / r  as above), we then have 

F' F = F ' i  = - 
r '  

F. F" FIo 
F = - - -  

r 2  r ' 

] (39) 

since i. = ru; and we obtain 

instead of Equation 38. If we differentiate the above equation again with respect to q, we 
obtain 
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or ,  since 

1 = r3p , 

rF"' + r 3 ( p - e ) F '  = r(F"' + r2pF') = 0 . 

But r2p = a2 is constant; thus 

F"' + aZF' = 0 , 

and 

which means that the same differential equation will  suffice for  F( q) and G( q )  as for r (  q) . 
Therefore, since exactly the same operations can be used on these two functions as on 
r ( q )  in Equation 25, we have 

Now from 

it follows that, for T = 0 ,  

F, = 1, F, = 0 ;  

Go = 0, Go = 1 . 
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Also from Equation 38, 

Go = - p o G o  = 0 . 

If we put 

F,’ = ro  F, = 0 ,  

Go‘ = roG, = ro  , 

.. 
G,,” = r t  Go + ‘,ao = r l u ,  

(obtained from Equation 39) into Equation 40, we obtain 

and 

Differentiating with respect to q and regarding Equation 23, we have 

By substituting r,q = z r ,  5, = p o r 2 ,  and 7, = cor into the above equation, we have: 

F = 1 - c 2  c o z 2  , 

G = z r (c l  + c 2  7,z)  = ~ ( 1  -c3 6, z3) 



because of Equation 31b; and 

b 
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1 - F  = I - -  c, t c1 7, z A - c 2  e, z 2  1 
G = T G ’  =a - A A 

because of Equation 29b. 

SOLUTION OF THE MAIN EQUATION 

With the formulas of Equations 41 and 42, the problem of calculating the ephemerides 
from given initial values is led back to the solution of the main equation. As was previ- 
ously mentioned, this equation is rational for  two cases: (1) the circular orbit, where it 
has the trivial form z = 1; and (2) the parabolic orbit, where it takes the form of a cubic 
equation. In all other cases the main equation is transcendental with the outer form of a 
cubic equation whose coefficients a r e  only slightly dependent upon the unknown z . If the 
intermediate time 7 is not overly large-and this either is never the case in prac- 
tical applications, o r  it can be easily avoided - the equation can always be solved by means 
of a rapidly converging iteration process if a suitable approximate solution z = zo is avail- 
able. For  slightly eccentric orbits, but also for  orbits of any given eccentricity, if the in- 
termediate time 7 is short, success is always possible with z o  = 1, and for near-parabolic 
ellipses or  hyperbolas with Z, as the solution of the cubic equation (Equation 32). 

For  the iteration, the Newton approximation method is preferable; Le., we t ry  to find 
the zero of the function 

H ( z )  = z t c2 7,z2 t c3t0z3 - 1 .  

For  z = zo , H ( z,) is a small  quantity. Now from Equation 23, 

if we se t  q = z7/ro and indicate that here T represents a constant which is also contained 
in 7, and 5,. Thus, by differentiation with respect to z ,  we obtain 
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Therefore, if z 1  = z0 + 6z is an improved value of the unknown, 

H ( Z 1 )  = H k o )  + 6z A(ZO)  + R O  

and 

The versatile properties of the c-functions also make it possible to transform the 
Taylor series 

1 
0 = H(Zo)  t 6z H'(zo)  + 2  ( 6 ~ ) ~  * H " ( t o )  + 

(in which the derivatives with respect to z a r e  indicated by primes) into a closed expres- 
sion. I€ we set 

whereP is constant, and if we consider that 

d3A dA 
(a' = Po r;) dq3+a2x = O 

follows from Equation 18 and from A = r/ro , we can also set  

and 

Therefore 
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where (aJp 12 = p 0 r 2  = x,. Furthermore since H' = A ,  

Hiv t X o H "  = 0 . 

