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ELASTIC STABILITY OF SIMPLY SUPPORTED CORRUGATED

CORE SA_CH C_II_

By Leonard A. Harris and Edward H. Baker
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SUMMARY

Theoretical buckling coefficients are obtained for the general in-

stability of simply supported, corrugated core sandwich circular cylin-
ders under cmmbined loads with the core oriented parallel to the longi-
tudinal axis of the cylinder. Buckling curves are presented for axial
compression, external lateral pressure, torsion, ar_ some typical inter-
actions. The differential equations of equilibrium used to obtain the
buckling equations were derived from the szall deflection equations of
Stein and Mayer which include the effect of deformation due to trans-
verse shear. These equations are solved by Galerkin's equation. Re-
marks are made concerning the probable validity of the results of the
small deflection theory for sandwich shells.

INTRO_CT_N

The solution for the general instability of corrugated core sand-
wich circular cylinders with the core oriented parallel to the axis of
the sylinder is performed in a manner similar to the solution by Bat-
dorfl,2 for the general instability of homogeneous isotropic thin walled

cylinders. In the solution presented in this report, and in Batdorf's
solution, a dlfferentia_ equation obtained from mall deflection theory
is solved by C_erkin,s _ method. In the present report, the differential

equations which were solved by @alerkin' s method were obtained from t_e
deflection theory for curved sandwich plates by Stein and Mayer _.

The elastic constants for corrugated core sandwich were derived from the

basic_corrugated sandwich geometry a_ material properties by Libove and
Huhka _. The previous Stein and Mayer v solution for the general in-
stability of corrugated core sa_wlch cylinders loaded under axial cmn-
pression was performed in a sinilar manner. This report takes into con-
sideration lateral internal and external pressure and torsion as well as
axial cmnpression.

The basic element of the idealized corrugated core sandwich consists
of relatively thin isotropic facings which have negligible flexural
rigidities about their own centroidal axes and a highly orthotropic core
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for which shear distortions are assumed to be admissible only in the

plane perpendicular to the corrugation (circumferential). Furthermore,

the bending rigidity of the core is assumed to be negligible in the

transverse direction. Both the facings and the core are assumed to be
elastic.

DERIVATION OF BUCKLING EQUATION

It was assumed that the shear stiffness in the plane parallel to

the corrugations (longitudinal) is infinite. The governing differential
These

For simply

equations are given by equations (8) and (IA) of reference A.

equations include the influence of the transverse shear, _.

supported edges, the boundary conditions on w and _ are

- 0_, -_c = O . X. O,L

These conditions are satisfied by the assumed orthogonal functions

5-1 S=I

and

(1)

(2)

where n is restricted to even positive integers equal to or greater than
and s is restricted to positive integers equal to or greater than 1.

The solution to the governing equations are obtained by use of

Galerkin's method as described in reference 3. The Galerkin equations
are:

o2 7o V d.dy- o (3b)

(3c)

(3d)
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_ere:

The expression for Q1w is obtained by substituting each term of equations

i and 2 into equatioH 8 of reference 6 and that for Q2w is obtained by
substituting each term of equations 1 and 2 into equation IA of reference
6. After the proper substitution and integration has been performed on

equations (3a) and (3d), equation (3d) is solved for Cm, which is sub-
stituted into equation (3a). In a similar manner, after the proper sub-
stitution and integration has been performed on equations (3a) and (3c),

equation (3c) is solved for dm which is substituted into equation (3b).
With extensive simplification these equations become

7"_S

Ab,.,+ Ks _ _"% _,_,_s--""-_= o
(_)

where

,2

#VJ."
.K':-_ x+.<.( #A

l÷_ tllJ E A
p. E____

zO-,(') (. #

_o

._ Z - _'_0-.4'2)_

Equations (_) and (5) can be solved explicity for Kc and Kp for each
valul of m and n. The minimum is determined by trial and error. In the

case of the buckling coefficient Kp, it can be shown that the minimum



occurs when m is one. The buckling coefficients for external pressure
and for axial compression are shown in figures 2 and 3, respectively.
Figure _ shows the _nteraction between axial cc_pression and lateral
pressure for Z - lo .

Solution for Ks; _ and Xc Known

Each of equations (A) may be expressed in the form

- - 0

Each of equations (5) may be expressed in the form

--# l

Bas 0

where n s are odd integers and

A is defined above

A'I= _5

(6)

(v)

In matrix form, these equations become

_here _ is a scaler, laI is a column matrix (the Fourier coefficients),
and [G_ is a nonsymnetrical square matrix. The solution for A by matrix
iteration is cc_plicated by the fact that the cylinder will buckle at a
load level l_tch is independent of the direction of the applied shear.
Therefore, the buckling coefficients and corresponding eigenvalues occur
in pai_s _hich are equal in magnitude but opposite in sign. When the
matrix[G] is formed, the upper right quadrant, _] , and the lower left

qua, [G_] , are non-zero mat.rices; whereas t_e other two quadrants
are _ ma_rlces. The matrix_GJ is also simplified by the fact that

The matrix [C,3] can beformed from either of equations (6) or _7).
An 8 x 8 matrix _a-sformed and iterated to obtain the elgenvalue _. The
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iteration continued until the scaler A2, remained constant to six slg-

nlficant figures. The buckllng^coefficie_t Ks is the square root
reciprocal of the eigenvaAue A _.

