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NATIONALAERONAUTICSANDSPACEADMINISTRATION

TECHNICALNOTED-1_55

THEN-BODYCODE- A GENERALFORTRANCODEFOR

SOLUTIONOFPROBLEMSIN SPACEMECHANICS

BY NUMERICALMETHODS

By William C. Strack, Wilbur F. Dobson,
and Vearl N. Huff

SUMMARY

A general astronomical integration code designed for a large class of prob-
lems in space mechanics that maybe solved by numerical integration is described.
The equations of motion provide for the effects of up to eight gravitating celes-
tial bodies, oblateness and aerodynamic forces from the celestial body at the
problem origin, propulsion system thrust, and rotation of the body at the origin.

INTRODUCTION

The general problems of space mechanics (i.e., n-bodies plus nonconservative
forces such as thrust) cannot be solved analytically. Therefore, numerical inte-
gration through the use of computing machinery is usually employed.

Several codes have been written for the numerical solution of problems in
orbit mechanics; for example, the Themis Code of reference I is a double-

precision code intended primarily for close satellites or interplanetary coasting

flight. Reference 2 describes a space-trajectory program of considerable merit.

A listing of several other trajectory codes may be found in reference 3.

The general purpose code described herein has several distinctive features

not all of which are found in any one of the previously available codes. As de-

scribed herein, this code is designed to operate on an IBM 704 computer that has

an 8000 word (8 K) memory and at least 1 K of drum. The fact that the program is

written in FORTRAN should make it applicable to installations having other types

of equipment that accept the FORTRAN language. An edition of this program (dif-

fering primarily in that segmenting of the program is not required) is available

for an IBM 7090 computer that has a 32-K core.

The program is compartmented into 25 subroutines to facilitate modifications

for specific problems. The integration is carried out in either rectangular co-

ordinates or orbit elements at the option of the user. A compact ephemeris that



occupies about one-seventh of a reel of tape is utilized for positions and veloc-
ities of the planets (except Mercury) and the moon. An atmosphere is included so
that aerodynamic forces maybe considered.

STATEMENTOFPROBLEM

The problem to be solved maybe stated as follows: Given certain initial
conditions, compute, using three degrees of freedom, the path of an object, such
as a space vehicle, subject to any or all of the following forces:

origin body gravitational field

other celestial body gravitational fields

propulsive thrust

aerodynamic forces

any other defined forces

or, in equation form, with respect to a noninertial Cartesian coordinate system,

where
ator.

2 r • r i F D
- + - + - + - + - (i)
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i=

n equals the number of perturbating bodies and ? denotes the del oper-

(All symbols are defined in appendix A.)

Origin Body Gravitational Field and Oblateness Perturbations

The first term, DU, in the equation of motion (eq. (i)) represents the

gravitational forces due to the origin body. When the origin body is spherical

and made up of homogeneous layers, this term becomes simply -_/r _. in the case

of the Earth, however, the effect of oblateness may be important, and additional

terms must be added to account for the oblateness effects. The expression for

the gravitational potential U of an oblate spheroid may be written, according

to reference A, as

where the x,y plane lies in the equatorial plane.

tional acceleration are as follows:

The components of gravita-

(2)



_x= +_=-7- l \r/jjr

K

-7

uz=+_- r2 , l+ \r/ L_r/ - 701zl ]}z
(._)

The first terms exist for a spherical planet composed of concentric layers of

uniform density. The terms containing J and K are frequently called the sec-

ond and fourth harmonic terms, while J and K are known as the harmonic coef-

ficients.

It is expected that oblateness perturbations need to be computed only for

the origin body, since at large distances, such as that between celestial bodies,

the gravitational field of an oblate body is essentially an inverse-square field.

Consideration of oblate bodies other than the Earth requires only different val-

ues of J and K if that body's rotation axis is parallel to the z-axis. When

the body has triaxial asymmetry or when the z-axis cannot conveniently be alined

with the rotation axis of the origin body, the equations must be extended if ob-

lateness is to be included.

Celestial Body Perturbations

The presence of more than one gravitating body in addition to the object re-

sults in the inclusion of the second term of equation (i). The evaluation of

this term requires a knowledge of the positions of the bodies as a function of

time. The degree of precision desired determines the method to be used to obtain

the positions such as elements of ellipses or an ephemeris.

Propulsive Thrust

The propulsive acceleration is completely specified by a direction and a

magnitude. The thrust direction may be referred to the velocity vector by two

angles: _, the angle between the velocity and the thrust vectors, and _, the
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angle between the orbit plane and the velocity-thrust plane. The sense of each
angle is indicated in sketch (a).

-@
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The velocity may be referenced with respect to one of several coordinate

systems. If the computation refers to a takeoff of a rocket or winged vehicle,

the coordinate system rotating with the Earth may be preferred. In such cases

the relative velocity (i.e., the velocity of the object relative to the atmos-

phere) will serve to orient the thrust vector. Resolution of the thrust-vector

components along the x,y,z axes is shown in appendix B.

The thrust magnitude of a rocket engine is

F -- - PAe (4)

This relation is sufficient for many space powerplants and is used in the present

program.

Aerodynamic Forces

The aerodynamic forces are usually divided into the two components, lift and

drag. The drag force is directed opposite to the relative wind vector, and the

lift vector is perpendicular to the relative wind vector. The angles _ and _,

defined in the previous sention, serve as the angles of attack and roll_ respec-

tively. Yaw effects are not considered. Resolution of the lift and drag vectors

into components along the x_y,z axes is given in appendix B.

The magnitudes of the lift and drag forces may be conveniently determined

through use of a tabular group of coefficients in relatively simple equations.

The lift and drag magnitudes may then be expressed (as is usual in aerodynamics)
as
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where

= _(t)

%, -- fl(_psin

cD = CD,o + CD,i : CD,0(NM)+ f2(N_)_

1 2
q = _ p(V')

p = p(P,T) = p(h)

If a(t), CD,O(NM), fI(NM), and

is assumed to be constant, the expressions for _, _, CL, CD, 0
become

(s)

(6)

f2(NM) are assumed to be quadratic functions and

and CD, i

= all + al2t + a13t2

= _0

%,o --a31 + a3Z_M+ a33_

(a 2)c2CD, i = 41 + a42NM + a_3NM L

where the quadratic constants a_ _ may have different values for different re-

gions of the independent variables t and NM.

It should be remembered that these choices are arbitrary and are not re-

strictive because other functions may easily be used by simply changing the equa-

tion where it appears in the program. In fact, any propulsion system and aerody-

namic configuration can presumably be incorporated by writing proper thrust and

aerodynamic subroutines.

The pressure_ temperature, and density may be determined as a function of

altitude in accordance with the ICA0 standard atmosphere. The oblate Earth model

is used to determine the altitude.
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Other Forces

The X forces may be any forces such as electrostatic, magnetic, or solar
radiation pressure that affect the trajectory. While these forces are not con-
sidered further herein, their inclusion would usually be feasible and would be
similar to thrust, lift, and drag.

METHODOFSOLUTION

The method of solution selected for the stated problem is presented in this
section. A later section discusses the FORTRANcoding.

A description of several numerical integration techniques and their relative
merits are contained in reference 5. A straightforward method for finding the
position of the object as a function of time is to integrate the total accelera-
tion of the object expressed in rectangular components. An example of this
method is Cowell's method (ref. 5).

However, whenthe system under investigation consists of two nonoblate
bodies (one of which is the object) with no forces other than gravitational at-
traction forces, an exact analytical solution for the motion of the body exists.
Further, if the conditions of the actual problem are such as to approximate the
two-body problem closely, another approach is to use the exact two-body solution
as a basis and simply integrate the changes in the two-body parameters, since
they should be slowly varying. This technique, sometimes called the "variation
of parameters," will be referred to as "integration of orbit elements."

Since problems both remote and near to the exact two-body problem are en-
countered in orbit mechanics, and since either type of problem is solved more ef-
ficiently by using the technique most suitably applicable, it was considered de-
sirable to use either of the previously mentioned integration techniques at will.
Accordingly, two methods of integration are provided in the program, namely, rec-
tangular coordinates and orbit elements.

Integration Variables

In order to use either of these integration techniques, it is necessary to
select a suitable set of variables for integration. Because a differential equa-
tion may determine the mass of the object (i.e._ spacecraft), mass has been se-
lected as a variable to be integrated. Selection of the remaining parameters
follows in the subsequent paragraphs.

Rectangular coordinates. - In the first technique, the total acceleration

components M,y, and _ are integrated to obtain x,y, and z where x,y, and z are

the rectangular components of the origin-to-object radius r. The positive

x-axis points in the direction of the mean vernal equinox of 1950.0. The posi-

tive y-axis lies in the mean equator of 1950.0 and is perpendicular to and coun-
terclockwise from the positive x-axis. The z-axis points north and completes the
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righthanded orthogonal set. The integration in rectangular coordinates involves
numerical solution of three second-order linear differential equations; that is,
a double integration is required for integrating the accelerations to obtain ve-
locities and the velocities to obtain positions. The rectangular variables have
advantages of complete generalityand a minimumamount of computing per step.

Orbit elements. - In the variation-of-parameters technique, a set of six

independent two-body parameters called orbit elements are integrated. These six

parameters may be arbitrarily chosen from a host of possibilities. The set se-

lected for this program is composed of the eccentricity e, the argument of peri-

center _, the equatorial longitude of ascending node _ the inclination of the

orbit plane to the equatorial plane i, the mean anomaly M, and the semilatus

rectum p. The transformation equations between the two sets of variables are

given in appendix C.

The integration of orbit elements requires the numerical solution of six

first-order linear differential equations. The rather involved transformation by

which the three second-order linear differential equations in M,y,_ are reduced

to six first-order equations in @, _, _, i, M, and _ is contained in refer-

ence 8. Integration in orbit elements is frequently advantageous because the

smaller orbit-element derivatives may permit larger integration intervals that

result in fewer steps. In the special case of twO-body motion, the derivatives

are zero (except _, which is a constant).

