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AXISYMMETRIC SNAP BUCKLING OF CONICAL SHELLS 

By Malcolm Newman and Edward L. Reiss '" 

Republic Aviation Corporation and New York University 

SUMMARY 

The authors give a brief account of some of their recent analytical and 
numerical studies of cone buckling. limiting the discussion to axisymmetric 
deformations • 
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Pertinent numerical results for the relaxation buckling of full cones sub
jected to uniform external pressure and Belleville springs deformed by axial 
edge loads are presented. In addition. bifurcation buckling problems are dis
cussed. For a specific case. the existence of Friedrichs' intermediate buckling 
load. Pm. as applied to cones. is established. Upper and lower bounds for 
its value are given. 

INTRODUCTION 

The buckling of conical shells is. in many cases. characterized by a 
snapping phenomenon. Thus, at some critical load value, the shell suddenly 
jumps from a slightly deformed equilibrium state into a non-adjacent one with 
relatively large deformations. If the cone is initially shallow it may buckle 
axisymmetric ally • as in spherical cap snapping. However, for slender cones 
experimentally observed buckling modes are asymmetrical and appear to be 
related to those of cylinder buckling. 

The principal unresolved buckling problem for conical shells, as well as 
for cylindrical and spherical shells, is to determine the mechanism which 
"triggers" the sudden snapping and to estimate the load at which it occurs. 
Some investigatorst have sought to determine this "critical" load by using 
classical linearized buckling theory or variants thereof. However. to obtain a 
deeper insight into the buckling phenomenon it is essential to employ a non
linear theory. 

In this paper we briefly describe some of our recent analytical and nu
merical investigations of axisymmetric cone buckling. * We first present the 

"'The work of the second author was supported by a grant from the U. S. Army 
Research Office (Durham) to the Courant Institute of M8.thematical Sciences. 
New York University. 

tSee the review articles of refs. 1-2 and ref. 3 for detailed accounts of pre
vious work. 

*The authors are currently preparing a paper which describes this work in 
greater detail. 
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results of a numerical study pertaining to the buckling of simply supported full 
cones subjected to uniform external pressure. We also indicate some numerical 
results obtained for the buckling of shallow truncated cones, sometimes called 
Belleville springs, deformed by axial edge loads. In both of these problems the 
shell undergoes small deformations from its initial conical shape immediately 
upon application of load. With increasing load, compressive membrane stresses 
are developed which essentially reduce the "stiffness" of the shell. Thus the 
shell "softens" with increasing load. After snapping, the membrane stresses 
tend to become tensile thereby increasing the "stiffness." Hence a ''hardening'' 
effect is observed yielding, at least for a limited range of parameters, defor
mations which increase with load at a decreasing rate (see fig. 1). In analogy 
to the discussion in reference 4 for spherical caps, we call the buckling phe
nomenon associated with this behavior relaxation buckling. 

In our final example, a full cone subjected to external pressure is again 
considered. However, the pressure is no longer uniform. Instead, the pres
sure and boundary conditions are prescribed such that a membrane state of 
uniform compression is a solution (unbuckled) of the nonlinear problem. We 
then conjecture that bifurcation buckling will occur by branching from the un
buckled solution, yielding a load deflection characteristic similar to that shown 
in figure 2. For this problem, analytical studies are facilitated by our precise 
knowledge of the unbuckled solution. We are thus able to prove the existence of 
Friedrichs' intermediate buckling load. Pm (ref. 5). for which the potential 
energies of the buckled and unbuckled states are equal; we also establish upper 
and lower bounds on its value. 

1. RELAXA TION BUCKLING OF A COMPLETE CONE 

Formulation of the Boundary Value Problem 

We conSider a complete cOnical shell of thickness t, base angle e and 
slant length s1 (fig. 3) subjected to a uniform external pressure p which is 
counted positive when directed inward. Assuming that the shell deforms axi
symmetrically, the non-vanishing middle surface displacements u and w 
(see fig. 3) are functions of s only. Here s is the distance along a generator 
of the conical middle surface measured from the apex. The base of the cone is 
rigidly pinned. i. e •• the meridional bending moment and horizontal displace
ment vanish at s c s1 • 

We assume that the shell is constructed of a homogeneous, isotropiC, 
elastic material for which Hooke'S law is valid. Employing the usual assump
tions of thin shell theory, we have derived the following nonlinear boundary 
value problem which describes the small finite deformations of the cone: 

Ly(x) - Kz(x) [y(x) + IJ = Px2 (la) 

Lz(x) = - ~ [y2(X) + 2y(X)] (1b) 



y(O) = z(O) "" 0 

~ + lIy(1) = dzg> _ IIz(1) = O. 

