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BUCKLING OF INITIALLY IMPERFECT AXIALLY

COMPRESSED CYLINDRICAL SHELLS

By S. Y. Lu and William A. Nash
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SUMMARY

The effects of imperfections on the buckling strength

of pressurized cylinders under axial compression are studied.

The imperfection factor is considered in the finite-deflec-

tion compatibility equation, as well as in the equilibrium

equation. A new relation to express the imperfection as

an explicit exponential function of pressure and radius-

thickness ratio is proposed. A method for finding the

exponential function is described, and the solution for the

critical stress is found in a fairly simple form. The re-

lation of decrease of stability with respect to magnitude

of imperfections is found.

INTRODUCTION

The elastic postbuckling behavior of initially perfect

cylindrical shells subject to internal pressure together

with axial compression or bending has been discussed in

references i, 2, 3, and 4. It was observed that the avail-

able test results (refs. 2, _, and 4) were lower than the

critical stress found by the analysis in reference I. On

the other hand, the ratio of the increment of critical

stress, due to the internal pressure, to the critical stress

in an unpressurized cylinder, found in the analysis in ref-

erence I, was fairly close to the test data in references

2, 3, and 4. This indicates that practically no shell can

be considered perfect and that the sc_tion to the "perfect"

shell can only serve as an upper bound. Therefore, an in-

vestigation of the effect of imperfections is necessary.
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The influence of initial imperfections was first studied

by Donnell in 1934 (ref. 5). The solution for cylindrical

shells under axial compression was later carried out by

Donnell and Wan (ref. 6). For shells under external pressure,

the effects of imperfections and finite deflections were

studied by Nash (ref. 7), while the case of fixed edges was

discussed by Donnell in 1958 (ref. 8).

SYMBOLS

C

D

E

F

R

m, n

P

t

w

w i

x, s

P

Q

index in the exponential function defined in

equation ii

flexural rigidity, D = Et3/ 12(1 - v 2)

Young's modulus

Airy stress function

radius of middle surface of shell

number of waves in axial and circumferential

directions, respectively

internal pressure

wall thickness of shell

total normal deflection

initial deflection

co-ordinates of point in middle surface of shell

wi/w, imperfection ratio

K/m2t

b3/t_
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v

n2/m 2

imperfection coefficient defined in equation 24

Poisson's ratio, v I 0.3

9

o

cr

stress parameter defined in equation 18

axial stress

superscript indicating perfect shell

subscript indicating critical condition

BASIC EQUATIONS

Let w equal the total radial deflection; w i, the

initial imperfection in the radial direction; and F,

the Airy stress function. The strain-displacement rela-

tions are:
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The strain-stress relations in the x-s plane are:

Ex - a_. _1

E 8x,_5

(2)

The compatibility equation derived from equation 2 is:

_5 a Y" c_xz _x@5/
(3)

After equation 1 is substituted in equation 3, the

finite-deflectlon compatibility equation has the following

form:

L\@x@5/ ax z o_5 z * ax= -_axe_J

ax a =95 _
(4)

The equilibrium equation in the radial direction is:
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(s)

_ When w i is a known function, the solution may be

foumd by solving for w and F in equations 4 and 5

simultaneously. However, w i is, in general, unknown.

For simplicity, w is assumed to be proportional to w i

as in references 5 through 8, that is,

wi/w = P = imperfection ratio (6)

where P+. is independent of x and s. The expression

for P will be discussed in the next section. The criti-

cal stress to be found is then a function of P

With the relation from equation 6, the compatibility

and equilibrium equations are expressed, respectively, as:

and

(8)
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DEFLECTION FUNCTION w AND IMPERFECTION RATIO P

In the present study, the deflection function for a

cylindrical shell under internal pressure and axial compres-

sion is assumed to be:

(9)

The parameter b I is not independent but is used to satisfy

the condition of periodicity of circumferential displacement.

be:
The Airy stress function, accordingly, is assumed to

+ a co$ _-E--_-t--cos "'_.__L _- a co5
a.a. _ 7_ oz R

(I0)

Before the solution is discussed, the expression for

the imperfection ratio, P , should be studied. Evidence

from previous tests (refs. 2, 3, and 4) reveals that imper-

fections have the greatest effect on shells having the

largest ratio of R/t. The simplest way to express this

relation is to assume that P increases linearly with R/t

and then to determine the proportionality constant by means

of available test data. However, this method may fit only

a certain range of values of R/t. The limiting physical

conditions require that: (i) P = 0 when R/t = 0, and

(2) P = 1 only when R/t -- - . A relation to ex-

press P as a function of both R/t and the internal

pressure p is now proposed, such that:
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R ) (ii)r = i- exp(-C_

The index C in the above equation is always positive and

is assumed to be a function of internal pressure only. The

method for determining C will be discussed later.