Mathematical difficulties may arise occasionally with most sets of orbit

elements. In particular, for the selected set, these occur when e approaches

unity (parabolic trajectory), which causes a loss of numerical accuracy in the

frequently used quantity (1 - e2); and when an asymptote is approached too

closely, which causes numerical difficulties in the iterative solution for eccen-

tric anomaly from Kepler's equation. The selected solution to these difficulties

is to shift temporarily to rectangular-coordinate integration whenever the diffi-

culty arises.

Integration Method

It is clear that regardless of the choice of integration technique, the mag-

nitudes of the derivatives of the variables to be integrated may vary consider-

ably along the trajectory. With fixed step size (constant intervals in time),

the integration scheme will take unnecessary steps in the regions where the

changes in the derivatives are small and thus will waste computing time and in-

crease roundoff error. When the derivatives are large and change rapidly, a

fixed step size will result in large truncation error (error due to excessive

step size). Thus, in the interest of computing accuracy and economy, use of

variable step size along the trajectory becomes desirable.

One of the integration schemes that allows variable step-size control to be

incorporated easily is the Runge-Kutta scheme. For this and other reasons, it

was decided to use a fourth-order Runge-Kutta method with variable step-size
control.



Truncation error and step size maybe controlled by examining the relative
errors between the fourth-order Runge-Kutta integration schemeand a lower-order
integration procedure. The arbitrarily chosen low-order integration schemewas
an unequal-interval Simpsonrule method. Details of the fourth-order Runge-Kutta
integration method and the step-size control are given in appendix D. Roundoff
error maybe reduced by accumulating the integration variables in double preci-
sion.

Origin Translation

As noted previously, machine computing time and roundoff error maybe mini-
mized by maximizing the integration interval. The largest intervals are possible
in orbit elements whenthe celestial body at the problem origin is the one that
has the greatest influence on the vehicle motion. For this and sometimesother
reasons, it maybecomedesirable to translate the problem origin occasionally as
the vehicle movesalong its path.

Such translations of the origin maybe madewhenthe object enters a body's
"sphere of influence," that is, the sphere about a body within which the greatest
influence upon the object is due to forces originating from that particular body.
In this program, the orientation of the coordinate system is always alined with
the system determined by the Earth's meanequator and equinox of 1950.0, as is
standard in astronomy.

THECODEANDITS USAGE

The stated problem was programmedin FORTRANroutines that are separately
designed to accomplish one task but when combinedform a complete program. This
feature facilitates modifications.

The program is labeled as a general-purpose code_ but an efficient general-
purpose code cannot be a reality. As a result, this code is not especially gen-
eral_ but an attempt has been madeto retain efficiency and to provide for easy
modification of the routines to recover generality as needed. For example, the
program is an "open system_" that is, it solves an initial value problem. There
is no link provided to obtain specific end conditions. Provision of this link is
left to the user for his specific needs. In particular, when certain end condi-
tions of a trajectory are to be met by determining the correct initial conditions
(two-point boundary value problem), the user mayprogram an iteration schemeto
compute initial conditions from end conditions of previous runs.

The code is designed to operate on an IBM 70_ computer that has an 8-K core
and drumand also a numberof tape units. To operate the code on an 8-K com-
puter, it is necessary to divide the program into two segments (core loads). The
program of segmenti arranges certain data in the core. The program of segment 2
overwrites the program but not the data of segment1 whenit is called for. Fig-
ure i is a simplified diagram t_at showshow the various major subprogramsare
arranged in the segments. The segmenting was done as efficiently as possible in
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Figure i. - Block diagram of program segments showing principal subprograms.
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terms of execution time, but further gains can be realized by users of larger

computers who may wish to modify the code to utilize the increased computer ca-

pacity.

In the following sections, discussing the program in terms of the FORTRAN

variables and routines is sometimes desirable. A glossary of these variables

is given in appendix E.

Ephemer ides

To determine the position of each celestial body, there is offered a choice

between ellipses and a precision ephemeris. Any appropriate ellipse data may be

used, and an example of such data is given in table I.

The precision-ephemeris tape that is used in the program was so made that

position and velocity were obtainable through the use of a fifth-order polynomial

whose coefficients are stored on tape. The details concerning the making of the

tape and its structure are given in appendix F. This master tape is a merged

ephemeris containing all the planets (except Mercury), the moon, and the Earth-

moon barycenter from October 25, 1960 to about 2000 (except for the moon, which

has am ending date of 1970). The Earth ephemeris is called "sun" because it

gives sun to Earth distances.

Direct use of the master merged ephemeris tape would, in general, be waste-

ful of computing time, since excess tape handling would occur in order to bypass

data not required for the particular problem. To minimize tape handling during

execution, a shorter merged ephemeris containing only that data needed for a spe-

cific problem is constructed at execution time. Several of these working ephem-

erides may be constructed before the integration of the problem. (Several prob-

lems may be loaded simultaneously with the same ephemeris, or each problem may

require a distinct ephemeris, or several ephemerides may be desired for a single

problem.)

Step Size and Output Control

Truncation error and step size are controlled by computing the relative

errors between the Runge-Kutta integration and the lower-order integration proce-

dure. If the greatest relative error between the methods is greater than a maxi-

mum limit (ERLIMT), the integration step will be repeated after a smaller step

size is computed. In either case, a new step size is computed from the relative

errors of the previous steps and is intended to result in an error that is close

to a reference value (EREF). Further, the step size may then be reduced by the

output controls. In any case, a step can be no larger than three times the size

of the previous successful step. (See appendix D.)

Output is sometimes desired at specific points along the trajectory, while

at other times this is unimportant. This option is provided for the user so that

he may choose output to occur at equal intervals in step number or equal time

i0



intervals (which places a constraint on the step size). Also, he may choose to
change from one modeto another along the trajectory. These choices of output
spacing are effected through the use of the FORTRANvariables MODOUT,DELMAX,
STEPS,and TMIN, which is explained under the MODOUTentry of table II, a table
of program control parameters.

ComputerOutput

A basic output format was programmedto serve as a basis for modification
and is illustrated in table III. It is intended that a user of the code modify
the output to suit his purpose. In addition to examining the normal output, it
is sometimesdesirable to examine the error-control data, such as the relative
errors in the integration variables, along the path. These data are printed as a
single block after completion of the problem if the sign of the input error ref-
erence value EREFis negative. The sign of EREFis irrelevant in the error-
control portion of the program since its absolute value is taken.

ComputerInput

The user has a choice of three possible sets of input data that specify po-
sitlon and velocity: (1) the six orbital elements, (2) the three Cartesian com-
ponents of both velocity and position, and (5) the latitude, longitude, azimuth,
elevation, velocity, altitude, and time.

The third set mentioned is programmedfor the Earth only where the latitude
and longitude are the geocentric latitude and longitude measured from the equator
and Greenwich, respectively. The azimuth angle is measured in a plane tangent to
the sphere of radius r at the point on the sphere determined by the geocentric
latitude and longitude, and relative to the local meridian, positive eastward
from north. The elevation angle is then measured in a plane normal to the tan-
gent plane, positive outward (sketch (b)). The tangent plane is taken horizontal

Greenwich

/

z

Elev£_

(b)

Long w longitude measured from
Greenwich in earth's

equatorial plane, posi-
tive east

Lat - latitude, measured posi-
tive north, geocentric

Azi _ azimuth angle, measured

east from north from

local meridian

Elev - elevation angle, positive
outward

Vel - vehicle's initial velocity

r - radius of vehicle from
Earth's center

ll



with the effects of oblateness and rotation considered if these effects are "on."
If oblateness and rotation are "off_" the horizontal is perpendicular to the ra-
dial direction. This input option ignores the correction betweenuniversal time
and ephemeris time and between the instantaneous equator and equinox and those cf
1950.0.

A list of input instructions is contained in appendix G along with an input
check list.

The input routine described in reference 7 was used because of its simplic-
ity; however, another input routine maybe used if it is desired.

Sequenceof Operations

Before the program begins to integrate a trajectory, it performs an assort-
ment of operations that maybe called "initialization." All these operations are
expected to be done once or only a few times during the trajectory integration
and, for this reason, are contained wholly in segmentI. Likewise, at the end of
a problem, a return to the segment i causes several concluding operations to be
performed. A condenseddescription of the operations carried out in segmenti is
contained in the flow diagram of figure 2. Other than the normal end of a prob-
lem (reaching a maximumnumberof integration steps or a particular time) there
is only one way in which segment i maybe called by segment2, nsmely, a trans-
lation of the origin. Whenthe translation occurs, segment i is needed to re-
Drder the body list and perhaps to cause input or ephemeris change.

After completion of the initialization, which leaves numerical data stored
in the commonarea, segmentI is overwritten by segment 2, which maybe termed
the integration segment.

CODING

General

Appendix H contains the code listing of the program. Although most of the
program is coded in basic FORTRANII, on several occasions it was preferable to
use the pseudo-SAPstatements of FORTRANII. Typically, the pseudo-SAPstatement
LgG)(I),I is used whenever the index I was to be transferred from one subroutine
to another (since FORTRANII does not do this automatically). Wherever such a
statement appears, the FORTRANII statement I = I can be used instead to accom-
plish this initialization but with additional commands.

Someof the FORMATstatements are of the G-type. These statements will
print output in I, E, or F format depending on the nature of the variable.
Fixed-point variables will take the I format, while floating-point variables will
assumethe F format unless the magnitude of the variable falls outside the useful
F range_ in which case the E format is used. FORTRANfacilities that do not ac-
cept the G-type format statements may easily substitute E-type formats.
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Table IV is a map of COMMON allocation (blanks are left for the user) and

table II contains a description of the program control parameters. The elements

of the integration variable array (XPRIM) are given in table V. The assumed

values of the astronomical constants are given in table VI. These values are

easy to change to any set desired. A selected set is given in reference 8.

