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SUMMARY

Some theoretical investigations of buckling of elastic shells are surveyed in
this report. Only geometrically perfect shells are considered; initial dents
and out-of-roundness are not taken into account. Several questions raised by
the studies are: (a) Under what conditions is the infinitesimal theory of buck-

ling of shells adequate? (b) How does the energy theory of buckling of shells
correlate with the method based on equilibrium equations for bending moments,
tensions, and shears in a buckled configuration? (c) How important are non-
linear terms in the tangential displacements u, v in the strain-displacement
relations for buckling and post-buckling studies? (d) How important are the
boundary conditions for u, v in affecting stability? (e) If a condition of snap-
through is approached, how much external work is required to push the shell
"over the hump" into the buckled configuration? (fj How reliable are mathema-
tical approximations used previously in the infinitesimal theory of buckling of
shells7 Tentative and incomplete answers to some of these questions are
suggested.

INFINITESIMAL THEORY OF BUCKLING

One of the objectives of nonlinear theories of shells is to show how good
(or bad) the linear elgenvalue theory of buckling is. It is to be expected that
a shell that is heavily reinforced by stringers approximates roughly the behav-
ior of a set of parallel columns. The linear eigenvalue theory of buckling is
known to be satisfactory for columns; consequently, it may be expected to
determine the buckling load of a shell that derives its strength mainly from
stringers. This conjecture is supported by an analysis of buckling of cylindri-
cal stringer-reinforced sheet panels subjected to nonuniform axial compres-
sion (1). Cylinders of arbitrary cross-sectional form were considered. A
panel was considered to be supported by bulkheads at its ends and by spars
along its longitudinal edges. The bulkheads prevented normal and circumfer-
ential displacements of the sheet at the ends, whereas only normal displace-
ments were prevented by the spars. Elastic rotational restraints of the bulk-
head chord members were taken into account. A panel was considered to be
so short that the wave form of a buckled stringer was a single loop. However,
several loops were admired in the wave form of a buckled cross section trans-
verse to the stringers. The analysis was based on the principle that the work
of the external forces equals the increment of strain energy when an infinite-

simal buckling deformation occurs. The equation w = w0 sin m_ sin_ was
adopted for the normal displacement due to buckling, where _ and _ are
respectively dimensionless circumferential and axial coordinates. Euler's
equation of the calculus of variations was used to determine the circumfer-
ential displacement u to minimize the buckling load. Results of the theory
were compared with experimental data from five box beams having cambered
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stringer-reinforced compression surfaces. The beams were subjected to
pure bending. Although ideal buckling did not occur, the deflection curves of
the test panels rela_ve to the spars showed well-defined knees. In all cases,
the computed buckling loads fell nicely on the knees. When the buckling loads

were represented by the Euler column formula, the plate-stringer column-
fixity factors ranged from I to 3. Consequently, the specification of a single
constant fixity factor (or reduced column length) for computing allowable
compression stresses in cambered plate-stringer panels may be either dan-

gerous or exceedingly conservative.
Another investigation treated the infinitesimal theory of buckling of

a circular cylindrical shell reinforced by rings and subjected to uniform
external hydrostatic pressure and uniform axial compression (2). The axial
compression was considered to be so small that the typical fluted buckling

pattern was not impaired. The end plates were considered to be so flexible
that no restraints were imposed on the axial displacement u at the ends.
The Kirchboff assumption that radial line elements remain straight and nor-
mal to the middle surface was used. Also, the stresses cr , _,

were neglected. Without loss of generality, the length of t_e sh_ wa_Xset

equal to =. The axial, circumferential, and radial displacements were as-
sumed to be represented respectively by u = u o + x 1 sin x cos ne, v = y.o

cos x sin nO , w = (z 0 + z 1 cos ne) cos x. Here the axial coordinate x is
measured from the center cross section; u o is a function of x, and x 1 , Yl'

z n , zlare consents. The term z 0 cos x_is an approximation for th_ defI_c-
u_6n be'fore buckling and the other terms represent the infinitesimal deforma-

tion that results from buckling. By the calculus of variations, u0 was
chosen to minimize the total potenOal energy V. The previous equations

differ from those adopted by yon Mises only by the introduction of u0 . After

elimination of u 0 , V was approximated as a cubic polynomial in the general-
ized coordinates xl , Yl, zn, zl ; this degree of approximation is adequate
for the infinitesimal the6ry o_ _ng, since higher degree terms would

introduce nonlinear forms in x]., Yl, zn , zl into the second variation of
V. The second variation of V Is a _luad_atic_form in the virtual increments

of the generalized coordinates x 1 , Yl ' Zo ' zl; the buckling criterion is
that the determinant of the coeffi_ient_ in this qtladratic form be zero.

