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3UCKLING OF CONICAL SHELLS UNDER EXTERNAL PRESSURE
By P. P. Bijlaard

Cornell University and Bell Aerosystems Ccmpany
SUMMARY

It is shown that the initial and the buckled shapes of a certain
element of a conical shell can be considered as similar %o those of
an element of a cylindrical shell of which the redius and length are
conservatively determined. It is concluded that therefore the buck-
ling pressure of the conical shell is equal to that of the comparable
cylindrical shell. A simple method for finding the buckling pressure
if it varies along a generatrix is also given.

INTRODUCTION

The buckling pressure of simply supported conical shells has been
the subject of several recent papers on theoretical as well as experi-
mental investigations. Several of these papers (refs. 1 through 6)
refer to an unpublished company report of 1953 (ref. 7) in which the
present author conservatively derived the buckling pressure of com-
plete or truncated conical shells under uniform or non-uniform exter-
nal pressure. The background of this derivation will be more elabor-
ately explained here.

BUCKLING UNDER UNIFORM EXTERNAL PRESSURE

For design purposes a reliable estimate of the buckling pressure
of simply supported conical shells was required. At that time (1952)
insufficient information was aveilable. The problem had been dealt
with in references 8 and 9, both assuming uniform pressure and using
small deflection theory. However, also within the limitations of this
theory the results obtained in these references were open to question.
The differential equation derived in reference 8 could be solved only
by assuming radial deflection

w=Cr® cos né (1)

and at the same time assuming the thickness t to be proportional to
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the redii r of latitudinal cross sections (Figs. 1 and 2). The

angle © is measured in the circumferential direction. For a minimm
buckling load m has to be equal to 2. It is evident that at edges
where r differs from zero, w from equation (1) is not zero, so that it
does not satisfy the geometric boundary conditions of simple support.
Fraom this relaxation of restraints, reference 8 will underestimste the
buckling stresses for simply supported shells.

In reference 9 an energy method was used, assuming radial dis-
placements

w = C sindx cos n® (2)

vhere A = 7/ £, so that w is assumed to vary as a half sine wave in
the direction of a generatrix. Obviocusly, for a camplete conical
shell this is far fram reality, since for that case at the apex equa-
tion (1) satisfies the geometrical boundary condition w = O for a
simply supported edge, so that the deflection of a generatrix near the
apex actually approximates that of & clamped beam. Hence assumption
of a deflection as in equation (2), that differs substantially from
the real one, will lead to & too high buckling pressure. Apart from
that, several approximetions were made in reference 9 of which the
effect was difficult to assess.

In order to find a more reliable solution it was reasoned as
follows: One can imagine that for a cylindrical shell, where for free
edges w 1s constant with varying axial coordinate x, the simply sup=-
ported buckling mode, as given by equation (2), is obtained by multi-
plication of this constant deflection with sindx. Hence, for a coni-
cal shell, of which for free edges the buckling mode is given by
equation (1), with m = 2, that for simply supported edges can be ap-
proximately obtained by multiplying w from equation (1) with sinlx,
whence

w=C r2 sinlx cos né. (3)

This deflection is shown by the solid curves in Figs. 1b and 2b., It
mey be pointed out that equation (1) and therefore equation (3) actu-
ally applies for a shell of which the wall thickness t is proportional
to r. Therefore, for uniform wall thickness, as considered here, the
deflection w for smaller r values will be relatively somewhat smaller
then would follow from equations (1) or (3). As explained later on,
this will make the results obtained by using equation (3) somewhat
conservative.

Using the energy method, equation (3) and accessory displacements
in the other two directions, could be expected to yield lower buckling
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pressures than equation (2), since the former may be expected to ap-
proximate the actual buckling mode better. However, since equation (3)
could not be expected to be the real mode, it would overestimate the
real buckling pressure by an unknown amount, which was undesireble.
Therefore, since no time was available for other lengthy methods, a
simple reasoning was used, which led more directly and much quicker to
a result and also afforded an opportunity to remain sufficiently at
the safe side to account for the lowering of the buckling stress due
to snap-through, which was estimated at not more than 25% (see ref.
10). This method will now be described.

