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ELASTIC AND PLASTIC STABILITY OF ORTHOTROPIC CYLINDERS 

By George Gerard 

Allied Research Associates 

StI1HARY 

By utilizing linear stability theory, solutions for elastic 
buckling of short and moderate length orthotropic cylinders under 
axial compression are presented and correlated with experimental re­
sults on circumferentially stiffened cylinders. The plastic buckling 
of short and moderate length isotropic and orthotropic cylinders is 
also investigated and the theoretical results correlated with avail­
able experimental data. A discussion of the effects of finite deflec­
tion. and initial imperfection. is presented in order to explain the 
correlation obtained between the theory and the experimental data. 

INTRODUCTION 

It is the objective here to summarize the significant results 
obtained on an NASA sponsored iavestigation* into the general in­
stability characteristics of stiffened circular cylindersl - 4 • One of 
the major results of thu program was the development of a linear 
general stability theory for elastic and plastic buckling of ortho­
tropic cylindrical shells under axial compression, external pressure 
and torsion over the complete length range and the correlation ob­
tained with experimental data. 

Since linear theory was employed, it is particularly important 
for shell. to correlate the theory with experimental results. Con­
sequently, all available data on stiffened and unstiffened shells 
were correlated with the theory on a unified basis. For the lateral 
pressure case, the experimental results were in good agreement with 
the predictions of the linear theoryl. Onder torsional loading, the 
stiffened cylinder data exhibited somewhat more scatter but were in 
reasonably good agreement with the linear theory to the same extent 

*NASA Research Grant NS~l7-59 with New York University 



1 that the unatiffened cylinder data correlated. Thus. it w~s con-
cluded that for lateral pressure and torsion. linear theory provides 
a satisfactory approach. 

For orthotropically stiffened cylinders under axial compression. 
which is the area of greatest interelt in launch and space vehicle 
applications. there was almost a complete lack of published test data. 
As a consequence. an experimental program was conducted on machined . 
orthotropic cylinders of 2014-T6 aluminum alloy under axial compression. 
In all casea the stiffening system conaisted of circumferential rings. 

4 The telt data obtained in this program when compared to the pre-
dictions of the linear stability theory revealed a molt significant 
trend. Most of the test data fell within 90 to 100 percent of the 
linear theory which ia in remarkable contrast with the corresponding 
isotropic cylinder case where the test data generally fall at a small 
fraction of the lin .. r theory. Furthermore. the test data on the cir­
cumferentially stiffened cylinders which were obtained primarily on 
8 in. diameter cylindera exhibited relatively little scatter. Corres­
ponding tests on several larger diameter cylinders indicated no signi­
ficant scale effect. 

The theoretical reasons advanced for the behavior of the circum­
ferentially stiffened cylinders are related to the fact that such 
cylinders first buckle in the axisymmetric mode3 • Since this mode is 
stable in the post-buckling region, the deleterious effects of initial 
tmperfections are minimized and circumferentially stiffened Ihells 
fail cloae to the predictions of linear theory. 
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SYMBOLS 

plasticity coefficient, Al • (1/4)(1 + 3 Et/Es> 

2 
extenaional rigidity. Bi - Est.i/(l - v ) 

2 
4(Al - v )(B2/B3> - v(Bl + B2)/Bl 

2 
flexural rigidity. Di - Esii/(l-v ) 

[v(Dl + D2> + D3]/Dl 

modulus of elasticity 
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secant modulus 

tangent modulus 

moment of inertia per unit width 

compressive buckling coefficient 

buckling coefficient, asymmetric mode 

buckling coefficient, axisymmetric mode 

length 

number of longitudinal half wave lengths 

number of circumferential wave lengths 

loading per unit width 

radius 

extensional thickness 

buckling coefficient ratio, U • k /k xi asy a 

radial displacement 

coordinates 

cylinder curvature parameter, Z2 • B L4/l2R2D 2 1 

lower limit of short cylinder region 

upper limit of short cylinder region 

a • Bl D2/B2Dl 

wavelength parameter, ~ • nL/m~R 

see Eq. (1) 

wavelength parameter for moderate length region 
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5 
2 -2 

5 • 4 ~B2B3/B1B 

T} plasticity reduction factor 

- " T} s" Eq.(9) 

" Poisson's ratio 

v elastic value of Poisson's ratio • 
a axial stress 

ELASTIC STABILITY OF ORTBJTROPIC CYLINDERS 

The basic solutions for the compressive stability of orthotro­
pic cylinders for the axisymmetric and asymmetric modes, and the be­
havior of these solutions over the length ranges associated with flat 
plates, short cylinders and moderate length cylinders was presented 
in Ref. 3. We shall be concerned here with a review of the essential 
results. 

