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S244ARY

It is shown that the initial and the buckled shapes of a certain
element of a conical shell can be considered as similar to those of

an element of a cylindrical shell of which the radius and length are

conservatively determined. It is concluded that therefore the buck-

llng pressure of the conical shell is equal to that of the comparable

cylindrical shell. A simple method for finding the buckling pressure

if it varies along a generatrix is also given.

INTRODUCTION

The buckling pressure of simply supported conical shells has been

the subject of several recent papers on theoretical as well as experi-

mental investigations. Several of these papers (refs. 1 through 6)

refer to an unpublished company report of 1953 (ref. 7) in which the

present author conservatively derived the buckling pressure of com-

plete or truncated conical shells under uniform or non-uniform exter-

nal pressure. _he background of this derivation will be more elabor-

ately explained here.

BUCKLING UNDER UNIFORM EXTERNAL PRES_

For design purposes a reliable estimate of the buckling pressure

of simply supported conical shells was required. At that time (1952)

insufficient information was available. The problem had been dealt

with in references 8 and 9, both assuming uniform pressure and using

small deflection theory. However, also within the limitations of this

theory the results obtained in these references were open to question.

The differential equation derived in reference 8 could be solved only

by assuming radial deflection

w--c cosne (i)

sad at the same time assuming the thickness t to be proportional to



_2

the radii r of latitudinal cross sections (Figs. i and 2). The
angle e is measured in the circumferential direction. For a minimum

buckling load m has to be equal to 2. It is evident that at edges

where r differs from zero, w from equation (1) is not zero, so that it

does not satisfy the geometric boundary conditions of simple support.
Frc_ this relaxation of restraints, reference 8 will umderestlmate the

buckling stresses for simply supported shells.

In reference 9 an energy method was used, assuming radial dis-
placements

w = C sinkx cos ne (2)

where X = _/_, so that w is assumed to vary as a half sine wave in

the direction of a generatrix. Obviously, for a complete conical

shell this is far from reality, since for that case at the apex equa-
tion (i) satisfies the geometrical boundary condition w = 0 for a

simply supported edge, so that the deflection of a generatrix near the

apex actually approximates that of a clamped beam. Hence assumption

of a deflection as in equation (2), that differs substantially from

the real one, will lead to a too high buckling pressure. Apart from

that, several approximations were made in reference 9 of which the
effect was difficult to assess.

In order to find a more reliable solution it was reasoned as

follows: One can imagine that for a cylindrical shell, where for free

edges w is constant with varying axial coordinate x, the simply sup-

ported buckling mode, as given by equation (2), is obtained by multi-

plication of this constant deflection with sinkx. Hence, for a coni-

cal shell, of whlch for free edges the buckling mode is given by

equation (I), with m = 2, that for simply supported edges can be ap-

proximately obtained by multiplying w from equation (i) with sinkx,
whence

w = C r2 sinkx cos he. (3)

q'nis deflection is shown by the solid curves in Figs. ib and 2b. It

may be pointed out that equation (1) and therefore equation (3) actu-

ally applies for a shell of which the wall thickness t is proportional

to r. Therefore, for uniform wall thie-kness, as considered here, the

deflection w for smaller r values will be relatively somewhat smaller

than would follow from equations (1) or (3). As explained later on,

this will make the results obtained by using equation (3) somewhat
conservative.

Using the energy method, equation (3) and accessory displacements

in the other two directions, could be expected to yield lower buckling
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pressures than equation (2), since the former maybe expected to ap-
proximate the actual buckling modebetter. However,since equation (3)
could not be expectedto be the real mode, it would overestimate the
real buckling pressure by an unknownamount,which wasundesirable.
Therefore, since no time wasavailable for other lengthy methods,a
simple reasoning wasused, which led moredirectly and muchquicker to
a result and also afforded an opportunity to remain sufficiently at
the safe side to account for the lowering of the buckling stress due
to snap-through, which wasestimated at not more thee 25_ (see ref.
lO). This methodwill nowbe described.

