
481 

ASYMMETRIC BUCKLING OF CLAMPED SHALLOW 

SPHERICAL SHELLS* 

By Hubertus J. Weinitschke 

Hughes Aircraft Company, Ground Systems Group 

SUMMARY 

The problem of buckling of clamped shallow spherical shells has 
recently been considered in several theoretical investigations. Buck­
ling loads under uniform external pressure were obtained in these in­
vestigations which show a surprisingly good agreement with each other, 
but show a marked disagreement with available experimental values. 
In all previous studies it has been assumed that the shell deformations 
are rotationally symmetric. In this paper, the buckling problem is re­
examined byintroducing asymmetric modes of deformation. The ap­
proach is to superimpose small asymmetric deflections on finite axisym­
metric deflections, and to show that the symmetric states of deforma­
tion are unstable over certain ranges of load and geometry parameter. 
Numerical results are obtained by means of a digital computer and are 
compared with previous theoretical and experimental results. 

INTRODUCTION 

Problems of elastic stability of thin shells that require a large 
deflection analysis have been of considerable interest lately. In some 
well-known examples, approximate theoretical results are in reason­
ably good agreement with available experimental information; but the 
author does not know of a single problem that has yielded to a mathe­
matically satisfactory and accurate solution, which at the same time 
is in good agreement with experiments. This unsatisfactory situation 
holds true even for the problem of buckling under uniform pressure of 
a shallow spherical shell, which is in a sense the simplest of shell 
stability problems and which is the subject of this paper. A reason for 
this situation may be found in the fact that the majority of theoretical 
large deflection analyses of stability problems have been carried out 
by means of Rayleigh-Ritz type approximations, whose accuracy is in 

*This work was carried out at the Massachusetts Institute of Technology, 
supported by the Office of Naval Research. The author is indebted to 
Prof. E. Reissner whose help and encouragement was of great value to 
him. The calculations were carried out at M. 1. T. Computation Center. 
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general difficult to assess in nonlinear problems. Frequently, shells 
exhibit deflection patterns that are difficult to represent in terms of 
suen approximations. (For instance, using a one- or two-term Ritz 
approximate solution of the axisymmetric buckling of a spherical cap. 
one finds increasingly incorrect buckling loads with increasing shell 
heights.) It seems that at the present state of knowledge, recour se to 
numerical methods of well-defined accuracy should be considered as a 
powerful (if temporary) alternate approach in theoretical studies of 
shell instability. In view of the complexity of large deflection equa­
tions, such an approach may involve extensive calculations on a high 
speed digital computer; however, a more detailed under standing of the 
buckling mechanism which one may gain from such calculations may 
render this approach worth-while. The problem treated in the present 
paper is believed to give some support to this point of view. 

The buckling under uniform pressure of a shallow spherical shell, 
clamped along its boundary, has generally been considered to be of the 
snapping type. On the basis of a theory of finite axisymmetric deflec­
tions, one obtains a nonlinear load deflection curve which shows a local 
maximum of the pressure, except for extremely shallow shells which 
do not buckle. This m.~ximum pressure Pc determines the critical load 
at which snapping occurs, provided that the classical buckling criterion 
is assumed to be valid. What is of particular interest is the stability 
curve that shows how Pc varies with the shell geometry parameter ~ de­
fined below. Several recent investigations have been concerned with 
the calculation of this stability curve (refs. I to 4). The results of 
these studies, which were obtained by entirely different techniques, 
show good agreement with each other. They were all based on a sys­
tem of nonlinear differential equations for finite axisymmetric deforma­
tions. However, experimental results are generally in serious dis a -
greement with the results of the axisymmetrical buckling theory. For 
some time, it has been believed that these discrepancies might be due 
to imperfections in geometrical shape. Recent results of Budiansky 
~ee ref. 1) for certain types of imperfections of reasonable magnitudes 
tend to discourage such speculations. 

