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ELASTIC STABILITY OF SIMPLY SUPPORTED CORRUGATED
CORE SANDWICH CYLINDERS

By Leonard A. Harris and Edward H. Baker
North American Aviation, Inc.
Space and Information Systems Division

SUMMARY

Theoretical buckling coefficients are obtained for the general in-
stability of simply supported, corrugated core sandwich circular cylin-
ders under combined loads with the core oriented parallel to the longi-
tudinal axis of the cylinder. Buckling curves are presented for axial
compression, external lateral pressure, torsion, and same typical inter-
actions. The differential equations of equilibrium used to obtain the
buckling equations were derived from the small deflection equations of
Stein and Mayer which include the effect of deformation due to trans-
verse shear. These equations are solved by Galerkin's equation. Re-
marks are made concerning the probable validity of the results of the
small deflection theory for sandwich shells.

INTRODUCTION

The solution for the general instability of corrugated core sand-
wich circular cylinders with the core oriented parallel to the axis of
the iylinder is performed in a manner similar to the solution by Bat-
dortls2 for the general instability of homogeneous isotropic thin walled
cylinders. In the solution presented in this report, and in Batdorf's
solution, a different equation obtained from small deflection theory
is solved by Galerkin's’ method. In the present report, the differential
equations which were solved by Galerkin's method were obtained from the
small deflection theory for curved sandwich plates by Stein and Mayer™.
The elastic constants for corrugated core sandwich wers derived from the
basic.corrugated sandwich gecmetry ang material properties by Libove and
Hubka’. The previous Stein and Mayer solution for the general in-
stability of corrugated core sandwich cylinders loaded under axial com~
pression was performed in a similar manner. This report takes into con-
sideration lateral internal and external preasure and torsion as well as
axial compression.

The basic element of the idealized corrugated core sandwich consists
of relatively thin isotropic facings which have negligible flexural
rigidities about their own centroidal axes and a highly orthotropic core



332

for which shear distortions are assumed to be admissible only in the
plane perpendicular to the corrugation (circumferential). Furthermore,
the bending rigidity of the core is assumed to be negligible in the
transverse direction. Both the facings and the core are assumed to be
elastic.

DERIVATION OF BUCKLING EQUATION

It was assumed that the shear stiffness in the plane parallel to
the corrugations (longitudinal) is infinite. The governing differential
equations are given by equations (8) and (14) of reference 4. These
equations include the influence of the transverse shear, Qy For simply
supported edges, the boundary conditions on w and Qy are

o
W-W'O7 .6%.0: X0

’

These conditions are satisfied by the assumed orthogonal functions
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where n is restricted to even positive integers equal to or greater than
4L and s is restricted to positive integers equal to or greater than 1.

The solution to the governing equations are obtained by use of
Galerkin's method as described in reference 3. The Galerkin equations
are:
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where:

The expression for Qlw is obtained by substituting each term of erquations
] and 2 into equation 8 of reference 6 and that for Q,w is obtained by
substituting each term of equations 1 and 2 into equation 14 of reference
6. After the proper substitution and integration has been performed on
equations (3a) and (3d), equation (3d) is solved for cp, which is sub-
stituted into equation (3a). In a similar manner, after the proper sub-
stitution and integration has been performed on equations (335 and (3¢),
equation (3¢) is solved for d which is substituted into equation (3b).
With extensive simplification these equations become

A%‘szébsli =0 (4)

r m=2 m*- s

mS
Abm, * Ks %—%21 éa's?n"—sz =0

(5)

wh
31;- éﬁz R, (57 (20 +m(ru] + <+ Z%m*
[2J+ m*(1-4)+ 2#‘ n:]»v‘ y’(g;,,“* 2 szhl)»‘ﬂz* (5 ﬁ‘n’)
- Ke- Krﬂz ;"’1 ]

/

> X
WHRE,

[+ -y EA_
: T EE () Ea CEEA
Eth? Prac A E4
2(1-«*) $,-
& Ac

J = gé_é.l I* Fa

7’20 2 zl/ﬁ
-5 Z - 73 (14

Equations (4) and (5) can be solved explicity for Ke and K for each
value of m and n. The minimum is determined by trial and error. In the
case of the buckling coefficient Kp, it can be shown that the minimum
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occurs when m is one. The buckling coefficients for external pressure
and for axial compression are shown in figures 2 and 3, respectively.
Figure L shows th]e.oé.nteraction between axial compression and lateral
pressure for Z = .