Now if we develop H( 21 around the small  approximative value €I( z,). = H, into a Taylor 
se r ies  

we can then apply the method used for r ( q )  and, by introducing the c-functions 

and eliminating the reciprocal factorials by the recurrence formula (Equation 24), we ob- 
tain the rigid expression: 

But, if the index 0 in all cases denotes the fact that the respective quantity for  z = Z, is to 
be taken, 

H,' = A, 

By inserting these values into Equation 44, we can use  the approximation of Equation 43 
for the calculation of the small  factors ( S z I 2  and ( 8 d 3 .  This also applies for  c2  andc, 
in a still greater degree; since the argument x0( 6zI2 is very small, c2  = 1/2 and c, = 1/15 

could always be used. 
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If the orbit is a parabola, z will be a solution of the cubic equation (Equation 32): 

where a = q 0 / 2  and b = c016. If we introduce u = z - d 3 b  in place of the unknown Z, 

where 

- 3b - a 2  
a - - *  

3b2 

27 b2 - 2a3 + g a b  

27b3 
P =  

Now the only real solution of the above equation is given by the Cardanic formula 

because 3b - a2 = 1/4 (2C0 - q:) = r 2 / 4  (2eo - p:) and since the discriminant (P/2)2 t ( C L / ~ ) ~  

is always positive, for  the parabola ( p  = 0 )  , w = 2p = 2~ ; therefore 2~ - u2 = w - u2 = 8= p/r4. 

This quantity is always positive since the orbital parameter is positive (except for the case 
of the straight-line orbit, where p = 0). Therefore a > 0 .  

If we set  

then 
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On the other hand, 

p = 2 -  1 - x2 (8)3 , 
X2 

and therefore 

& = (1 -x2) (gJ3 , 

which is inserted into Equation 45 to yield 

- P 3 m  
m2 a l + m +  

u - -  

with 

This solution process can also be used for near-parabolic orbits (it is immaterial 
whether they a r e  elliptical or  hyperbolic). If A = 2c2qO,  B = 6 c 3 I 0 ,  f = 2B - A’, 

g = 3 B ( A  + B )  - A 3 ,  then the main equation is solved by using the equations: 
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Here the integration will start with A = 7,) B = 5 6 ,  since 2c2 and 6c3 only vary slightly 
from 1; and c2 and c3 a r e  determined anew with the argument x0z2 in second approximation. 

CALCULATION OF AN EPHEMERIS FROM INITIAL VALUES 

The ephemerides of the coordinates of location and velocity of a celestial body moving 
in an undisturbed conic section orbit around the sun can be calculated easily f rom given 
initial values (x, , Y, , 2,) and (io , c,, io) by the following method which is suitable for 
electronic computers. 

Given Quantities 

The given quantities are: x,, y o ,  z,; Go,  $,, 2,; r = k (t - to)  , where k = 0.0172021. If 
an ephemeris is to be calculated for  equally spaced t imes t, = to +no, where w = table in- 
terval in days, n = 0, 1, 2, , then the i n t e r m e d i a t e  times are r = n k w  

(unit l/k = 58d*13244). 

lnvariables 

The invariables are: 

r0'5, = xoG0 + yo$, + zoi, ; 

From these, r , ,  c,, wo are calculated, then 

1 - _  Po - 3 ' € 0  = o o - P o  9 P o  = P o - € , ,  
r O  

Solution of the Main Equation 

The main equation for  the transfer from to to t ,  with 7 = k ( t ,  - to) is 

H = z t c2qoz2 + c3 5,z3 - 1 = 0. 

- 
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Beginning with z = z0 (see the comments on page 24), we calculate: 

c 1  = 1 - h 2 c 3  ; 

This computation i s  repeated until the values of z,, zl, zP7 - * no longer change. 

