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ON THE BUCKLING OF THIN ELASTIC SHELLS

By Ellis Harold Dill

University of Washington

SUMMARY

The differential equations which must be solved to pre-

dict the buckling load are reviewed. The different possible

physical interpretations of these equations are discussed.

INTRODUCTION

This article is concerned with the prediction of the

response to arbitrary disturbances of a structure initially

at rest in a deformed state under known static loads. The

response to loads varying in time is not considered. This

problem will be called the elastic buckling problem. In

the elastic buckling problem, certain general conclusions

can be drawn about linear systems (ref. 2). But shells are

characterized by the importance of non-linearitles (ref. I).

So far, no similar comprehensive study of the possible In-
stabilities of non-linear elastic systems has been made.

There are several possible versions of the elastic

buckling problem for non-llnear systems I. Any of the fol-

lowing questions might be asked. (i) Are there loads for

which two infinitesimally different equilibrium states ex-
ist ? (2) Are there loads for which the second variation

of strain energy ceases to be positive definite ? (3) Are

there loads for which infinitesimal oscillations diverge?

(4) Will the stiffness decrease greatly at some load so

that intolerable deflections occur? (5) Will a dynamic

Jump from one equilibrium configuration to another occur at

some load due to a given magnitude of disturbance ? (6) Will

a limit cycle develop as a result of finite disturbances?

The fundamental question here is the equivalence of these
problems.

_ref. i, pg. 123
ref. 3, Pg. 54
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STATIC EQUILIBRIUM

The exact equatioms governing the deformations of lin-

early elastic solids are geometrically non-linear. The re-

striction to linear elasticity implies, for most materials,
a restriction to small stretches and small shears. For such

deformations, the displacement gradients will be small and

therefore the non-linearities negligible unless one or _wo
dimensions of the body are small compared to the others _.
Thin elastic shells are three dimensional linearly elastic

solids for which one dimension, the thickness, is much

smaller than the other two. For shell problems, the geo-
metric non-linearities may therefore be important. However,
because of the two-dimensional nature of the shell_not all

of the non-llnear terms can be of equal importance _. Some

simplifications result because of the thinness and because

of the flatness. Equations which systematically introduce

simplifications appropriate to the relative magnitude of

these two parameters for various possible modes of deforma-

tion have been accomplished (ref. 4). However, much further

work remains to be done. In particular, the strain-displace-

ment and curvature-displacement relations corresponding to

each family of basic equations must be determined before

application to special problems and comparison with existing

special theories is possible.

Since the general theory of linearly elastic solids

can be formulated as the stationary condition of the poten-

tial energy, each set of shell equations will also provide

the Euler equations for the stationary value of a functional,

the potential energy, W. The static equilibrium states are
thus determined by

S W - 0 • (1)

Unlike the linear theory, non-uniqueness of equilibrium
states is to be expected for a wide variety of loads (refs.

5,6,7).

The usual problem is concerned with the stability of

static equilibrium positions which differ only slightly

from the undeformed configuration. The non-linear terms

might, therefore, be of negligible importance. No exact

solutions are available which clearly resolve this question,
and test results on spherical caps (ref. 9) indicate that

_ref. 3, Pg. 54
ref. 3, Pg. 182
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the non-llnear terms can not be neglected in determining the

equilibrium state even before buckling.

STABILITY

Suppose the shell is subject to loads derivable from a

potential, then the rest position is determined by a set of

non-linear differential equations and boundary conditions

corresponding to the stationary condition for the potential

energy. If a disturbance in the form of finite displace-

ments and velocities is introduced, the equations which
describe the motion will be non-llnear.

The motion may subside, diverge, or reach a limit cycle.

For a given rest state, the motion will depend upon the mag-
nitude of the initial disturbances. Should there exist other

static equilibrium positioms (at the same loads), distur-

bances of sufficient magnitude could cause the structure to

Jump from its initial static equilibrium position and come

to rest in a second static equilibrium position. An impor-

tant question, not yet solved, is the relation between such

motions and the von Karman-Tsien energy criterion (ref. 10).

With disturbances of sufficient magnitude it would appear

possible to have a Jump from one static equilibrium position

to another at loads less than those predicted by this cri-

terion. No general results are known about the motion of

non-linear structures subjected to finite disturbances.

If only infinitesimal vibrations are superposed on the

deformed system, then. as for linear systems, the motion

will be harmonic if _ W> 0 and diverging if _ W <0
The first case will be called-stable. All other cases (in-

cluding "neutral equilibrium") will be called unstable and

the corresponding loads will be called the buckling loads.

It is generally not possible to directly investigate a

static equilibrium state to determine the sign of the second

variation for all possible variations from it. Instead the
function which minimizes the second variation is determined.

The differential equations governing such a function are the

Euler equations of

• (2>

The minimum is then investigated to see whether it is posi-

tive or negative. Generally _ W>O for small loads. As
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the load is increased, the least value of the second varia-

tion becomes smaller and finally becomes zero and then nega-
tive. The lowest value of the load for which the second

variation is non-negative is thus the buckling load. The

differential equations determined by Eq. 2 are linear equa-

tions with variable coefficients. When the loads are deriv-

able from a potential, they will be the same equations as

those found by considering the differential equations satis-

fied by the difference between two infinitesimally different
static equilibrium states* (corresponding to the same load).