Results of the analysis agree very well with yon Mises' theory if the ratio
of length to radius L/a is greater than 1. However, if L/a < 1, the com-
puted buckling pressures for unreinforced shells are considerably less than
those given by yon Mises' theory; in some cases the difference is as great as
25_. In the raDge L/a < 1 the infinitesimal theory has been reported to give
buckling pressures larger than the experimental values; consequently, from
a practical standpoint, the new theory introduces an improvement. A com-
parison with test data for a machined ring-reinforced cylindrical shell also

shows better agreement with the new theory than with other infinitesimal
theories of buckling of perfect shells. The results suggest that discrepancies
between theory and experiment for buckling of hydrostatically loaded cylin-
drical shells may derive partly from inadmissible mathematical approxima-
tions in the infinitesimal theories, rather than from weak stability preceding
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snap-through. The reason for the lowered buckling pressure given by the new

theory is not easy to trace, since other investigators have not approached the
problem by way of the second variation of potential energy. It is hoped that
further investigations will disclose the cause of the difference.

SNAP-THROUGH OF HYDROSTATICALLY LOADED CYLINDRICAL SHELLS.

Despite the fact that the infinitesimal theory of buckling yields results in

fair agreement with tests of cylindrical shells subjected to external hydro-
static pressure, snap-through is a definite possibility. This fact is disclosed
by some theoretical studies of post-buckllng behavior of unreinforced elastic

cylindrical shells loaded by external normal pressure (3). The analysis was
based on the principle of minimum potential energy. When the Ritz method is
used in this type of analysis, it is imperative that the assumed deflection pat-
tern shall not impose excessive membrane strains, for then the membrane

strain energy is far too large. Approximations concerning the strain energy
of bending may be rather rough, but the membrane strain energy is a delicate
matter. As Lord Kayleigh remarked, '"We can bend a piece of sheet metal
e_sily with our fingers, but we can not stretch it noticeably. "

The displacement pattern due to buckling was assumed to be represented by

u=u n+ulcosnS+u 2cos 2-8+u_cos 3n0, v=vlsinnO+v 2sin2n0+v 3.
sin 3_e, _ = w n + w I cos n0 + w_ _os 2**8 + w_ cos'3nS, where u, v, w are
axis/, clrcumfeVrenti_/, and radi_1 dlsplaceme_t components of the middle sur-

face. The coefficients ul, v. , w. are functions of x. Excessive membrane
strains were avoided by t/le a_sum_3tion that there is no increment of the rnem-

brahe hoop strain _A caused by buckling. This assumption undoubtedly
causes cy to be too-large in some regions, and it consequently leads to Euler
buckling lYressures that are too large in the case of short thick shells. How-
ever, it yields a comparatively simple theory that readily provides numerical

results. The assumption Z_¢ A = 0 leade to explicit formulas for v I , v_ ,

v_ , w 0 , w? , w_ , in terms 6f w I. After the strain energy was li_earl_ed
ifl" u, the _ncti6"ns u s , u I , u 9 , u 3 were obtained with the aid of Euler's
equation of the calculu_ of V'ariaflons so that the potential energy V was
minimized. Observations of buckled shells usually enable us to estimate
approximate functions for w quite accurately, but much greater difficulties
are encountered with u and v. Consequent/y, it is desirable to determine
u and v by means of the exact formulas of the calculus of variations, rather
than by the Rayleigh-Ritz procedure, whenever possible.

The remaining unkpown function w I was assumed to be given by w_ =
(W 0 cos = x/L) / (n -_-) where Wn is a constant and n is the numbe_of
waves in the cross s_tion of the b_ckled cylinder. Thus, the shell was

effectively reduced to a system with one degree of freedom, the generalized

coordinate being W0 . The results exhibit the typical snap-through behavior.
Figure I illustrates qualitatively the nature of the load-deflection curves that
were derived. The falling part of the curve (dotted in Fig. I) represents
unstable equilibrium configurations. Also, the continuation of line OE
(dotted) represents unstable unbuckled configurations. Actually, the shell
snaps from some configuration A to another configuration B, as indicated



by the dashed line. Theoretically, point A coincides with the Euler critical
pressure E, but initial imperfections, residual stresses, or accidental
shocks may prevent the shell from reaching point E. In any case, point A
is higher than the minimum point C. The pressure at point C is the smallest
pressure at which a buckled form can persist; when the pressure drops below
this value, the shell snaps back to the unlmckled form.

An analysis of the post-buckling behavior of a su'ucture determines the
buckling load automatically. For example, an analysis of the form of a buck-
led column reveals that there is no real nonzero solution unless the load
exceeds a certain value, the Euler crir.ical load. Accordingly, in principle,
the nonlinear theory of equilibrium eliminates the need for a special theory of
buckling. However, in practice, it is usually easier to determine the Euler
buckling load of a structure by solving a linear eigenvalue problem than by
determining a bifurcated curve in configuration space that represents all equi-
librium configurations.

