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ELASTIC AND PLASTIC STABILITY OF ORTHOTROPIC CYLINDERS
By George Gerard

Allied Reséarch Associates

SUMMARY

By utilizing linear stability theory, solutions for elastic
buckling of short and moderate length orthotropic cylinders under
axial compression are presented and correlated with experimental re-
sults on circumferentially stiffened cylinders. The plastic buckling
of short and moderate length isotropic and orthotropic cylinders is
also investigated and the theoretical results correlated with avail-
able experimental data. A discussion of the effects of finite deflec-
tions and initial imperfections is presented in order to explain the
correlation obtained between the theory and the experimental data.

INTRODUCTION

It is the objective here to summarize the significant results
obtained on an NASA sponsored investigation* into the general in-
stability characteristics of stiffened circular cylindersl‘a. One of
the major results of this program was the development of a linear
general stability theory for elastic and plastic buckling of ortho-
tropic cylindrical shells under axial compression, external pressure
and torsion over the complete length range and the correlation ob-
tained with experimental data.

Since linear theory was employed, it is particularly important
for shells to correlate the theory with experimental results, Con-
sequently, all available data on stiffened and unstiffened shells
were correlated with the theory on a unified basis. For the lateral
pressure case, the experimental results were in good agreement with
the predictions of the linear theotyl. Under torsional loading, the
stiffened cylinder data exhibited somewhat more scatter but were in
reasonably good agreement with the linear theory to the same extent

*NASA Research Grant NSG-17-59 with New York University
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that the unstiffened cylinder data correla:edl. Thus, it was con-
cluded that for lateral pressure and torsion, linear theory provides
a satisfactory approach.

For orthotropically stiffened cylinders under axial compression,
which is the area of greatest interest in launch and space vehicle
applications, there was almost a complete lack of published test data.
As a consequence, an experimental program was conducted on machined
orthotropic cylinders of 2014-T6 aluminum alloy under axial compression.
In all cases the stiffening system consisted of circumferential rings.

The test data obtained in this programa when compared to the pre-
dictions of the linear stability theory revealed a most significant
trend. Most of the test data fell within 90 to 100 percent of the
linear theory which is in remarkable contrast with the corresponding
isotropic cylinder case where the test data generally fall at a small
fraction of the linear theory. Furthermore, the test data on the cir-
cumferentially stiffened cylinders which were obtained primarily on
8 in, diameter cylinders exhibited relatively little scatter. Corres-
ponding tests on several larger diameter cylinders indicated no signi-
ficant scale effect.

The theoretical reasons advanced for the behavior of the circum-
ferentially stiffened cylinders are related to the fact that such
cylinders first buckle in the axisymmetric model. Since this mode is
stable in the post-buckling region, the deleterious effects of initial
imperfections are minimized and circumferentially stiffened shells
fail close to the predictions of linear theory.

SYMBOLS

Al plasticity coefficient, Al = (1/4)(1 + 3 Et/Es)

2
Bi extensional rigidity, Bi =- Esti/(l - v)
- 2
B/B3 lo(Al -V )(32/83) - v(l!1 + BZ)IB1

2 e

Di flexural rigidity, Di - Eslil(l'v )
x>/1>1 (v(l)1 +D,) + 1)3]/111

E modulus of elasticity
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secant modulus

tangent modulus

moment of inertia per unit width
compressive buckling coefficient

buckling coefficient, asymmetric mode
buckling coefficient, axisymmetric mode
length

number of longitudinal half wave lengths
number of circumferential wave lengths
loading per unit width

radius

extensional thickness

buckling coefficient ratio, U= kasy,kaxi
radial displacement

coordinates

cylinder curvature parameter, 22 - BZL"/).ZRZD1
lower limit of short cylinder region

upper limit of short cylinder region

as= 31D2/32D1

wavelength parameter, § = nL/mnR

see Eq.(1)

wavelength parameter for moderate length region

Y= B3D/BD1
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2, =2
5 5= 4 AIBZBBIBIB
n plasticity reduction factor

n “see Eq.(9)

v Poisson's ratio
Ve elastic value of Poisson's ratio
o axial stress

ELASTIC STABILITY OF ORTHOTROPIC CYLINDERS

The basic solutions for the compressive stability of orthotro-
pic cylinders for the axisymmetric and asymmetric modes, and the be-
havior of these solutions over the length ranges associated with flat
plates, short cylinders and moderate length cylinders was presented
in Ref. 3. We shall be concerned here with a review of the essential
results.