If en equivalent cylindrical shell can be found for which, at a
given point, the initial shape and loading and also the deflection
function and its derivatives are the same as those at & point of the
conical shell, it is evident that for elements at these corresponding
points the same equilibrium equations apply. Therefore the critical
pressures for these corresponding elements and hence for the entire
shells will be equal.

From Fig. 1b, an element near the lower edge of the conical shell
will have the same initial shape and loading as an element of a cylin-
drical shell with equal thickness t and with radius p = rp/sinc. In-
deed, with the same all sided pressure p, at the lower edge also the
compressive membrane stresses gg and g, = ce/2 are equal., The simply
supported length of the equivalent cylindrica.l shell, buckling in a
half sine weve slong a generatrix, can be chosen such that near the
lower edge this half sine wave coincides with the buckling deflection
of the conical shell. From Fig. 1lb, where rl/lb = 0, this simply
supported length is

@eds /s, - 0= (05 10 0-55)L (®)
Hence, for both shells the buckling pressure will be the same function
of the number of lobes. For a frustrum of a conical shell, where

r. = 0.5 (Fig. 2), the length of the equivalent cylinder is, from

;&é.ezb,

(2%)1‘1/1_2 - 0.5 = (0.75 to 0.80)4 (5)

Conservatively, using the higher values in equations (4) and (5), this
leads to an equivalent cylindrical shell with length ’

r.+1.2r

1 2
do= "o, £ ()

and radius p = rp/sing, with, of course, the same thickness t as the
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conicel shell. It should be pointed out that by assuming the radius

of the equivalent cylindrical shell es r2/ sino again scme conservatism
is introduced. Actually the point where the buckling modes will coin-
cide will be above the lower edge, since equation (3) only satisfies
the geometric boundary condition that w = 0 for x = .l., but not the
natural one that the second derivative with respect to x is zero, which
the half sine wave does. Hence the radius p of the equivaelent cylinder
is actually smaller than re/ sina. Moreover, as stated in the foregoing,
the actual buckling deflection of the conical shell for smaller values
of x will be relatively scmewhat smaller as compared with that for
larger values of x. From Figs. 1b and 2b this would slightly decrease
leq, so that also the assumed buckling mode tends to lead to conserva-
tive results if this method is used, although it would be unconserva-
tive if using the energy method, since it need not be the real buckling
mode. In connection with all this built-in conservatism it was judged
that the actual buckling pressure, if equated to that of a cylindrical
shell with length feq and radius p = rp/sina, could be considered to
include the :Lnfluence of snap-through and thus would be reliable for
design purposes. Hence, using a formula given in reference 11, the
buckling pressure is

0.928(t/p)? 7
(Lo /o) o/ )/ 2-0.636

As derived in reference 12 the same formulsa applies for a clampe
cylindrical shell of length J and radius p, with L = (2/3)L

Pb=

BUCKLING UNDER NON-UNIFORM EXTERNAL PRESSURE

To find the effect of non-uniform external pressure, it is ob-
served that the curvature changes of the conical shell depend mainly
on the radial deflection w and can be expressed as

XQ = (w/re) sinta + 32‘\'1/(1'2 )62) a.ndxx = )2w/ 3P (8)

The radial deflecting forces dD actling upon an element r d4& dx exert
an amount of work upon & ring of the conical shell of length dx that
can be expressed as

2w 3 er
wdD= -3t dx . (crele + axlx)vrde (9)