Since the shell was reduced to a system with a single degree of freedom the
theory provides an equation which expresses the increment of potential energy

_'_ due to buckling as a function of the deflection parameter W0 . Thus, for
any given value of the external pressure p, a curve of AV versus Wn may
be plotted. The forms of the graphs corresponding to several values or p are
illustrated by Fig. 2. The pressures indicated on the curves are such that

Pl < P_ < P_ < P4 " The minima on the curves represent configurations of sta-
bre eqailibi_um, and the maxima represent configurations of unstable equili-

hrium. If p < P4 ' the unbuckled state is stable, since the configuration W0
= 0 then provides a relative minimum to the potential energy. However, if

P > P4 ' the urdmckled state becomes a configuration of maximum potential
energy; hence, it is unstable. Accordingly, pa is the Euler critical pressure.
The curve corresponding to Pl has an infleoti6n point at which the tangent is
horizontal; hence, Pl corresl_onds to point C on Fig. 1; it is the smallest
pressure at which a l_uckled form can persist. For any pressure greater than
Pl there is a state of minimum potential energy with Wn > 0; hence snap-
tb:rough is possible. Let us rake, for example, the curve corresponding to
P2 ' for which the value of AV at the minimum is zero. In other words, for
p = p , the potential energies of the buckled and unbuckled configurations are
equal. Tsien suggested that this condition be taken as a criterion for buckling;

accordingly, P2 may be called the Tsien critical pressure. The maximum on
the curve for p_ represents a potential energy barrier that the shell must
cross to reach Re buckled form. If this maximum is high, there is little dan-
ger of snap-through, since a large amount of external work must be provided
to carry the shell "over the hump." However, if the potential-energy hill is
low, snap-through is imminent. Of course, this argument is not linked to the
Tsien hypothesis; it applies for any of the curves in the range pl < p < p_ .
It appears that the snap-through theory of ideal shells would be e'nhanced-_oy
further studies of the potential-energy barriers separating the buckled and
unbuckled forms. Such studies might enable us to evade the extremely corn-
plicated problems of initially dented shells, since accidental shocks may be
used as a criterion for design instead of initial dents or out-of-roundness. If
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anticipated shocks will not provide enough energy to carry a shell over the
hill to the buckled form, the design may be considered to be safe.

One numerical calculation was performed for a shell with L/a = 0.60 ,

a/h = 1000, E = 30,000,000 Ib[in. z , a = 20 in., where L is the length of the
shell, a is the radius, and h is the thickness. It was found that, with the

pressure equal to the Tsien critical value, 0.23 ft Ib of work would carry the
shell over the hill to the buckled form. Since this small amount of work might

easily come from accidental disturbances, we see why the ELder critical pres-
sure is practically unattainable in some cases.

Another interesting conclusion arose from a study of end constraints; In
all cases, the end plates were considered to provide simple support to the

cylindrical wall, so that the bending moment M x vanished at the ends. Also,
the end plates imposed the boundary conditions v = w = 0. However, with

regard to the axial displacement u, two different conditions were considered.
In one case, the end plates were free to warp, so that no restraints were

imposed on u at the ends. In the second case, the end plates were rigid, so
that u had a constant value at either end. Surprisingly, the constraint

imposed upon u by a rigid end plate raised the buckling pressure significantly.

In general, the number n of waves in the periphery of a buckled cylinder is
greater for rigid end plates than for flexible end plates. The results are iUus-
trat_d by Fig. 3, which shows computed load-deflection curves for a/h = i00
with both flexible and rigid end plates. Besides the pressure p on the lateral
surface, the cylinder was subjected to an axial compression force F = v a 2 p,
which would result from uniform hydrostatic pressure on the end plates.

Instead of the pressure p, the ordinate in Fig. 3 is a dimensionless coefficient
K , defined by p = K E h/a. The Euler critical pressures represented by the

intercepts of the curves with the K-axis in Fig. 3 are too high, since the pre-

sent theory employed the assumption Zic 8 = 0. The improved infinitesimal
theory of buckling (2), discussed earlier, yields EuLer critical pressures that
are considerably lower for short shells, and therefore the effect of snap-

through would not be so pronounced as one might infer from the steep curves

in Fig. 3.
A generalization of the nonlinear theory of Kef. 3 has been given by the

authors. (4). In this generalization, the shell was reduced to a system of 21

degrees of freedom. However, it was found unfeasible to handle the nonlinear
equilibrium problem for a system with 21 degrees of freedom. Consequently,
for the numerical work, some higher harmonics were discarded so that the

system was reduced to 7 degrees of freedom. Calculations were confined
principally to the determination of the minimum point C on the post-buckling
curve (Fig. 1), that is, to the determination of the pressure at which a
buckled form can exist. It was found that the ordinate of point C, as deter-

mined in (3), was somewhat too high. The numerical studies indicated that
the theory of (4) may be used effectively with an electronic digital computer.
However, for cursory studies of post-buckling behavior, the theory and the
tables of (3) are recommended.
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BUCKLING OF UNKEINFOKCED FRESSUR/ZED CYLINDRICAL SHELLS

SUBJECTED TO AXIAL COMFKESSION

_The strain-energy formulas developed in (3) apply without modification for

a cylindrical shell that is subjected to internal pressure and uniform axial corn-
pression. Again, a snap-through condition is anticipated.