Moderate Length Range

In the moderate length range, the wavelength parameters for the
asymmetric mode m and B can be treated as continuous variables. As a
consequence, the following result is obtained for the wavelength ratio,

B, B
22 420, 2223, 8fl-a, [1=q,2 s_l;zm}
B stli) Z{myt[(a-y) 3oy )
where: am= 31D2/32D1
Y= B3B/§D1
2 L2
5=4 AleB3/BlB

By use of Eq.(l), the following solution for asymmetric buckling
of moderate length orthotropic cylinders can be obtained
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2

- v )1/2 ZU

L 0.702(A1 2)

where: U= [L-Y] 3)
B +1

Aside from the factor U, Eq.(2) is identical with that for the axi-
symmetric mode.

From the definitions of k and Z and the solutions for kx given
by Eq.(2) the buckling load for*a moderate length cylinder is

1/2
2 (B,D,)
0.702x 271 2.1/2
S XYA LS. o A, - v9) u %)
cr (12)1/2 R 1

It is apparent that in cases where U < 1 the asymmetric mode will
govern while for U > 1 the axisymmetric mode will govern.

Since for the asymmetric mode U depends upon Ewhich, in turn,
depends upon the three orthotropic parameters, @, B and &, it is of
interest to examine Eq.(l) in some detail. It is immediately apparent
that real or imaginary values of B can be obtained for various combi-
nations of @ and y. In fact, the critical combinations are @ = y and
vy = 1 as {llustrated in Fig. 1.

Here, the shaded areas enclosed by the lines y= xand y = 1
represent the regions where B is imaginary for asymmetric buckling.
Since the axisymmetric mode is real in the entire domain, it is
reasonable to assume that buckling in the axisymmetric mode is the
only one possible in the shaded regions.

A further study of Eqs.(l) and (3) for the regions where B is
real reveals that U< 1l for y< 1l and that U> 1 for y > 1. Conse-
quently, the asymmetric mode is theoretically possible in the region
Y21l for a2 vy only. On the other hand, the axisymmetric mode
governs in the remainder of this domain by virtue of either U > 1 or
imaginary B for the asymmetric mode.

Of further interest is the location of the solution for the iso-
tropic cylinder which lies at the point 1,1. In terms of B this is
rather a confused region since theoretically -0 < g < 00. 1In fact,
direct solution of the isotropic elastic cylinder case from the eighth-.
order Donnell equation results in an indeterminacy for . However, by
proceeding to the limit of the isotropic cylinder from the orthotropic
cylinder solution, it is found that for a = 1, Eq.(l) reduces directly
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to
1/4
B = (AB,/B)) )

Since Eq.(5) is valid along a = 1 as shown in Fig. 1, and this in-
cludes the isotropic cylinder point, the indeterminacy in B is removed,
In fact, for the isotropic elastic cylinder, Eq.(5) reduces to p = 1,

A study of the orthotropic parameters indicates that longitudi-
nally stiffened moderate length cylinders are defined by a < 1. Simi-
larly, circumferentially stiffened cylinders are defined by a > 1.
Furthermore, for many practical types of stiffened constructiom, it
appears that y is not greatly different from unity. Thus, it appears
that the region y, a < 1 contains all practical longitudinally stiffened
cylinders. The region G > y > 1 appears to contain all practical cir-
cumferentially stiffened cylinders that buckle in the axisymmetric mode.
For the former, both 0 and y are important in determining U and hence
the buckling load, whereas for the circumferentially stiffened case
U= ] theoretically for o, y > 1.

Short Cylinder Range

Now that the moderate length range has been considered in some
detail, we turn to the short cylinder range where the wavelength para-
meter m = 1, the lowest integer value. For the axisymmetric case, the
results shown in Fig. 2 for the B = 0 case are obtained for all ortho-
tropic elastic cylinders (A1 =1). At

z = n2/[12(1-v2)) 12 (6)

the short cylinder solution merges with the 45° dashed line which re-
presents the moderate length solution given by Eq.(2). However, to be
strictly correct, it is necessary to take into account the integer
values of m in this region. Consequently, the cusps shown for m = 2,
3, 4... are obtained.