Moderate Length Range 

In the moderate length range. the .avelength parameters for the 
asymmetric mode m and ~ can be treated as continuous variables. ~ a 
consequence, the following result is obtained for the wavelength ratio. 

where: 

By use of Eq.{l), the following solution for asymmetric buckling 
of moderate length orthotropic cylinders can be obtained 



______ ---J-----------------------------------------

k • O.702(A _ v2)1/2 zu (2) 
x 1 

where: 
ai2 + 1/2 

(3) 
U • 

[ V] 
~2 + 1 

Aside from the factor U, Eq.(2) is identical with that for the axi­
syaaetric mode. 
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From the definitions of k and Z and the solutions for k given 
by Eq.(2) the buckling load forxa moderate length cylinder i8 x 

N cr • 
2 (B D )1/2 

O.702J( 2 1 
(12)1/2 R 

It is apparent that in cases where U < 1 the asymmetric mode will 
govern while for U > 1 the axisymmetric mode will govern. 

(4) 

Since for the asyaaetric mode U depends upon ~ which, in turn, 
depends upon the three orthotropic parameters, a, p and 6, it is of 
interest to examine Eq.(l) in some detail. It is immediately apparent 
that real or imaginary values of P can be obtained for various combi­
nations of a and y. In fact, the critical combinations are a - y and 
y • 1 a8 illustrated in Fig. 1. 

Here, the shaded areas enclosed by the lines y - a and y - 1 
represent the regions where P is imaginary for asymmetric buckling. 
Since the axisymmetric mode is real in the entire domain, it is 
reasonable to assume that buckling in the axisymmetric mode is the 
only one pos8ible in the shaded regions. . 

A further study of Eq8.(1) and (3) for the regions where P is 
real reveals that U < 1 for y < 1 and that U > 1 for y > 1. Conse­
quently, the asymmetric mode is theoretically possible in the region 
y S 1 for a ~ y only. On the other hand, the axisymmetric mode 
governs in the remainder of this domain by virtue of either U > 1 or 
imaginary P for the asymmetric mode. 

Of further interest is the location of the solution for the iso­
tropic cylinder which lie8 at the point 1,1. In terms of P this is 
rather a confused region since theoretically -CD < P < 00. In fact, 
direct solution of the isotropic elastic cylinder case from the eighth-. 
order Donnell equation results in an indeterminacy for p. However, by 
proceeding to the limit of the isotropic cylinder from the orthotropic 
cylinder solution, it is found that for a • 1, Eq.(l) reduces directly 
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~ • (A B IB )1/4 
112 (5) 

Since Eq.(5) i8 valid along a • 1 as shown in Fig. 1, and this in­
cludes the isotropic cylinder point, the indeterminacy in ~ i8 removed. 
In fact, for the isotropic ela8tic cylinder, Eq.(S) reducel to ~ • 1. 

A Itudy of the orthotropic parameter8 indicates that longitudi­
nally stiffened moderate length cylinders are defined by a< 1. Stmi­
larly, circumferentially 8tiffened cylinders are defined by a > 1. 
Furthermore, for many practical type8 of atiffened construction, it 
appears that V is not greatly different from unity. Thus, it appears 
that the region V, a < 1 contains all practical longitudinally stiffened 
cylinders. The region a > V > 1 appears to contain all practical cir­
cumferentially stiffened cylinders that buckle in the axisymmetric mode. 
For the former, both a and V are important in determining U and hence 
the buckling load, wherea8 for the circumferentially stiffened caBe 
U • 1 theoretically for a. V > 1. 

Short Cylinder Range 

Now that the moderate length range has been considered in some 
detail, we turn to the short cylinder range where the wavelength para­
.eter m • 1, the lowest integer value. For the axisymmetric case. the 
results shown in Fig. 2 for the p • 0 case are obtained for all ortho­
tropic elastic cylinders (Al • 1). At 

(6) 

the short cylinder solution merges with the 4S- dashed line which re­
presents the moderate length solution given by Eq.(2). However, to be 
strictly correct, it is neceasary to take into account the integer 
values of m in this region. Conaequently, the cusps shown for m • 2. 
3, 4 ••• are obtained. 

