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BUCKLING OF ORTHOTROFIC AND STIFFZNED CONICAL sEnLs ¥
By Josef Singer

Technion, Israel Institute of Technology.
SUMMARY

Donnell type stability equations for thin circuler orthotropic
conical shells are presented and solved for external pressure, axial
compression and combined loading. The solution is likewise applied
to stiffened conical shells, Correlation with equivalent cylindrical
shells yields a simple approximate stability analysis for orthotropic
or ring-stiffened conical shells under hydrostatic pressure., The
gereral instability of stiffened conical shells under hydrostatic
pressure is also analysed by a more accurate approach, Preliminary
experimental results for buckling of ring-stiffened conical shells
urder hydrostatic pressure are presented and discussed.

INTRODUC TION

Most aerospace shell structures are orthotropic or stiffened shells,
The increasing use of new constructional materials, such as reinforced
plastics, fiber reinforced meterials etc,, which have orthotropic elastic -
properties, has focussed attention on orthotropic shell theory and the
corresponding stability analysis., Buckling of orthotropic cylinders has
been subject to extensive investigations (See refs. 1 = L), and the
¢eneral instability of stiffened cylindrical shells has likewise been
analysed by consideration of an equivalent orthotropic shell (refs.5 - 6),
as well as by other anproaches (See, for example, ref. 7). In this
report, the investigations are extended to orthotropic and stiffened
conical shells,

The method developed in reference 8 for isotropic conical shells
is applied to the solution of Donnell type stability equations for
orthotropic conical shells, derived in reference 9, for external
pressure loading., The solution is then used to analyse the general
instability of ring-stiffened conical shells under external pressure
by consideration of an equivalent orthotropic shell, Typical cases of -
orthotropic and ring stiffered conical shells arse computed and correlated
with equivalent cylindrical shells, The comperison brings out again the
taper ratio as the most significant factor representing the conicity in

*Ihis work was Suppofted in part by the U.,S. Air Force under Grant
No. AF-EOAR-62-61 and monitored by the European Office, Office of Aero-
space Research,,
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the case of buckling under uniform external pressure, as shown for
isotropic shells by Seide (ref, 11) and reconfirmed by the author for
slightly different boundary conditions (ref, 8), A relatively simple
approximate analysis for the buckling of any orthotropic or ring -
stiffened conical shell under uniform external pressure is obtained
from the correlation,

As for isotropic conicel shells (ref, 12), thc same lineer analysis
is extended to the case of axial compression and combined axigl compression
and external or internsal pressure, On the basis of results " ¢ylindrical
shells (ref, 1), the linear orthotropic theory may be expected also to yield
fairly realistic buckling loads for conical shells with closely spaced
stiffeners, .

The more accurate method of separate "distributed stiffness" of
rings end stringers is then employed to show the effect of eccentricity
of stiffeners on the general instability of stiffened conical shells
under external pressure, .

* Preliminary experimental results for 3 machined ring-stiffened
conical shells verify in general the theoretical analysis for buckling
under hydrostatic pressure,

The analysis referred to is written in non-dimensioncl form, and
the coordinates amd  displacements are non-dimensionclized through
division by a, the distance along a gererator of the top of a truncated
cone from the vertex. (See fig. 1).

SYMBOLS

= [E0/12 (4 - v®)], in, b, ‘

= moduli of elasticity of orthotropic shell, and of
stiffened shell and its stringers and rings
respectively, psi

(=
|

E_ X EE, E

= shear modulus, psi

= thickness of shell, in.
2

12 u(a/n)

= hydrostatic pressure or critical hydrostatic pressure, psi

b L I o] Pi_b‘ @
u

= critical hydrostatic pressure or equivalent
c¢ylindriczl shell, psi '

‘g
\

= axial compressive load, 1lb.

= number of circumferential waves
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%
u = (@ /a) = non-dimensional displacement of shell
middle surface along a generator
]
v = (v /a.) = non-dimensional circumf'erential displacement
of shell middle surface '
E
w = (w /a) = non-dimensional radial displacement of shell

middle surface

»
x = (x /a) = non-dimensiomnl axial coordinate, along a
generator .-
x5 = ratio of distance of the bottom of a truncated cone
from the vertex to that of the top.
a = cone angle v
@,= (h Ex/u) s 1b,/in,

&= (n E‘P/u) » 1b./in,

@s= G h , 1b./in,
y = (1= v__)/2 for orthotropic, or (1- v)/2 for isotropic
x
shell
u » =41 =V - v ox
v ° v ox* v = Poisson's ratios for orthotropic and isotropic shells
6"x, 62?’ FNP = membrane stresses of prebuckling state, psi
] = circumferential coordinate

Subscripts following a comma indicate differentiation.