In an analysis of post-buckling behavior of an axially compressed cylindri-
cal shell (5), the strain formulas are linearized in the axial displacement u.
For the time being, consideration of end effects is avoided by the supposition

that the shell is infinitely long. Then, as is weU known, the buckling pattern
consists of diamond-shaped lobes (Fig. 4). This pattern signifies that the
radial deflection w is doubly periodic, with its fundamenzal region in the form
of a rhombus. In any rhombus (e.g., the cross-hatched rhombus in Fig. 4),
the function w assumes all its values; the function is merely duplicated in any

other rhombus. A rhombus subtends the angle 2_ from the axis of the cylin-
der; hence, fl = r/n, where n is an integer representing the number of rhom-

buses in the circumference of the cylinder. The function w is symmetrical
about the diagonals of a rhornl_s. Consequent/y, if the origin of the (x,8)
plane is taken at the center of a rhombus, the function w is even in x and
e (Fig. 4).

The rhomboidal pattern and the associated symmetry properties of u, v,
w require that these functions be represented by series of the following forms*
if the origin for x and 8 is taken at the center of a rhombus:

UfCo+ClX+ " =i=O aij cos ine sin , atj 0 if i+j is odd

i=l j=O *]

w = _ cij cos ine cos

b..=Oif i+j isodd
xj

cij =Oif i+j is odd
i=O j=O

Here cn , c I , a., b.., c.. are constants, and _ is half the length of a
diagonal" of a rho_Ims _a th_J x-direction (Fig. 4). Writing these equations
in expanded form as far as second harmonics, we obtain

___ 2_rxu = c + u0 x + u I cos nO sin + u2 sin + u3 cos 2ne sin -_-

.... 2_r.x
2.e+ sin2neCOS -X-

* By error, some additional terms were included m the formula for u in
Ref. 5.



121

L

3
1
0

9

w: ÷w1co,neco, + co, ÷w3cos cos cos 
The coefficients u i , v i, w i are constants. The additive constant c is irrel-
evant, since it represents a translation.

The preceding equations were developed for a shell of infinite length.
Experiments indicate that the number of half waves in the length of a finite
shell is an integer. Therefore, the length L of the shell is assumed to be a
multiple of k; that is, k = L/m, where m is an integer. To satisfy the
boundary conditions v = w = 0 at the ends x = 0 and x = L, the factor sin
rx/L was introduced in the formulas for v and w in the last equations. The

formula for u is unchanged if the end plates are flexible.
The preceding equations are somewhat more general than the buckling pat-

terns that have been used to study this problem. For correlation with the

buckling patterns assumed by some other investigators, a translation of the
origin from the center of a rhombus to the midpoint of an edge of a rhombus
may be required. In studying the infinitesimal theory of buckling, Timoshenko

discarded all terms except uI , v n , w I . Von Karman and Tsien adopted a

function w that is equivalenf to t/ie prc%:eding if w 4 = O and w_ = w 3 .
Donnell and Wan concluded that the relation w 2 = w 3 is not plausible on the
basis of observed buckling patterns.

If all coefficients are rets.ined in the expansion to second harmonics, there

are 12 degrees of freedom. It is highly desirable to retain all 12 of these
generalized coordinates, but the problem of minimization of the potential
energy then becomes exceedingly complicated. A part of the trouble lies in
the quadratic terms in v in the strain-displacement relations. Kempner and

other investigators have neglected this quadratic term, and workable results
have been obtained.

SLENDER CIRCULAK CYLINDERS (KINGS)

Since Levy (6) first published his classical theory on the buckling of rings,

several theories on the buckling of rings and cylinders have appeared° Levy
obtained the result

Per = Kcr EUr0 3' Kcr = 3

as the critical pressure for a uniformly loaded rL,_g.,where r_ is the radius
of the centroidal axis, I is the moment of inertia ,,ofthe cro_s section and

E is the modulus of elasticity of the material. Le{ry did not consider the

effects of ring thickness h and of Poisson's ratio v. The load was consid-
ered to remain normal to the ring surface throughout the deformation process.

