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SUMMARY

Earlier research at the National Aeronautics Research Institute

(N.L.R.), Amsterdam, which forms the basis of r@cent work is reviewed.

This early work refers to 2 schemes: the orthotropic shell and, in

view of buckling modes where the half wave length is of the order of

the ring distance, the shell with continuously distributed stringers

and discrete rings. Linear theory is considered to be adequate for

these structures, where the imperfections are small in comparison to

the height of the ring sections. Recent developments account for

pressure difference in addition to axial compression, for the correct

stiffness matrix of skin panels in the post-buckling stage and for

stringer bending due to hoop stresses in the skin, which are of

importance as has been shown by the investigation of the post-buckling

behaviour. Numerical data for the stiffness matrix of skin panels have

been established. Numerical evaluation of the stability equation has

not been performed as yet.

INTRODUCTION

The general instability of cylindrical shells received attention

in a former period in view of its importance for fuselages of large

diameter. The critical condition then orlginates from fuselage bending.

The complexity of the problem, caused by the large number of structural

parameters, was a good reason for avoiding the complexity of the non-

uniform load condition presented by bending. It might be expected that

the easier problem of axial compression would yield valuable information

for the actual fuselage problem in those cases where the circumferential

half wave length of the critical mode would be much smaller than the

radius of the cylinder. With certainty the critical bending stress would

be greater than the critical stress in axial compression.

The occurrence of similar structures in missiles has given new

impetus to the problem. Here again bending is the critical condition.



However with pressurized fuel tanks the effect of the pressure

difference should not be disregarded.

In former calculations the way in which the lateral stiffness and

the shear rigidity of buckled skin panels was accounted for was mainly

a matter of guessing. The application $o missile structures where thin

skins are used calls for alleviation of this lack of knowledge. On the

basis of earlier work by the N.L.R. on post-buckling behaviour the data

needed for stability research have been established.

Another shortcoming of the former work on general instability has

emerged recently from knowledge obtained on the tangential stiffness of

buckled panels. In contrast $o former opinions this stiffness proved to

be quite great. It follows then however that the effect of deflection

of the stringers caused by the hoop stresses of the skin should also be
accounted for.

The present report reviews the various facets of the problem.
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radius of the cylinder

stiffness matrix of the skin panel

ring pitch
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distance of centroid of stringer to skin, positive for
inside stiffeners

distance of centroid of ring section to skin, positive for

rings inside
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skin thickness

panel width

area of ring section, including effective skin width



311

E

I
s

Young's modulus of elasticity

moment of inertia of stringer section, including effective

skin width

strain increment by buckling

-1

2 [3(1 2)] (t/w) 2, critical longitudinal compression

Polseon's ratio

average number of rings per half wave length

increment of average stress by buckling

ADEQUACY OF LINEAR THEORY

The effect of imperfections with respect to the true cylindrical

shape causes large discrepancies between the actual critical load of

unstiffened cylindrical shells and the critical load predicted from

linear theory. Finite deflections have to be considered and consequently

non-linear equations are required to restore harmony between theory and

test. The essential reason for this behaviour of the cylindrical shell

is the coexistence of a symmetric and several asymmetric buckling

modes. The actual buckling load is then hlghly sensitive to small

imperfections - expressed as the difference between the local radial

coordinate and the average radius - of the same order of magnitude as

a fraction of the wall thickness t, or better the radius of gyration

t/2_. Correspondingly, if a sufficiently high internal pressure is

applied - which restores the circular cross section and prevents

buckling modes with circumferential waves - the crltical load as

predicted by linear theory proves to be correct.

In the case of the stiffened cylinder the necessity to account for

non-linearlty would certalnly exist likewise if the imperfections would

have the same order of n_itude as the radius of gyration of the ring

section. However, since the imperfections of rink geometry can be kept

small in comparison to the height of the ring section, it may be

conjectured that imperfections have no major effect upon the critical

load. Therefore it is considered that linear theory is adequate for the

investigation of general instability of stiffened shells.
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REVIEW OF EARLIER WORK

Structural Schemes

Applying linear theory the National Aeronautical Research Institute

(N.L.R.), Amsterdam has analyzed the general instability of stiffened

cylindrical shells under axial c_mpresslon (ref.1). This investigation

consisted of 2 phases. In the 1 _ phase the shell was assumed to be

orthotropic, due to continuous distribution of the stiffnesses of the
stringers and of the rings. In the 2 nd phase the stringers were again

continuously distributed, but the rings were discrete at constant pitch.

