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EFFECTS OF MODES OF INITIAL IMPERFECTIONS

0}I THE STABILITY OF CYLINDRICAL

SHELLS UNDER AXIAL COMPRESSION

By L. H. N. Lee

University of Notre Dame

SUMMARY

The effects of definite and "indefinite"initial im-

perfections on the buckling and postbuckling behavior of an
axially compressed cylindrical shell are analyzed by a non-
linear theory. The definite initial imperfections consid-

ered do not contribute to the reduction of the peak buck-
ling load; while the "indefinite" imperfections, expressed
in terms of a single factor introduced by Donnell 1 , cause
a reduction in the buckling strength. The physical mean-

ing of the imperfection factor, hcwever, needs further
clarification. Two theoretical buckling processes are
found to be possible. In the early stage of buckling, the
cylinder may deform with a comparatively large number of
waves of small amplitudes or the cylinder may deform with

a comparatively small number of waves of large amplitudes.
Further theoretical and experimental studies of the effects

of initial imperfections and the process of buckling are
suggested.

INTR ODUC TI ON

The problem of elastic buckling of axially compressed
cylindrical shells has not yet been completely solved in
spite of being the subject of intensive research in recent

years. To explain the fact that buckling loads obtained
by experiments are much l_wer than that predicted by the
classical linear theory',J, Donnell (1934) introduced a
non-linear theory and the concept of initial imperfections.
The non-linear theory was further developed by yon K_rm&n
and Tsien (1941)4. Their a_alysis, in turn, was.refined

by Leggett and Jones (1942)b, Michielsen (1948) o, and
Kempner (1954) 7.

The non-linear theory does indicate a large drop of
resistance as soon as buckling takes place. This is con-



sistent with the observed phenomena. For a conceptually
perfect cylinder, however, the buckling load predicted by
the non-linear theory is still the same as that given by
the classical theory. By considering the effects of in-
itial imperfections, Donnell and 'dan 8 were able to explain

in a reasonable way the discrepancies between experimental
and theoretical buckling loads. For the convenience of

analysis, Donnell assumes that the geometrical and material
imperfections of a cylinder may be replaced by an equiv-
alent geometrical deviation. He assumes further that the

equivalent geometrical deviation is proportional to the

deformation of the cylinder and may be expressed by a
single imperfection factor indicating essentially its
magnitude. It is the purpose of this paper to evaluate
the implication of this assumption.

Timoshenko 9 has shown, by a linear theory, that the

initial curvature of an axially compressed, elastic column
has substantial effects on the load-deflection relation-
ship but relatively little effect on the maximum load. The

initial shape of the column can be expressed by a series
of functions giving the normal buckling mode shapes of the
column. According to the linear theory, the term in the
series describing the principal buckling mode has the pre-

dominant effect on the behavior of the column. In general,
an axially compressed column having arbitrary small initial
deviation most likely buckles in its principal mode. The

assumption made by Donnell and Wan is apparently in accord
with thds fact. However, it has been shown I0 that the

mode as well as the amplitude of the initial imperfections
of a geometrically or physically non-linear structure may
influence the buckling load and the corresponding mode of
buckling. Therefore, the effects of definite initial

imperfections as well as "indefinite" initial imperfections,

in terms of the imperfection factor introduced by Donnell,
on the buckling behavior of axially compressed cylinders
are analyzed in this paper.

The present analysis is based on the Love-Kirchoff

assumption for thin shells and the principle of stationary
potential energy for load-deformation relationships.



ANALYBIS

L
3
I
0
9

Strain-Displacement Relationships

Consider an initially imperfect but nearly +circular__

cylindrical shell of mean radius r, length L , and
thickness t. Let the radial difference between the radial

distance of a point at the initial median surface and the

mean radius be denoted by wo. Let x, s and z (positive

inward) be the axial, circumferential and radial coordinate,

respectively. The corresponding components of the dis-

placement of the point, denoted by u, v and w (positive
inward) respectively, are measured from the position at_the
initial median surface. Based on Donnell's assumptions _,
it may be shown that the bending strains depend only on

the axial and circumferential curvature changes,

(_w/ax_ and (_w/as _) , and the twist of the median

surface (_w/axas). Including the effects of the initial

radial deviations and the second order terms, the axial

and circumferential membrane strains, C x and _ ands'

the membrane shear strain %'xs, arell

au faw_ m _w aWo
÷

av + law} = aw aWo

=au+ av
"xs as

w
r

aw aw aw aWo aWo aw
+ _-_ _'_+ _as + ax as

(?.)