In 1914, K. v. IVHses (7) starting with the general differential equations of

equilibrium and considering only linear terms in lhe strain _ensor_ developed
a theory w_ch _elded a bu_ing pressure of _h°/[4<_ - _5 ro Jfor the
uniformly loaded infinitely long circular cylinder. In 1933, Donnell (8), by
making several simplifications of the general shell equations, arrived at a
theory for the buckling of thin cylindrical shells. For the infinitely long cir-
cular cylinder (for which Donnell's theory is not strictly valid), Donnell's
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theory predicts a critical pressure of H3a3/[3_1 - -_ rn3]. The theoretical

r_sult_that is generally accepted for a long circular cylfhder is Eh 3/__,1 -
v z) r0_](provided the load remains directed perpendicular to the cylinder s
surface).

Several authors have noted that the critical pressure depends strongly upon
the post-buckling direction of the load (9, 10, 11). For example, for a ring
subjected to a uniform pressure that remains directed toward the center of the
ring K _ = 4.5 , (9), and if the load remains constant in direction K = 4
(11). "_e effects of ring thickness h and of Poisson's ratio upon p crfor
uniformly loaded rings have been studied in (9), the general result b_fng a
decrease in K._. with an increase in h. The sway buckling of a semi-circu-

lar arch loadedl)y vertical point load P at the midsection of the arch has been
studiedin (12),where me result Pc,"= 6.54 EI / rn was obtained. The sway
buckling ofa semi-circular arch lo_%ledby vertical'inertiaforces (or by dead
weight of tl_earch) has been discussed in (13),where itwas shown that w. =

2.68 EI/rn_, where wt._.= pa, p = mass densityper unitlengthofarc an_a
= vertical_acceleration-@f the supports of the arch. The problem of stability
and large deflection of rings, including the effects of ring thickness and of
Poisson's ratio, subjected to nonuniform loads is relatively unexplored.

EQUILIBKIUM APPROACH TO THE NONLINEAR THEORY OF SHELLS

The middle surface of any shell is defined by _'=_'(x,y), where _" is a

position vector and (x, y) are parameters called "surface coordinates. "
Attention will here be restricted to orthogonal surface coordinates. Then,
since the derivative vectors Yy and Y,, are tangent respectively to the x
and y coordinate lines, Yy • Yv = O. _n this case, the distance ds between
neighboring points on the rrfiddl_surface S is given by

ds2 = A 2 dx2 + B2 dy2 (I)

where A 2=T •T and B2= • -

an--dA_/ c#ordinate li _'ne_a r'''re' Accordingly, the unit tangent vectorstO the _x/A and Yv/B, respectively. TheX

unit normal n to the middle surface S is accordingly,

xTy
^ x (2)n= AB

The coefficients of the second differential quadratic form of S are

, (3)
If the coordinate lines on S are the lines of p_ncipal curvat_.re, f = 0, and

the principal curvatures of S are 1/r 1 = e/A k , 1/r 2 = g/B z . However, we
shall not make the restriction f = 0.

The tensions N x, N , the shears N , N , Q , Q , the bending
moments M , M_, anav the twistingmof_ents yx M:X, My , referred to an
element ofth_ middle surface of the shell,are show?r'with_ieir positive
senses in Fig. 5. The normals to the element dS of the middle surface
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generate a volume element of the shell. The external force on this element is
denoted by _ dS = _" A B dx dy. This force ordinarily results from the weight
of the volume element and from loads applied to the external faces of the shell
The force 15"dS is specified to act at a point in dS. Then there may be an
external couple I, dS that acts on the volume element;, usually it results from
tangential external distributed loads applied to the faces of the shell, the
components of the vectors P and L in the direcOons of the orthogonal vec-

tors • _, tr.., _ are denoted by Px' P-' Pz and Lx , Ly. The vector
has no _oml_onent in the direction _. y

The equilibrium equations for the quantities N,, , Nv , etc. may be derived
in an elementary manner by Gibbs' vector theory;+lhey :were derived more than
twent 7 years ago in tensor form by Synge and Chien. In the present notations,
their equilibrium equations are

8
_A" (a Nx)+I_" (A Nyx)+Ay Nxy "BxNy "'_Qx- fQy+ABPx

_(BNxy)+_(ANy)-AyNx+BxNy x-fQx--_Qy+ABPY =0

M+) (AMy)- AyMx+8x.Myx-ABt+x:AB%
e++

= o (4)

(5)

(6)

(7)

(9)

Equations (7) and (8)may be used to eliminate Q,. and Q,, from Eq. (6);
thus, the moment equilibrium equation is obtaine_i.The shears Q. and Q,,
are usually discarded from Eqs. (4)and (5),since they are small dbmpared r

to Nx , N.,, N_,. Furthermore, the terms Qy and Q_, thatoccur in Eqs.
(4)anil(5)_repr_ent only components of the tran'_dversesmears tangent to sur-
face S which arise because the volume element is slightlytapered. For a
fiatplate,these terms drop from Eqs. (4)and (5)automatically, since then

e = f= g = 0. Also, the approximations N.._= N,_ and M = M are
nearly always legitimate;they are exactlyq_-uef5i'a fiatp_e. _en the

approximation N,_,= N,...is used, Eq. (9)is disregarded.