ORTHOTROPIC THEORY

Buckling of Orthotropic Conical Shells
Under External Pressure

The stability equations for thin circular orthotropic conical shells
employed in the analysis are presented (in non-dimensional farm) in
Appendix A, These equations ars derived in reference 9 and reduce to
Seide's equations (ref,.10) for the case of isotropic shells or to
Bodner's equations for orthotropic cylindrical shells (ref.5) when the
cone angle approaches zero, The third equation, in the radiel direction,
is however a Batdorf type modified equation, instead of the usuzl eighth
order equation, tofacilitate its solution by the Galerkin method, It
reduces therefore to the modified equation of reference 8 for the case of
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isotropic shells, instead of the corresvonding eruation of referemce 10,

The problem is solved for e cone sunported in a manner approximating
conventionzl simple supports, The conditions for the rmdial displacement
are therefore

w.=20 at x=1, x2» (1)

and
Wexx + (v(p)/x)w,x =0 at x= 1,x2 (2)

The circumferential and axial displacements (along the generators) are
assumed to be resisted by elastic supports instead of the usual require-
ments that v =0 and u is unrestrained. These elastic supports, how-
ever, approximate the usual conditions fairly closely as in the case of
isotropic shells (ref. 8).

Now, since an orthotropic shell may be expected to buckle in a mode
similar to that of an isotropic one, the same solution is acsume'd for
the displacement functions

e

u=In > 'An x° sin t0

v=1In > .Bn x> cos P (3)

where Cn and t are real (t is the number of circumferential waves of the
buckling deformetions), s is the complex number

s=y +inp ()
n is an integer and the symbol Im indicates the imeginary part of the
solution,

The detailed analysis is carried out in reference 13, and only the
salient features are given here., Substitution of the complex functions
of equations (3) into the first two stability equations (egs. (Al) and



467

(A2) of Avpenmdix A) yields A and B in terms of C and thence the
4 N 9

spring constants representing the elastic restraints. Since these
restraints arise from the non-compliasnce of the assumed solutions with

the u and v boundary conditions, their effect may be expected to be of the
same order of magnitude for isotropic and orthotropic conical shells,

and this is confirmed by calculations for a typical shell (ref, 13),

Hence the effect of the elastic restraints is very small and may be
neglected (see refs, 14 and 8), The bourdary conditions on w, equations
(1) and (2), are enforced rigorously, and hence § and y are determined as

g = 1r/1ge x, (5)
and : '

(1= v, )72 (6)

With the assumption that the membrane stresses represent the -
prebuckling stress state satisfactorily, the third stability equation,
eq. (A3), is then solved by the Gelerkin method, as in reference 8,
The critical pressure is obtained from the resulting set. of linear
equations, which are for uniform hydrostatic pressure

Y

->—‘ c, {[ (-1)08 x22¥-2- 1](‘:1 (n,m) + K,z"(czz/a1 )cosza[ (-1 )m+nx22y «1] Gz(n,m)
n=1

RO 2 e (a,n)(p/E)(e/k) tanal=0  (7)

J

where the symbols G (n,m) denote values of the G functions (algebraic
expressions given in ref, 13) for the particular n end m .

The critical pressures, for the case of uniform hydrostatic pressure
loading, were computed for some typical orthotropic shells, anl compared
with those for similar isotropic shells (see table 1). The results
confirm Hess's conclusions (ref., 2), about the desirability of
(E%E ) < 1 and the gemersl weight szving potential in the use of
or o%ropic material, also for conical shells,

The an2lysis can readily be applied to the case of external pressure
varying in the axial direction. Since the orthotropy does not affect the
load terms (the G, terms of equations (7) are identical to those of ref,8),
one has only to reéplace them by the corresponding terms for axially varying
external pressure derived for isotropic shells (ref. 8) and proceed as
befare, '
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General Instability of Stiffened Conical
Shells Under External Pressure