For a given set of zmm_rical values of the sandwich parameters,
buckling coefficients are obtained for single values of n until the
m_,4_ value of the buckling coefficients is found. Fi_ (5) is a

plot of Ks as a function of Z for the special case of Kc and Ko
to O. Figure 5 o# Kc for Z equa_ _Q _u_is a plot of _ as a function

Figure 6 is a plot of _ as a function of Ks far Z equal to 1_.

COMPARISON WITH SOLUTION FOR _S ISOTROPIC THIN WAIL SHELLS

The method of solution used for the corrugated sandwich cylinders
is the same as the method of solution used for hanogeneous isotropic
cylinders in references (i) and (2). Therefore, if the parameters for a

sandwich _hlch is the equivalent of hamogensous sheet are substituted
into the sandwich cylinder stability equatlc_s, the resulting equations
should be the same as the equations presented in references (1) and (2)°

A sandwich with Gec-OO and t-h is the equivalent of homogeneous sheet.

For the case of t_h, the m_ of inertia of the facing sheets about
their own centroid cannot be neglected so that I is equal to 2/3 t_.
With this correction, the equation becomes

where _o and Zorefer to the thin sheet parameters. This equation is the
as the eq.ations .gi_ in reSerences (I) and (2) for cyli_ere of

h_ogeneous, isotropic thin sheet.

VAL_ITT OF _SULTS

The results of this analysis agree with the special case of the
hamogeneous isotropic thin wall shell. The considerable discrepancy be-
tween test data and the linear small defleeti_n theory for the particular

loading condition of axial oaapression has beem reported frequently in
the literature. In this case, test data may be on the order of only 15%_
of that predicted by the small deflection theorT. Analysis of test data"
indicates that the buckling coefficient is a function of r/t, whereas

the small deflection theory does not imdicate this dependence. The con-

sequence of this cceq_n of data fraa unstiffened shells mmst on the
surface lead to the conclusion that the small deflection theory does not
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acm_rately predict the behavior of sandwich shells for those cases in
which the core shear distortion has a negligible effect. There is, how-
ever, some ar_nt that the disagreement between theory and test should
not be so great as for thin wall shells. This argument is that the sand-
wish shell _ehavos as if it had a relatively low r/t. That is, the

effeotivo thickness of the nndwich is relativel_ large and it might be
supposed that the effects of initial iwperfection are relative_ enroll

becanse of the rig_dlty of the wall. Alt_gh data a_e limited, th_
does not appear to be the real ease. For example, March and Kuenzig,
in their report of a _ deflection theor7 for axial c_e_reseion, show

test data. These data show relatively small scatter and the data
fall within ± 30% of the largo deflection predicted buckling loads.

For the ease in which shea_ distorticn becomes predsmlnate, it is
likely that the mall deflection theory will provide good agreement with
test data. In this ease, the mode of failure (ealled a crib) is one
which has a very shoat _vo length.

The above statements are relative to the specific ease of axial com-
pression. For the eases of external pressure and torsicn, agreaaent be-
t_e_ linear theory and test data is closer. Investigaticms of the
interaotlnn buckling coefficients from li_ea_ theory for thin 111 shells
indicates that the shape of the interaction agrees well with test data

provided the n_icaal buckling ratios are used instead of the
buckling coefficients themselves.

The probable consequence of the comparisons with thin wall shell
behavior are that the linear theory used herein will provide satisfactory
solutions for a shell under torsion, will be reasonably accurate for
external pressure, and will provide the correct shapes for interaction
curves. In contrast, however, the theory will be inadequate for shells

under axial compression when the shear distortion effects are negligible.
This leads to a very real lack of data for sandwich shells under axial

compression loads and under bending. In order to effectively describe
the behavior of sandwich shells in axial compression, it will be neces-
sary to perform an extensive series of tests in a systematic fashion.
Very little of these data are avilable.
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Figure i.- Buckling coefficients for lateral pressure•
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Figure 2.- Buckling coefficients for axial compression.
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Figure 3-- Combined lateral pressure and axial compression (Z = 103).
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Figure 4.- Buckling coefficients for torsion.
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Figure 5.- Combined axial compression and torsion (Z = 103).
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Figure 6.- Combined lateral pressure and torsion (Z = 103).