Examples

Two examples of code usage are presented in the following sections. The

first example is a problem of raising a low-altitude satellite into a 24-hour

orbit by using low-tangential acceleration. The other example is a more complex

problem involving a ground-launched lunar probe with a three-stage rocket. Both

problems were selected to illustrate the usage of the program rather than to at-

tempt a detailed analysis of the example problem.

Example I: Low-tangential thrust. - The trajectory to be determined is that

used to raise a 5850-kilogram package from an initial 500-statute-mile circular

equatorial orbit to a 24-hour orbit using a 60,O00-watt nuclear electric system

with a specific impulse of 2540 seconds and an overall efficiency of 40 percent.

The required engine parameters may be calculated as follows:

thrust force:

F-
Ig c

2 x 60_000 x 0.4
2540 x 9.80665

- 1.927 newtons

initial acceleration:

F 1.927

mo 5850
= 5.0051948Xi0 -4 m/sec 2

propellant flow rate:

F 1.927

Ig c 2540 x 9.80665
= 7.7561955XI0 -5 kg/sec

A detailed account is given in the following paragraphs for the solution of

this problem by the prescribed program. 0nly those features of the program that

have a direct bearing on this particular problem are discussed. Additional pro-

gram features are discussed in the account of the second example problem. It may

prove beneficial to refer to figure 2 during these two discussions.

It is assumed in the program that all memory data stores are cleared (set

equal to zero) before operation begins. Control begins when the routine MAIN 1

is entered in segment 1. After several noninfluencing commands, the reading of

a "clock" takes place at statement i0 and this value is stored. This value is

later subtracted from the subsequent reading in order to yield the computing

14



time. (All references to the "clock" may be deleted without ill effect.) Then
a set of so-called "standard data" is initialized by executing subroutine STDkTA.
Before initializing, STDATAclears most of COMMONC.

The next step is calling for input at statement 21. The following list of
parameters constitutes the input:

Parameter

Initial mass, mo, kg
Semilatus rectum, p, m
Specific impulse, I, sec
Flow rate, -_, kg/sec
Time limit, sec
Initial step size, sec
Step number limit, steps
Frequency of output_

steps/output

FORTRAN

name

RMASS

P

SIMP

FLOW

TMAX

DELT

_TEPMX

STEPS

Value

3850

6.86X106

2540

7.7361955X10 -5

a42605

a1500

a2000

a200

aAssumed value.

Variables such as eccentricity and mean anomaly that are initially zero are

not included in this list since all memory data stores are initially zero.

In accordance with the input routine of reference 7, the input cards may

appear as

SDATA:l,$TABLE,41=RMASS947:Pt5=SIMPt93 =
FLOW,IO:DELT,30:TMAX,20:STEPMXt21:STEPS/

$$ IDENTIFICATION AND
$_ TABLE DEFINITION

RMASS=3850,SIMP=2540,FLOW=7.?361935E-5 $$ VEHICLE MASS, ISP, MASS F_OW
P=6.86E6,TMAX=42605,STEPMX=2000 $$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT
DELT=1500,STEPS=200 $$ INITIAL STEP SIZE, OUTPUT EVERY 200TH STEP
SDATA=I, $$ LAST CARD

where the entries between the STABLE and slash (/) reference the subsequent en-

tries to the second argument C of the calling statement. Thus, for example,

RMASS is equivalent to C(41), the 41 st location from the beginning of COMMON C.

Several commands follow the input none of which has an important effect on

this particular problem with one exception: subroutine ORDER (part ii) computes

the gravitational constants _ and _/_. The initialization process is now

completed.

Segment 2 overwrites segment i, except COMMON C(1) to COMMON C(800), and

control begins when the routine MAIN 2 is entered. Immediately_ the tape that

stores the two segments (tape 2 at Lewis) is rewound to position this tape at the

beginning of segment I.
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The next sequence is that of integrating the first two steps. These two
steps are of equal size and are integrated before an error check is made. If the
first two steps are satisfactory (determined by statement 25), the remaining
steps are integrated while the relative error is being checked at the end of each
step. Parts I and 5 of MAIN 2 are concerned solely with this starting phase.
Part i sets up the starting sequenceand causes the initial conditions to appear
on the output sheet. Parts 2 to 4 accomplish the Runge-Kutta integration for a
single step.

The derivatives used in the integration are obtained from subroutine EQUATE.
The first half of this subroutine finds the Cartesian coordinates and velocities
through use of Kepler's equation. The thrust is computedin statement 34, and
then subroutine THRUSTis called to determine the componentsof the thrust accel-
eration in the Cartesian coordinate system. (After control is returned to sub-
routine EQUATE,the thrust acceleration is resolved into circumferential_ radial,
and normal components.) Finally the derivatives of the orbit elements are calcu-
lated, and a return is madeto MAIN2.

After the Runge-Kutta integration is performed, the error check is madein
part 5B (part 6 after the starting sequence) by computing the difference between
the Runge-Kutta integration and the low-order integration. Subroutine ERRORZis
called to determine the largest of the relative errors. If the largest of the
relative errors is greater than the limit value, ERLIMT(set in STDATA),part 8,
which computes a smaller step size for the sameinterval, is entered and control
is returned to part i. If the greatest relative error is smaller than the limit
value, part 7, which advances the variables of integration, is entered and calls
subroutine STEPto computethe next step size and print out the variables of the
first step. Part 7 also counts the revolutions past the x-axis and adjusts the
argument of pericenter and meananomaly to within +_ to retain accuracy in the

sine-cosine routines. If the step size exceeds 1/2 revolution, the revolution

count may be short by an integral number. Control is finally transferred to

part i to begin computation of the next step.

The problem is terminated when the time limit TMAX is reached. This check

is done in subroutine STEP. Had the problem exceeded the step number limit

STEPMX, it would have terminated at that point. In either case, control is re-

turned to MAIN I in segment i to print out the computing time and begin the next

problem. When no data for another problem are given, the execution is terminated

(i.e., control is returned to the monitor by subroutine INPUT as a result of an

end of file on tape 7). The output of the last step is:

STEP= 821. + 45. ECCENTRICITY= 2.37578762E-04 0MEGAm 1.57668670

TIME= 42605.000 SEMILATUS R.= 6898571.50 TRU A= 1.57089765

JDAY= 2440000.4927 MEAN ANOMALY= 1.57042252 NODE= O.

ALFA= 0. PATH ANGLE= 1.56122511E-02 INCL= O.

V= 7599.09540

VX= 43.7259269

VY=-7598.96967

VZ=-O.

R= 6898571.62

X=-6898447.56

Y=-41333.9687

Z=-0.

_FER=EARTH ORBIT

RMASS= 3846.70%01

REVS.= 7.50095356

DELT= 265.055664

1
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The time histories of several trajectory parameters for this example are

shown as solid lines in figure 5. The oscillations of the eccentricity and mean

.... tlon steps until
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FIKure 3. -Tlme histories of several trajectory parameters for example I.

anomaly cause a rather small step size, as is noted in the figure. To indicate

how exercising care in selecting the input can increase the computational effi-

ciency, the same problem may again be run with the following initial values (ac-

cording to ref. 9) of eccentricity and mean anomaly:

2(F/mo)P2 eoVo
e0 = , M 0 = _ - 5e 0 21g c

The input cards for this case make use of the algebraic properties of the input

routine to compute the desired value of these parameters. The cards are:

SDATA:I,$TABLE,_1:RMASS,47:P,5:SIMP,33=

FLOW,10:DELT,30:TMAX,20:STEPMXt21=STEPS/

$$ IDENTIFICATION AND

$$ TABLE DEFINITION

RMASS=3850,SIMP=2540,FLOW=7.7361935E-5 $$ VEHICLE MASS, ISPo MASS FLOW
P:6.86E6tTMAX=42605,STEPMX=2000 $$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT

DELT=1500,STEPS=200 $$ INITIAL STEP SIZE_ OUTPUT EVERY 200TH STEP

STABLE,42=E,46=MA/ E=2*5.0051948E-_*P*P/3.983667EI_ $$ ECCENTRICITY
MA=-T620.429/SIMP/9.80665-6*E+3.1415926/2,STEPS=5 $$ MEAN ANOMALY_OUYPUT CONTROL

SDATA=I, $$ LAST CARD

The dashed lines in figure 5 show the time histories of the same trajectory

parameters when initial values of e and M given immediately preceding are

used. The increase in average step size is 20 to i. To compare the accuracy of

this approximation with the exact case (e0 = MO = 0), the final time was chosen

when the corresponding orbit positions were identical (when the true anomalies

were equal). At t = 42,605 seconds, the orbit positions are nearly identical,
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and, at this time, the values of position and velocity maybe comparedas fol-
lows:

Radius, m
Velocity, m/sec
Numberof steps

CaseA:
=M0 = 0e 0

6898571.62

7599.09840

821

Case B:

e0 and Mo_O

6898571.56

7599.09546

59

For most purposes the two answers would be accepted as equivalent and case B

would be preferred because of the smaller computer time required.

Example II: Lunar impact probe. This example of a lunar impact probe il-

lustrates the use of the ephemeris tape and the control parameters needed to con-

sider the effects of perturbing bodies, atmospheric forces, oblateness, rotating

Earth, and thrust. No effort was made to optimize this trajectory but rather to

use at least plausible values for illustrative purposes.