The above analysis is now applied to the investigation of the
gereral instability of stiffened conical shells under external pressure
by consideration of an equivalent orthotropic shell. Though the method
may be used far longitudinal stiffening (stringers) as well as for
circumferential stiffening (rings or frames), the former is omitted on
account of the marked inferiority of stringers as stiffeners against
general instability under external pressure, and since the orthotropic
approach would be limited only to stringers which increase in area, or
number, in accordance with the cone diameter, '

The ring-stiffened conical shell is correlated to an equivalent
orthotropic one in the manner proposed by Bodner for eylindrical shells
(ref. 5). Essentisally, the equivalent orthotropic shell is an isotropic
one with a larger effective thickness in the circumferential direction
to account for the contribution of the rings to the circumferential
extensional rigidity, and having also & larger bending rigidity in the
circumferential direction due to the marked increase in the effective
moment of inertia of the ring and shell combination, The increase in
extensional rigidity is represented by the parameter

k=14 (Az/a° h) o (8)

where A2 is the cross sectional area of the ring, and & its spacing;
endl the®increase in bending rigidity is represented by ° a second
parame ter

£ = I¢/[a°h3/12 (1v?) ] | (9)

where I 9 is the effective moment of inertia on the ring and shell
combination,

I,= Iy + A (e, = 22)2 + [a°h3/12(1-v2)] + [aoh 522/(1-v2)] (10)

where I 2 is the moment of inertia of the ring cross section about its
centroi& and the other geometrical quantities are shown in fig. 1.

Once the equivalent orthotropic shell has been defined, the orthotropic
theory can be applied (see ref, 13), It should be noted that Bodner's
approximation of unity for k (ref. 5) is verified, with an error of much
less than one percent, also by calculations for conical shells, In Table
1, the critical pressures for typicel ring-stiffened conical shells are
again compared with those for corresponding isotropic shells,
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Correlation with Equivelent Cylindrical Shells

For isotropic¢ conical shells under hydrostatic pressure, Seide
(ref, 11) showed that the critical pressures can be correlated to those
of ecuivalent cylindrical shells, bringing out the taper ratio,
¢ =1 - (R /RZ)’ as the significant parameter of conicity. The ecuivalent
cylindricai “ shell is taken on the basis of Niordson's results (ref. 15)
as one having a length ecuzl to the slant length of the cone, 1, a radius
equal to its averasge radius of curvature, p,  and the same thickness h,
whe re av,

l=a (x2 -1)
Poy = (a(1 + x2) tan ¢/2] = (R1+ Rz)/2 cos & (11)
¥ =1-0/x)=1-(R/R)

The correlation yielded an approximate curve for the ratio of the
critical pressure of conical shells to that of their equivalent cylindrical
shells versus the taper ratio

(o/7) = &) (12)

(fig. 2 of ref. 11). A very similar curve was cbtained in reference 8
for conventional simple supports (which differ slightly from Seide's
boundary conditions) verifying the significance of the taper ratio as the
main geometrical parameter of the conicity in the case of external pressure
loeding.

It is therefore reasonable to expect that also for the case of
orthotropic and ring-stiffened conical shells under external pressure the
taper ratio will be the significant parameter of conicity. The orthotropy
and ring-stiffening will probably affect cylindrical and conical shells
in the same mamner and hence the ratio of (p/?) should be very nearly tlhe
same as for isotropic shells,

In order to investigate this hypothesis, the critical pressures for
the equivelent cylinirical shells were computed by Bodner's method
(ref. 5) for all the typical conical shells given in Table 1, which
include orthotropic shells of fiberglass reinforced evoxy and plywood,
end ring stiffened shells of steel, The ratios (p/p) are plotted in
fig, 2 ard compared with the curve g(¢) taken from referemce 8, since
the mesent analysis is for the same simple sunports assumed there,
The comparison in fig, 2 verifies the hypothesis and yields o very
convenient approximate method for the determinztion of the critical
uniform external pressure of any orthotropic, or ring-stiffened, conical
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shell,

The procedure involves: (a) calculation of the dimensions of the
equivalent cylindricel shell, using equations (11); (b) computation ofthe
critical pressure p for this equivalent shell by Bodner's method (ref., 5),
and (c) reading the correct_g from fig. 2. Finally p__ for the conical
shell is obtained from p = P g, or

Buckling Under Axial Compression and Under Combined
Axiel Load and External or Internal Pressure