The axial, circumferential and shear membrane stress,

ax, os and Txs' may now be expressed in terms of the

membrane strains, the modulus of elasticity E and the
Poisson's ratio v by the Hooke's law for the isotropic
material.

Equilibrium and Compatibility Equations

By omitting higher-order terms, it may be shown that
the membrane stresses satisfy the equilibrium equations
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ax as

=o

=o

(2)

Equations (2) are identically satisfied by the introduction
of the Airy stress function ¢(x,y) defined by the re-
lations

a=¢ ._°x = _ ' °s = ' _xs = " _axas (3)

By Hooke's law, the membrane strains may be expressed as

+
a==

_xs = " 2(l+v)E

(4)

Elimination of axial and circumferential displacement com-
ponents between Eqs. (I) and combination of Eqs. (I) and
(4) yield the compatibility equation

r a=w ,, aaw aSw I aSw
V_, = E t(_s ) - _ _ - _ ax--£_

+ 2 aaw a='w° azw° aSw° a=w -]axas _ - _ _ " _ as-_-_]
(5)

in which _ = ( . + 2 _-_ + )

The stress function and the membrane stresses may now be

determined by Eq. (5) if the initial imperfection and the
the radial displacement are obtained or assumed.
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Initial imperfections and Deformations

The initial geometrical imperfections or the defor-
mation of the cylinder can be completely described by an
infinite double Fourier series. The degree oC approxi-
mation which can be attained in the description largely

depends on the choice of a proper number of terms of the
series. However, the mathematical difficulties of solving

the problem multiply rapidly with increasing number of
terms considered. To simplify the analysis, it is assumed
that the initial radial deviation may be described by

a
_tx _s o

wo = At cos _x cos _ + E- w (6)

where A and a_ are the given or known dimensionless

amplitude parameters, Lx and Ls are the given or known

half wave lengths in the axial and circumferential direc-

tions respectively. The first term at the right-hand side

of Eq. (6) describes a_definite shape. The second term,
introduced by Donnell v, is definite in amplitude but
indefinite in shape, because the radial displacement w
varies with the applied load. It may be interpreted that
the second term is used to replace all terms in the infin-
ite series which may have effects on the deformation. It

also implies that only one of these implicit terms in-
fluences the deformation at one time.

by

The deformation of the cylinder is assumed to be given

[ _x _s 2_x

where a and b are arbitrary parameters, _x and _s

are the unknown half-wave lengths of the deformation waves
in the axial and circumferential directions, d is not

an independent parameter, d may be determined by the
condition that v is a periodic function of s. The

deformation funct_onby Eq. (7) _s essentially the one
adopted by Donnell o and Kempner _ except that a term of

2_s

cos _s is not included.



Stress Function

By introducing w^ from Eq. (6) and w from Eq. (7)

into Eq. (5), the stre_s function is found to be

ffi. Et_ a(_ 8b) cos 2_x + cos

a(2abK_-l)P cos _X_x cos _Ss 2a_bK_ _ cos _x _s

_._I__ s (_n'_ono)X (n'no)S
0o$ " COS

+ Q_ r r

+Q
B2

cos (_n + _°n°)x cos (n+n°)'_ _m " E

r r (_+_o)8

Q
Q cos

(_m-_ono)X (n+no)S + a
,,, cos , Q cos

r r mx

(n'n°) _ _Q: (2_n'_°n°) x noS+ 8b cos-- cos ---
oos r _ r r

s (2_u_+_ono)X _I} _ -_"oos -- cos -+ Q,, r
(8)

in _hich

2a o
K=I+--- =I + V 8s _o Ls

E, _=_x , =q

_r = _r _ _ _o n°Zt
n = T_s , no _ ' = r ' =-_"
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P = _a , P = i + 9_ m ' _ -

2 2

{_-%) (_-_o)
' Q = 2+

:z (__._o) 2 +(I_._)2 ms (_+4_o) (I+._)2

(_+_o)2 (_+_o)2
Q - ,Q =
:2 (_.._o) 2+(I+4) 2 2: (_+._o) 2+ (i_._)2

Q = !_a Q = _

_ (2_ -_o )_+ _a ' 4* (2_ +_o )s+ _2

In Eq. (8) o is the applied average axial compres-
sive stress.