The present analysis is based on the assumption that asymme­
trical deflection modes are significant in the process of buckling. The 
buckling of spherical caps appeat"s then to be a bifurcation rather than 
a snapping phenomenon: axisymmetric deformation takes place until a 
critical value is reached, at which point, bifurcation of solutions of 
the basic equations occurs. One branch of solutions corresponds to 
axisymmetric states of equilibrium, other branches correspond to 
asymmetric states, which in the vicinity of the bifurcation point differ 
from the axisymmetric states by infinitesimal amounts. The axisym­
metric states are therefore unstable for pressures above the critical 
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value, hereafter referred to a,s the asymmetrical buckling load. The main re­
sult of this paper is a new stability curve, based on asymmetric deflections of 
the form w = w(r)cos n S. Two different techniques are employed; one amounts 
to calculation of the second variation of an appropriate potential energy func­
tional, the other reduces the stability problem to a nonlinear eigenvalue problem. 

BASIC EOUATIONS 

The basic equations for finite bending of shallow shells have been derived 
by Marguerre (ref. 5) under the traditional assumptions of thin shell theory, 
that is, neglection of transverse shear deformabihty and of tangential displace­
ment components u, v in the nonlinear terms. These equations, when written 
in polar coordinates and specified to a spherical cap, can be put in the form 

-1 4 _2 1 
A '\] F + 2HV-w +2' K(w, w] : 0 

DV
4

w - 2HJF - K(F, wJ = pb
4 (1) 

where b is the base radius of ere shell, H is the shell" rise", p is the exter­
nal pressure, A and 0 are stretching and bending stiffness factors respectively 
and 9l is the Laplace operator in the polar coordinates rand S. Sire ss resul­
tants and couples are related to the stress function F and the axial displacement 
w by the formulas 

-2- -1 
Nr • r -.Reb + r F, r Ns: F'rr 

Qr = -O(';W)'r Qs • -Dr -\';w)'s 

Mr : -O(w'rr + lITw) MS = -O(Tw +JlW'rr) 

where Tw = r -lw, + r -2w, ,0: 0(1 -.II) and 11 is Poisson's ratio. A comma 
followed by subscfipts indic!i~es 8ifferentiation with respect to the subscripted 
variable(s). The nonlinear terms in Eqs. (1) are expressed in terms of the dif­
ferential operator K as follows 

where 

[ ] -1 -1 -1-2 
K F,w : ~ F,v,(W'~ + '? w'SS) + w.~~(F,~+ 9 F,ss) + 2~ • 

-1 
~ = rb . 

r -1 -2 ] 
lq (F'9Sw,S + F'sw'~e) - F'fSw'9S - 9 F,swS 

The bounda ry conditions correspo n ding to a clamped edge are 

u = v = w = w'r = 0 at r = b(~ = 1). (3) 
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In order to express the first two conditions in terms of F and w, con­
sider the stress-strain relations 

-1 I -1 2 
: Ar (u+v'8+'2 r w'8) 

Expressing Nr , N9, and Nre in terms of F as indicated by the differential 
operators AI' A

2
, A

3
, it can be verified that conditions (3) are equivalent to 

A2F : (rA2F)'r - AIF - (A3F)'8 : w : w'r: 0 at r: b. (4) 

The boundary value problem (1) and (4) constitutes the basis for the present 
analysis. ~ 

A convenient dim~sionless form of Eqs. (1) is obtained by introducing 
the functions g( V. 8) : f F and h( 9. 9). mt-1w, and the relevant geometry 
and load parameters IJ = 2mHt-1 and Y : pb4m(4Dt)-1 (t = shell thickness, 
m 2 = 12(1 - v2». With this, we have the following equations for g and h 

~lg+1J2v~+jK[h,h]. 0, ,jh-1J2g-K[g.h]= 4y (5) 

For convenience of describing the buckling process, a dimensionless deformed_4 
volume is introduced by V : ff h( f. 8) fd f d8, and a load parameter by P = yJ.l • 

RESULTS OF PREVIOUS WORK 

In all previous theoretical studies, the assumption was made that defor­
mations are rotationally symmetrical (except in ref. 6). In that case, Eqs. (5) 
can be simplified considerabJy. With p : g' (~), q: h' (9), where the primes 
denote differentiation with respect to fl. it can be shown that Eqs. (5) reduce to 
the following ordinary differential equations: 