Thus problems (4), (5), (6) as stated above are equivalent

when the loads are derivable from a potential.

A DONNELL TYPE THEORY

The notation followed is that of ref. Ii wherever pos-
sible: Greek letters will have the range (1,2). Curvi-

linear (material) coordinates in the middle2surface will be
denoted by xa and are chosen so that _, x , n form a
rlght-handed system when _ is the unit, inward normal.

The components of the metric tensor of the surfacehare a_
The coefficients of the second quadratic form are -_

The cA6 system is skew-symmetric andal_-- I_ where a is
the determinant of the metric tensor mA bar denotes covar-

iant differentiation based O_athea@_ The components of
tangential displacement are -- . The normal displacement,

positive inward is denoted by w •

The Donnell type theory for large deflections (ref. 12)

leads to the set of equations:

n ll 3÷pa.o , (3)

- ÷ p " 0 , (4)m_8l_ + baj3 n_ . n_ .l_e pa wl a

nU'_ . B Ha_6v"_" avl. , (5)

4ref. 3, Chap. 5



109

Et Et 3
B- _ , D- 12(i_2)

. -2 _+_1 _l_ )

(6)

' (7)

The n ¢_6 is a symmetric tensor that may be interpreted as

the membrane stress, m_ is a symmetric tensor that may
be interpreted as the bending moment, and cvk is the

membrane strain tensor. The tangential surface loads are
¢

p and the normal pressure is p , positive inward. The
boundary conditions to be satisfied on the edge with unit,

outward normal in the middle surface me consist of speci-

lying the quantities uv or n vk _ ,

==p = p _

n_ meor 5 ,
where n and

the boundary.

(8)

, (9)

.s

(10)

are distances normal and tangential to

These equations are derived from the necessary condi-

tions for the stationary of the potential energy

when the surface loads are fixed in magnitude and direction

and either displacements are given on the edges or the given

edge forces are specified to be zero.

The equations governing an equilibrium state corres-

ponding to the same loads and_differing only by an infini-
tesimal amount can be derived # in the manner of ref. 3.

Denoting the difference between the quantities, defining the

5Report 62-1, Feb. 1962, Dept. of Aeronautical Engi-

neering, University of Washington, by E. H. Dill: Stability
of Thin Elastic Shells.
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two states, by superposed bars, these equations are

r,_I . o ,

÷ ÷ - wl a 0 ,

(12)

(13)

(14)

_15)

(16)

The quantities
or _vp (17)

=" i'll- _ ÷ _ 5, "% " nc_ m_ wlo ' + & (evk m_ mk i v[3) , (18)

_- i_ (19)
I'_ or I,G mp •

must be given on the edge.

It can be shown that equations (12) to (19) result
from Eq. (2) when the direction and magnitude of the surface
loads are fixed.

SYMMETRICAL DEFORMATIONS OF CYLINDRICAL SHELLS

For a cylindrical shell of radius R let xI- x be the

distance along the generator, and x2 - Re be the circum-

ferential distance from a given generator. The coordinates

xI, x2 and the inward normal form a right-hand system.
Consider an axially compressed cylinder undergoing only
axially symmetric deformations. Then

-_-o, _z2- o, =z2. o, p=-o, p-o, (2o)
and all derivatives with respect to I are zero.
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For free ends, the boundary conditions are

-_ -- P , ,,Ill.-o ,-D"Inl"_n ,iI . o (2:]-)

A solution of Eqs. (3) to (7) is easily seen %-6 be

,P_ ,,LI-.. e , _2.o , et_.• (22)
pVm-_

However, if the ends are restrained the result is dif-

ferent. For simply supported ends, the boundary conditions

are

n:LI"--P , w-O, Will.0.

The solution for

(23)

(24)

The constants can be adjusted to satisfy the boundary con-

ditions. The axially symmetric solution for P_Pc • can be
written in terms of similar terms.

With restrained ends there will be lateral deflections,

moments, and circumferential stress whose magnitude and dis-

tribution depend upon the load but is always confined to a
narrow edge zone. Usually the membrane solution, which is

the same as Eq. (22), is assumed to be a sufficiently ac-

curate estimate of the state before buckling even for re-

strained ends.

STABILITY OF CYLINDERS

For the axially compressed cylinder, the stability of

the axially symmetric initial state is determined by seek-

ing a solution of equations (12) to (19). For the free
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ends, the solution 6 shows that an axially symmetric buckling
mode exists, localized near the ends, for which the buckling
load is p = ½ p

C"

It may be shown that no axially-symmetric buckling

mode exists for the simply supported ends for P_Pc.

Therefore no axially-symmetric buckling mode is

possible. This does not imply that the axially-symmetric

deformations are stable; that question remains to be answer-
ed by solving equations (12) to (19). This solution has not

been accomplished exactly.
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