In reference 12, the solution of reference 8, is applied to a linear
analysis of the asymmetrical buckling of thin isotropic conical shells
under unifarm axial compression, after the effect of axial constraint has
been shown to be small also for this type of loading (ref. 16). Calculations
for a typical isotropic conical shell yielded a slightly lower buckling
lcad than by the correspording linear axisymmetrical analysis (ref. 17).
The analysis is now extended to orthotropic shells, and can then be applied
directly to stiffened shells by consideration of an equivalent orthotropic
shell, '

The final set of linear e quations of the stability analysis eaqs. (7)
have separate load terms which are not affected by the orthotropy and are
.hence identical to those for isotropic shells, Provided the same form of
buckling displacement is po:sible, only this load term has to be changed,
if instability under a different type of losding has to be investigated.
For uniform exial compression the third term of equations (7) is therefore
replaced, as for isotropic conical shells, by

KL (-2 ¥ 1o 1le, (nym) (P/E,) (1/mah sin 2e) (13)
where G-A_(n,m) is en algebraic expression given in reference 12,

It should be noted that though the same form of deflection functions
is assumed as solutions in case of buckling under external pressure and
under uniform axial compression, the calcul~tions differ slightly, since
the basic buckling mode has, instead of n = 1, a number of axiel waves of
the same order as t (see ref, 12).

As the analysis is linear, combinations of load terms may be added,
subject to the above mentioned proviso of edmissibility of displacement
functions, Hence for combined axial compression and external or internal
pressure the final simultaneous equations would be obtained directly by
adding expression (13) to equation (7), changing the sign of p in the case
of internal pressure or that of P in the case of a tensile axial load.

Insofar as linear theory can represent actual buciling shapes, it may
be expected from similar analyses for isotropic conical and cylindrical
shells, that asymmetrical modes will predominate for combinations of
external pressure sand axial compression, or tension, whereas in the
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presence of internal pressure symmetricael modes will appear (ref. 18).

MORT ACCURATE ANALYSIS FOR STIFFENED
CONICAL SHILLS

Stress-Strain Relations

The instability of ring- ar stringer- stiffered conical shells may
be analysed more accurately by consideration of the separate distributed-
stiffness of the rings and stringers. The circumferential or longitudinal
stifferers are assumed each to be distributed evenly along one spacing
(one half spacing each side), the middle surface of the shell being chosen
as reference line. This approach is valid for closely spaced stiffeners
which need not be necessarily evenly spaced and equal, and permits detection
of differences in the critical load caused by their eccentricity.

The theory sets out with the formulstion of stress-strain relations
of the shell together with stiffeners, The stifferners mey have different
elastic properties, and the strains are assumed to be identical at the %
.contact surface of stiffeners and shell,

For the shell the stress and strain relations are
2 .
o'x(z) = [B/(1-v°)] [ex *ve, - (z/a)(xx + wc‘p) ] (1)

-

O-(P(z) = [B/(1= v9)] [e¢+ ve_ - (z/2) (lc‘?-s- vK_) ]

while for the stiffeners they are

crx(z) = E, [e’x - (z/a) K ] , s
= - 15

O'q,(z) =E, [G(P (za/a.)ic(p ]

Hence the forces and moments acting on an element become

N, = (Ev/(4 - v2)] [ex(1 + u1) *VEL= Xy Ky ]

N(p = [Eh/(1- v2 )] [eq,(1 + ;12) rve - X, Ktp 1 (16)
Nm-_- Nq’x= [En/2 (1+v)]ym

and

M, = - (p/2) [Kx(1 + n°1) * Vi, = Z, ex]

M, = = (D/a) Ley(1 47 ) +ve, =) €] (17)
M= (0/a) L) + 0y, Teg

M(px= - (0/a) [(1w) + Mo ]Kmp
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where 1 4 and ”2 are the increases in effective cross sectional area of
the shell due to stringers and rings respectively, x‘l and x2 are the

changes in extensiomal stiffness caused by the eccentricities of

stringers and rings, 7 01? n 2, Nyggs Nyo 8T the increases in bending

end twisting stiffness® 'of ° 3 1f due to stringers and rings, and

§ and §2 are the changes in bend:mg stiffness caused by the eccentricities

of stringers and rings.