The reason to investigate this second scheme was that the

longitudinal half wave length, as obtained from the orthotropic case,

might well be about equal to or a small multiple of the ring pitch. So

it seemed doubtful whether the orthotropic scheme would yield reliable

results. No necessity existed to criticize the continuous distribution

of stringers since the circumferential half wave length comprises a

number of stringers.

The investigation took the following characteristics of the
structural elements into account:

stringers and rings: longitudinal stiffness, bending stiffness in the

plane normal to the shell, torsional stiffness, ring pitch and the

excentricity of the center of gravity of the stiffenersections with
respect to the skin;

skin: shear rigidity and effective width, which was added to the

sections of stringers and rings.

In this way the buckling load parameter was a function of 7

structural parameters and 2 parameters for the buckling mode. The 7

structural parameters are characteristic for respectively shear

stiffness of the skin, bending stiffness of the 2 systems of stiffeners,

torsional stiffness of the 2 systems of stiffeners, ring pitch and

excentrlcity of the stiffeners, the latter of which proved to be a

combined parameter for the 2 systems of stiffeners. In the case of the

orthotropic shell the 2 torsional stiffnesses combine into 1 parameter

and since ring pitch has been removed 5 structural parameters remain.

Results for Orthotropic Shells

The formula for the buckling load parameter is rather involved

with its 5 + 2 parameters and minimization of this parameter with

respect to the 2 mode parameters, so as to establish the critical load,

is in general impossible.
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Simplified expressions could be obtained by considering 5 classes

of buck!_ng modes, characterized by the various orders of magnitude of

the ratio between the longitudinal and the circumferential wave lengths.

Explicit formula for the critical load could be given for 4 of the 5

classes. Out of these 4 2 referred to short longitudinal wave length

and small numbers of circumferential waves and 2 referred to long

longitudinal waves and again small numbers of circumferential waves.

Between these 2 groups the class of short longitudinal and circum-

ferential wave lengths occurs. In thls case, whlch usually is critical,

the number of structural parameters reduces to 4, but an explicit

formula £or the critical load could not be given. However a rapidly

converging procedure for the numerical determination of the critical
load could be established.

An interesting result is that th_ effect of stiffener eccentricity

with respect to the skin is of major importance. Compared to the case
where the centroid of stiffeners falls in the plane of the skin outside

stiffening increases the buckling load and reversely inside stiffening

yields a reduction. In some cases the buckling load reduced to as low

as 1/3 of the value for the case without excentrtctty.

Results for Shells with Discrete Rings

The investigation of the structure wlth discrete rings could

obvlously be confined to those classes of modes In which the

longitudinal wave length is short.

It should be remembered that the capacity of the skin to carry

hoop stresses has been expressed as an effective width working together

wlth the rings. Accounting for discrete rings the actual structure as

far as the rings are concerned is fully recognized. However the

behaviour of the skln is violated in that the distributed tangential

force of the skin is concentrated at the rings. A more sophisticated

scheme, where the concentrated effective sklnwldth was replaced by an

"effective skln thickness", was attempted but was cancelled because

of the inherent analytical complexity.

For the infinitely long cylinder a formula could be obtained giving

the relation between the 6 structural parameters (I parameter vanished

due to the restriction to short waves), 2 mode parameters (governing

the displacements at the rings) and the buckling load parameter. A

seml-graphlcal procedure could he evolved for establishlng the critical

load pertaining to a given set of structural parameters.

A result of major Interest is that the solution obtained from

orthotroplc shell theory is surprisingly accurate. Figure I shows for
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the case of axially symmetrical buckling the reduction of the buckling

load by the small average number _ of rings per half wave length. For
v) 2 the error by assuming orthotropy is less than 1°/o. Therefore two

rings on the half-wave length is mechanically aequivalent to Vtmany''

rings. Only for_(1,5 the critical load is affected more than 5°/o by

ring spacing. In the case of axially non-symmetrical buckling modes

the results are similar. The error by orthotropy depends now also on

the other structural parameters_ but remains of the same order. A

numerical example yielded for V= 2 4°/o error and forv = 1p6 6°/o.

Another result is that by increasing the ring stiffness the

longitudinal half wave length decreases gradually until it reaches the

value _= 1. Then general instability has degenerated into column

l ailure of the stringers between the rings and the rings, though having

finite stiffnesst are aequivalent to infinitely stiff rings. The ring

stiffness required for the exclusion of general instability can be

expressed by a simple formula as far as axially symmetrical buckling
modes are concerned

Ar _ 4_c2(a/b) 2.(b/w) .(Is/b 2) .