Suppose the probe is launched at Cape Canaveral on December 7, 1961 by a

three-stage vehicle with stage parameters as shown in the following table:

Parameters

Initial mass, mo, kg

Engine exit area, Ae, m 2

Vacuum specific impulse, I, sec

Propellant loading, Wp/W 0

Propellant fraction, Wpf/Wp

Propellant flow rate, -_, kg/sec

Burning time, tb = Wpf/W, sec

Aerodynamic reference area, S, m 2

Stage

i

150,000

5.0

500

.65

.9

750

117

7.5

52,500

1.0

420

.55

.9

125

207.9

4.0

5

25_625

.5

420

.96

•91765875

56.25

570

2.0

945

Coasting

payload )

2.0

Figure 4 shows the assumed variation of CD,O_ CD,i, and CL with Mach number as

well as the angle-of-attack schedule.

The vehicle will be flown as follows: First, a short nondrag vertical

flight, after which the desired velocity orientation will be set, and then a turn

determined by gravity and the angle-of-attack schedule until first-stage burnout.

The second and third stages follow the same turn pattern. The final stage con-

sists of the payload. The staging will be accomplished by treating each stage as
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a single flight, with the burnout conditions of the previous stage used as ini-

tial conditions. The chosen integration mode will be rectangular for the powered

flight but _he mode of orbit elements will be used for the coast portion. Other

bodies considered besides the Earth and the vehicle are the sun, the moon_ and

Jupiter. Jupiter is included to illustrate the use of ellipse ephemerides. The

sun and moon will illustrate the use of the tape ephemeris.

The correct firing direction and launch time remain to be determined. This

determination can be made by finding approximate values and then adjusting these

values after one or more shots are fired. The adjustments could be made by an

iteration scheme programmed internally to make a closed system. For this exam-

ple_ however_ they were made by hand by firing several shots at various azimuth

angles close to an estimate obtained by using reference i0 and an ephemeris.

From a plot of the z-direction cosine of the vehicle-moon distance against

vehicle-Earth distance, the azimuth angle that will intersect the moon orbit can

be determined. The correct launch time is found by using the previously deter-

mined azimuth angle and various times of day to determine the time of day at

which the vehicle intersects the correct position in the moon orbit (location of

the moon). This type of analysis gives an azimuth angle of about 78.9 ° and a

time of day of about 7.95 h E.T. (E.T. is ephemeris time which is approximately

equal to Greenwich mean time.) For the present purpose, these values will be

used.
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The problem begins by constructing the merged ephemeris tape for the sun and

moon. This is done by subroutine TAPE in conjunction with the input shown as

follows:

$DATA:300_$TABLE,2=TAPE3_17=ELIST,29=TBEGINt30:TEND/ $$ ID. AND TABLE DEFINITION

TAPE3=O $$ NECESSARY TO MAKE TAPE
TBEGIN:2437640.5 $$ JULIAN BEGINNING DATE

TEND=TBEGIN+5 $$ JULIAN ENDING DATE

ELIST=(A3)SUN,(A4)MOON $$ LIST OF DESIRED EPHEMERIS BODIES

After the merged ephemeris tape is constructed, the clock is read, the standard

data are initialized, and the first-stage input is loaded as shown:

SDATA=I_$TAB_104:LAT_105:LONGtlO6:AZI_]OT:ELEV9108=ALTt $3 STAGE I
28-:IMODEt31:OTOFFJ_32:TOFFToB11=BODYCDt26=ATMNt29=RATMo459= $$ ID. AND
ROTATE,41=RMASS,5=SIMPt33=FLOWt35=AREAp24=AEXITo27=OBLATN,941= S$ TABLE
ELIPSt601=COEFN*2_8-=ICC93?=ERE?tI?=ERLIMTtIg=CLEARo30=TMAXt20= $$ DEFINITION
STEPMXt?:TKICK_10=DELTglO3.=MODOUT*23=DELMAXo22=TMIN_21=STEPS/ $$

$$
LAT=28.28OoLONG=-80.571_ELEV=89.7 $$ LATITUDEtLONGITUDEoELEVATION
AZI=TB.g,ALT=]O,IMODE=4 $$ AZIMUTH_ALTITUDE_INTEGRATION MODE
DTOFFJ=2437640.5_TOFFT=7.94/24 $$ TAKE-OFF DATE AND FRACTION OF DAY
BODYCD=(A5_EARTHt{A4)MOON,{A6)JUPITE,(A3)SUN $$ BODY NAMESt IST IS ORIGIN
ATMN=(A5)EARTHpRATM=IEI]oROTATE=T.29211585E-5 $$ ATMOSPHERE NAME_RADIUS_ROTATION
RMASS=150000,SIMP=3009FLOW=750 $$ VEHICLE MASSoISP(VAC}tMASS FLOW RATE
AREA=7.5_AEXIT=3.0_OBLATN=(A5)EARTH $S DRAG AREAoENGINE EXIT AREAgOBLATE BODY
ELIPS=(ALF6)JUPITEt(ALF3)SUN_.g547861E-3p4.81E+lO_5.1913995t $$ ELLIPTIC DATA
•0486288,,1765935,.056971884t.kO587194_2433964.t.&664o4333.715355 FOR JUPITER
COEFN=O,o4_O,.6_I,I.I53069-.16326_.O10204_8,.5,,PIOOP,10,P, $$ AERO. COEFF. AND
100tj.O25,9_lOO,,,,,15,-.6,.O4_,AO_,7_,I17_,_91E6_ICC=2_I_19_I $$ INDICES
EREF=IE-5,ERLIMT=5E-5,CLEAR=I $$ REFERENCE ERROR_LIMIT ERRORgSTDATA BY-PASS SWT
TMAX=IiT,STEPMX=250 $$ MAXIMUM ALLOWED PROBLEM TIME AND STEP NUMBER
TKICK=IO,DELT=2 $$ TIME OF THE VERTICAL NON-DRAG STEP,IST INTEGRATION STEP SIZE
MODOUT=2,DELMAX=60, $$ MODE OF OUTPUT_TIME INTERVALS OF OUTPUT

The value of iMODE is set equal to _, which causes execution of subroutine

TUDES. TUDES transforms the spherical Earth coordinates into rectangular coordi-

nates, which are the variables of integration. In addition, TUDES computes the

closed-form solution for the initial vertical nondrag step. From this point on,

the trajectory is integrated with the initial orientation specified by the spher-

ical coordinates. The small error introduced by this procedure is offset by

avoiding the complications associated with integrating the takeoff. One such

difficulty is the thrust-direction specification when the velocity is zero_ espe-

cialiy if the origin body is rotating.

Subroutine ORDER reorders the list of bodies putting the sun before Jupiter

(i.e., the sun's position relative to the vehicle must be found before Jupiter's

relative position can be computed). The elliptic data for finding Jupiter's

position are modified somewhat and relocated according to the computed body list.

After calculating the gravitational constants, control is returned to MAIN i.
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The atmosphere belongs to the body at the origin (Earth) so that the rota-

tion rate and atmospheric radius are set. The final duty of MAIN i is to posi-

tion the merged ephemerides tape at the beginning of the correct ephemeris. In

this case, only one merged ephemeris was constructed; nevertheless, it still must

be identified and spaced to the beginning of the data.

Control then passes to MAIN 2, where integration takes place in the same

manner described in example I. Additional subroutines called from EQUATE are

EPHMRS, ELIPSE, ICA0, AER0, THRUST, and OBLATE. Subroutine EPHMI_S is responsible

for computing the perturbations that result from bodies other than the origin

body. This computation is accomplished by determining the perturbating body

position through use of the merged ephemeris tape or subroutine ELIPSE.

The AER0 subroutine determines the aerodynamic accelerations through use of

quadratic equations for the lift and drag coefficients and subroutine ICA0, which

determines density, pressure, and temperature as functions of altitude. Oblate-

ness accelerations are found in subroutine OBLATE. The thrust direction is de-

termined by subroutine THRUST, while the thrust magnitude is computed in EQUATE

as _gc I - PA e.

The first vehicle stage integration is terminated by subroutine STEP when

t = 117 seconds. Control is then transferred to MAIN i, where the following in-

put initiates the second vehicle stage integration:

SD=1_RMASS:525009SIMP:420tFLOW=1259TMAX:TMAX+207,9,AREA:49AEXIT=1 $$ STAGE 2

Integration of the second stage proceeds in a manner similar to the integra-

tion of the first stage and is terminated when t = 324.9 seconds. The third-

stage data are similar to the second-stage data and are as follows:

SD=1,RMASS=23625,FLOW=56,25,DELMAX=100,TMAX=TMAX+370tAREA=2,AEXIT=,5 $$ STAGE 3

The fourth stage differs from the preceding stages since the thrust is turned off

and integration proceeds in orbit elements rather than in Cartesian coordinates.

Output occurs every 6 hours until t = i day; then it occurs at every tenth step.