The weight of the ma{C,rialoftencontributesto the tangentialloads (Px' P _
but frequentlythe effectofthe weight on the stresses is negligible. Then, i_

no tangentialdistributedloads axe appliedto the exterior faces of the shell,

the terms (Px ' P,,)are practicallyzero. In thiscase, ifthe terms Qx and
Q,, are discarded'from Eqs. (4)and (5),and ifthe approximation N_, = N_,
is'introduced,the general solutionof Eqs. (4)and (5)may be expresg_d as_
follows interms of a generalized Airy stress function H(x,y) for the case in

(8)
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which the Gaussian curvature K of surface S is constant (14):

N x = B -2 Hyy + A "2 B -1 Bx H x - B -3 By Hy +K H

(lO)
Ny = A'2 Hx x _ A -3 Ax Hx + A-1 B-2 Ay Hy + K H

Nxy = Ny x = -A-1 B-I Hxy + A-2 B-1 Ay Hx + A -1 B-2 Bx Hy

The case K = constant, to which Eq. (1O) is restricted, includes fiat plates,
spheres, cylinders, and cones, as well as many less common surfaces. For
example, any surface that can be olxained by bending a thin fiat piece of sheet

metal or a piece of a thin spherical shell without stretching it has constant K,
since the Gaussian curvature is a bending invariant. There are also surfaces
of constant negative Gaussian curvature, called pseudospheres. For fiat

plates, K = 0, and H is a generalized Airy stress function that is applicable
to any orthogonal coordinates in the middle plane of the plate.

The equilibrium equations naturally refer to the stressed state. Some-

times the deformation caused by stressing alters the geometry of the shell
appreciably. For example, a plate that is initially fiat becomes a curved
shell when it is loaded, and the curvature may have important effects on the

equilibrium conditions. Likewise, a shell that is initially rotationally sym-
metric may lose its symmetry because of elastic or plastic deformations.
Accordingly, if (e, f, g) are the components of the curvatore tensor of the
undeformed reference surface S, some modifications of these coefficients

may be required to account for the effects of the deformation on the equili-
brium conditions. This is always true in problems of post-lmckling behavior.

When the shell is deformed, the reference surface S passes into another
surface S*. The asterisk or star will be used generally to denote the stres-

sed state. The displacement vector of S is denoted by _[(x, y); that is, the
point _ on S* corresponding to point _" on S is _ =7 +_'. Evidently, if
the vector function _[(x, y) is known, the position vector _ is a known func-
tion of (x, y). Thus, the same coordinates (x, y) serve for surfaces S and

S*. The metric coefficients of S* are E*=_ ._ , F* = ]_ -_ ,
between two points onx S* deter-G* = _ • _. - The d_2stance nei_nho_ng _s

minedi:_ (ds_'g= E *u,&-+2 F*dxdy+G*dy 2. H marface S is bent without
straining, E* = A 2 , F* =O , G* = B2 , since ds = ds*. If the strains of sur-

face S are small, as usually happens, ds is very nearly equal to ds*.

Consequently, even in the large-deflection theories of shells, changes of A
and B caused by straining of surface S need not be taken into account in the

equilibrium equations. Seemingly, this approximation is not generally appre-
ciated, for some of the modern investigations of buckling of shells introduce
undue complications into the equilibrium equations as a consequence of incre-
mental changes in the metric coefficients due to straining. In particular, if
the coordinates (x, y) on S are orrhogonal, as is here assumed they are

orthogonal on S* too, for the equation F = 0 signifies that F* is nearly

zero. Since the Gaussian curvanzre K and the Christoffel symbols r_



125

are determined by the metric tensor alone, they may also be considered to be

unaffected by the deformation, insofar as the equilibrium are concerned. How-
ever, in nonlinear theories of shells, the quantities (e, f, g) must be replaced
by the corresponding quantities (e* f*, g_ in Eq. (5). It is not important to

make this change in Eqs. (4) and (5), since the terms Qx and Qy are ordi-
narily dropped from these equations anyway.

The components of the displacement vector _ in the directions of the vec-

tors _" , T, , _ axe denoted by (u, v, w), respectively. The effects of the
tangen_l cl_splacements (u, v) on the changes of curvature are usually small.