For the asymmetric case, P is constant in the moderate length
. range -and—is-given—by Eq.(l). We now denote this value of the wave-
length parameter by p*. It can be cbserved from Fig. 2 that the
lowest value of Z corresponding to this value of p* 1s denoted by z*
which marks the upper limit of the short cylinder region for the
particular orthotropic cylinder depicted.
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For the asymmetric mode, 0 < B S B* in the short cylinder range
and m = 1. The lowest value of Z for the asymmetric mode denoted by
z° is given by

z ‘2 Alyuz (7)

The corresponding value of kx for Zo is
= Al(l +v) ; forZe zZ, (8)

This value of k_ is the lowest value at which the asymmetric mode can
occur, Thus, the short cylinder region for this mode is bounded by
Z <z2s2z*

In the short cylinder region of Fig. 2, the axisymmetric mode
governs below Z, = 1.4 as obtained from Eq. (7) for y = 1/4. 1In the
region between Z, and z* = 27.4, a numerical procedure given in Ref. 3
was used to obtain thc-aaymnatric curve shown in Fig. 2. At z* , the
short cylinder curve merges with the dashed line representing the
moderate length solution given by Eq.(2) where 8* = 1.074 in this case
and U = 0.619. As in the axisymnetric case, the cusps in the moderate
lzngth region result from using the integer values m = 1, 2, 3.., and
B~ = 1.074.

PLASTIC STABILITY OF CYLINDERS

In the previous section the solution for elastic buckling of a
moderate length isotropic cylinder was obtained as the limiting case
of an orthotropic cylinder. Because of the additional complexities
that are introduced when plastic buckling is considered, it appears
desirable to treat the plastic stability of an isotropic cylinder in
some detail before considering the orthotropic cylinder.

In Bef. 2, explicit solutions for plastic buckling of an isotro-
plc cylinder in the axisymmetric and asymmetric modes were obtained
for the flat plate and moderate length regions. It is the objective
here to present plastic buckling solutions for the short cylinder
region and also to define the ranges of validity of the two explicit
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solutions for the isotropic cylinder.

For the moderate length region of the plastic isotropic cylinder
in terms of the parameters of Fig. 1, a =1 and y= (2A.-1)"*. Thus,
the effect of plasticity is to move vertically upward ffom the iso-
tropic elastic point (1,1) as shown in Fig. 1 as E_/E_decreases. As
a consequence, the axisymmetric solution should always govern for
moderate length cylinders subject to plastic buckling.

Short Cylinder Range

By utilizing the procedures given in Ref. 3, k -Z curves have
been computed for values of Et/E = 0,75, 0.50, 0.25%and 0. The data
for the axisymmetric mode are shéwn in Fig. 3. It can be observed
that the axisymmetric plastic solutions closely resemble the elastic
case and that for the limiting case E /E' = 0, the solution is inde-
pendent of Z and corresponds to the ffat plate solution.

It is convenient to separate out the plasticity effects through
the use of a plasticity reduction factor defined as

ﬁ -9 51-v2)E - (kx)glastic- )
(l-vi)E. (kx)elaltic

By use of the plasticity reduction factor, the elastic and plastic
buckling load can be jointly written as
2
xnk E I
N x 1

" (10)

(lovi)l.2

Following Eq.(9), values of ﬁ have been determined for the axi-
symuetric and asymmetric modes. These data are presented in Fig. 4
and cover the Z-range from flat plates through the short cylinder
region into the moderate length region.

In the flat plate region 7 corresponds to the explicit solution
1= (1/4)(1 + 3 E/E) (11)

In the moderate length region, the following explicit solutions of
Ref. 2 apply. For the axisymmetric case,
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7= (e /B2 12)
For the asymmetric case,
. E 12 2+ (43 E )2 1/2
s 3(Et/E') - 1+(l+23 E:/Es)

Orthotropic Cylinders

Although the asymmetric load may be lower than the axisymmetric
load for certain cases of elastic buckling of orthotropic cylinders
as shown in Fig. 2, it is to be expected from the plastic isotropic
cylinder investigation that this situation will reverse {tself as
Et/E is reduced sufficiently. Since the asymmetric buckling load as
wéll as this crossover point are functions of the orthotropic para-
meters as well as E /E , it is evident that it is hardly feasible to

construct k‘ -2 chitti covering a significant range of parameters.

~ The axisymmetric solution is independent of the orthotropic
parameters and therefore the form of the plastic buckling solutioc
for orthotropic cylinders is identical with that for isotropic cylin-
ders as shown in Ref. 2. As a consequence, the data presented in
Figs. 3 and 4 for the axisymmetric mode may be used directly for short
and moderate length orthotropic cylinders.

