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LOCAL CIRClJ}.1FERENTIAL BUCKLING OF THIN CIRCULAR 

CYLINDRICAL SHELLS 

By David J. Johns 

College of Aeronautics, Cranfield, U.K. 

SUMMARY 

The problem of circumferential buckling of a thin circular cylin
drical shell due to compressive hoop stresses which vary in the axial 
direction is examined. For extremely localised compressive hoop stress 
distributions resulting from thermal discontinuity effects, or from a 
uniform, radial line loading, the buckle pattern should also be 
localised. Simplified analyses into these two types of problem are 
considered which show that only a limited number of buckle deflection 
modes needs to be assumed. 

INTRODUCTION 

The compressive hoop stresses set up near the junction of a 
cylindrical shell heated axisymmetrically, and a cooler, stiffening 
ring or bulkhead, may be high enough to cause buckling of the shell. 
Similar stress distributions are caused by an axisymmetric radial line 
loading in an unstiffened shell. For both types of problem the 
localised nature of the high compressive hoop stresses suggests that 
the buckling mode may also be local. 

This paper reviews the problems and discusses same simplified 
theoretical analyses which only consider the conditions in the shell 
close to the region in which the compressive hoop stresses are acting. 
No attempt is made, as in other published solutions, to represent the 
condi tions over the entire length of the shell. By this means it is 
hoped to show that a realistic solution is obtained when using only a 
limited number of modes for the buckle deflection pattern. 

SYMBOLS 

a radius of shell 

ap,~,bN deflection coefficients in radial displacement functions 
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C a number 

D flexural rigidity 

E Young's modulus 

h shell thickness 

L shell length 

L f3 "compressed" length of shell 

P radial line load 

R thermal buckling factor (ex T) 
c 

T uniform shell temperature rise 

w 

x 

y 

ex 

ay 

Subscript: 

c 

shell radial displ acement 

axial shell co-ordinate measured from position of maximum 
hoop stress 

circumferential shell co-ordinate 

coefficient of thermal expan~n 

shell parameter [3(l_V2~2h2j 
half wave length 'of buckling in circumferential direction 

circumferential membrane stress 

critical 

CIRCUMFERENTIAL THERMAL BUCKLING 

Review 

Hoff (ref.l) first investigated the stability of a simply supported 
cylindrical shell subjected to a uniform temperature rise. Infinite 
trigonometric series are used to represent the radial deformation of 
the shell and the axial stress distribution, and Donnell's simplified 
small deflection theory (ref.2) is used to obtain a solution in the 
form of an infinite determinant which can be truncated to give a 
solution to any desired degree of accuracy. 
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For clamped edged shells such a direct analysis is not possible 
and a solution o~ Donnell's equation requires the application o~ 
Galerkin's method (re~s.3 and 4). In a more recent paper by Anderson 
(re~.5) a similar approach is made, ~or both clamped and simply 
supported edges, using the modi~ied equation o~ equilibrium proposed 
by Batdorf (ref.6). 

The result is shown in both references I and 5 that for long shells 
many terms are required in the radial deformation function to describe 
the buckle pattern accurately when it is expressed in the form 

0: 

W = • 1fV \' • 1TX • P1TX 
sJ.rr:t L ap sJ.nL sJ.nr;- , 

p=l 
for clamped edges, or, 

<X 

W = sirJIf I ap sinPr 
p=l 

for simply supported edges. 

(1) 

(2) 

For a uniformly heated shell attacned to a rigid, non-expanding 
ring or bulkhead, the exact hoop stress distributions are ShOVill in 
~igure I and may be written as 

for clamped edges, and 

@ = -(jx 
e cos(3x 

~or simply supported edges. 

It is evident that these stresses decrease rapidly av~y from the 
shell-bulkhead joint and, if the hoop stress distribution is represented 
by 

(J = 
Y 

, 
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many terms Sm would be required for adequate representation of cry over 

the entire length of the shell. Because of this it was suggested by the 
author (ref.?) that a more important parameter in this problem than the 
shell length would be that length of the shell near to each joint for 
which the hoop stresses are compressive (see figure 1), i.e. L should 
be replaced by L~ where for clamped edges 

L ~ = 31T/2~ (6) 

and for simply supported edges, 

L · = 1T/~ 
tB 

This concept was used in reference 4 where both the assumed buckle 
pattern and the hoop stress distribution were only represented over a 
region close to the shell-bulkhead joint. The small number of terma 
required to get convergence of the solution and the agreement which was 
obtained with an experimental investigation suggested that the line of 
approach was indeed valid. 

Hemp (ref.8) has also recently considered this thermal buckling 
problem and the energy method of solution he presents requires only a 
consideration of the buckle deformations close to the shell bulkhead 
joint. In the method of reference 8 allowance is made for the presence 
of initial longitudinal curvature in the shell in the region of maximum 
compressive hoop stress. Preliminary calculations by the present author 
have shown that the effect of the initial curvature is stabilising. A 
more detailed investigation into this aspect is now in progress. 