Potential Energy

The total potential energy of the system consists of
the potential energy of the applied load and the internal
strain energy in the cylinder. There are two parts in the

strain energy, the membrane strain energy Um and the

bending strain energy Ub. They can be expressed as

(9}

and
2

= + 2(l-v) U'8-x'_s"ub (?w}2 Da2w

(io)

in which D = (i/12) Et3/(l-v2).
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From Eqs. (3), (4), (7), (8), (9) and (I0), the total

internal strain energy, U i , is found to be

Ui = (_t_L/r) {a_(aXD - 8b)'/b28 + a4X'_4/h-28

8 B 2

+ aB(2abK_]-l) P /4 + a4baK_ P

o/64) _ " +Q, +Q" +Q_+ (A2aa_ Q_ 2_ _2 2_

_ + Q ) + (ar/Et)"

+

J

(II)

The potential energy of the axial load applied to the

ends of the cylinder, Ua, can be expressed as

ua- _t a (_) ax (_)

The integral in Eq. (12) gives the total end shortening in
the axial direction. From the first of Eqs. (I) and the

first of Eq. (4), the integrand is found to be

--= . " - (_) - (_-_)(_--) (13)

If ¢ is defined as the average unit end shortening in
the axial direction or the ratio of the total end shorten-

ing and the cylinder length, it is found that

(er/t) = (ar/Et) + amK;r_Lm (i + 8bm)/8 (14)

In carryin E out the integral in Eq. (12), it is assumed

that _x _Lx and that the initial and deformed axial

wave lengths are small compared to the entire length of
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the cylinder.

Determination of Parameters

The deflection parameters, expressed in terms of a,

b, _ and _, may be determined by the principle of
stationary potential energy. When the total potential

energy of the system, Ui + Ua, is made stationary for a

small variation of each of the four parameters, the follow-

ing four simultaneous algebraic equations are obtained:

(aK_ - 8b) [aD(l+K) - 8hi+ aSK_S_4(1 + K) + 32"

(2abK_ - i)_abT](l + K)-I] P 2 + 128 aSb2_]SK .
XX

(i + K)P : + 2A2no2 [QI:
+Q2+Q2 +Q2 +

22 12 21

+ 32b2_ (l-v 2)
_ 44

. 16(ar/Et)n_2(l + K)(I + 8b 2) = 0 (15)

= p 2 _

2 + Q 2) + 4n2_,/3(i__)+ 2A2_o2 (Q_ ,,

- 4(or/Et)71K_ 2]

+ 2aSK2_2(p 2 + p 2)

aSK2_ (I + _') - 8abK + 64abK(2abK_ - I)P 2
11

{+ 128 a2b2K2_ P 2 + 2A2_o_ Q _ [_o( _ + _o)
_ 22

(16)
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+Q.: [.o(.+-,.o) - z + .,] I(. + .o)"
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+ (128 Aib"n o ,,@/I.L_ o(21J,+ #,IAo)+ ,,c]Qil

" [_o(2"" .<p.o) - .<]Q_:_}

+ 8,_[(z+ .,)"+32b,.,]/_(z-,,,)

- 16 (ar_t) K_2 (I + 8ba) = 0 (17)

amKillmi_/32 + (2abK_ - I)iP m/l__

+ b.aJ,b:B1k'_Irp _ _ .{P3a/ll + (li_oa/1_6)

(l - ,<)[_o(_ - -c_.o) + I - ,<]Q_.:/(_.- ,o)8

+(_÷"<>E.o(.÷".o_÷_ ÷"]Q,:I(.-.o)°

+('+")[_+"<-"o(.--.o_%:I(. +"o)"

+(_- -<>F__- -<-,<>(,+.<,o>_1<_,:/(,+,o>°_

{[_ _]Q°+ (4"cA"bS_ol/_) " _o (2_ " "C_o as

+ [_ + IJ'o(21J' + _o_ Q_}..
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- (ar/ t)K (I + 8b )/2 = o (18)
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In the variational procedure, it is considered that a =

constant, the case of dead-weight loading. The deflection
parameters for a given load may now be determined by
solving Eqs. (15) to (18) simultaneously. The following
procedure of obtaining numerical solutions is considered.