For the asymmetric case. P is constant in the moderate length 
.r.aag.~n4-----H-g!ven-by-Eq;(l). We now denote this value of the wave­
length parameter by p*. It can be observed from Fig. 2 that the 
lowest value of Z corresponding to this value of ~* is denoted by Z* 
which marks the upper limit of the short cylinder region for the 
particular orthotropic cylinder depicted. 



For the asymmetric mode, 0 < ~ s ~* in the short cylinder range 
and m • 1. The lowest value of Z for the asymmetric mode denoted by 
Zo is siven by 

The corresponding value of k for Z is x 0 

; for Z • Z 
o 

(7) 

(8) 

This value of k i. the lowest value at which the asymmetric mode can 
occur. Thus, t~e short cylinder resion for this mode is bounded by 
Z < Z s Z*. o 

In the short cylinder resion of FiS. 2, the axi'ymmetric mode 
soyems below Zo • 1.4 as obtained from Eq.(7) for y • 1/4. In the 
resion between Zo and Z* • 27.4, a numerical procedure siven in Ref. 3 
was used to obtain t~ aaymmetric curve shown in FiS. 2. At Z*. the 
short cylinder curve merges with the dashed line representing the 
moderate length .olution siven by Eq.(2) where p* • 1.074 in this case 
and U • 0.619. Aa in the axisymmetric case, the cusp. in the moderate 
length region result fra. using the integer values m • 1, 2, 3 ••• and 
* ~ • 1.074. 

PLASTIC STABILITY OF CYLINDERS 

In the previous .ection the solution for elastic bucklinS of a 
moderate length isotropic cylinder was obtained a. the ltaiting case 
of an orthotropic cylinder. Because of the additional complexities 
that are introduced when plastic buckling is considered, it appears 
desirable to tr .. t the plastic stability of an isotropic cylinder in 
.ome detail before considering the orthotropic cylinder. 

In Ref. 2, explicit solutions for plastic buckling of an isotro­
pic cylinder in the axisymmetric and asymmetric modes were obtained 
for the flat plate and moderate length regions. It is the objective 
here to present plastic buckling solutions for the short cylinder 
resion and also to define the ranges of validity of the two explicit 
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solutions for the isotropic cylinder. 

For the moderate length region of the pla8tic isotropic cylinder 
in te~ of the parameters of Fig. 1, a • 1 and y • (2A,-1)-1. Thu8, 
the effect of plasticity i8 to move vertically upward f~om the i80-
tropic elastic point (1,1) a. shown in Fig. 1 a. Et/Es decr .. 8es. AI 
a consequence, the axi.ymmetric solution 8hould always govern for 
moderate length cylinder8 8ubject to pla8tic buckling. 

Short Cylinder Range 

By utilizing the procedure. given in Ref. 3, k -Z curve. have 
been computed for values of Et/E • 0.75, 0.50, 0.2Sxand O. The data 
for the ax1.~tric mode are .h&m in Fig. 3. It can be observed 
that the axisymmetric plastic solution. clo8ely re8emble the elastic 
case and that for the It.iting case Et/Es • 0, the .olution is inde­
pendent of Z and corre.ponds to the flat plate solution. 

It is convenient to separate out the plasticity effects through 
the use of a plasticity reduction factor defined as 

-
'1 • '1 

2 Cl-v )E 
2 

(1-" )E e • 

• (kx)plasUc· 

(kx) elastic 
(9) 

By use of the pla.ticity reduction factor, the ela.tic and pla.tic 
buckling load can be jointly written a. . 

2 
" 'lkxE 11 

N • (10) 
x (1_,,2)L2 

e 

Following Eq.(9), values of ~ have been determined for the axi­
.ymmetric and a.ymmetric mode.. These data are presented in Fig. 4 
and cover the Z-range from flat plate. through the short cylinder 
region into the moderate length region. 