If amequivalent cylindrical shell can be found for which, at a
given point, the initial shapeand loading and also the deflection
function and its derivatives are the sameas those at a point of the
conical shell, it is evident that for elementsat these corresponding
points the sameequilibrium equations apply• Therefore the critical
pressures for these corresponding elements and hencefor the entire
shells will be equal.

FromFig. lb, an element near the lower edge of the conical shell
will have the sameinitial shapeand loading as an element of a cylin-
drical shell with equal thickness t and with radius O= r2/sina- lu-
deed, with the sameall sided pressure p, at the lower edgealso the
compressivemembranestresses _8 and ax = _2 are equal. The simply
supported length of the equivalent cylindrical shell, buckling in a
half sine wavealong a generatrix, can be chosensuch that near the
lower edgethis half sine wavecoincides with the buckling deflection
of the conical shell. FromFig. lb, whererl/_ = O, this simply
supported length is

(_eq)rl/r 2 = 0 = (0•5 to 0.55)% (2)

Hence, for both shells the buckling pressure will be the samefunction
of the numberof lobes. For a frustrum of a conical shell, where

r 2 = 0.5 (Fig. 2), the length of the equivalent cylinder is, from
• 2b,

(_eq)rl/r 2 = 0.5 = (0.75 to 0.80)_ (5)

Conservatively, using the higher values in equations (2) and (5), this

leads to an equivalent cylindrical shell with length

rl+1.2r 2 (6)

and radius p = r2/slncz, with, of course, the same thickness t as the
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conical shell. It should be pointed out that by assuming the radius

of the equivalent cylindrical shell as r2/sina again some conservatism
is introduced. Ac_L1_ly the point where the buckling modes will coin-

cide will be above the lower edge, since equation (3)_ only satisfies

the geometric boundary condition that w = 0 for x = _, but not the

natural one that the second derivative with respect to x is zero, which

the half sine wave does. Hence the radius 0 of the equivalent cylinder

is actually smaller than r2/siua. Moreover, as stated in the foregoing,
the actual buckling deflection of the comical shell for _0_ler values

of x will be relatively somewhat smaller as cc_pared with that for

larger values of x. From Figs. lb and 2b this would slightly decrease

_eq, so that also the assumed buckling mode tends to lead to conserva-

tive results if this method is used, although it would be umconserva-

tive if using the energy method, since it need not be the real buckling

mode. In connection with all this built-in conservatism it was Judged

that the actual buckling pressure, if e_uated to that of a cylindrical
shell with length _q and radius 0 = r2/sina, could be considered to
include the imfluenc_ of snap-through and thus would be reliable for

design purposes. Hence, using a formula given in reference ll, the

buckling pressure is

' O'_E(t/p)2 (7)

: (leq/ol(p/tll/2_o.6 %

As derived in reference 12 the same formula applies for a clamped

cylindrical shell of length ._and radius O, with Leq = (2/3)/,.

BUCKLING UNDER NON-UNIFORM EXTERNAL PRESSURE

To find the effect of non-uniform external pressure, it is ob-

served that the curvature changes of the conical shell depend mainly

on the radial deflection w and can be expressed as

)(_ -- (w/r 2) sin2a + _2w/(r2 _82) aUd_x = _2w/ _x 2 (8)

The radial deflecting forces dD acting upon an element r d@ dx exert

an s_oumt of work upon a ring of the conical shell of length dx that

can be expressed as

dV = w dD = -_ t dx (ae_[£)+ Cx_x )_rrde (9)