Also, the error-control data are printed (therefore, make EREF negative). The

fourth-stage input is as follows:

SD=l,RMASS=945,0tDELT:3600tFLOW=O,TMAX=172800 $$ STAGE 4
IMODE=-2_EREF=-() $$ INTEGRATE ORBIT ELEMENTS, RECORD ERROR DATA,

MODOUT=39DELMAX=DELT*6oSTEPS=IOtTMIN=S&400 $$ OUTPUT EVERY 6 HOURS UNTIL TIME =
$$ 864009THEN EVERY IOTH STEP

SD=It $$ LAST CARD

About 1/2 day later the vehicle is close enough to the moon that the coordi-

nate system origin is translated to the moon. This translation is accompanied by
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a shift in integration mode to Cartesian coordinates, since the vehicle is ap-

proaching the moon far out on a hyperbolic leg. The last step output is repro-
duced as follows:

STEP_ 184. + 17. ECCENTRICITY_ 10.6771772 0MEGA_-3.22087839

TIME= 172800.00 SEMILATUS R._ 3.16835663E 09 TRU A_ 1.16945998

JDAY_ 2457642.8506 MEAN ANOMALY_-I8.8108633 NODE= 0.77242955

ALFA_ O. PATH ANGLE_ 62.2506247 INCL_ 0.51408862
MOON R_ 2.5560079E 08 -0.391661 0.734785 0.553798

JUPITE R_ 8.4571112E II 0.581702 -0.741635 -0.334068

SUN

V= 3938.07312 R= 6.12713230E 08 REFER=EARTH RECTAN 3
VX= 2403.45856 X= 1.27258404E 08 RMASS= 944.999992
VY=-2445.76614 Y=-S.56514068E 08 REVS.= 0.78706574

VZ=-1936.50073 Z=-2.67161870E 08 DELT= 5887.73633
R= 1.4668535E 11 -0.229169 -0.8931t8 0.387068

At this time the vehicle is again primarily under the Earth's influence after

missing the point mass moon by 1.2X106 meters.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, September 6_ 1962
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APPENDIX A

SYMBOLS

relative angular momentum per unit mass, r × V' (appendix B)

engine exit area, m 2

coefficients for quadratic functions

total drag coefficient

zero angle-of-attack drag coefficient

induced drag coefficient

lift coefficient

drag force, newtons

eccentric anomaly, radians

eccentricity

thrust force, newtons

functions of Mach number

gravitational conversion factor, 9.80685 m/sec 2 (sometimes referred to

as standard Earth gravity)

altitude above Earth's surface_ m

vacuum specific impulse, sec

orbit inclination to mean equator of 1950.0_ radians

second harmonic coefficient in oblateness equations

fourth harmonic coefficient in oblateness equations

universal gravitational constant, 1.32452139X1020,

mS/(sec2)(sun mass units)

lift force, newtons

mean anomaly, radians

object mass, kg
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mi

mr

P

oP

P

q

Rr

r

ri

S

T

t

U

Ux,Uy,Uz

U

V

V'

V

W

wp

Wpf
X

X_y_Z

24

mass of ith perturbating body, sun mass units

mass of reference body plus m_ sun mass units

Mach number

atmospheric pressure, newtons/m 2

V _ × _ (appendix B)

power, w

semilatus rectum, m

1
dynamic pressure_ _ D(V')2_ newtons/m 2

radius of reference body, m

radius from origin to object_ m

radius from origin to ith perturbating body, m

aerodynamic reference area_ m 2

temperature, OK

time_ sec

gravitational potential

x,y,z accelerations.due to gravity, m/sec 2

_÷ V

absolute velocity, m/sec

relative velocity_ m/sec

true anomaly, radians

object weight, newtons

propellant loading, fraction of mass that departs during a stage

propellant fraction, fraction of Wp used for propellant

forces acting on object other than gravity, thrust, lift, drag, and

perturbations due to perturbating bodies

components of r, m



angle between thrust and velocity vectors (sketch (a)), deg

angle of rotation of thrust out of orbit plane (sketch(a)), deg

power efficiency factor

k2mr

p atmospheric density_ kg/m3

argument of pericenter, radians

origin body rotation rate, radians/sec

equatorial longitude of ascending node, radians

Subscripts:

0 initial value

1,2,3,_ values at consecutive points along trajectory
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APPENDIXB

VECTORRESOLUTION

Relative Velocity

The relative velocity is defined as the velocity of the object with respect
to the origin body. If the origin body is assumedto rotate about the z-axls_
this velocity is given by

.-_ --@v' =V- x7 (s!)

In x,y,z component form,

V_ = V x + coy (B2a)

V_ = Vy - _ (B2b)

V_. = V z (B2c)

In the following sections_ the atmosphere of the origin body is assumed to ro-

tate as a solid body at the rate _.

Thrust Resolution Along x,y_z Axes

The thrust direction is specifledwith respect to the relative velocity

vector V' by the angles _ and _, as shown in sketch (a). For resolution

of thrust vector into x,y,z component_j it is convenient to define vectors
and _ normal to and wlthin the r_ V' plane3 respectively, such that 7'_

_, and P form an orthogonal set. Thus,

-->

A - ? X V' = Relative angular momentum per unit mass

P=V' X

The thrust vector can then be resolved in the V' _ A_ _ set as'

g. 7' = FV' cos

K'_ = FA sin _ sin

F" _ = FP sin _ cos

Solving for F yields

F
= -_ (V' cos _ A x _ + A sin _ sin _ _ x 7' + _ sin _ cos # _)

p_

(B4)

(BSa)

(BS-b)

(BSc)

(B6)
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or, in x,y,z componentform,

Fx = p_[V' cos _(AyPz - AzPy) + A sin _ sin _(PyV_ - PzV_)

+ P sin _ cos 6 Px]

Fy = p_' cos _(AzPx - AxPz) + A sin _ sin 6(PzV_ - PxV_.)

+ P sin _ cos 6 Py]

= F_, cos _(AxPy - AyPx) + A sin _ sin _(PxV_ - PyV_)
Fz p2

+ P sin _ cos _ Pz]

(B7a)

(B7b )

(BTo)

Aerodynamic Lift and Drag Resolution Along x_y_ z Axes

The drag vector is alined with the relative velocity vector _' and is

therefore given in x_y_z components as

v_ v_ v_. (_)
3=-Dvr-D v, -D_

The lift vector E maybe resolved into components along the previously

defined orthogonal set V', A, and P by the following relations:

_. V' --o (m_)

L. A = LA sin _ (Bgb)

[._ --LP cos _ (too)

Solving for L yields

L (A sin 6 P × V' + P cos 6 _) (BIO)

or, in x,y,z component form,

L
Lx = _ sin _(PyV; - PzVg) + P cos _ Px] (Blla)

L

Ly= _[A sin_(PzV_- PxV{)+ P oos_ Py] (B_lb)

L

Lz= - yVx)+ cos < llc)
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APPENDIXC

TRANSFORMATIONEQUATIONSBETWEENRECTANGULAR

COORDINATESANDORBITELEMENTS

x

Orbit

lane

1

plane

Co)

From spherical trigonometry used in reference to the celestial sphere

shown in sketch (c) the following relations may be derived for the position

coordinates:

x = r(cos _ cos u - sin _ sin u cos i) (C!a )

y = r(sin g cos u + cos g sin u cos i) (Clb)

z = r(sin u sin i) (Clc)

where

r
P

l+e cosv
(C2a)

U = 60+ V (c2b)

and v is found from the relations

COS V =
cos E - e

1 - e cos E
(c2c)

and

M = E - e sin E (c2a)
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The velocity components may be obtained by differentiating the position equations
F'--

using the two-body relations _ =_ = and _ = _e sin v:
r2 Vl _

where

i = - _ (N cos i sin _ + Q cos _)

= _ (N cos i cos _ - Q sin _)

{ = _ (N sin i)

N = e cos _ + cos u

Q = e sin _ + sin u

(C3a)

(C3b)

(030)

(C4a)

(C_b)
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APPENDIX D

RUNGE-K-CTTA AND LOW-ORDER INTEGRATION SCHEMES WITH ERROR CONTROL

The Runge-Kutta formula used is of fourth-order accuracy in step size h.
It is of the form

x]2 (kl + 2k2 + 2k3 + k_) (D1)
i

i m X 2 _ XI =

where

X = a dependent variable

2

X] = increment in the dependent variable
!

h2 = increment in the independent variable t

kI = h2X2(ti,X I)

k2 = h2X2 i + _' Xl +

k3 = h2X2(tl + _, Xl + _)

A lower-order formula may be found by utilizing the three derivatives at

t = t0_ tl, and t2. If h I = tI - tO and h2 = t2 - tl, the following Lagran-

gian interpolation formula gives the derivative at any time tO _ t _ t2:

_ XO (t - tl)(t - t2) (t - to)(t - t2) (t - to)(t - tl)
hl(hl + _2] Xl hlh 2 + ±2 h2(hl + _2) (D2)

Integration of this equation from tI to t 2 yields

2 1 + q (h2x'i °
(D3)
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The difference in the increments over the interval h2 between the Runge-Kutta
schemeand the low-order schememaybe divided by a nominal value of the depend-
ent variable _ to obtain the relative error 52• Thus,

52 = X
(D4)

The error is expected to vary as approximately the fifth power of h, which
leads to

8 = Ah5 (D_)

(where A is a suitable coefficient) or in the logarithmic form

log 5 = A' + 5 log h (Dgb)

where

A_ = logA (D6a)

Let it be assumed that A' will vary linearly with t, the variable of integra-

tion. Then A' at a time corresponding to t3 can be found from A' at two

previous points t I and t 2 as

A_ = A_ + A_.- Ai (t3 _ t2) (D6b)
t2 - tI

and if h 5 = (t5 - t2) and h 2 = (t 2 - tI)

h5

A_ = A_ + (A_- Ai)
(D6c)

and on this basis 55 would be predicted to be

log 55 =A_ + 5 log h 5
(D7)

It is desired that 55 should approximate _, the reference error; therefore_

1 (log_ A_) (_)log h 3 = _

Each dependent variable has an associated relative error and would lead to com-

putation of a different step size for each variable_ however_ the maximum rela-

tive error of all variables may be selected for 5. Obviously_ inaccurate pre-

dictions of step size can occur when the maximum relative error shifts from one

variable to another or when any sudden change occurs. When a step size produces
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an excessively large error (5 > 51imit) , a reduced step size must be used. It
maybe obtained from the reference error _ as

h5 = exp[I (log _- A_)] (n9)

Startin_ the intesration. - The Runge-Kutta scheme is simple to start, since

integration from Xn to Xn+ I requires no knowledge of X less than Xn.