0

=2
v = 3

Neglecting the relatively small influence of ¢ X , with uniform exter-
nal pressure p, where tog = pr/sina, using equa.tfons (3) and (8) in
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(9) yields
av =T (.32_ 1ng) Prsin® A x dx = C,r'sin® X x dx (10)
2P l5ig - ® TS * 1 ® *

where Cl is proportional to p and independent of x. Presenting this
graphically for ratios r,/r, of O and 0.5, it is observed that if p
varies linearly with x, Prom p,; at the upper edge (r = rl) to py at
the lower edge (r = ry), where 2 > po/Py > 0.5 as happened to be the
case, the deflection surfaces will not fer apprecisbly from that of
equation (3). For example, for a simply supported long plate, sub-
Jected to compressive stresses in its plane that very from gy at one
edge to op = 201 at the other edge, from page 173 of reference 13 the
buckling stress coefficient k for o, is 5.32, while, assuming the same
buckling mode as for constant compressive stress, one would find k = I
for the average stress and hence, k = 5.33 for o,, so practically no
difference. Hence, from equation (10) , where (ﬁ_ is proportional to
p, the work done by the variable pressure p is found by multiplying
the ordinates of the curves presenting dV from equation (10) by a con-
stant times p. From a simple calculation it followed that the result
can be approximated very well by assuming that the varying pressure is
equivalent to a constgnt pressure p_,, equal to the pressure p at the
center of the length eq of the equivalent half sine wave , so tWht

e
CONCLUDING REMARKS

When these results were reported in reference 7 no tests were
available to check them. In the meantime, however, several experimen-
tal results were published. These were campiled for ccmplete conical
shells in reference 2, from which Fig. 3 has been copied. It shows
that the method of reference T as reviewed here leads indeed to a re-
lisble design formula, since it forms the lower bound to the test
results. Fig. U was copied fram Fig. 11 of reference 4, adding the
curve according to reference 7 and the present note, and gives the
results for truncated shells, where py is the buckling pressure from
reference 9. Figs. 3 and 4 also present several theoretical results.
For low teper ratios (nearly cylinders) where equation (7) was not
meant for, the conservatism in determining e and p vanishes, so that
it is understandable that there in Fig. 4 somg' test results are below
the line according to reference 7. As stated in the foregoing,equation
(2), used in reference 9, could be expected to overestimate the buck-
ling pressure. Assuming that reference 2 gave the correct buckling
pressure from small deflection theory this is not revealed in Fig. 3.
Apparently the lower buckling stress found in reference 9 is due to
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additional spproximations. Reference 6 also uses equation (2) and in-
deed gives higher values than reference 2, It is interesting that, as
menticned in reference 2, reference 14 later used the same mode, ac-
cording to equation (3), as reference 7. From Fig. 3 its results are
lower than those fram reference 6, so that indeed equation (3) gives a
better approximation than equation (2). It also shows that the method
of reference 7 using the same equation (3), although very simple,
served better for attaining its aim, which was not a formel computation,
but a reliable design formula. Using the energy method would have led,
with much more effort, to the unconservative results of reference 1lk.

After reference 7 was distributed the author was informed about
an eerlier paper that compares a conical shell to an equivalent cylin-
dricel one (reference 15). From a partial translation only the case
of a complete conical shell is considered there. Strips along a gen-
eratrix are considered &s beams, clamped at the apex and simply sup-
ported at the base, so that their maximum deflection occurs at about
0.64 from the top. Therefore the radius of the equivalent shell was
assumed as the radius of curvature of the conical shell at 0.6{ from
the top, that is, in the present notation, equal to 0.6 r,/sina,with a
length equal to the total sglent length d of the cone. This leads to
smaller buckling stresses than the present method and is not based on
the same principles.

It should be realized that for meny problems, that require ex-
tremely elaborate ccmputations for exact or even approximate solutioms,
often good results can be obtained by & simple reasoning. In several
cases this will even yield exact solutions (see for example refs. 12,
16, 17, and 18).

The author wishes to thank Bell Aerosystems Campany for permission
t0 publish these results and Messrs. Arthur Schnitt and R. E. Wong,
formerly with Bell Aircraft Corporation, for their helpful discussions.
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Complete conical shell. @ Buckling mode of shell
according to eq. (3).

Figure 1.

HALF__SINE

Frustrum of conical shell. (® Buckling mode of frustrum
according to eq. (3).

Figure 2.
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Figure 3.- Comparison of theoretical buckling pressures (curves and
crosses) of complete conical shells with experiments (from 2nd
ref. 2).
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Figure L.- Comparison of theoretical buckling pressuréé (curves) of
truncaeted conical shells with experiments (from ref. L.