Eq. (16) is first used to eliminate b from the other

three equations. The values of the parameters, A, ao, He

and _o defining the initial imperfections are preassigned.

For assumed values of a, _, and _, a value of a may
be computed from each of the three equations. The correct
set of a, _, and _ yields the same e value from each
of the three equations. For a fixed value of a, a pair

of _ and _ may be found by systematic coarse scanning
such that the three corresponding values of e are

reasonably close to each other. Then by keeping one of
the two parameters constant and adding a small increment
to the other one, the effects of the increment on the
a -values are determined. Knowing these effects, a new
pair of _ and _ may be extrapolated. This process
may be repeated until a pair of _ and _ values are
found such that the three a -values agree with each other
to within a desired accuracy.

For a fixed value of a, there may be more than one
set of _]_ M and a values satisfying the three equa-

tions. Knowing a set of a, _I, _(eand a values, thecorresponding values of b and r/t) may be calculated

by Eqs. (16) and (14). The entire procedure may be re-

peated for a suitable number of a-values. The computation
involved in this method of solution was programmed by the
Fortran language on an IBM 1620 digital computer.

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results of the solution of Eqs. (15) to
(18) for a number of cases are shown in Figs. I to 6 as



functions of the unit end shortening parameter (¢r/t)
For comparison, the (or/Zt) vs (¢r/t) relationship of a
perfect cylinder, Case I: A - 0, V - 0, is also shown
in Fig. I. For this case, the minimum value of the applied
stress in the postbuckling region is o = 0.193 (Et/r) at

= 0.397 and (¢r/t) = 0.462. These results compare
favorably with the corresponding results ofJ o = 0.195

(Et/r) at 6 _ _ 0.40 by Leggett and Jones 5 and
Michielsen . The minimum stress obtained by Kempner 7, by

using five Darameters in the variational procedure, is
0.182 (Et/r) at _ = 0.362. Fig. 1 shows the departure

of the results by the present analysis and that of
Michielsen o in the region (¢r/t)>0.5. The difference is
due to the deformation functions employed in the two
analyses being slightly different. The results of the pre-
sent analysis in the region (¢r/t)>0.5 practically coin-
cide with that by Kempnerf. The variations of the de-
flection parameters with unit shortening for this case are
shown in Fig. 2.

Fig. I also shows the (or/Et) vs (¢r/t) curves of
three other cases having essentially definite initial im-
perfections. These curves deviate only slightly from that
of the perfect cylinder. It is also to be noted that the
values of the parameters defining the initial imperfections

are in the critical ranges of the deflection parameters

giving the shapes of the deformation waves of the perfect
cylinder. The maximum applied stress for Case II is
0.621 (Et/r). For cases llI and IV it "is 0.617 (Et/r).
These maximum stresses are slightly higher than the criti-
cal value of 0.605 (Et/r) for the perfect cylinder. It

indicates that definite initial imperfections, at least,
of the type considered do not cause lower buckling
stresses. However, the characteristics of the curves in
Fig. I indicate that the imperfect cylinders, when subject
to external disturbances, may become unstable at critical

stresses less than the maximum applied stresses and snap
through into other states of equilibrium which are connect-

ed with considerably smaller axial loads. But, it is to be
noted that the imperfect cylinders II, llI and IV are com-
paratively more stable than the perfect cylinder. The
curves indicate that a comparatively larger amount of ex-

ternal disturbance may be needed to cause the snapthrough
bucklings of the imperfect cylinders than that of the
perfect cylinder.
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Although the (ar/Et) vs (¢r/t) curves of the imper-

fect and perfect cylinders appear to be similar, their
deflection parameters do not vary in a similar manner.
Fig. 3 shows the variations of the deflection parameters
with unit end shortening for Case 7I, which are similar
to that of Case I. However, the variations of the de-

flection parameters with unit end shortening for Case IV_
shown in Fig. 4, (similar results for Case III) are quite
different from the other two cases. It indicates that the

initial imperfections may affect the buckling process of

a cylinder. It also indicates that the following two
buckling processes are possible. In the early stage of
buckling, a cylinder may deform with a comparatively small
number of waves of comparatively large amplitudes (Case II)

or a cylinder may deform with a comparatively large number
of waves of comparatively small amplitudes (Case IV)