Analysis 

Donnell's simplified equation (ref.2) may be written as 

DV 8w + Eh(a
4w) + hV4[cry a

2
w J = 0 (8) 

~ax4 oy2 

The clamped edged boundary conditions w = ~ = 0 at x = 0 and x 

are satisfied if we assume an expression for w of the form 

NL@. 
= 2 
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w = 

In this expression the parameter N defines the buckle pattern length in 
terms of the parameter, Lf3. In equation (5) L is replaced by Lf3 and in 
a given problem the coefficients 8m characterising the particular stress 
distribution are inserted. The substitution of the modified equation 
(5) and equation (9) into equation (8) yields an equation which is not 
satisfied identically by any choice of the coefficients a. Recourse 
is therefore had to Galerkin's method of solution. The r~sultant 
stabili ty determinant containing terms in R and. A is then analysed to 
find the value of A which makes R a minimum. Various approximations 
are made by truncating the determinant and increasingly more terms are 
retained until convergence on the minimum val ue of R is found. 

In reference 4 it was assumed that N = 2 and equation (5) could be 
replaced by 

a = RE[l + cos~J 
y 2 Lf3 

L 
O<x< t (10) 

Adequate convergence was obtained from only a 3 x 3 determinant the 
results of which are plotted in figure 2. The corresponding r esults 
for a simply supported s hell are also shovm and it is seen to have a 
cri tical buckling t emper a ture 20% lmver t han f or the clamped edged shell. 
This relatively close agreement is not surprising because although in 
the region of the shell-bulkhead joint clamping gives a more rigid 
support to the shell, the compressive hoop stresses are larger and act 
over a 5010 greater length of shell than for the simply-supported shell. 
These two effects tend to cancel each other. 

It is now thought that a more realistic approach would have been 
to vary N in the range N ~ 1 and so determine R. as a fUnction of N. 

nun 
However, a first order solution using the above method with N = p = 1 
produces the following simple result for clamped edges which is in 
excellent agreenent with figure 2, viz 

= 6.4.# a 
(11) 
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The corresponding coefficient from reference 5 for a long, clamped edged 
shell is 3.6. However, for long shells the size of the determinant 
needed in reference 5 for convergence was greater than the computer 
programme allowed (greater than 13 x 13). This fact coupled with the 
relative simplicity of the present method and the correlation obtained 
with experiment leads the author to think that the present approach is 
probably more valid. 

For a non-uniform, axial shell temperature distribution and for a 
flexible, expanding bulkhead the method above applies directly provided 
the shell stress distribution is correctly represented in the analysis_. 

This approach has been used in reference 4 in correlating the theory 
with the results of an experimental investigation. The steel shell 
concerned had a radius-thickness ratio of 2540 which for clamped edges 
gives a theoretical uniform shell buckling temperature of 230oC. For 
the measured temperature distribution at buckling the theoretical 
maximum shell temperature was derived as 324°C whereas the experimental 
value was 300oC. This is considered to be fair agreement. A photograph 
of the buckled pattern is shown in figure 3. 

CIRCUMFERENTIAL BUCKl.ING DUE TO A RADIAL LINE LOADING 

Analysis 

For an axisymmetric, radial line loading the compressive hoop stress 
distribution is similar to that in the thermal buckling problem of the 
clamped edged shell (equation (3)) and may be approximated by 

= 
PRa( 21TX) f;h\l + cos1 ' 

{3 

L 
O<x <f 

The buckle deflection function is assumed to be 

W = 

where the second term in ~ is a correction term. 

• (12) 

The results obtained from the various analyses, USing Donnell's 
simplified equation as described earlier, can be expressed in the form 

- - -- - -- - ------ -- -----
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(14) 

and are summarised below. 

N ~ b
N 

C 

1 YES YES 1.41 
1 YES NO 1.44 
2 YES NO 0.80 
3 YES NO 1 .11 
4 YES NO 2.19 

Comparison o~ the two results ~or N = 1 suggests that the effect of the 
correction term ~ is small. Also it is seen that the minimum value of 

C corresponds to a value of N = 2 when the buckle deflection pattern 
extends over a length twice that for which the hoop stresses are 
compressive. It should be pointed out that for N >1 no allowance was 
made for the presence of the small tensile hoop stresses in the region 

l; < x < 1J and there is some error in the assumed distribution for ay 
in e qua tion (12). 

There are very few other analyses into this problem in the 
literature but in reference 9 a solution is quoted for a long shell 

ha ving the value 
a h = 100. 

P c = 

The result quoted for P is c 

whilst from this present paper a coefficient of 8 is found. For 

(15) 

1 00< ~< 1000 there is an approximate 2:1 relationship between equation 

(14) with C = 0.8 and the result of reference 9. 

It is worth noting that the analysis in reference 9 attempted to 
represent the conditions over the entire length of shell and required 
four terms in the buckle deflection function and twelve terms to repre
sent the stress distribution . Thus the point can again be made that for 
local loading problems considerable simplification occurs and reasonable 
a ccuracy is retained by only considering t he local buckling problem. 



CONCLUSIONS 

Analyses have been discussed which consider the problem of circum
ferential buckling of thin cylindrical shells. It has been shown that 
when the compressive hoop stresses are localised considerable simplicity 
results by also assuming the buckling mode to be local. Reasonable 
correlation with an experimental result has been obtained for a thermal 
buckling problem. 
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Figure 1.- Hoop stress functions for a cylindrical shell. Uniform shell 
temperature rise. 
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Figure 2.- Crt~ical buckling factor for cylinders subjected to uniform 
shell temperature rise. 



Figure 3.- Thermal buckles due to discontinuity stresses in a thin 
cylindrical shell. 
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