-In the flat plate region '1 correspond. to the explicit solution 

(11) 

In the moderate length region, the following explicit solution. of 
Ref. 2 apply. For the axisymmetric ca.e, 



For the asymmetric ca •• , 

Orthotropic Cylinders 

~ • (E /E )1/2 
t s (12) 

(13) 

Although the a.ymmetric load may b. low.r than the axi.ymmetric 
load for certain case. of elastic buckling of orthotropic cylinder. 
a •• hown in Fig. 2, it i. to b. expected from the plastic isotropic 
cylind.r inve.tigation that thi. .ituation will reverse 1tself a. 
Et/Es 1s reduc.d sufficiently. Sinc. the asymmetric buckling load as 
w.ll a. thi. crossover point ar. functions of the orthotropic para­
mat.r. a. v.ll a. ~t/E , it 1. evid.nt that it is hardly fea.ible to 
con.truct kx - Z chartl cov.ring a significant range of parameters. 

~ Th. axisymmetric .olution is ind.pend.nt of the orthotropic 
paramet.rs and ther.for. the fo~ of the plastic buckling solutio~ 
for orthotropic cylind.rs is identical vith that for i.otropic cylin­
d.r. a. shown in Ref. 2. As a cons.quenc •• the data pr ••• nt.d 1n 
Fig •• 3 and 4 for the axi.ymmetric mod. may b. u •• d directly for short 
and mod.rat. l.ngth orthotropic cylind.r •• 

For the a.ymmetric pla.tic case. the procedure used to construct 
Fig. 2 for the .lastic orthotropic cylind.r may b. u.ed directly by 
in.erting the proper value of ~ in the pertinent equation.. To 
illustrate the influence of pla.ticity upon a moderate l.ngth ortho­
tropic cylind.r, con.id.r the point a. 1/2. y • 1/4 which corr.sponda 
to the orthotropic cylind.r example used in Fig. 2. Although a doe. 
not depend upon A" y does, and th.r.fore a. Al d.cr ..... 1n the pla.­
tic raag •• the .ft.ct upon Flg. 1 1. to mov. vertically upward from 
the point 1/2, 1/4. Beyond the 1/2. 1/2 point. it i. appar.nt that 
the axisymmetric .olution will govern. 

CORRELATION WITH EXPERIMENTAL DATA 

For moderate length cylinders under axial compre.sion, it i. of 
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particul.r import.nce to correl.te theoretic.l results with experimen­
t.l data becau.e of the well known di.crepancy that exi.ts for i.otro­
pic el •• tic cylinder.. eon.equently, the te.t data Obt.ined in Bef. 4 
for ela.tic bucklina of circumferenti.lly .tiffened orthotropic cylin­
der •• re pre.ented. In .ddition, .v.il.ble test d.ta on i.otropic pl •• -
tic cylinders .re .1.0 pre.ented in order to check .nother pha8e of the 
aener.l theory. 

Orthotropic Elastic Cylinder. 

In Ref. 4, experiment. vere conducted prtmarily on a .erie. of 
8 in. diameter circumferenti.lly .tiffened ela.tic cylinder. of 
moder.te lenath under .xial compre.a1ve loadina. In terma of the 
par_tera of Fia. 1, the rans. of .tiffenina par_tera cov.red 
3 < a< 20 (clo.ely .paced to wid.ly spaced rinas) and in .11 c •••• 
y > 1. The cylinders were de.ian.d 8uch that local in.tability did 
not occur b.fore f.ilure in the sener.l in.tability mod.. Becau •• of 
the f.ct that y > 1 for .11 cylind.rs, theor.tically th.y 8hould .11 
buckle initially in the axt.ymaetric mod •• 

The te.t data on the f.Uina .trenath 0:.. each cylind.r 18 shown 
in Pia. S •• ca.pared to the re.ults of the linear axi.ymmetric ortho­
tropic th.ory. It c.n be ob.erv.d that excellent .sreement exi8t. in 
remarkable contr •• t with the re.ult. obtained for i.otropic .la.tic 
cylinder.. The _11 experi.-ental .catter evident in Fia. S tos.ther 
with the aood correlation vith linear theory are important indication. 
of the potential reliability of thla type of con.truction. 

I.otropic Pl •• tic Cylinder. 