The differential operator L in (1) is defined by 

d 1 d L-x---x dxxdx 

and the following dimensionless variables are employed: 
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(2a) 

(2b) 

Here E is Young's modulus and II is Poisson's ratio which we henceforth take 
as II = .30. The stress function z(x) is defined in terms of the membrane (or 
middle surface) stresses ae(S) and a~(s) by the relations 

[12(1-..,2)1 t s1 
~ aO() z(x) 

Ettan8 as" x' 

[ 12(1-..,2)' t s1 ~ aO ( ) _ dz(x) 
Et tanS ~ s - dx • 

Equations (1). in which we refer to K as the geometriC parameter and P as 
the loading parameter. can also be obtained by specializing the work of pre
vious authors (references 6 - 8). In addition, a special case of equatiOns (1) 
has previously been given by Grlgol1uk (reference 9) in connection w1t~ his 
work on shallow cones. 

The conditions (2a) are obtained from the assumption of regularity at the 
apex. However, in a sufficiently small neighborhood of the apex the shell is 
not "thin" and hence equations (1) may be invalid in this neighborhood. To 
circumvent this difficulty we define our boundary value problem for the com
plete cone as the limit of a sequence of boundary value problems for truncated 
cones (with the same values of K and P) as the slant length approaches that 
of the complete cone. 



Presentation and Analysis of Numerical Hcsult.s 

We suppose that for a limited range of parameters t.he relatiun het.wc<.ln P 
and deflection is similar to that shown in figure 1. The indicat<.ld curv<.l implicti 
that for P < P L and P > P u only one equilibrium state is possible. In th<.l 
former case the equilibrium state is represented by a point on the unbuckled 
branch IOU, while in the latter case the equilibrium state corresponds to a 
point on the buckled branch LN. For P in the range PL <' P ". Pu there 
are three equilibrium states, represented by points on the unbuckled and buckled 
branches and the unstable branch UL. Friedrichs I energy buckling criterion 
(reference 5) as applied to cones implies the existence of an intermediate load 
P in the range P < P < P • For P < Pm the potential energy of the 
untguckled state is Ikss thli that 16f the buckled state and conversely for P > Pm' 

We have obtained, for a range of K and P, numerical solutions· of the 
nonlinear boundary value problem defined by eqs. (1) and (2). The numerical 
method employed consists in solving, by iteration, a finite difference approxi
mation of the boundary value problem. Essentially, the technique is similar to 
that previously employed in studies of the nonlinear bending and buckling of 
circular plates (references 11 -13) and spherical caps (reference 10). Details 
of the method and extensive results will appear in a subsequent paper. 

In the present paper, we give some of the numerical results directly con
cerned with the evaluation of P U' Pm' and PL' Figure 4 shows the variation 
of dimensionless base slope y(l) vs. load for several values of K. We note 
that for K = 2 and 3. 5 the cones are noDbuckling since the base slopes are 
single valued functions of load. Buckled branches are first discernible at K = 4. 
Thus, the transition between noDbuckling and buckling cones occurs in the in
terval 3.5 < K < 4. 

In figure 5, the variations of PUt Pm' and PL with K are shown. We 
note that when K > 7.5, then P L < 1>. This ,indicates the existence of buckled 
equilibrium states for P S 0, i.e., for unpressurized or internally pressurized 
cones. The numerical results, however, indicate that for these pressures the 
buckled states possess greater potential energy than the unbuckled states. For 
P - 0 this can be proven analytically. Thus, in this sense, the buckled solu
tions for P S 0 are unstable. 

The dashed curve in figure 5 is obtained from a linearized approximation. 
The "critical" load value, P = PO' thus determined, gives an exceptionally 
close approximation to Pm for the range of K conSidered. 