, -1, 2 I -1 2 
(p + ~ p) : J.I q - '2 9 q , 

-1 2 -1 
(q' + S' q)' = J.I P + 2y~ 9 pq. (6) 

The corresponding boundary conditions are 

p(O) : q(O). o. p(l).. q' (1) - lIq(l). : O. (7) 

A great deal of effort has been devoted to solvillf Eqs. (6) and (7) and 
calculating the resulting stability curve PdJ.l). If the curve p. P(V) is plotted 
for a fixed shell geometry, the variation of P with increasing V is roughly as 



follows: P increases until it reaches a local maximum Pc, then decreases to a 
local minimum Pot (unstable states of equilibrium), and then increases again 
(stable post-buckling states of equilibrium). 

In some recent papers, buckling criteria have been discussed that are 
_u based-on a finite-jump bucmrtg mechanism according to which the minimum 

load P.e is to be considered as the actual collapse load of the shell. The short­
comings of these criteria, which have no logical basis, have been pointed out, 
e. g., see the comprehensive review article on shell instability by Fung and 
Sechler (ref. 7). It has further been shown (ref. 8) that for simply supported 
spherical caps under uniform pressure, Pt is negative for certain shell geo­
metries. Similar difficulties are encountered in the application of so-called 
energy buckling criteria to the spherical cap problem (see ref. 7). In the fol­
lowing, the term" buckling load" is to be understood in the classical sense. 

The results of the earlier studies of Eqs. (6) and (7) which were obtained 
by Ritz-type approximations. perturbation techniques, and power series methods 
are generally in disagreement with each other (see refs. I and 2 for a more com­
plete discussion and additional references). The power series approach proved 
promising; however, convergence difficulties for larger values of 1-12 made it im­
possible to obtain solutions for values of y up to the critical load Yc = 1-14pc. 

The results of the more recent investigations are based on iterative 
numerical solution of the above differential equations. A number of entirely 
different techniques have been used successfully to overcome the difficulties in 
the numerical solution, which are related to the increasing waviness of the nor­
mal deflection w with increasing shell parameter 1-12. A modified power series 
approach. expanding the solutions of Eqs. (6) in both powers of ~ and powers of 
I - 9 was employed by Weinitschke (ref. 2). In the work of Budiansky (ref. I). 

_ the problem was formulated in terms of two nonlinear integral equations which 
were solved by means of matrix approximations. A different integral equation 
formulation was employed by Thurston (ref. 3), and a finite difference solution 
of Eqs. (6) and (7) was given by Archer (ref. 4). The stability curves based on 
the results of refs. 1 and 4 are in almost perfect agreement with each other (see 
curve S in Figure 1). However, except for the range 1-1 5 5.5, the experimental 
values shown in Figure 1 are in serious disagreement with the axisymmetric 
buckling theory. 

It is interesting to note that the range 1-1 ~ 5.5 corresponds to the sim­
pIe deflection mode: w( 9) has its maximum at the apex ( '? • 0) and is monotoni­
cally decreasing towards the edge. For larger shell rises. 1-1 ~5. 5, the shell 
deforms according to axisymmetric theory into a deflection pattern of a higher 
degree of waviness before it snaps through at large values of P. However, in 
view of the results discussed below, the more wavy axisymmetric states become 
unstable in the asymmetric buckling theory. 
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THE BIFURCATION PROBLEM 

The results discussed in the previous section lead to the conclusion that 
the low experimental values of Pc cannot be explained on the basis ofaxisym­
metric deformations. The strong increase of the ratio 1N9IN I for increasing 
P and for ~ ~5. 5 observed in ref. 2 ind icates the possibility Of wrinkling in the 
circumferential direction of the cap. Furthermore, there is strong experimen­
tal evidence (see ref. 1) for asymmetrical buckling. Recently, buckling loads 
have been calculated by Gjelsvik and Bodner (ref. 6) using a Rayleigh-Ritz pro­
cedure, where w(r, 9) is assumed to be nonsymmetrical involving one free para­
meter. The resulting numerical values of Pc are larger than the values ofaxi -
symmetric theory (curve S in Figure 1); therefore, it is not evident from their 
work whether asymmetric deflection theory is able to explain the low experimen­
tal values. 