Fig. 5 represents the influences of the imperfection

factor, V, (V = 2a o), on the behavior of an axially com-

pressed cylinder. The segment of Curve 1 in solid line

was obtained by the process previously described. The
minimum applied stress indicated by Curve I is 0.187
(Et/r) at (¢r/t) = 0.451 and _ = 0.349. In the region
of the dotted llne of Curve I, an exhaustive search did
not produce a set of parameters that satisfies the three
simultaneous equations. However, other sets of parameters
that yield points in the (er/Et) vs (er/t) plane above
Curve 1 were found. This difficulty may be due to the
insufficient number of terms included in the deflection

function.

Curve 2 in Fig. 5 was obtained by using the following
deflection function previously employed by Lool2.

w= a't [sin ns _x 2_x ]sin ÷ b' (cos - I) + a, (19)

It may be shown that the total potential energy of a
cylinder having the initial imperfection given by Eq. (6)
and the deflection given by Eq. (19) may still be expressed
by Eqs. (11),(12), and (14) nrovided that a is replaced
by a' and b is replaced by (-b') in these equations.
By using a numerical procedure identical to the previous
one, Curve 2 in Fig. 5 as well as the variations of the

parameters with unit end shortening shown in Fig. 6 were



i%

obtaine_. For comparison, Fig. 5 also shows the results
by Loo _ for cases of V = 0 and V = .2 . These results,
which compared reasonably well with that of the present
analysis, were obtained by assuming the constant values
of _ and _ given Dy the classical small deflection

theory. It is to be noted that the values of a' in Fig.6
are much less than the values of a of the Cases I to IV.

It is also to be noted that the values of _ and _ in

Fig. 6 are close to the corresponding values predicted by
the small-deflection theory. The results also indicate
that the number of waves, given by _, decreases in the

later stage of the buckling process. This has also been

indicated by Von Karman and Tsien4.

CONCLUDING REMARKS

The foregoing analysis and numerical results indicate
that the theoretical axial buckling stresses of cylinders

having definite initial imperfections, at least of the
periodic type considered, are not necessarily lower than
that of a perfect cylinder, in other words, it is possible
that certain types of definite initial deviations may
increase the buckling resistance of a cylindrical shell.
The imperfection factor introduced by Donnell I leads to

lower theoretical buckling stresses. However, the physical
meaning of the factor needs further clarification.

The usage of the imperfection factor implies the
following assumption. The initial imperfections may be
described by an infinite double Fourier series having all
terms, each of which is a function of the space coordinates
only, of equal amplitude; the terms interact with the
deflection function, a function of the space coordinates

and the applied load one at a time. However, the present
analysis indicates that all the terms may interact with

the deflection function. The interactions may not neces-
sarily reduce the theoretical buckling stress.

It has also been found that two theoretical buckling
processes are possible. In the early stage of buckling,
a cylinder may deform with a comparatively large number
of waves of comparatively small amplitudes or it may deform
with a comparatively small number of waves of comparatively
large amplitudes.
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It is obvious that further research on the effects of

initial imperfections and the process of buckling is need-
ed. The theoretical analysis may be improved by consider-

ing (a) higher order terms in the strain-displacement re-
lationships and the equilibrium equations, and (b) more
accurate descriptions of the initial imperfections and the
deflection. From the present analysis, it appears that

aperiodic as well as periodic functions should be used to
describe the initial imperfections and the deflection.

A great deal of mathematical difficulty is expected
in any theoretical refinement. They may be alleviated,
however, if the theoretical development is guided by
refined experiments. Most of the experimental results
available in the literature are usually presented in terms

of only the critical buckling load and the final mode of
buckling. New experimental results on the complete devel-
opment of the buckling stress pattern, prebuckling and

postbuckllng, may provide a physical basis for a better
theoretical insight into this difficult problem.
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Figure i.- Variation of applied stress wlth unlt end shortening.
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Figure 2.- Variation of deflection parameters with unit end shortening.
Case I: A = 0; V --0.
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Figure 4.- Variation of deflection parameters with unit end shortening.

Case IV: A = .5; 11o = .i; i_o = .2; V = .01.
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Case V: A = .01; _o = .i; _o = .2_ V = .2.
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