Coordinates for t = t l  

Let z ,  h2 ,  c1, cZ, c3, A be the values from the last iteration for  which^ = 0 i s  ful- 
filled. We then form: 

1 - F  = cZ c ,z2  ; 

G = ~ ( i  - c3 ~ ~ 2 3 )  ; 
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The appropriate formulas apply for  y,, z,;Y,, 2,. 
. .  

Controls 

Once we have calculated the invariables p l ,  C, , w,, - with the new coordinates 
(x,, y,, zl;  i , ,  5 , ) ’  then the integral relations 

w - 0 . 2  
0 

w 1  - 0 . 2  = 
A: 

1 

must be fulfilled. 

COMMENTS 

In computing an equidistant ephemeris, we have two possibilities: (1) after the f i rs t  
step has yielded the coordinates xl, yl, zl; G l ,  $1, I,, we use  these elements as initial 
values and t l  as the initial time in the second step. The computation then yields 
x2, I,; the procedure is continued, always with the same intermediate time I-. (2) We 
use the same initial values (xo, 
of steps with increasing intermediate times. 

io) and their derived invariables for a larger  selection 

Each method has advantages and disadvantages. In the f i rs t ,  since I- is always small, 
the iteration for the solution of the main equation can usually be begun with z0 = 1 and it 
converges rapidly. A disadvantage, however, is that the rounding-off e r ro r s  in the ser ies  

= xo + (x, - x o )  7 x2 = xo + (x, -xo) + ( x 2  -x,), * * *  x1 

accumulate rapidly. Also, every step requires the computation of the velocities (which 
a r e  usually not used in practice), and the invariables. The second method does not have 
these disadvantages: T becomes larger  for each step; yet the main equation can be solved 
easily, even if z = 1 does not suffice as the initial hypothesis. In this case we can always 
begin with the z which appeared as a solution of the main equation in the last  step. Thus 

if z,, z,, z3, - . *  zn 
t l  , t,, t 3  . . . t n  , the determination of zn is begun with z = zn- ,, and that of z 1  with 

a r e  the solutions of the main equations for the transfer from t o  to 

z o = l .  
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Therefore the second method is generally preferred since it is time-saving and more 
exact. Nevertheless, f rom time to time, depending upon the size of the table interval se- 
lected - perhaps after every fifth o r  tenth o r  fifteenth step - we will transfer to new initial 
elements so that T and 6, v, 5 ,  do not become too large. A s  long as x = ,m2 is of moder- 
ate magnitude, the power ser ies  for  the c-functions converge fair ly  rapidly. For  program- 
ming in electronic computers, the following expression is recommended: 

which allows the automatic computation from within, where the number of terms in the 
brackets depends upon the magnitude of X2. For  large values of X2 this method converges 
too slowly; and the trigonometric form, which is not well suited for electronic computa- 
tion, can be used: 

This unsuitability is the principal reason for not allowing the intermediate time to in- 
crease too rapidly. 

The major a reas  for application of the methods described above are:  (1) the improve- 
ment of an orbit which originally w a s  determined using the Laplacian method; and (2) the 
computation of special perturbations. In the former application, the f i r s t  orbit determina- 
tion a lways  yields the local elements for a given time t o .  The improvement of these ele- 
ments by the use of actual observations, which can be spread out over a long period of 
time, necessitates the calculation of the coordinates at these times for correlation with 
the observations in question. 

To apply the method to the special perturbations of the right-angle coordinates of a 
planet or  of a comet, ephemerides of the undisturbed orbit of the celestial body a re  re- 
quired, which can be readily calculated by means of the above method. As far as the co- 
ordinates of the perturbing planets a r e  concerned, these values were taken from the year- 
books for  the times of the calculation, which - ia ld  be unsuitable for electronic computation. 
In this case it would be better to use the abwe  method, by computing (beginning with loca- 
tion and velocity coordinates of the perturbing planet a t  the initial epoch) an undisturbed 
ephemeris (osculating orbit) of the planet which is sufficiently exact for  determining the 
perturbations. The latter method has been utilized in Germany with good results. 
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