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A SURVEY OF RESEARCH ON THE STABILITY OF HYDROSTATICALLY-
LOADED SHELL STRUCTURES CONDUCTED AT
TEE DAVID TAYIOR MODEL BASIN

37 Thomas E. Reynolds

David Taylor Model 3asin

SUMMARY

Experimsntal and theorzstical studizs nave been carried oul to
investigate the stability of ring-stiffened cylinders ard henmisphere-
ical shells under hydrostutic oressure. The use of acowrately
machined models has been found exiremely valuable in irprovinsg the
quality of erperimental data, theredy peraitting a more caraTal
exanination of theory. 4s a result, the effects of boundary
conditions and ctaer factors usually mes'zd by the influaerce of
strictural imperfections have bveen clarified.

So fav these studiss have caused the invesiizaltors to regurd
clessical small-deflection theory with incraasing confidexnce.

INTRODUCTION

As the major structural element in a submersible, tie ring-
stiffened cylinder has long been of prime intersst to tie naval
architeci. It is likely that future vehicles attaining greater
operational depths may 2lso male oxtensive use of sphericzal shells
for %he main pressure hull as well as for terainating closurss.
Tais paper is concerned with recent studies of the buclldirg char-
acteristics exhibited by these two saell types when subjected to
hydrostatic prsssure.

RING-STIFFENED CYLINDERS

The basic buckling conficuration to ose considersd is the
antisymmetric or lobar mode. It has been convenient %o investiral:
separately two distinct zlasses: generzl instadility, wuarein hotn
rings and shell deflect radiaily (figure 1), and snell instabilitv,
in which the rings do not deflect radially and huckles appear bolwser
them (figurs 2).

General Instability

Cfonsiderable work has been direcited toward ar evperimental
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evzluation of Kemdrick's small-deflection solutlon (relerence 1,
second solution) for the elastic instabulity of a2 cylinder uith
simpl—~-supported ends. Tests of a rariely of smaul, externzlly-
stiffened cylinders machined from high-strergth steel tudbing have
revealed that huckling pressures can be obiained with remarsable
cccuracy using Southwell!s nondestructize tecimigue (refarences 2
and 3). It has also been establisned that variatisns in end
restraint, even for cylinders as lonc as five diameters, can have an
anmrecizble influerce or buckling sirength (reference 4).

As an example of the investisutions being conducted, e recent
study by W.F. 3lumenberg is cit=d. The objective was to obiain
buciiling pressures by Soutawell's retnod as a furction of cylinder
length with boundary conditions held constant. The 428t arrarserert
is shown in firurs 3. The lergth of the central test section was
varied by reorranging the vairs of movable discs whose rouvnded edses
sere in contact with the inner wall of the cylinder. The outer dises
wece maintained at one freme space from the inmer ones as an approach
to isolating the central section from variations in conditions of
support resulting from changes in the lengths of the end scctions.

The mazimum test pressure attained averaged about 98 per cent of tae - e
Southwell bucklinz pressure. The maximum measured stress was about
L3,000 psi commared wath a value of 85,000 psi for the yield strength.

Since it was not expected that this arrangement would closely
approximate the condition of simple support, it was not surprising
that the experirental pressures were somewhat aigher than those given
by Xendrick's solution. However, a plot of the results is instructive.
In figure 4 the circles represent the experimental pressuras and the
s01id carve is Xendrick's solution for a nominal Young's modulus of
30x10° psi., The abscissa is ¥, the number of frame spaces separaiing
the inmer discs. These results suzgest the possidility that, so far
25 buckling is concerned, a cylinder of length L (¥ frame spaces)
whose ends are arbitrarily restrained behaves as if its lengih wure
Lesy (Ngpp frame spaces) and its ends simply-supported, whore

Le“» = kL (Neﬁ = kAV) (1)

k is a constant whose value depends on the degree of restraint -
being less than unity where the restraint is more restrictive than
siumle support ard greater than unity vhere the opposite is true.
This would mean that for a given crlinder any degree of restraint
nan be represented on a single plot of buckling pressurs versus Lerr
or Yors 2nd that the transition from one circunferential mde to
amether mist occur 2t the same pressure regeriless of the boundary
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conditions.