Available te.t data on the f.ilure .trensth of moder.te length 
aluminum alloy cylinder. that buckled pl •• tically have been a •• ambled 
in PiS. 6. Th. test data includ. lowS, medium6 and hiSh7 str.ngth 
.luminum .lloy. and thus cover • broad ranse of int.re.t. The cylin­
d.r. that could be identified .. failina in the axt.,...tric .nd 
•• ,...tric .ade •• re .0 indicated in FiS. 6. Al.o included for c~ 
pari.on i. the axi.,...tric pla.ticity reduction f.ctor for moderate 
lensth cylinder. a. siven by 1q.(12). In each ca.e, the theoretical 
curve. v.re computed by u.ina the compres.ive .tr... .tr.in data 
a •• oci.ted vith the te.t .pecimen •• 

It can be ob.erved from FiS. 6, in di.tinct contrast with vell 
known re.ult. for the elanic ca.e, that the axi~tric bucklina 
theory is in relatively Sood .ar....at with the te.t data for the 
aluminum .lloy cylinder. that failed in the axtayaaetric mode. On the 
other hand, the 707S-T6 cylind.r. that f.iled in the .symmetric mode 
in the resion b.tween the proportional Itmit .nd compre •• iv. yield 
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strength exhibit the discrepancy with linear theory characteristic of 
the elastic case. 

POST-BUCKLING BEHAVIOR OF CYLINDERS 

From the correlation between tbeory and test data obtained in 
tbe previous section, it is apparent tbat the orthotropic and plastic 
aspects of the problem can bave a profound influence on the post­
buckling behavior. Consequently, we shall be concerned now with a 
qualitative evaluation of this region. Because of the obvious com­
plexities of the finite deflection, non-linear features of tbis region, 
mucb of tbis discussion is somewhat conjectural. It is indeed for­
tunate, however, that the non-linear features of elastic orthotropic 
cylinders have been investigated by Tbielemann8 and that leeS has 
similarly treated the plastic isotropic cylinder. 

Elastic Cylinders 

A schematic representation of tbe behavior of perfect, elastic, 
moderate lengtb cylinders is illustrated in Fig. 7 in terma of tbe 
axisymmetric buckling parameters. It can be observed for the isotro­
pic cylinder that the axis,..etric and asymmetric buckling loads are 
equal and that the post-buckling behavior for the asymmetric mode is 
unstable whereas that for the axisymmetric mode is stable. 

For a typical longitudinally stiffened cylinder, the asymmetric 
buckling load may be considerably below that of the axisymmetric case. 
The post-buckling behavior in this case appears to be similar to that 
of the isotropic cylinder7 • 

For a typical circumferentially stiffened cylinder, only the 
axisymmetric load is possible since the asymmetric case generally 
leads to imaginary values of p. Thus, as the end sbortening i8 in­
creased beyond buckling, it follows the stable, horizontal axisymmetric 
path. However, at some point in this finite deflection region it is 
entirely possible that the p value. associated with the asymmetric 
mode may become real resulting in the second bifurcation shown in Fig. 7. 
Beyond this point, the asymmetric path may be unstable. 

The preceding discus.ion considered perfect cylinders and it is 
DOW instructive to consider tbe behavior of cylinders containing small 
initial imperfections. A possible loading path for such cylinders is 
shown by the dashed line in Fig. 7. As the load is increased, the 
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d •• h.d line int.r •• ct. the un.t.ble •• ymmetric po.t-buckling curve. 
for the longitudin.lly .tiffen.d .nd isotropic cylinders consider.bly 
below the linear buckling load. It .pp .. r. to be reasonable to .s.ume 
that .fter the inter.ection point the a.ymmetric finite d.flection 
paths would be followed. Thu., f.ilure can occur con.ider.bly below 
the line.r buckling load in the pr ••• nc. of small initi.l imp.rfections. 

In the ca.e of th. circumferenti.lly .tiffened cylinder, the 
small st.ble axi.ymmetric post-buckling region play •• mo.t •••• nti.l 
role in .ignificantly r.ducing the d.l.t.riou •• ff.cts of initi.l im­
perfectiona. As illu.tr.ted in Fig. 7, the initi.l imperf.ction load 
p.th inters.cta the •• ymmetric finite d.flection p.th well beyond the 
end ahortening ••• oci.ted with buckling. Thua, f.ilure occurs .t • 
load not .ignificantly below the .xisymmetric buckling load depending 
upon the extent of the st.ble axisymmetric po.t-buckling region. 