Since the error control coefficient A has no value at t = 0, however, a pre-

diction of the second step size is difficult. To overcome this difficulty, two

equal size first steps may be made before checking the error. The A for the

first step may be arbitrarily set equal to the A for the second step so that

h3 may be predicted. The low-order integration scheme equation in this case

becomes, with h 2 = hl,

: T (% + + (n O)

Failures. - Should two consecutive predictions of the same step fail to

produce an error B less than 81imit, a return to the starting procedure will

be made with a third prediction on step size, which is no larger than one-half

of the second estimate. The step-size control described here will operate stably

with nearly constant error per step only for a well-behaved function. For most

problems it will repeat a step occasionally to reduce a large error, and on sharp

corners it will restart. This action is not regarded as objectionable. The ob-

Jective is to attain a desired level of accuracy with a minimum total number of

steps.
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APPENDIXE

GLOSSARYOFVARIABLES

Variable COMMON Definition
location

A

A (3)

A1

A2

ACOEF i

ACOEF 2

ACOEF 3

_X(51

ALPHA

ALT

_mSS (50)

ASqIm

ASYMPT

ATMN

AW (¢)

AZI

BETA

562

559-561

236

237

265

266

267

233-235

56¢

%63 or 108

881-910

104-107

35

563

543

26

261-264

106

565

Total angular momentum per unit mass, m2/sec

x,y,z components of angular momentum per unit mass,

m2/sec

Error control parameter defined by eq. (D6a) at t I

Error control parameter defined by eq. (D6a) at t 2

_nterpolation polynomial coefficients for variable

step size (coefficient of X0, XI, X2 in

/ eq. (D3))

Runge-Kutta coefficients; set in STDATA

Angle between velocity and thrust vectors, positive

when thrust vector is outward (sketch (a))

Vehicle altitude above an elliptic Earth, m

Permanent list of body masses (sun mass units) in

order of PNAME list; set in STDATA; masses from

ELIPS data begin at AMASS(21)

Same as LAT, LONG, AZI, and ELEV, respectively

Effective area used to compute lift and drag forces

in AERO, m 2

Square of total angular momentum, A 2, m4/sec 2

See table II

See table II
Runge-Kutta coefficients, set in STDATA

Azimuth angle, measured east from north at local

meridian, input in deg

Angle between velocity-thrust plane and orbit plane

(sketch (a))
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Variable

_x (14)

_ss (8)

BODYCD (8)

BODYL (8)

CD

CDI

C_,X (800)

COMMON

location

80!-813

417-424

402-409

811-818

801-808

797

795

801-1600

(126)

CINCL

CIRCUM

CHAMP

CL

CLEAR

CLOCK

276-401

495

541

246

798

19

3

co_ (19o)

COMPA (3)

CON(9)

CONSTU

601-790

537-559

576-581

18

Definition

List of error data

Body masses selected from AMASS list in sequence

corresponding to BNAME list

Ordered list of BCD body names

Original unordered list of BCD body names read from

cards

Auxiliary ordered list of BCD body names

Total drag coefficient per unit area, sec2/m

Induced drag coefficient per unit area, sec2/m

Common extension; common used in segment i but not

needed in segment 2 and therefore saved on drum 2

during execution of segment 2

Coefficients from ephemerides tape used to determine

positions of perturbing bodies

cos i

Circumferential component of total perturbative
acceleration

Smallest critical radius within which object lies

Lift coefficient per unit area, sec2/m

See table Ii

Contains reading of clock (to compute time used for

particular problem)

Storage array for coefficients used to compute

ALPHA_ CL, CDI, CD, or other parameters

Components of total perturbative acceleration in

x,y,z coordinate system

Constants in the oblateness equations; set in STDATA

See table II
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Variable COMMON
location

CONSU

COSALF

COSBET

COSTRU

COSV

DE

DEL

DEI_

DELT

DINCL

DM

DMA

DNODE

DNSITY

DOMEGA

DRAG (5)

IYf OFF J

E

E2

(7)

ELEV

36

575

599

493

497

162

255

23

10

165

161

166

164

460

163

531-533

31

42

260

410-416

107

Definition

See table II

COS

COS

COS V

COS U

&

Used to control output in STEP

See table II

Step size, sec

1

Atmospheric density, kg/m 3

x_y,z components of the drag acceleration

Julian date of takeoff

e

Largest of relative errors between Runge-Kutta and

Simpson rule integration methods defined by
eq.

List BCD body names whose positions are to be deter-

mined from ephemerides-tape data

Elevation angle, measured outward, deg
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Variable COMMON
location

ELIPS (120) 941-1060

EPAR

EREF

ERLIF_

ERLOG

ETOL

EXMODE

EMONE

FILE

FLOW

FORCE(3)

GASFAC

GEOH

GK2M

GKM

H2

IIDDY (8)

Icc(5)

IMODE

INCL

(31

245

57

17

259

25

244

243

249

55

525-527

458

465

469

470

256

425-452

258-242

28

45

791-793

Definition

Ellipse data for perturbing bodies_ read from cards_

for each body there are 15 pieces of data

[NOTE: SUBROUTINE ORDER then converts 15 pieces of

data into working set of 15]

 ]JJ-1

See table II

See table II

Natural logarithm of EREF

See table II

Eccentricity (used when IMODE = 3)

e - 1

See table II

Rate of propellant flow_ kg/sec

x,y_z components of acceleration due to thrust

Defined in AERO; set in STDATA

Geopotential, m

Gravitational constant_ _ m3/sec 2

Square root of GK2M

Value of DELT for previous step

Defined in SUBROUTINE ORDER

See table II

See table II

ij radians

Index set in STDATA
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Variable COMMON Definition
location

INDERR 491

KSUB

LENGTH

LAT

LONG

MA

MBODYS

MODOUT

NBODYS

NODE

N_NG (S)

NS_P (4)

NSTART

OB_T (3)

O7_T.ALTJ

O_T K

OP<T__TN

OMEGA

OT_DD]_J

ORALS (6)

254

257

104

105

_6

441

I03

489

268-271

433-440

44

ii-!5

272-275

247

534-536

38

39

27

43

225

227-232

Number of sets of error dataj set in ERRORZ for use

in MAIN i

Index of Runge-Kutta subintervals

See table II

Geocentric latitude; positive northward; deg

Longitude relative to Greenwich, positive eastward,

deg

M

Number of perturbing bodies

See table II

Total number of bodies, excluding vehicle

See table II

Defined in SUBROUTINE ORDER

_, radians

See table II

See table II

Internal control in MAIN 2 and EQUATE

x;y;z components of oblateness acceleration

Oblateness coefficient of 2nd harmonic

Oblateness coefficient of 4th harmonic

See table II

_, radians

Value of DELT for previous good step

Array of output variables, either rectangular or

orbit elements
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Variable COMMON Definition
location

P

P(5)

PAR(3)

PMAGN

PRESS

PUSH

PNAA

PN_E (3O)

PSI

QVAL

Qx (3)

R

RADIAL

RATIO

RATM

RA_0S

(3,8)

Rm T (8)

RCP T(30)

RECALL

58

47

571-575

798-800

574

466

34

821-850

462

794

522-524

442

540

6OO

29

248

200-225

450-457

911-940

p_ m

Defined in eq. (h4)

Defined by equations in SUBROUTINE THRUST

Defined in equation form by SUBROUTINE THRUST

Atmospheric pressure, mb

Thrust force, newtons

ALF list of body names

Permanent list of body names made from PNAA list in

SUBROUTINE ORDER; ELIPS names begin at FNAME(21)

Path angle, angle between path and local horizontal,

deg

Defined in SUBROUTINE /hERO

x,y,z perturbative acceleration components due to

perturbing bodies_ m/sec 2

Origin to object radius 3 m

Radial component of total perturbative acceleration,

positive outward, m/sec 2

Ratio of adjacent step sizes

Radius of atmosphere, m

Set equal to RATM when AT_N equals reference body

name (_A}4E (i))

x,y,z components of distance from all bodies to

object, m

List of sphere-of-influence radii of all bodies in

BNAME list_ m

Permanent list of sphere-of-influence radii corre-

sponding to PNAME list of body names, m; radii

from FLIPS data begin at RCRIT(21)

See table II



Variable COMMON
location

REFER(50) 851-880

REV0LV

RESQRn

REVS

RMASS

ROTATE

_mL (8)

RSQm

SAVE

SIMP

SINALF

SINBET

SINCL

SINTRU

SINV

SPD

SQRDK

STEPGO

STEPN0

250

40

490

41

459

_42-449

567

8

5

569

568

494=

4:92

4=96

255

4:68

i01

102

Definition I

List of reference bodies corresponding to PNAME list;

reference bodies from ELIPS data begin at REFER(21)

Rotation rate (rad/sec) of reference body when

A_= Sm_ (1)

Square of Earth's equatorial radlus_ m2; used in

SUBROUTINE OBLATE; set in STDATA

Revolution counter, used only for output

m, kg

Rotation rate of a reference bod L radians/sec

Distances between bodies and object in order of

BNAME list_ m

Radius squared of object to origin_ m2

See table II

Specific impulse, I_ sec

sin

sin

sin i

sin v

sin u

Seconds per day_ set in STDATA

Gravitational constant k2j
mS/(sec2)(sun mass units); set in STDATA; value of

1.495><1011 m/AU (equivalent to solar parallax of

8.80008445 sec of arc) was used to convert units

from 2.959122085><10 -4

(AU)S/(mean solar day)2(sun mass units) to

1.32452139Xi020 mS/(secg)(sun mass units)

See table II

See table II
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Variable

STEPMX

STEPS

TAB(1891

TABLT

TAPE5

(12G)

(7)

TEST

TFILE

(7)

TIME

_MAX

TMIN

TOFFT

TRSFER

TRU

TTEST

TTOL

V

COMMON

location

20

21

1Z01-i_89

252

2

276-_0!