Solution for Kg; K, and K, Known

Each of equations (4) may be expressed in the form

Aa,, - T'Bb,, = 0 (6)
Each of equations (5) may be expressed in the form
Ab,, + 3'Ba, = O (7)

where n s are odd integers and

A is defined above
S6n »ms
B= _é_ % i 52

Tm2

l." Ks

In matrix form, these equations become
A)a| = [AT[B]|a| - (6] (8)

where A is a scaler, Ja| is a column matrix (the Fourier coefficients),
and[G] is a nonsymmetrical square matrix. The solution for A by matrix
iteration is complicated by the fact that the cylinder will buckle at a
load level which is independent of the direction of the applied shear.
Therefore, the buckling coefficients and correspording eigenvalues occur
in pairs which are equal in magnitude but opposite in sign. When the
matrix(G] is formed, the upper right quadrant, [Gy] , and the lower left
quadrent, [02] » are non-zero matrices; whereas the other two quadrants
are mill matrices. The matrix[G] is also simplified by the fact that
[G1] is equal to [-G;] . Making use of these relationships,

oz = [-6:][6,] |az| = [5,]] =y (9)

The matrix [G3] can beformed from either of equations (6) or 57).
An 8 x 8 matrix was formed and iterated to obtain the eigenvalue A<, The
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jteration contimued until the scaler 7&2, remained constant to six sig-
nificant figures. The buckling coefficient Kg is the square root
reciprocal of the eigenvalue A2,

For a given set of mmerical values of the sandwich parameters,
buckling coefficients are obtained for single valuss of n until the
minimmm value of the buckling coefficients is found. Figure (5) i1s a
plotofxsasaﬁmctiononforthe special case of K, and K equal
to O, Figure 5 is a plot of Ky as a function of K, for 2 equa.{ to 10°.

Figure 6 is a plot of K, as a function of Kg for Z equal to 103.

COMPARISON WITH SOLUTION FOR HOMOGENEOUS ISOTROPIC THIN WALL SHELLS

The method of solution used for the corrugated sandwich eylinders
is the same as the method of solution used for homogeneous isotropic
cylinders in references (1) and (2). Therefore, if the parameters for a
sandwich which is the equivalent of homogeneous sheet are substituted
into the sandwich cylinder stability equations, the result equations
should be the same as the equations presented in references 1) and (2).
A sandwich with G,c=00 and t=h is the equivalent of homogeneous shest.
For the case of t=h, the moment of jnertia of the facing sheets abgut
their own centroid camotbeneglectedmthatliseqmltoz/3t .
With this correction, the equation becomes
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where G, and Zorefer to the thin sheet parameters. This equation is the
same as the equations given in references (1) and (2) for cylinders of
hamogeneous, isotropic thin sheet.

VALIDITY OF RESULTS -

The results of this analysis agree with the special case of the
homogenecus isotropic thin wall shell. The considerable discrepancy be-
tween test data and the linear small deflection theory for the particular
loading condition of axial compression has been reported frequently in
the literature. In this case, test data may be on the order of only 15%
of that predicted by the mmall deflection theory. Analysis of test data’
indicates that the buckling coefficient is a function of r/t, whereas
the small deflection theory does not jndicate this dependence. The con-
sequence of this comparison of data from unstiffened shells must on the
surface lead to the conclusion that the small deflection theory does not
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accurately predict the behavior of sandwich shells for those cases in
which the core shear distortion has a negligible effect. There is, how-
ever, same argument that the disagreement between theory and test should
not be so great as for thin wall shells. This argument is that the sand-
wich shell behaves as if it had a relatively low r/t. That is, the
effective thickness of the sandwich is relatively large and it might be
supposed that the effects of initial imperfection are relatively small
because of the rigidity of the wall. Although data are limited, th
does not appear to be the real case. For example, March and Kuenzi®,

in their report of a large deflection theory for axial compression, show
some test data. These data show relatively small scatter and the data
fall within + 30% of the large deflection predicted buckling loads.

For the case in which shear distortion becomes predominate, it is
likely that the small deflection theory will provide good agreement with
test data. In this cass, the mode of failure (called a crimp) is one
which has a very short wave length.

The above statements are relative to the specific case of axial com-
pression. For the cases of external pressure and torsion, agreement be-
tween linear theory and test data is closer. Investigations of the
interaction buckling coefficients from linear theory for thin wall shells
indicates that the shape of the interaction agrees well with test data
provided the non-dimensional buckling ratios are used instead of the
buckling coefficients themselves.

The probable consequence of the comparisons with thin wall shell
behavior are that the linear theory used herein will provide satisfactory
solutions for a shell under torsion, will be reasonably accurate for
external pressure, and will provide the correct shapes for interaction
curves. In contrast, however, the theory will be inadequate for shells
under axial compression when the shear distortion effects are negligible.
This leads to a very real lack of data for sandwich shells under axial
compression loads and under bending. In order to effectively describe
the behavior of sandwich shells in axial compression, it will be neces-
sary to perform an extensive series of tests in a systematic fashion.
Very little of these data are avilable.
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Figure l.- Buckling coefficients for lateral pressure.
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Figure 2.- Buckling coefficients for axial compression.
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Figure 3.- Combined lateral pressure and axial compression (2 = 103).
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Figure L.- Buckling coefficients for torsion.
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Figure 5.- Combined axial compression and torsion (z = 103).
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Figure 6.- Combined lateral pressure and torsion (z = 103).