Consequently, for computation of e* f*, g* the equation I_ = T + E is approx-

imated by I_ =T+_ w. The curvature tensor for S* is e*=_* "'_xx ' f*

= _*. "l_xy, g* = _*. _yy. The following notations are introduce&

K =e*-e , K =g*-g , /C =f*-f (11)
x y xy

It is a routine problem of differential geometry to derive/¢ , K , K . The
results have been obtained by Koiter, with (u,v) terms inclXded_15), xTDrop-

ping the (u, v) terms, we get

A x AB__ BB _Wy+wy+w= , w- w

_._ Bx (12)Kxy=- Wx " T Wy + wx.y

These equations are merely first-degree approximations; nonlinear terms in
derivatives of w have been neglected. Also, a linear undifferentiated w-
term has been dropped. This term may be interpreted by considering the

case, w= constant. For example, if w is constant for a circular cylindrical
shell, there is a small change of curvature because the radius is changed.
However, since A, B have been ret_ned instead of E*, F*, G*, it would be
inconsistent to retain the undifferentiated w-term, since the effect of this

term is about the same as effects of changes of the metric tensor due to
straining of surface S.

Equations (II) and (12) determine the quantities (e* f*, g_) that axe to be
introduced into Eq. (5) instead of (e, f, g) when large deflections or buckling
problems are considered. To obtain this generalization, the term f must be
retained in Eq. (5), for, even though coordinates are chosen so that f = 0, f*

is not generally zero. In other words, in nonlinear theories, the lines of
principal curvature on S are altered significantly by the deformation. For
example, for a flat plate referred to rectangular coordinates, A = B = 1 and

e=f=g=0. Equations(1I) and (12) give e*=wv_, f*=w , g*=w .
Introducing these quantities into Eq. (6) instead or(e, f, g), _pposing YYthat

L = L = 0, and eliminating Qy and Qv by means of Eqs. (7) and (8), we
o_.in X well-known equation in "_he theorY/of buckling of fiat plates:



a-V__+2 + a-_y_xay
+_x Wxx+Ny _ + 2N_ _xy+ Pz= 0

STRAINS OF A SURFACE

The swains of surface S due to the displacement vector (u,v, w) have been

derived by Love and many orders.
rermned, these equations are

w 2
u X

A v
_ ew+ x

•x-_: ÷^_ _ _

Ifonlyquadratic terms in wx , Wy

2
v Bu w w

are

(13)

v+2ABKMW+A_B _ + 2 Ayf -Axg) w x

u Vx __ BxV2fw ._•_ _ +_ - -T_-A--_+
The z_tric tensor of the deformed surface S* is given by E* = A 2 (I + 2ev),
G* = B (I + 2e_, F* = A B 7_, • Sigce, by differential geometry, the Gaug-
sian curvature _ K* of sur_c_ S* can be expressed in terms of E*, F*, G*
alone, the increment of K due to the deformation can accordingly be expres-

sed in terms of ex , ey, Vxy " The result of this calculation is

._ A 82¢x B _)2e B Sex A- ._

(14)

2A Sex+ BA x 2B x

Bx_.AxBx A B+2(-x.- A--_F).x+2(-_---B- _ _y

(._+.B._ Ax_ ° _BxB+ --_A - B_)_

SubstitutingEq. (13)intoEq. (14),and simplifyingthe resultwith the Gauss

and Codazzi equations,we obtain

BB e
x

AB(K*-K)=BKxU+AKy A

1 AAyg 2f e

+A--_B( B +2Bxf'Be)_y+_W_-__+A--_w_
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1 A x Bx A 2 __ B 21 x B_ w2+ Bx

+_ Ax B 2 B A (15)

2
W W -W

+ xx A_ xy

In the linear theory of shells, all nonlinear terms are dropped from Eq. (15).

The term M represents the mean curvature of S; i.e., 2M = i/r I + I/r 2 .
For brevity, Eqs. (14) and (15) are written as follows: A B (K*'- K) =

L(e x, ey, Txy_, AB(K*-K) =BK xu+AKyv+ ¢(w). These equations
yield

L(_ x, ey, 7xy)=BKxU+AK v+¢(w) (16)Y

If K is constant, u and v disappear from Eq. (16). Then Eq. (16) is a
compatibility equation for the strain components of surface S. If K is not
constant, u and v can not be eliminated without the use of differential
operators of order greater than 2. For example, if a flat plate is referred to
rectangular coordinates, A = B = 1 and e = f = g = K = M = 0. Then Eq. (16)

yields _ a2 Cx 8 2 E

This is an important equation in the large-deflection theory of plates.
Shell problems may be formulated in terms of the displacement components

(u, v, w) or in terms of the stress function and the normal displacement (H, w_
If (u, v, w) are regarded as the unknowns, only the equilibrium equations and
the boundary conditions are needed; there is no need to consider compatibility
equations. Certainly, this is the more general approach, since the stress
function H is limited to shells of constant Gausslan curvature, although a
generalization to cover all rotationally symmetric shells is possible (14).
Furthermore, the boundary conditions can always be formulated in terms of
(u, v, w), but they can not always be expressed in terms of stresses. The
compatibility equation represented by Eq. (16) is useful only for shells of con-
stant Gaussian curvature, since only them do the terms u and v drop out.
However, it is only for shells of constant Gaussian curvature that a compati-
bility equation is needed, since the (u, v, w) formulation will be used for other
shells.