In figure 4 the slight difference beitween the theoretical and
sxperimental pressures for the transition from 2 lobes to 3 could
easily result from a small disparity between the actual and assumed
values of Young's modulus. If the corvesponding transition values
for ¥ are substituted into equation (1) the resulting value for k is
0.725. Using this number the experimental points were replotied wita
Nopr as the new abscissa and with the appropriate adjustment in
Young's modulus. These points are the triangles in figure 4.

This approach has been used with data from a variety of tssis
to obtain values of k ranging from 0,71 to 0.94, and corresponding
pressure variations of as much as 65 per cent. The resulta to date
have strengthened the investigators! belief that Kendrick's 3olutinn
will give reliable predictions when appropriate adjustments arc made
for the dezree of restraint.

Shell Instebility

To summarize very briefly, small-deflection solutions for
elastic shell instability have not been entirely satisfactory when
applied to shells with closely-spaced stiffeners. Von Mises!
solution (reference 5), for example, does not account for the effect
of the stiffeners on buckling strength, hence is not strictly
applicable. Von Sanden and T¥lke (reference 6) considered the stiff-
eners as they affect the deflections prior to buckling, but neglected
their influence on the buckling deformations. Experimental results
in many cases have not been particularly illuminating. Becamse of
inadequate yield strengths and fabrication imperfections, elastic
shell instability has seldom been observed with closely-spaced
stiffeners. In cases whers the Von Mises pressure has not been
attained "snap-through® buckling has sometimes been offered as the
explanation.

A small-deflection solution recently developed by the amthor
accounts for the influence of the stiffeners on deformations occuring
both before and during buckling by expressing all deflections as
trigonometric series. The solution is obtained using the Ritz
procedure and includes the resistance of the stiffeners to deZorma-
tions in and out of their planes. To evaliate this solution data
are avallable from collapse tests of four uachined cylinders where
again elastic buckling was achieved through the use of hign-strength
steel tubing. Two of these tests are reported in reference 7. The
results are showm in table 1. It appears that the performances of
the cylinders arc adequately explained by the new small-deflection
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solution. This is supported by the fact that the buckling strength
in one case was accurately determined using Southwell's method, waich
is only successful whers small-deflection theory applies. It is
further indicated, by comparing the Von Mises pressures with the
collapse pressures, that the influence of the stiffeners can be
apprecisble. It is only partially accounted for by the solution of
Von Sanden and Tolkse.

SPHERI CAL SEELLS

In spite of a long history of investigation it appears that the
bucikling of spherical shells is not yet properly understood. The
elastic buckling pressure given by the classical small-deflection
analysis of Zoelly (reference 8) is far in excess of anything that
has been observed experimentally, and various attempts to explain
these vast discrepancies on the basis of finite deflection theory
have been less than satisfactory (reference 9). Furthermore, mst
work has been devoted to the study of shallow spherical cagps whereas
the interest of the pressure vessel designer is in deep and complete
spherical shells.

Krenzke (re<erence 10) has recently completed tests of a series
of machined hemispherical shells about 1.6 inches in diameter which
were designed to study both elastic and inelastic buciling. Orne
group of shells was machined from 6061-T6 aluminum (yield strength
of 43,000 psi), enother from 7075-76 alumimum (80,000 psi). Each
hemisphere was terminated by & stiffened cylinder waich, in all but
three cases, was designed so that no bending stresses could develop
in the hemisphere prior to buckling. The three exceptions were cases
in which the cylinders had to be made somewhat more rigid to provide
thea with adequate buckling strength. Accuraie nachining assured
nearly perfect sphericity in all cases.