-All computations were performed on the mM 7090 computer at the Republic 
Aviation Corporation. The authors are indebted to B. Sackaroffand M. 
Gershinsky of the Applied Math. Section, Digital Computing Division for their 
aid in programming and running the computer code. 



455 

2. THE BELLEVILLE SPRING 

Belleville springs are shallow truncated conical shells for which 
Xo $ x $ I, where ~ is the dimensionless distance from the imagined apex 
to the plane of truncation. 

We have applied our numerical procedure to a specific problem wherein 
the edges are subjected to compressive axisymmetric axial loads F. The 
edges are free to rotate and move radially . The differential equations describ
ing the axisymmetric deformations are the same as equations (1) if the right 
side of equation (la) is replaced by R, where 

The boundary conditions are 

dy(xO) II rh7{ 1 , 
+ - y(x ) = ~ + IIy(l) = 0, 

dx xo 0 dx 
(3a) 

(3b) 

In figures 6 and 7, some results of the numerical computations are given 
for two buckling cone configurations. These are compared with the experimental 
results of Almen and Laszlo (ref. 14). The graphs show fair agreement between 
the calculated and measured axial shortening. However, Almen and Laszlo do 
not give a description of their testing technique and boundary conditions. 

Stresses and deflections for several other cone configurations have been 
calculated. These have been compared with the results of approximate for
mulas and computer calculations given by Wempner (refs. 15 -16), and Schmidt 
and Wempner (ref. 17). The agreement of results for the cases considered was 
found to be good. 

3. BIFURCATION BUCKLING 

We now consider a full cone sub jected to an external pressure distribution 
which varieq inversely with x. The appropriate differential equations are the 
same as equations (1) if Px2 is replaced by Px in equation (la). The edge 
x = 1 is assumed to be restrained against rotation but free to expand or con
tract horizontally. 11 is then easy to show that 

P 
y(x) • 0, z(x) = - K x (4) 



is a solution (unbuckled) of the nonlinear boundary value problem for all K and 
P. We conjecture· that additional solutions (buckled) will appear by branching 
from equation (4) at an infinite number of discrete values P = Pi' i = 1,2,· ..• 
The Pi are the eigenvalues of the linearized shell buckling theory obtained by 
omitting nonlinear terms in the differential equations. The load deflection 
curves are then similar to those shown in figure 2. 

It is assumed that for each K and P the potential energy functional 
possesses a minimum. We can then prove the existence of an intermediate 
buckling load Pm. Furthermore, we have obtained upper and lower bounds for 
Pm given by, 

",2 s P < P(K) , 
m 

where w is the first zero of the Bessel function J 1(x) and ptK) = g.l.b. Pi. 
The quantity w2 is also the dimensionless buckling load, HR2/D of a radially 
compressed clamped circular plate, where H, R. and D are the critical edge 
thrust, plate radius and flexural rigidity, respectively. As in the case of 
spherical caps (ref. 4) we refer to this as the "equivalent" flat plate problem. 

Upper bounds for Pm which are lower than P have also been obtained 
by a minimization procedure. 

CONCLUDING REMARKS 

We are currently extending our numerical calculations for the relaxation 
buckling problems discussed in Sections 1 and 2 to include a larger range of 
parameter values. In addition. numerical solutions for other cone problems are 
being considered. In particular, we plan to obtain accurate numerical approxi
mations of Pm for the bifurcation problem discussed in the previous section. 

It appears likely that some of the analysis briefly outlined in Section 3 can 
be extended, with suitable modification, to unsymmetric bifurcation buckling of 
cones. 

There are, to the authors' knowledge, no experimental results available 
for the problems and ranges of parameters considered in Sections 1 and 3. 
Carefully performed experiments for these cases may give valuable insight into 
the buckling mechanism. 

·Similar conjectures have been proved for circular plates (ref. 18) and spherical 
caps (ref. 4) 
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TYPICAL LOAD- DEFLECTION CURVE 
FOR A RELAXATION BUCKLING CONE 
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CONE GEOMETRY AND DISPLACEMENTS 

Figure ; 
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