Equations (1) to (16) do not involve stress-strain relations and they remain
valid if shear deformation is significant. For a complete formulation of the

shell problem, we must express (N, Ny, Nxy_Ain terms of (Ev, _. , "/_ )
and also (M , M , M_ in terms_6f L_ y ,,_, ,K ) Here, th_ sir_ples_t y

X" Xappro lmations t_ adop_Yare exactly the _ameYas _flat-plate theory. Ques -
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tions of nonlinear geometric relations do not enter here, since they arise only
in the strain-displacement relations _.Eq. (13)_. It is a moot point whether
nonlinear terms in (u, v) should be retained in Eq. (13). A rigorous analysis
of stress-strain relations and moment-curvature relations, with thermal
effects included, was developed on the basis of the Kirchhoff assumption by the
authors (' 6). Some investigators have concluded, on the basis of order-of-
magnitude _nsiderations, that, when the Kirchhoff assumption is used, con-
sistency re_ -es that the strains be linearized in the normal coordinate z.
However, if ._is argument is applied to beams, it signifies that the Winkler
theory of curved beams is no better than straight-beam theory. A striking
example of an error that can be incurred by linearization with respect to z
is provided by a curved cantilever beam of rectangular cross section with
depth h and width b (Fig. 6). The load P is applied at the centroid of the
end section. By Winkler's theory, the stress cr0 at ordinate z is

P P z (1 - sing) 2 a +h (a)
a0 = B[_ +b(ac-h)(a+z)' C = log

The net tension and the bending moment are

h/2 h/2

F=b f_cr°dz'-2 .. M=b /_h/2 zcrSdz (b)

Substituting Eq. (a) into Eq. (b), we get F = P sin e, M = P a (1 - sin e ).
These relations agree with elementary statics. Suppose now that z is
dropped from the denominator of Eq. (a), so that the equation is linearized

h/2

in z. Then, the net tension calculated by F = J cr0 dA is F = P.

-h/2

This relation disagrees grossly with statics.
The sensitivity in this example comes from the hact that the stress

aB has a large negative value on the inside of the beam, and a large positive
value on the outside. -Therefore, _8 must be given quite accurately if

/_OedA is to be evaluated correctly. We may conclude that linearizatton ofstresses or strains with respect to z is usually admissible if the objec-
tive is to pre.dict--y_r other_:ypes of failure of the material. However,
it is a questionable approximation ff the stresses are to be integrated through
the thickness for the purpose of determining N, M_,, etc.

If linearization with respect to z is ad_issl'ble, we obtain from (7),
when temperature terms and nonlinear terms in h are discarded,
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= E__ h ? _ EhNx 1 - v ] ( Cx + v ¢ , Ny 1 - v"Z ( ¢y + v ex) (17)

Nxy = Nyx = G h _/xy

where E is Young's modulus, v is Poisson's ratio, G is the shear modulus,

and h is the thickness of the shell. Naturally, these relations are restricted

to isotropic elastic shells. Also, if effects of u and v on the bending mo-
merits are neglected, we obtain

M xffi- +--_+wk 1(k I -k

My=-D[B +A'_ + w k 2 (k 2 - kl)]

E h 3

(18)

= . - v) Kxy ' D -Mxy = My x D (/B
12 (I - v_

Here, k, and k2 are the principal curvatures of the middle surface. The
quantitie_ Ky ,K= , Kv, are defined by Eq. (12). Most writers have dropped

w from Eq._(18): HoOver, in some cases, this term has a significant effect

on computed buckling loads. For example, ifa very long cylindrical shell of

radius a i% subjected to uniform external pressure, the buckling pressure is
Pc," = 3 D/a 3. This result is obtained if w is retained in Eq. (18), but we get
p _'=4D/a if w is dropped

C , . * . °

r'Some specxal apphcations of the preceding equauons have been studied.

For example, if w is dropped from Eq. (18), Donnelrs equation for cylindri-
cal shells is obtained readily. Also, the equations of Reiss, Greenberg, and
Keller for suap-through of a shallow spherical cap are obtained immediately,
although in a different form. For fiat plates, yon K_rm_n's equations are

obtained. By further studies, the authors hope to get a better correlation
between the equilibrium approach and the energy approach to problems of
buckling and post-buckling.
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Figure i.- Pressure-deflection curve.

Figure 2.- Increment of potential energy versus deflection parameter.
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Figure _.- Notation and sign convention for tractions, bending moments

and twisting moments.
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