A new approach to the buckling problem will no w be outlined which takes 
into account asymmetrical deflection modes of the type W(r)cos n8. It is assumed 
that axisymmetric deformation takes place until a critical value p. is reached at 
which point bifurcation of solutions of the basic equations (6) occurs. The branch 
of axisymmetric solutions becomes unstable for pressure parameters P ~p., and 
the shell deforms in an unsymmetrical mode. In other words, the smallest load 
for which bifurcation occurs is considered as the limit of stability. in accordance 
with general principles of elastic stability theory. However,. the possibility must 
be admitted that the loss of stability represented by points of bifur cation on the 
axisymmetric load deflection curve P = P(V) may be rather localized. Further 
investigation of the branches of asymmetrical states of equilibrium is necessary 
in order to determine the complete behavior of the shell. 

In order to obtain the stability curve on the basis of this approach. small 
asymmetrical deflections w(r, 8) must be superimposed on finite axisymmetrical 
deflections. Since the latter are known, the equations for w(r. 8) and for the 
stresses are linear. Two ways of formulating the present approach analytically 
are described below which are at the same time suitable for obtaining numeri­
cal results. 

VARIATIONAL METHOD 

The potential energy of a shallow shell subject to uniform pressure can 
be written as follows 

,. 1 2 -lfJrt 2 2 :J E11.€ik' wJ = 1';A(l - 11 ) L~ + € ) - 2(1 -lI)(€ € - € ~ dxdy 
~ xx yy xx yy xy (8) 

+ ~D Jf~ V2 
w

2 
- 2(1 - v)(w. xx w. yy - w';yil dxdy + Jfpw dxdy 
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where the quantities EiK denote the midsurface strains of the shell. Eqs. (1) 
and (4) are now eq uivalent to the variational problem: minimize E. with respect 
to all (smooth) functions u. v. w satisfying u = v : W = w' = 0 along the edge 
r = b. The above integrals are to be taken over the projection of the shell mid­
surface on the x. y-plane. Using the stress strain relations as constraints. one 
can transform this variational problem into an equivalent one where u and v 
are eliminated. This leads to a new functional E2 [w. FJ. where E2 is to be min­
imized with respect to all functions w satisfying w = w' : O. Here the function 
F is given in terms of w by the first of Eqs. (1) subject to the boundary condi­
tions (4). 

The details of this transformation and of the subsequent solution of the 
stability problem are toolengthy to be reproduced here and will be given in a fu­
ture paper. Briefly. the procedure is a~ follows. Let Ff(r). Wo(r) refer to a 
given axisymmetric solution and define f. W by F = Fo + , w : Wo + w. In order 
to show that the solutions Fo' Wo become unstable for values of the pressure ex­
ceeding a certain limit. one has to calculate the second variation c5 ZEZ[w. F] of 
the functional E2 and show that it can be made negative for suitably chosen func­
tions w(r. 9). The application of this method is thus reduced to numerical evalu­
ation of certain double integrals and to solving a linear biharmonic equation to 
find the I corresponding to a given w. 

DIFFERENTIAL EQUATIONS METHOD 

Assume the dimensionless stress g and displacement h in the form 

where go . ho denote the axisymmetric solution. € is a small parameter and 
O(EZ) stands for terms of order €2. Substituting (9) into (5), noting that go' ho 
satisfy Eqs. (6). and collecting terms of order €. one obtains the desired equa­
tions for small asymmetric deflections. These dellections. represented by gl' 
hI are 

V
4
gI + ~2q~1 + K[ho' hI] = 0 

(10) 

q4hI - ~2<;72gI - K[go' hI] -K[ho ' glJ : 0 

A similar process leads to appropriate boundary conditions for the functions gl' 
hI. These conditions together with Eqs. (10) constitute the basic 8th order ei­
genvalue problem to be solved. Although Eqs. (10) are linear in gl' hI' the 
problem is nonlinear insofar as the eigenvalue y enters via the functions go, ho, 
which depend on y through the nonlinear equations (6). 