Neglecting the relatively small influence of Cx_v, with uniform exter-

nal pressure p, where to@ = pr/sima, using equations (3) and (8) in



(9)yields

2 Clr4 sn - sinG) _r4sin 2 k x dx = in2 k x dx (i0)

where C1 is proportional to p and independent of x. Presenting this
graphically for ratios rl/r 2 of 0 and 0.5, it is observed that if p

varies linearly with x, _rc_ Pl at the upper edge (r = rl) to P2 at

the lower edge (r I r2), where 2 > p2/p I > 0.5 as happened to be the
case, the deflection surfaces will not _Lffer appreciably from that of

equation (3). For example, for a simply supported long plate, sub-

Jected to compressive stresses in its plane that vary from _l at one

edge to a_ = 2s1 at the other edge, from page 173 of reference 13 the
buckling §tress-coefficient k for a2 is 5.32, while, assmning the same
buckling mode as for constant compressive stress, one would find k = 4

for the average stress and hence, k = 5.33 for _ , so practically no
difference. Hence, from equation (lO) , where _l is proportional to

p, the work done by the variable pressure p is found by multiplying
the ordlmates of the curves presenting dV from equation (lO) by a con-

stant times p. From a simple calculation it followed that the result

can be approximated very well by as6tlmlng that the varying pressure is

equivalent to a constant pressure Peo equal to the pressure p at the

center of the length _eq of the equi_mlent half sine wave, so t_t

Peq--P2 + (Pl" P2)

CONCLUDING REMAEKS

When these results were reported in reference 7 no tests were

available to check them. In the meantime, however, several experimen-

tal results were published. _ese were compiled for complete conical

shells in reference 2, from which Fig. 3 has been copied. It shows
that the method of reference 7 as reviewed here leads indeed to a re-

liable design formula, since it forms the lower bound to the test

results. Fig. 4 was copied from Fig. ii of reference 4, adding the

curve according to reference 7 and the present note, and gives the

results for truncated shells, where PN is the buckling pressure from
reference 9. Figs. 3 and 4 also present several theoretical results.

For low taper ratios (nearly cylinders) where equation (7) was not

meant for, the conservatism in determiniug _eo and 0 vanishes, so that
it is understandable that there in Fig. 4 sore@ test results are below

the llne according to reference 7- As stated in the foregoing,equation

(2), used in reference 9, could be expected to overestimate the buck-

ling pressure. Assuming that reference 2 gave the correct buckling

pressure from small deflection theory this is not revealed in Fig. 3.

ApparentLy the lower buckling stress found in reference 9 is due to
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additional approximations. Reference 6 also uses equation (2) and in-

deed gives higher values thau reference 2. It is interesting that, as

mentioned in reference 2, reference 14 later used the same mode, ac-

cordlug to equation (3), as reference 7. From Fig. 3 its results are

lower thee those from reference 6, so that indeed equation (3) gives a

better approximation than equation (2). It also shows that the method

of reference 7 uslug the ss_e equation (3), although very simple,

served better for attaimlug its aim, which was mot a formal computation,

but a reliable design formula. Using the energy method would have led,

with much more effort, to the umconservative results of reference 14.

After reference 7 was distributed the author was informed about

am earlier paper that compares a comical shell to am equivalent cylin-
drical one (reference 15). From a partial translation only the case

of a complete conical shell is considered there. Strips along a gem-

eratrix are considered as beams, clamped at the apex and simply sup-

portAed at the base, so that their maximum deflection occurs at about

0.6_ from the top. Therefore the radius of the equivalent she_l was
asst_ed as the radius of curvature of the conical shell at 0.6_ from

the top, that is, in the present notation , equal to 0.6 ro/sina, with a

length equal to the total slant length _ of the cone. Th_s leads to

smaller buckling stresses thee the present method and is mot based on

the same principles.

It should be realized that for many problems, that require ex-

tremely elaborate computations for exact or even approximate solutions,

often good results cam be obtained by a simple reasoning. In several

cases this will even yield exact solutions (see for example refs. 12,

16, 17, and 18).

The author wishes to thauk Bell Aerosystems Ccz_amy for permission

to publish these results and Messrs. Arthur Schnitt aud R. E. Wong,

formerly with Bell Aircraft Corporation, for their helpful discussions.
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Figure 3.- Comparison of theoretical buckling pressures (curves and

crosses) of complete conical shells with experiments (from 2nd

ref. 2).
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Figure 4.- Comparison of theoretical buckling pressures (curves) of

truncated conical shells with experiments (from ref. 4).