With the aid of these relations the stability equations are ocbtained
in terms of displacements., These equations are similar to those for
isotropic shells, before uncoupling, though more complicated,

Buckling Under External Pressure

General instability under external pressure is anslysed with the
aid of the same solution employed for isotropic and oarthotropic conical
shells, equations (3). However, since the more accwrate stiffened shell
equations are not amenable to the direct solution, coupled with the
Galerkin method for the third equation, employed for isotropic and
orthotropic shells, a modified solution using successive correction
factors and a variational approach, that is basically an extension of the
Galerkin method, has been applied by M. Baruch in his unpublished
doctoral dissertation under the guidance of the author, Since the
successive carrection factors converge rapidly, the method is not too
laborious, The extenled Galerkin approach also permits direct estimates
and correction of the error involved in the partial compliance only with
the bourdary conditions for u emd v, Vhen the stiffeners have no eccentricity,
or the eccentricity is neglected, the method reduces to the orthotropic
analysis discussed above,

The Effect of Eccentricity of Stiffeners

By an analysis similar to that outlined above, Baruch and the author
investigated the effect of eccentricity of stiffeners on the general
instability of stiffened cylimdrical shells under hydrostatic pressure.
For typicel shells with rings onthe inside, the critical pressures were
found to be 11,5 percent to 13.5. percent above those obtained with the
identical rings on the outside, For typiczl conical shells similar
magnitudes are cbtaimed, For example, for two ring stiffered conical
shells of the following properties

a=3" a=57594n. (4/ah)

v = 0,3 h = 0,1 in [IZJ(aohs/ﬂ)]
one obtains

1.653
0.2119

04471 (ez/h)
0.7819  (z,/h)
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X, Taper Ratio (p ) /P P
2 #=1-(1 /xz) a.\/h no eccentricity ( insic}.e ri_n_gss)
outside ri

1:I‘Es;ige og;s e \p
165 0,333 415 1,021 0,963 1,061

5,0 0,800 995 1,058 0,965 1,093

It may be concluded that from a buckling point of view the placing
of stiffening rings (or frames) on the inside of the shell is advantageous,
Further it should be noted that the effect of eccentricity of stiffening
rings is of sufficient megnitude to require care in the interpretation of
experimental results. -

For stringers the effect of eccentricity is smaller and opposite:
outside stringers yield higher instability pressures than inside ones, as
has also been shown for cylindrical shells,

EXPERIMENTAL INVZSTIGATION

The first phase of an experimental program on the instability of
orthotropic and stiffened conical shells initiated at the Technion, is
concerned with the general instability of ring stiffened shells under
hydrostatic pressure, The test rig (fig.3) is similar to thet used in
previous investigations of isotropic shells (ref, 19), except that it is
smaller and designed for higher pressures, The specimens (see fig.la)
are of mild steel, have rings on the outside, and are fabricated by
careful machining (a tolerance of * 0,001 in, was obtained on thickness
of shell and rings), The specimens are clamped at the edges. As in
reference 20, strain gages are installed around the circumference and
opposite e stiffening ring near the estimated position of meximum buckling
defleection, On the first test come, an additional row of strain gages was
installed opposite the centre of the bay between two stiffening rings, to
detect early panel instability. No panel instability appeared before
failure by gemeral instability, and the fact thet the strain values of
the two rows did not differ appreciably during the whole test, seems to
justify the assumption of effectiveness of complete bay length, & ,
implied in the theoretical analyses. °

Three conical shells of similar geometry (R,= 1.77 in., R,= 5.67 in.,
and @ = 20°) were tested, All failed by general instability, © The strain
gage readings indicated clearly the embryonic lobe formation discussed in
references 19 and 20, and the cones buckled by a sudden formation of one
large general instability wave in place of one of those embryonic lobes
(see fig.ukb)., Since the buckling stress was not far from the yield stress
of the material, the elastic buckling transformed immediately into plastic
defarmation, Attempts to raise the pressure again resulted in growth of
the wave (end appearance of uvne further wave in two tests) with additional
small plastic panel buckles, "

Theoretical buckling pressures which would appear for perfect cones




.

bk

were determined from strain gage readings of the 3 tests by the extension
of Southwell's method given in reference 24. The intercept and the slope
methods, suggested there, yielded neerly similar perfect cone buckling
pressures, which were about 8 percent higher than the observed ones,

as follows:

Specimen no, 1 2 3
Theoretical buckling pressure (psi) 106.1 9.2 95,8
Observed failing pressure (psi) 99.2 9%.0 84,6
Perfect cone buckling pressure (psi) 106 103 92

The ratios of observed failing pressure and perfect cone buckling
pressure to the equivalent cylinder buckling pressure (p) are also plotted
in figure 2, These preliminary results are in good agreement with the
theory. It should be noted, however, that the test specimens were clamped
while the theory is for simple supports, Ilowever, the effect of clamped
edges should be rather small for ring stiffencd shells due to their
relatively large circumferential stiffness (for cylindrical shells it is
usually neglected - see ref, 20), .