For the asymmetric plastic case, the procedure used to comstruct
Fig. 2 for the elastic orthotropic cylinder may be used directly by
inserting the proper value of in the pertinent equations. To
illustrate the influence of plasticity upon a moderate length ortho-
tropic cylinder, consider the point a = 1/2, y = 1/4 which corresponds
to the orthotropic cylinder example used in Fig. 2., Although a does
not depend upon » Y does, and therefore as A, decreases in the plas-
tic range, the effect upon Fig. 1 is to move v%rticnlly upward from
the point 1/2, 1/4. Beyond the 1/2, 1/2 point, it is apparent that
the axisymmetric solution will govern.

CORRELATION WITH EXPERIMENTAL DATA

For moderate length cylinders under axial compression, it is of
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particular importance to correslate theoretical results with experimen-
tal data because of the wall known discrepancy that exists for isotro-
pic elastic cylinders. Consequently, the test data obtained in Ref. &
for elastic buckling of circumferentially stiffened orthotropic cylin-
ders are presented. In addition, available test data on isotropic plas-
tic cylinders are also presented in order to check another phase of the
general theory.

Orthotropic Elastic Cylinders

In Ref. 4, experiments were conducted primarily on s series of
8 in. diameter circumferentially stiffened elastic cylinders of
moderate length under axial compressive loading. In terms of the
parameters of Fig. 1, the range of stiffening parameters covered
3 < a< 20 (closely spaced to widely spaced rings) and in all cases
v > 1. The cylinders were designed such that local instability did
not occur before failure in the general instability mode. Because of
the fact that y > 1 for all cylinders, theoretically they should all
buckle initially in the axisymmetric mode.

The test data on the failing strength o. each cylinder is shown
in Fig. 5 as compared to the results of the linear axisymmetric ortho-
tropic theory. It can be observed that excellent agreement exists in
remarkable contrast with the results obtained for isotropic elastic
cylinders. The small experimental scatter evident in Fig. 5 together
with the good correlation with linear theory are important indications
of the potential reliability of this type of construction.

Isotropic Plastic Cylinders

Available test data on the failure strength of moderate length
aluminum alloy cylinders that buckled plastically have been assembled
in Fig. 6. The test data include low’, mediumé and high7 strength
aluminum alloys and thus cover a broad range of interest. The cylin-
ders that could be identified as failing in the axisymmetric and
asymmetric modes are so indicated in Fig. 6. Also included for com-
parison is the axisymmetric plasticity reduction factor for moderate
length cylinders as given by Eq.(12). In each case, the theoretical
curves were computed by using the compressive stress strain dats
associated with the test specimens.

It can be cbserved from Fig. 6, in distinct contrast with well
known results for the elastic case, that the axisymmetric buckling
theory is in relatively good agreement with the test data for the
aluminum alloy cylinders that failed in the axisymmetric mode. On the
other hand, the 7075-T6 cylinders that failed in the asymmetric mode
in the region between the proportional limit and coampressive yield
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strength exhibit the discrepancy with linear theory characteristic of
the elastic case.

POST-BUCKLING BEHAVIOR OF CYLINDERS

From the correlation between theory and test data obtained in
the previous section, it is apparent that the orthotropic and plastic
aspects of the problem can have a profound influence on the post-
buckling behavior. Consequently, we shall be concerned now with a
qualitative evaluation of this region. Because of the obvious com-
plexities of the finite deflection, non-linear features of this region,
much of this discussion is somewhat conjectural. It is indeed for-
tunate, however, that the non-linear features of elastic orthotropic
cylinders have been investigated by Thielemann8 and that Lee’ has
similarly treated the plastic isotropic cylinder.

Elastic Cylinders

A schematic representation of the behavior of perfect, elastic,
moderate length cylinders is illustrated in Fig. 7 in terms of the
axisymmetric buckling parameters. It can be observed for the isotro-
pic cylinder that the axisymmetric and asymmetric buckling loads are
equal and that the post-buckling behavior for the asymmetric mode is
unstable whereas that for the axisymmetric mode is stable.

For a typical longitudinally stiffened cylinder, the asymmetric
buckling load may be considerably below that of the axisymmetric case.
The post-buckling behavior in this case appears to be similar to that
of the isotropic cylinder’.