It i. t.portant to note that in .11 three cases failure gener.lly 
occur •• t the inter.ection of the initial t.perfectlon path with the 
•• ymmetric finite defl.ctions path. Thu., it ia to be expected that 
the well known diamond buckle p.ttern should be observed .t the con­
clusion of many cylinder exp.riments a •• hown in Fig. S.. Under pro­
per condition., however, it .hould be po •• ible to observe the formation 
of an .xi.ymmetric buckle pattern for • circumferenti.lly .tiff.n.d 
cylinder prior to f.ilure in the diamond ~e. In other c ••••• uch .s 
.n ortbotropic elastic cylinder circumferentially atiffen.d (high a), 
the .xi.ymmetric mod. w ••• ctually observ.d4 .t the conclu.ion of the 
test .s .bown in Fig. Sb. 

Pl.atic Cylindera 

5 9 A ach_tic repreaent.tion, b.aed in part on Lee's .nalysis ' 
of the poat-buckling behavior of pla.tic isotropic moderate length 
cylinder., is illu.tr.ted in Fig. 9 in t.~ of the axi.ymmetric buck­
ling par ... tera. The two.ca.ea shown .re for the proportional limit 
r.gion where the two buckling modea are alightly different and the 
yield region where the two buckling modea .re .ignificantly different. 

Con.idering the yield region fir.t, it can be ob.erved that the 
.table axi.ymmetric po.t-buckling region i. relativ.ly larg. in ext.nt 
by virtue of the significant separation of the a.ymmetric and axisym­
.etric buckling loads. As a con.equence, cylinder. containing ... 11 
initi.l imperfection. and following the da.hed line in Fig. 9b tend to 
fail upon r.aching the axi.ymaetric load. Here, failure occurs with­
out inter.ection of the initial imperfection and un.table po.t-buckling 
•• ,.aetric p.th •• 

Thu., it can be anticipated that the axisymmetric buck 1. mode 
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should be observed at the conclusion of the test and that the failure 
load should be in good agreement with the axisymmetric buckling load. 
This is indeed the case for the test data shown in Fig. 6. Initial 9 
imperfections can be expected to play a negligible role in this case • 

The probable conditions in the proportional limit region are de­
picted in Fig. 9a. Here, the stable axisymmetric post-buckling region 
is .harply reduced as compared to Fig. 9b by virtue of the small sepa­
ration of the two buckling loads. As a result, the initial imperfec­
tion load path can intersect the unstable asymmetric post-buckling 
path and thus fail well below the axisymmetric and asymmetric buckling 
loads. Such cylinders would fail in the diamond buckle pattern and 
initial tmperfections are significant here9• It is believed that such 
behavior is as.ociated with the 7075-T6 test points in Fig. 6 that 
exhibited asymmetric buckles at failure. 

CONCLUDING REKARXS 

The experimental and theoretical results reported herein present 
some very significant practical tmplications for the shell structures 
of launch and space vehicle.. Use of orthotropic circumferential 
stiffening of shells through either ring stiffeners or pos.ibly through 
circumferentially oriented filaments appears to be an attractive way 
to achieve an important tmprovement in structural reliability over that 
a.sociated with i.otropic cylinders. lmproved structural reliability 
can be realized through the ability to predict the failing load with 
far gr .. ter accuracy than for the i.otropic ca.e and through the sta­
tistical a.pects a •• ociated with the much smaller scatter of the cir­
cumfe~entially stiffened cylinder experiments. 
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Figure 3.- Axisymmetric plastic buckling coefficients for 

isotropic cylinders. 
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Figure '4.- Plasticity reduction factors aa a function of Et/Es . 
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Figure 5.- Test data on elastic general instability of circumferentially 
stiffened cylinders in axial compression. 
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Figure 6.- Test data on plastic buckling of aluminum alloy .isotropic 
cylinders under axial compression compared with axisymmetric theory. 

t:r 

0;.1 

~ ____ ~~.-________________ AX$YMMCTNC 

~---- ASYMMCTRIC­

C'lltctlM. STlFFCNCD 
INITIAL IMPeRFCCTION 11>1 

ASYMMCTIt/C - ISOTIt(}PIC 

II· r./ 

ASYMMCTRIC- LONG. STIFFCNCD 11</ 

Figure 7.- Post-buckling behavior of moderate length, elastic, orthotropic 
cylinders (schematic). 
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(a) a. = 3. (b) a. = 20. 

Figure 8.- Circumferentially stiffened buckle patterns at the conclusion 
of the test. 
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Figure 9.- Post-buckling behavior of moderate length, plastic, isotropic 
cylinders (schematic). 