592-598

I

16

585- 591

5O

22

52

224

4.85

251

226

_75

Definition

See table II

See table II

Table array of input variables and their common

storage assignment; used by SUBROUTINE INPUT;

room for 9A variables

Time measured relative to DTOFFT, days

See table II

Same as C_

0ne-half of time spacing between two particular

adjacent entries of like body name on ephemerides

tape; read from tape for each body

See table II

See table II

Time for set of ephemeris data; read from ephem-

erides tape; one for each body

Time, t, independent variable, sec

Temperature, °K_ times ratio of molecular to actual

molecular weight

See table II

See table II

Fractional part of takeoff day (Julian), days

See table II

v, radians

See table II

Time tolerance within which problem time minus TMAX

must lie to end problem

Velocity of object relative to origin V, m/sec
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Variable COMMON Definition
location

VEL

VQ

VQSQRD

VMACH

VSQRD

VX

VY

VZ

X

X (15)

xDo_(15)

xi_ (3)

_c (is)

xP (3,s)

xP_ (15,2)

xPm_ (15,2)

xw_o_ (is)

Y

477-¢79

498-521

109

480

481

471

476

42

45

44

45

131-145

161-175

528-530

146-160

176-199

41-70

71-100

544-558

46

x_y,z components of VQ

x,y,z components of object velocity relative to all

various bodies, m/sec

Initial velocity at input

Velocity of object relative to atmosphere, m/sec

(VQ) 2, m2/sec 2

Mach number of object, NM

V 2, m2/sec 2

x-component of V; also in COMMON location C(472),

m/sec

y-component of V; also in COMMON location C(473),

m/sec

z-component of V_ also in COMMON location C(474)_

m/sec

x-component of R, m

Working set of integration variables

Array of integration derivatives

x,y,z components of lift acceleration, m/sec 2

Increments of integration variables per step

x,y,z components of perturbing body positions rela-

tive to origin

Two 15-variable arrays_ second is integrated and

first contains values of integration variables for

last good step_ see table V

Least significant half of double precision integra-

tion variables corresponding to XPRIM

Temporary storage for integration variables

y-component of R
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Variable

Z

ZN

ZNA

Z0P_v_L

COMMON
location

¢7

¢87

_6

5_2

Definition

z-component of R

Mean angular motion of object, radians/sec

M

z-component of total perturbative acceleration,

m/sec 2
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APPENDIXF

LEWIS RESEARCH CENTER EPHEMERIS

General Descript ion

The ephemeris data initially available on magnetic tape for use on the

IBM 704 computer were from the Themis code prepared by the Livermore Labora-

tory_ evidently from U. S. Naval Observatory data. Laterj an ephemeris was

obtained from the Jet Propulsion Labor_tory assembled as a joint project of

the Jet Propulsion Laboratory and the Space Technology Laboratory. These data

are given relative to the mean vernal equinox and equator of 1950.0 and are

tabulated with ephemeris time as the argument.

An ephemeris was desired for certain uses in connection with the IBM 704

computer that would be shorter than the original ephemeris tapes mentioned and

would be as accurate as possible consistent with the length. A short investi-

gation of the various possibilities led to adoption of fitted equations. In

particular_ fifth-order polynomials were simultaneously fitted to the position

and velocities of a body at three points. This procedure provides continuity

of position and velocity from one fit to the next, because the exterior points

are common to adjacent fits. Polynomials were selected rather than another

type of function_ because they are easy to evaluate. Three separate polynomi-

als are used for the x_y_ and z coordinates_ respectively.

Procedure Used to Fit Data

The process of computing the fitting equations is as follows:

(i) A group of 50 sets of the components of planetary position was read

into the machine memory for a single planet together with differences as they

existed on the original magnetic tape. The differences were verified by compu-

tation (in double precision because some data required it); and any errors were

investigated, corrected, and verified. Published ephemeris data were adequate

to correct all errors found.

(2) The components of velocity Vx, Vy, and v z were computed and stored
in the memory for each of the 50 positions by means of a numerical differenti-

ation formula using ninth differences, namely_

AI_I + AI+I
= (T1 - T-l) 2

AIII_I + AIII+I AV_ I + AV+I
- +

6O12

AVII i + AVII+I
- +

28O

AIX i + AIX+I

1260 ] (F1)
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(See ref. !i pp. 42 and 99 for notation, ) Double-precision arithmetic was used

for differences, but velocities were tabulated with single precision.

(3) Coefficients C, D, E_ and F in the fifth-order polynomial

X : X0 + Xo(T - TO) + C(T - TO )2 + D(T - TO )3 + E(T - TO )4 + F(T - TO )5 (F2)

and its derivative

: XO + 2C(T - TO) + 3D(T - TO)2 + 4E(T - TO)3 + 5F(T - TO)4 (F3)

were found to fit a first point (which was far enough from the beginning point

to have all differences computed) and two equally spaced points for each com-

ponent of position and velocity. (The initial spacing is not importantj as will

be seen later.) Spacing is defined as the number of original data points fit-

ted by one equation. Single-precision arithmetic was used.

(4) The coefficients C, D, E, and F in step (3) were then used in equa-

tions (F2) and (F3) to calculate components of all positions and velocities

given in the original data and lying within the interval fitted. These values

were checked with the original data. Radius R and velocity V were com-

puted at the times tabulated in the original data. If any component of the

position differed from the original data by more than POLIO-7 or if any ve-

locity differed from the original by more than V_(IO-6j the fit was considered

unsatisfactory.

(5) If the fit were considered unsatisfactory, this fact w_s recorded] and

the spacing was reduced by two data points. Steps 2 to 4 were then repeated.

If the fit were considered satisfactory_ this fact was recorded_ and the spacing

was increased by two spaces. Steps 2 to 4 were repeated. The largest satisfac-

tory fit was identified when a certain spacing was satisfactory and the next

larger fit was not satisfactory.

(6) The coefficients that corresponded to the largest satisfactory fit were

recorded on tape in binary mode as follows:
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Word

number

i

2

5

4

5

6

7

8

9

i0

ii

12

15

14

15

16

17

18

19

2O

21

Data

Planet name

Julian date

Mode

BCD

Float ing point

Definitions and/or units

Six characters (first six)

Date of midpoint of fit,

Julian date

Delta T

Ox

Cx

X

Fy

Dy

Y

Y

F
Z

E z

D z

Cz

Z

Number of days on each

side of midpoint

aAU/day S

aAU/day 4

aAU/day 5

aAU/day 2

aAU/day
aAU

aA /da 

aAU/day4

aAU/day5

aAU/day 2

aAU/day
aAU

aAU/day5

aAU/day_

aAU/day5

aAU/day2

aAU/day
aAU

aExcept for moon data, which are in Earth radii and days.

(7) As soon as a set of coefficients was selected for an interval, addi-

tional data were read from the source ephemeris tape and used to replace the

points already fitted (except the last point). These data were processed as

described in steps i and 2 so that the next 50 points were ready to be fitted.

Steps 5 to 6 were then used to find the next set of coefficients_ and steps i

to 6 were repeated until all data for all planets and so forth_ were fitted.

Data Treated

The preceding process was applied to all data available at the time. For

the moon, the technique usually led to the use of every point in the fitted
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interval (i. e._ only three points were fitted). Thus, a check of accuracy was
not available. The error on the attempt to fit the next greater interval
(five points) was not excessive, however, and it is judged that the accuracy ob-
tained from these fits is about equal to that held on the other bodies.

MergedEphemerisTape

Onceall the positions and velocities of all the bodies then available were
fitted; the coefficients were merged in order of the starting date of each fit.
The resulting tape was written in binary modewith 12 sets of fits per record.

The detail of this record is as follows:

i st word:
2nd word:

I 3rd word:

4th word:
Set I

2Zrd word:

i 24th word:

25th word:
Set 2

4Ath word: z

Successive sets follow one another with a total of 12 sets.

234th word: planet name

235th word: Julian dat% floating point
Set 12 254th word: z
(last set) 255th word: zero

256th word: zero
End-of-record gap

FORTRANcompatible
file number, fixed point in decrement
planet nam% code in BCD_first six characters
Julian date, floating point
etc._ according to list in paragraph 6
21 words
Z

planet name_ code in BCDj first six characters

Julian date, floating point

One record contains 256 words, the first is for FORTRAN compatibility_ the

second is a file number used for identification in the system. It is a fixed

point 2. The third is the beginning of the first set of dataj and 12 sets fol-

low, each with 21 words. The last word is the 2S6 th word (counting the FORTRAN

compatible word) followed by an end-of-record gap. The remaining records are

compiled in the same manner with an end-of-file recorded as a terminating mark.

Because of the merging operation_ all bodies are given in one list in a

random order according to the starting date of the interval. The starting date

is the Julian day (word 2) minus the half interval (word 3) (see procedure,

paragraph 6). The entire ephemeris occupies about one-seventh reel of tape. A

summary of data is given in table VII.
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APPENDIXG

INPUT-DATAREQUIRES

The procedure neededto run actual problems with the aid of this routine is
described herein. It is intended to permit a person with a specific problem in
mind to makea complete list of data required and to select desirable operating
alternatives from those available to him. The details of this procedure are
contained in the following instructions:

(i) Provision has been madefor two types of ephemeris data to specify the
locations of celestial bodies that perturb the vehicle. They are ellipse data
and ephemeris-tape data. If the problem does not involve perturbing bodies (ex-
cept a reference body) or if elliptic data are used for all the perturbing
bodies, skip to instruction 5.

(2) If the perturbing-body data are to be taken from an ephemeris tape,
list the namesof the ephemeridesand Julian dates to be covered along with the
following auxiliary information:

i st card: $DATA= 500, STABLE,2 = TAPE5, 17 = ELIST, 29 = TBEGIN,
3O = TEND/

Other cards: TAPE 3 = 0

TBEGIN = ephemeris beginning Julian date

TEND = ephemeris ending Julian date

ELIST = (names of perturbing bodies in "ALF" format, see

example in text)

The ephemerides of all planets except Earth bear the name of the planet. The

ephemeris giving the distance from Earth to the sun is called "sun," as is

astronomical pract ice.