SOLUTIONS

The Galerkin method was employed to solve equations 7

and 8 when the assumed forms of F and w in equations

i0 and 9, respectively, were used. The coefficients of

the stress function F are found first as follows:

1 a_t,_..=_ i.F z

t a__=
1-T Et a

i a

where

a
n

Ina

> (12)

(13)
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_ R (14)
_at

(15)

From the integration of equation 8 and the relation

in equation 12, the following two equations are established

after simplification:

and

(16)

In the above equations, _ is a dimensionless stress para-
meter and

_ 2/-;
£t x_ Er _

(18)
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Equations 16 and 17 can be rewritten as:

o_ <Az + A z} + A4;Tz) __ A5/b_L_ 2 (16a)= + _--kt I

_ _ C_ _E _4 _ _+ (_ _6/2_V_____ a (17a)" + + or /_ t /

In the above equations, the following notations are used:

Aj. " 1#.(1" _z)

Y- )_,

A4" 16(k_ r)_"

A_--(" * r¥1 * _')_
_6

- ÷/_)Z -

To eliminate

found that:

(19)

b2/t from equations 16a and 17a it has been

(20)



where

(21a)

When 9 is assumed to be a continuous function of a ,

the minimization of 9 with respect to a leads_c_ _

Thus, from equation 20,

(22)

and we have

(23)
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The notation _= represents the value of • that

has been minimized with respect to a . It is to be noted

that 3(i_v2) is the classical value from the small-

defl_cSlqS_o--l-d_ion for perfect shells. However, the ex-

pressions C 1 and C 2 are dependent on P and, therefore,
are different from those used for the case of the perfect

shell, which can be considered as a limiting case by t_ing

P = 0 in the present solution. The solution reduces to

the small-deflection solution by letting b 3 or

approach zero and letting C 1 = C 2 = 1 for either perfect

or imperfect shells.

The next step is to find the minimum of _ versus

when _ and P are given. This minimized value is

which is, therefore, a function of
denoted as _,_ ,
and P . The superscript o is hereafter used to indi-

cate the parameters of perfect shells, for which P = 0

identically. The magnitudes of _°a, q versus _ were

found An reference i.

Let us introduce the notation

The ratio 7 is here called an "imperfection coefficient."

The variation of 7 with _ for different values of

is shown in figure i. Note that curve IV ( _ = 1.5) is

for unpressurized shells, while curve I ( _ = 0) is for

shells subject to rather high pressures, for example,

pR2/Et 2 _ i. Let us rewrite equation 18 as

= o R a

Et

(25)
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At the critical condition,

or
(25a)

The notation _ cr represents the value of

the magnitude of a is minimum.

at which

The problem, now, is to determine the index C in

equation ii. Since C is assumed to change only with p,

it can, of course, be found by a series of tests on shells

of the same R/t under different pressures. However, C

is essentially an experimental constant, and the simple

approach discussed in the next paragraph will reduce the

necessary number of tests to one.

Previous experiences (refs. 1 and 2) indicate that

decreases with increasing p. When pR2/Et 2 increases to

approximately unity, or even greater, _cr approaches zero.

It is also physically true that P becomes smaller at

greater values of p. The exact relations among these

variables are, of course, unknown. In figure 1 it can be

seen that 7 is a decreasing function of P but an in-

creasing function of _ . Therefore, the change of pres-

sure should not significantly change the magnitude of 7

due to the somewhat counter effect of P and _ . At the

time C is determined, 7 is here assumed to be independ-

ent of p. Hence, from equation 25, it can be assumed

that at certain values of R/t:

o t. > j_- pR (26)

m

In the above equation, 7 is taken as an average value of

Y for all pressures. Equation 26 is used only for the
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purpose of estimating C. When pR2/Et 2 varzes, the ratio

_an is not expected to be much different from 7 . Tests
be made at any one value of pressure to find _ . The

_o is the corresponding critical stress An the perfect

shell under the same pressure and can be found in reference

1. Then _ ( = _ ) is determined.

After _ is chosen, the relation between P and

is found from figure i. With the value of R/t known in

equation ii, C can be found in terms of F and, hence, in

terms of _ . Also, _ can be found An terms of pR2/Et 2

from equation 25a. The index C is thus determined as a

function of p.

NUMERICAL EVALUATION

For the purpose of illustrating the method of finding

the index C, assume _ = 0.6 at R/t = 1,500. From

figure i, the change of F with _ can be found, and,

from equation ii, C can be determined in terms of F .

For the perfect shell, the relation between t/_e_ and
has been found previously. From equation 25a _ cr

at which the shell buckles can be evaluated at various

values of p. Some of the numerical relations are listed

in the following table.

[_ ' _cr 1.5 1.0 0.5 --0

iF 0.63 0.565 0.49 0.4

C x 103 0.662 0.555 0.448 0.34

0.29,o
#

Et 2

0. 161 0.183

0.06 0.19

0.605

>=i.0

From the above table, C versus p is plotted in figure 2.
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Figure i.- Variation of imperfection coefficient with

imperfection ratio.
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