Pigure 5 shows a few of the observed failures. The three shells
naving the more rigid boundaries buckled well within the elastic
range. It appearcd that the buckling strengths of thesc shells were
not adversly affected by the boundary conditions since, in each case,
the portion immediately adjoining the cylinder was undamaged. Their
buckling pressuras are compared in table 2 with the theoretical values

iven by the small-deflection solution of Zoelly:

1.154E [ 2 \? Ay
P, = (F) =1.21F (E‘) for v = 0.3, (2)

€ ‘/l_-—l-; /

where E is Young's modulus, » is Poisson's ratio, h is the shell
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thiclmess and R is the mean radius. The ratios of experimental
pressures to p,, although less than one, are much larger than have
been observed %or gsaslls formed from flat plates, indicating the
sensitivity of buckling strength to imperfections and residual
stresses. ‘The tests also show- that—the—minimmmhuckling préssures
defined by large-deflection theory can be greatly exceeded. From
the results of table 2 Krenzke hag proposed an empirical buckling
formla for the elastic range:

0.80 & 2 2
P! = (i) =0.84F (i) for v = 0.3, (3)
V-2 \fo Fo

is dictated by simple load

whers the use of the outer radius, Ro'
equilibrium.

The rest of the shells collapsed in the yleld region at pressures
ranging from 6 to 46 per cent of pg. For this range Xrenziwe has
suggested the following formla to represent p,, the Inelastic collapse

pressure:
ESE‘ o E.Z, ( A )2 "
P = g2 Pe = U.C ( -V2) R_O ( )

Eg and B; are the secant and tangent moduli which can be determined
from the stress-strain diagram for the material under uniaxial loading.
The quantity under the radical which mmltiplies p,' is a simplified
plasticity reduction factor based on theoretical studies by BiJlaard
and Gerard (references 1l and 12). In the elastic range equation (4)
reduces to equation (3). Pigure 6 shows how well this formla fits
the experimental data., The abscissa is the ratio of p_ to p_,, the
elastic buckling pressure according to equation (2), efid the®ordinate

is the ratio of the experimental pressure, Pexp’ to pg.

Despits the consistency of these results it is not necessarily
conclusive that they represent the maximm buckling strength attain-
able. Each of the shells had small deviations in thickness which
presumably had some weaxening effects. Future studies will include
tests of larger machined shells in which such deviations can bde
further reduced. Other tests are presently underway with spun and
pressed hemispheres and with machined spherical shells having central
angles greater than as well as less than 180°. The benefits of
stiffening are also being studied.
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Table 1 - Regults of Elestic Shell Buckling Studies

Flexibility| Experimental Theoretical Buckling Pressures,

4 Parameter | Buckling psi
_I_.f—h— 4 Tressure, psi

3(1-12) Yew von Sgnden | Von Mises

—_— Solution and Tolke (ref. 5)

R232 (ref. 6)

D.418 k.13 803(14)* 811(11) 693(16) 665(15]
D.526 k.75 725(13) 784(13) 865(1%) 654(14)
0 .650 5026 L75(14) Leo(1k) 366(1€) 387(14)
0,228 6.80 633(11)** 633(11) 559(11) 600(10)

h = shell thickmess
All cylinders had external rectangular stifferers

*Number of circumferentisl lobes in parentheses
**Southwell method gave 637 psi
Ap = cross-sectional area of stifferer

I.f = stiffener specing
R = pean radius

Table 2 - Cormparison of Collapse Pressures frocm the
Classical Theory with Experimental Values

Buckling Pressures, psi

h Experiment, | Equation (2), Pexp

2 pexp pe Pg
0.0095 200 1180 0,68
0.0096 830 1210 .69
0.0120 12°¢C 1875 0.66
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Figure L.- General instability type of collapse.

Figure 2.- Shell instability type of collapse.
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Figure L4.- Stiffened cylinder - elastic general instability results.
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Figure 5.- Examples of collapsed hemispheres.
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Figure 6.- Buckling data for hemispheres.

»