For a typical circumferentially stiffened cylinder, only the
axisymmetric load is possible since the asymmetric case generally
leads to imaginary values of B. Thus, as the end shortening is in-
creased bayond buckling, it follows the stable, horizontal axisymmetric
path. However, at some point in this finite deflection region it is
entirely possible that the § values associated with the asymmetric
mode may become real resulting in the second bifurcation shown in Fig. 7.
Beyond this point, the asymmetric path may be unstable.

The preceding discussion considered perfect cylinders and it is
now instructive to consider the behavior of cylinders containing small
initial imperfections. A possible loading path for such cylinders is
shown by the dashed line in Fig. 7. As the locad is increased, the
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dashed line intersects the unstable asymmetric post-buckling curves

for the longitudinally stiffened and isotropic cylinders considerably
below the linear buckling load. It appears to be reasonable to assume
that after the intersection point the asymmetric finite deflection
paths would be followed. Thus, failure can occur considerably below
the linear buckling load in the presence of small initial imperfections.

In the case of the circumferentially stiffened cylinder, the
small stable axisymmetric post-buckling region plays a most essential
role in significantly reducing the deleterious effects of initial im-
perfections. As illustrated in Fig. 7, the initial imperfection load
path intersects the asymmetric finite deflection path well beyond the
end shortening associated with buckling. Thus, failure occurs at a
load not significantly below the axisymmetric buckling load depending
upon the extent of the stable axisymmetric post-buckling regionm.

It is important to note that in all three cases failure generally
occurs at the intersection of the initial imperfection path with the
asymetric finite deflections path. Thus, it is to be expected that
the well known diamond buckle patteran should be observed at the con-
clusion of many cylinder experiments as shown in Fig. 8a. Under pro-
per conditions, however, it should be possible to observe the formation
of an axisymmetric buckle pattern for a circumferentially stiffened
cylinder prior to failure in the diamond mode. In other cases such as
an orthotropic elastic cylinder circumferentially stiffened (high a),
the axisymmetric mode was actually observed at the conclusion of the
test as shown in Fig. 8b.

Plastic Cylinders

A schematic representation, based in part on Lee's analyliss’g
of the post-buckling behavior of plastic isotropic moderate length
cylinders, is illustrated in Fig. 9 in terms of the axisymmetric buck-
ling parameters. The two,cases shown are for the proportional limit
region where the two buckling modes are slightly different and the
yield region where the two buckling modes are significantly different.

Considering the yield region first, it can be observed that the
stable axisymmetric post-buckling region is relatively large in extent
by virtue of the significant separation of the asymmetric and axisym-
metric buckling loads. As a consequence, cylinders containing small
initial imperfections and following the dashed line in Fig. 9b tend to
fail upon reaching the axisymmetric load. Here, failure occurs with-
out intersection of the initial imperfection and unstable post-buckling
asymmetric paths.

Thus, it can be anticipated that the axisymmetric buckle mode
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should be observed at the conclusion of the test and that the failure
load should be in good agreement with the axisymmetric buckling load.
This is indeed the case for the test data shown in Fig. 6. Initial
imperfections can be expected to play a negligible role in this case’.

The probable conditions in the proportional limit region are de-
picted in Fig. 9a. Here, the stable axisymmetric post-buckling region
is sharply reduced as compared to Fig. 9b by virtue of the small sepa-
ration of the two buckling loads. As a result, the initial imperfec-
tion load path can intersect the unstable asymmetric post-buckling
path and thus fail well below the axisymmetric and asymmetric buckling
loads. Such cylinders would fail in the diamond buckle pattern and
initial imperfections are significant hered. It is believed that such
behavior is associated with the 7075-T6 test points in Fig. 6 that
exhibited asymmetric buckles at failure.

CONCLUDING REMARKS

The experimental and theoretical results reported herein present
some very significant practical implications for the shell structures
of launch and space vehicles. Use of orthotropic circumferential
stiffening of shells through either ring stiffeners or possibly through
circumferentially oriented filaments appears to be an attractive way
to achieve an important improvement in structural reliability over that
associated with isotropic cylinders. Improved structural reliability
can be realized through the ability to predict the failing load with
far greater accuracy than for the isotropic case and through the sta-
tistical aspects associated with the much smaller scatter of the cir-
cumfegentially stiffened cylinder experiments.
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Figure 5.« Test data on elastic general instability of circumferentially
stiffened cylinders in axial compression.
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