In view of the periodicity in 8, we set gi : G(~)cosn9. hI • H(~)cosn9. 
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This leads to the following equations for G and H 

LLG + fJ2LH + M[ho' H]: 0 

LLH - fJ
2

LG - M[go' H1 - M[ho' G] : 0 

where 
It -1 , 2-2 

L : ( •.. ) + ~ ( ..• ) - n ~ ( ••• ) 

yM[X, Y] • X· (Y' - n
2(1y) + X' Y"; X. X(f)' y. Y{f) 

The boundary conditions for G, H can be written in the form 

H : H' : G" - )I(G' - n2
G) • 0 . 

ell) 

at ~. 1 (12) 
q"' + Oil _ (1 + 2n2 + ))n2 )0' + (3 + v)n20 • 0 

In addition, G, H, G' , H' must be regular at f? = O. 

As mentioned above, the solution of the axisymmetric problem has been 
obtained in ref. 2 in terms of power series in 9 and 1 - 9 ; therefore, it is in­
dicated to calculate the solutions G, H also in this form, that is, 

A- 2k A- 2k 
G(~) : '? r Gk ~ , H(~) : 0 L Hk ~ (13) 

~o 1 k~ 

and similar expansions with respect to 1 - fJ. Substitution of (13) into (11) leads 
to the fourth degree indicial equation for the roots A and to recurrence relations 
for the coefficients Gk' Hk from which four regular linear independent solutions 
can be constructed. Satisfaction of the boundary conditions (12) by an appropri­
ate linear combination of these solutions leads to the condition of vanishing of a 
certain determinant l(fJ. n;P), where P : YfJ-4, which determines a smallest ei­
genvalue P4r(n) for each n. For a fixed parameter fJ, the asymmetriC buckling 
load parameter Pc is therefore determined by the smallest of the P*(n), that is, 
PC<fJ) : ~n P*(n). 

RESULTS AND DISCUSSION 

In the application of the procedure outlined in the preceding section it is 
important to obtain sufficiently accurate solutions of Eqs. (11) because of the 
loss of some accuracy in the evaluation of the determinant l(fJ, n, P). The roots 
of I : 0 were found by plotting I versus P keeping fJ and n fixed. The use of a 
digital computer (IBM -7090) was essential in calculating I for sufficiently large 
ranges of the three parameters fJ. n, and P. 

The results of these calculations are shown in Fig. 1. The critical loads 
corresponding to a fixed circumferential wave number n are plotted versus fJ. 
from which the scalloped asymmetriC stability curve Pc(fJ) (labeled A in Fig. 1) 

L 
3 
1 
o 
9 
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is obtained as the lower envelope. It is seen that axisymmetric snap-buckling 
prevails only over the narrow range 3. 4 ~ fl ~ 4. For fl :> 4. there is bifurcation­
buckling caused by asymmetric deflection modes showing an increasing number 
of circumferential waves with increasing fl. Although no attempt has been made 
to extend the stability curve beyond fl = 10, it is significant that the calculated 
buckling loads are in reasonably good agreement with the observed data, thus 
essentially closing the large gap between theory and experiment that has hither­
to existed. 

In conclusion, it must be admitted that although a bifurcation phenomenon 
seems to determine the onset of buckling, the process of buckling at large may 
well appear as a snap-through phenomenon. that is. the asymmetric modes may 
become unstable with increasing deformation so that the final (post-buckled) 
state is again axisYmmetrical. A theoretical confirmation would involve finite 
asymmetric post-buckling deflections and would be of great value for a more 
detailed understanding of the buckling process. 
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Figure 1.- Theoretical buckling pressures for clamped shallow spherical 
shells and experimental data. 

'. 