The prevention of general instability in axially non-symmetrical

buckling requires unpractically large ring bending stiffness. Therefore
in practice general instability is more critical than column failure
of the stringers.

RECENT WORK

Scope

Recent developments on the basis of ref. 1 are meant to include

load pressure difference, to improve the way in which the post-buckling
behaviour of the skin panels is accounted for and to account for

bonding of the stringers due to hoop stresses of the skin.

Post-buckling Panel Stiffness

In ref. 1 the post-buckling behaviour of the skin panels was

accounted for by introducing effective widths for longitudinal and

lateral stiffness and an effective shear rigidity. At the time when the

investigation was done - 1942 - data existed only on the effective

width in longitudinal compression; no data were available on effective

width under arbitrary two-axial compression nor on the effective shear

rigidity. These data have been established only recently and with the



aim to be used for studying general instability (ref. 5).

The object is to know the stiffness matrix of skin panels in the

post-buckling state with regard to incremental deformation,

s

s 2

s 3

all

= a21

a31

a12 a13

a22 a23

a32 a33

lel• e 2

e 3

where the indexes I, 2, 3 denote longitudinal direction, lateral

direction and shear respectively. In the subcritical state the matrix
is

lal= --!-1 1
1-g2 0

In view of the limitation to general instability for load

conditions without panel shear in the prebuckllng state,we confine
ourselves to panels where shear is absent in the initial state. Then

symmetry considerations yield immediately a13 = a23 = O° Further from

Maxwell's principle aij= aji. So 4 elements remain to be established:
all, a12, a22, a33'

This has been done on the basis of a theoretical investigation

by Koiter on the shear field of flat panels (ref.2).Koiter assumes

the deflection pattern, given in fig.2, where f, L, m and _ are para-

meters depending on the magnitude of the 3 overall strain components.

The relations between the 4 parameters, the 3 overall strain components

and the 3 average stress components have been evaluated in ref.3.

When dealing with stability problems we need to know the stiffness

,matrix valid for small strain increments, with respect to a given

initial state of strain. This matrix has been established recently. The

results obtained will be discussed briefly.

Fig.3 shows a33 as a function of the total strains e l, e 2. The

value for the unbuckled state a33 = [2(I +--_I= 0,3846 is approached

when the lateral strain e 2 is a large positive number. When lateral
compression is added to longitudinal compression the shear rigidity

decreases more and more and can even become negative. Conditions where

e 2 is a large negative number will not occur in cylindrical shells.
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However when • 2 is around zero the shear rigidity can have been

reduced to 1/3 of the initial value, all cannot present surprising

results after what is known on the effective width, a12 is usually
small negative number in the order of -0,05. As could be expected :he

lateral stiffness a22 increases with increasing positive lateral strain.

For e 2 in the order--of 5 a22 is in the order of 0,9, whereas a22 is

1,10 in the unbuckled state. It is remarkable that wteh small negative

e 2 in the order of -1 a22 does not drop below 0,5 and even more

surprising is that a22 increases when the compression -e 1 increases under

constant negativee2.All this means that the lateral panel stiffness is

an important factor to be considered in general Instability invest-

igations.

The foregoing results apply to initially flat panels, whereas the

shell panels are shallow. Koiter (ref.4) established the relation

between compressive strain and load in the initial post-buckling stage
of curved panels. The parameter

e = (2n) "I [12(I-_2)] 1/4 w(at)_2= 0,289 w/(at) I/2

proves to govern the initial stage of post-buckling behaviour. For

@<O,64 the slope of the load-strain curve is positive. However for a
narrow panel like w/a = 1/15 (94 panels in the cylinder) and w/t =100

@ amounts already to 0,75, where the slope is distinctly negative. The

critical strain of the curved panel is however 1 + 04 times the

critical strain of the flat panel of equal w/t and Koiter states: (see

also fig.4) ''it would appear to be not too bold a conjecture that the

behaviour of a narrow curved panel in the advanced postbuckllng stage

approaches the behaviour of a flat panel of equal width''. This

conjecture finds support in the consideration, that the tendency to

keep the extensional strain enerEy down has the effect of making the

bulge towards the inside deeper than the bulge towards the outside. In

the limit the buckling pattern appoaches the symletrical configuration

with respect to the chord plane. Then the Incremental deformation
starts from an initial state not different from the initial state of

the flat panel. Consequently results obtained for flat panels may be

used for analysis of general instability.

In one respect allowance should be made for the initial curvature.

In determining the state of stress preceding general instability the

stress-strain relations should account for the amount of lateral strain

(£2)o = w2/(24a2), which stretches the curved panel and which is not
accompanied by membrane stresses.
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Bending of Stringers by Hoop Stresses of the Skin.