OO KW

FUTURE RESEARCH

Both the orthotropic theory and the more accurate theory for stiffened
shells should be extended to torsion and combined loading and verified
experimentally, Further experimentel investigation of the buckling under
externzl pressure of orthotropic amd ring-stiffened conical and cylindrical
shells is required, The tests should also aim at verifying the effect
of eccentricity of stiffeners postulated by the thcory, The effect of
clamped edges should zlso be further clarified., 3Ixtensive tests of
cylindrical and conical shells with closely spaced stiffeners under axial
compression are needed to confirm the remarksble agreement with linear
theory pointed out by Becker and Gerard (ref, 1) in the case of a recent
test by Pugliese, Research along these lines is planned at the Technion,

APPENDIX A
STABILITY EQUATIONS FOR ORTHOTROPIC CONICAL SHELLS

~ For orthotropic conical shells the uncoupled Donnell type stability
equztions of reference 9 can be written in non-dimensional form (for
zero surface forces) as

L, (2) = cot ({(L5+ Lo)x vy W (o, /e, I)=(1/s12 ) (a 1)(a2/a3)L7(w,¢)}(.-'\.1)

L1O(V) = (az/as)cot a{-Le[x v(p;cw’x-(az/a1)w]+(1/sin a)[L5+(a2/a1)L6] (w,<p)} (42)

and
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(1/3)1-1 (w) - Kl‘{(&x/Ex)W’ﬂ*' (a'ﬁx)[(w,w/xzsinz @) + (‘I/x)w,x ]
+ Z(Em/sx)[ (w’m/x sin a) = (w’(p/x2 sin a) ] }

+ (1/2) o)) B oot? a L (/%) (P w ) T=0  (a3)

where the operatorg,l L1 to L:I are defined in reference 9 or 13, and the
inverse operator Llo- i

is def'ined by
L, (5,7 (2)] =2 (4s)

It should be noted that the radial stability equation, eq. (A3),
is not the usual eighth order eguation, which is a higher derivative of
the radial equilibrium equation, but a Batdorf type modified equation
which is more convenient for solution by the Gelerkin method, since it
enswres monotonic decrease of the approximete buckling loads with increase
in number of terms of approximation.
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TABL i

CRITICAL PRESSURES OF TYPICAL ORTHOTROPIC AND RING-STIFFENED
CONICAL SHELLS

(a) Orthotropic Shells (Cone angle 30°)

No Material Taper - v (p/E)x 10°
Ratio  (fav) x  ex _ .
1=(1/- xz) h /B Ortho- =Squivalent Is0=
@ tropic Cylinder tropic
Shell Shell
1 Plywood  0.333 415 20,0 0,022 0.0409  0,0402 0.4050
2 Fibreglass 0,333 415 2,59 0,090 0,204,141 0,2003 0,4050
3 . Reinforced}0,500 499 0,386 0,234 0,3048 0,2841 0.1538
L  Epoxy(143))0.600 582 2,59 0,090 0,0418 0,0373 0.5340
5 0,800 995 0,386 0.234% 0,0307 0.0246 0,0159
(b) Ring Stiffened Shells (Material: steel;
Cone angle: Nos, 6,7 = 30° No.8 = 20°5
e g:pﬁez <p av) ( A2 ) <12 I22\ °2 (p/E )x 106
1-(1/::2) "h a o h; 7 "h Stiff- Equiv- Iso=
0 o ened alent tropic
Shell Cylinder Shell
6 0.333 315 0.1471 0,7819 1.653 1.263  1.23L 0.5050
7 0.800 995 0.1471 0,7819 1.653 0,0557 0,0450 0.0159
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Figure 1l.- Notation.
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Figure 2.~ Ratios of the buckling pressure of orthotropic and ring stiffened
conical shells to that of equivalent cylindrical shells.
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Figure 4.- Test specimen: (a) prior to test, (b) after failure by general
instability.