General instability creates incremental hoop stresses s 2,
proportional to the local deflection, which are not balanced 5y

pressure difference and which result in a radial load q of the stringer.

Therefore (when s2> O) the stringer deflects towards the inside, there-

by reducing e 2 and consequently s 2. This means that the flexibility of

the stringers reduces the effect of the large lateral stiffness of the

panel and that this flexibility has to be accounted for. A rigorous

analysis would require that the discrete ring scheme should be adopted.

Already, in the development of tel.l, the complexities encountered were
such that the lateral stiffness of the skin was added to the discrete

rings. Therefore at the present stage -where the addition of pressure
difference and the true stiffness matrix of the skin panels have

already increased the complexity of the equations- no attempt is being

made to account rigorously for stringer flexlbillty. The analysis has

been confined to the orthotropic shell, however with the introduction

of a correction for stringer bending by hoop stresses. The way in which

this correction has been introduced is as follows.

When bending by hoop stresses is neglected the radial displace-

ment of the stringer is (in the orthotropic scheme) in any point equal

to the deflection of the ring. Allowance should however be made for a

difference in stringer and ring deflection due to stringer bending. This

difference is nil at the points where the actual rings and the stringer

intersect_ the difference is maximal somewhere midway between the rings.

Now this variable difference is replaced by its average value between

2 successive rings. This idea can be translated into a mechanical

system, where the stringers are connected to the rings by springs and

the stringers are assumed to be infinitely rigid with respect to q.

With this scheme there is still a linear variation of q from one ring

to the next one because of the change of ring and spring deflections

from one ring to the next one. This difference is being neglected so

that q is assumed to be constant throughout one bay. Before the average

deflection can be establlshed one further assumption has to be made

with respect to the continuity of slope at the supports. When the half

wave length of the buckling mode is much greater than the ring distance,

the difference between the average q's of successive bays is small and

the stringer is at its support practically clamped. Then the aequivalent

stiffness is 720 (n-l)EIs/(nwb4) per unit of area, where n/n-ispring

is the Vianello-correction accounting for combined bending and compress-

ion. The stiffness thus obtained is correct if the half wave length is

very large in comparison to the ring distance. However in the other

extreme case, where the half wave length is equal to the rib distance,

the coefficient 720 has to be replaced by 120; moreover the Vianello
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correction is greater. So the clamped end assumption may underestimate

the flexibility of the stringers quite considerably. This problem needs

further consideration and a method will have to be devised by which
instead of the coefficient 720 one is Introduced which is a function of

the wave length to ring pitch ratio.

General Instability Equations.

The stability equations for the orZhotropic scheme just discussed

contain 4 displacements funcZionsp2 for displacements in the plane of

the shell and 2 radial displacements of which one for the rings and one

for the stringers. There are 4 equations available: 3 in the usual way

from the equilibrium of an element of the orthotroplc shell and one for

the deflection of the spring between rings and stringers.

The solution of these equations for the infinitely long cylinder

yields the buckling load parameter as a function of 2 mode parameters

(for the 2 wave lengths) and 12 structural parameters:stiffness of the

ring to extension, bending stiffness of stringers and of rings,

torsional stiffness of stringers and of rings, excentrictty of stringers

and of rings, ''spring'' stiffness and 4 elements of the stiffness

matrix of the skin panel. The complexity could be somewhat reduced by

neglE, ctinE the torsional stiffnesses, which usually are not important,

and the small matrix element a. 2. Then still 9 structural parameters1
remain. This means that there is no hope to find as a result of much

algebraic diligence an explicit formula for the critical load.

There Is however no difficulty to compute the crltical load for a given

set of numerical values of the structural parameters.

FUTURE RESEARCH

Work still to be done is:

1. To find a better expression for the deflection of the stringers

by hoop stresses, which takes into account the ratio between

wave length and ring pitch.

2. To carry out numerical calculations for axial load and various

pressure differences in order to study the effects of
pressurization, of post-buckling behaviour of the skin and of

stringer deflection by hoop stresses. Preferably these numerical
calculations should be applied to structures and load conditions
for which test results are available.

3. To investigate the possibility for analysis of the discrete ring
scheme.
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AXIALLY SYMMETRICAL BUCKLING
EFFECT OF FINITE RING PITCH
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POST-BUCKLING PANEL RIGIDITY TO INCREMENTAL SHEAR
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CONJECTURED POST-BUCKLING CURVES OF SHA1J..OWPANELS
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