(5) If successive files on the ephemeris tape are to be made, punch the

corresponding sets as follows:

$DATA = 500, TAPE 5 = 0, TBEGIN = , TEND = , ELIST =

As many similar sets as are needed may be appended.

(4) If ellipse data are to be loaded from cards, they are prepared later

under instruction 12.

(5) On the first execution after loading the routine, the common area is

cleared whether an ephemeris tape is constructed or not. It is now necessary
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to load a table of variable names. Onceloaded, this table will not be cleared
again (except if the control variable TAPE5 is set to zero). These namesare
for use on the input cards. If a different nameis desirable for any variable,
it maybe changed in the table and where it appears on the input card (ref. 7).
The cards are:

SDATA:I,$TABLE,IO4=LAT,IO5:LONG,IO6=AZItIOV=ELEV,IO8:ALT,IO9=VEL,7=TKICK
t28.=IMODE_45:X,46=Yg_?:Z,42=VX,43:VYP44:VZ_42:E_4B=OMEGA,44=NODES,45:
INCL,46=MA,47=P,41=RMASS_31=DTOFFJ,B2=TOFFT,48=TIMEt811=BODYCDtI6=TFILEt
941=ELIPSt27=OBLATN,38=OBLATJ_39=OBLATKo_4=PUSH,5=SIMPt3B=FLOWt24=AEXIT9
565=BETA,601=COEFN,238.=ICC,26=ATMN,29=RATM,459=ROTATE,35=AREAt3?=EREFw
17=ERLIMT,IO3.=MODOUT,30=TMAXt20=STEPMXP2B=DELMAX,21=STEPS,22=TMIN,1:
TEST,268.=NDUMP,272.=NSKIP,257.=LENGTH,19=CLEhRt8=SAVE,9=RECALLt10=DELT/

(8) The initial position and velocity of the vehicle maybe given in any
one of three coordinate systems. If the initial data are given in orbit ele-
ments, skip to instruction 8. If the initial data are given in rectangular co-
ordinates, skip to instruction 7. If the initial data are given in Earth-
centered spherical coordinates, the following variables should be punched:

LAT = latitude, deg, positive north of equator

LONG= longitude, relative to Greenwich, deg

ALT = altitude above sea level, m

AZI = azimuth angle, east from north, deg

ELEV= elevation angle, horizontal to path, deg

VEL= initial velocity, m/sec

TKICK= size of initial vertical, nondrag step to facilitate starting,
sec

IMODE= 4

These geocentric coordinates are converted by subroutine TUDESto rectangular
coordinates and IMODEwill be changedto 2 with its original sign. Skip to in-
struction 9.

(7) If the initial data are in rectangular coordinates, set the following
variables:

X = x-component of position in x,y,z coordinate system, m

Y = y-component of position in x,y, z coordinate system, m
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Z = z-component of position in x,y, z coordinate system, m

VX = x-component of velocity in x,y, z coordinate system, m/sec

VY = y-component of velocity in x,y, z coordinate system, m/sec

VZ = z-component of velocity in x,y,z coordinate system, m/sec

IMODE= 2

Skip to instruction 9.

(8) If the initial data are in orbit elements, set the following variables:

E = eccentricity

OMEGA= argument of pericenter, radlans

NODES= longitude of ascending node (to meanvernal equinox of 1950.0),
radians

INCL = orbit inclination to meanequator of 1950.0, radlans

MA= meananomaly, radians

P = semilatus rectum, m

IMODE= 1

(9) Integration is performed on either rectangular variables or orbit ele-
ments. If the initial data are of the sametype as the desired integration
variables, the positive sign on IMODE,as given in instruction 8, will signal a
matching condition; but if the desired integration variables are of the opposite
type to the input variables, a minus sign should be affixed to the value of
IMODE. Note that in the case of geocentric coordinates_ an automatic conversion
to rectangular coordinates is effected. To convert geocentric coordinates to
orbit elements requires ]]40DE= - 4, whereuponsubroutine TUDESwill convert the
geocentric coordinates to rectangular coordinates, IMODEwill be set to -2, and
then in MAIN2 the further conversion to orbit elements will be sensed with
IMODEfinally being set to +l by the program.

(lO) To specify vehicle massand takeoff time, set the following variables:

RMASS= mass of vehicle, kg

DTOFFJ = Julian day number

TOFFT = fraction of day

TIME = time from previously set Julian date, sec
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Takeoff occurs at the instant corresponding to the sumof the last three quan-
tities. If a specific date or time is not required, these variables maybe
skipped. In that case, the STDATAsubroutine sets DTOFFJto 2440 000.

(ll) To specify the origin and any perturbing bodies, list them as BODYCD=
(list of body namesin "ALF" format, see text example). The first body in the
list is taken to be the reference body. The distances between the bodies in
this list must be computable from either ellipse data (instruction 12) or
ephemeris-tape data (instruction 2). There maybe no more than eight namesin
the list. Also, if the ephemeris tape is being used, the correct file must be
found on it. For this purpose, set TFILE = desired ephemeris tape file. The
ephemeris files were numberedin sequencewhenwritten in instruction 2. If
TFILE is not given, it will be set equal to 1.0 by the STDATAsubroutine.

(12) For each body whosepath is represented by an ellipse, a 15-element
set of data must be loaded. A 15-element set consists of:

1. body namein "AIF" format (maximumof six characters)

2. reference body namein "AIF" format (maximumof six characters)

3. mass of body, sun massunits

4. radius of sphere of influence 3 m

5. semilatus rectum, AU

6. eccentricity

7. argument of pericenter, radians

8. longitude of ascending node (to meanvernal equinox of 1950.0),
radians

9. orbit inclination (to meanequator of 1950.0)_ radlans

10. Julian day at perihelion

ll. fraction of day at perihelion

12. period, meansolar days

15"I
14. zero

15.

It is convenient to punch a 15-element set in sequence and to separate the
elements by commas on as many cards as are required. Several sets may then be
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loaded consecutively. The order of the sets is immaterial. Ellipse data, if
present, take precedence over ephemeris-tape data. The sets are loaded consecu-
t ively, in any order, as follows:

ELIPS = set 13 set 23 set 53 . . .3 set n; n _<8 (see example in text)

(13) To specify the initial integration step size, set

DELT= initial integration step size

If no value of DELTis given3 it will be set to TMAX/100by MAIN1.

(1A) If oblateness effects of the Earth are to be included, set

(15) If thrust forces are present, set either

(I) PUSH= thrust magnitude, newtons (for m = 0)

or

(2) SIMP = specific impulse (vacuum), sec

FLOW = mass-flow rate, m, kg/sec

For either choice_ set

2
AENIT = engine exit area, m

Also, the thrust orientation must be specified by setting

BETA = angle _3 deg (see sketch (a))

COEFN (I) = angle-of-attack schedule, m = _(t) (see instruction 17)

ICC = flxed-point integer (see instruction 17)

For the special case of tangential thrust, none of the last three variables need

be set.

(16) If aerodynamic forces are present_ set

ATMN = name of body that has atmosphere, in "ALF" format

RATM = radius above which atmospheric forces are not to be consid-

ered, m

ROTATE = atmospheric-rotation rate, radians/sec (7.29211585XI0 -5 for

Earth)
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AREA = reference area_ m 2

BETA = angle _, deg (see sketch (a))

COEFN (i) = angle-of attack schedule, _ = _(t), CL/sin _, CD,0, and

CD,i/C 2 curves (see instruction 17)

ICC = fixed-point integers (see instruction 17)

(17) If neither thrust nor aerodynamic forces are present, skip to instruc-

tion 18. The relations _(t), CL/sin _, CD,0, arid CD,i/CL 2 are assumed to be

quadratic functions that involve coefficients which are located in the COEFN(J)

array. The arrangement of these coefficients is best explained by an example.

Suppose the functions _(t) is as follows:

all + a12 t + al3t 2

a21 + a22 t + a23t 2

The coefficients

(tI __ t __ t2)

(t2 < t S ts)

(t3 < t __ t_)

etc.

ai, j should then be loaded into the COEFN(J) array as:

COEFN(J) =tl, all , a12 , a13 , t2, a21 , a22 , a23 , t3, a31 , a32 , a33 , t4, . . ., tn

Furthermore, additional sets of coefficients for the other functions may simply

be added to the COEFN(J) array, which results in a string of sets of coeffi-

cients, and can be represented, for example, as:

COEFN(J) = m coefficients, C_sin _ coefficients, CD, 0 coefficients,
etc.

= tl, all , a12 . . ._ tn, NM, I, bll , b12 , . . ., NM, k, etc.

The starting point in the COEFN(J) array of each function must also be loaded to

identify the correct region of coefficients. To this end, the following array
must also be loaded:

ICC(1) = flxed-point value of J where _ coefficients begin

ICC(2) = fixed-point value of J where C_sin _ coefficients begin
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ICC(3) = fixed-point value of J where CD,I/C _ coefficients begin

ICC(4) = fixed-point value of J where CD,0 coefficients begin

For this purpose3 all values in the COEFN(J)array are called coefficients (i.e.,
the t's and the NM'S are coefficients). The sequenceof the sets is arbi-
trary_ since changing the sequencerequires only a change in the ICC(I) array.
See Example II - Lunar impact probe section.

(18) The size of the integration steps is determined primarily by the error
control variables. These are loaded as:

EREF= error reference value; 5 in appendix D

ERLIMT= maximumvalue of 5 that is acceptable on any particular step

EREFis always treated as a positive number; however_ if it is loaded with a
minus sign_ this will cause error information to be printed at the completion of
the problem. If no error control data is loaded, STDATAsubroutine will set
EREF= l><10-6, ERLIMT= SxlO-6.

(19) The output control offers a choice on the frequency of output data as
follows:

If MODOUT= l, output will occur every nth step (n = STEPS)until
t = TMIN, and then MODOUTis set equal to 2 by the program

If MODOUT= 2, output occurs at equal time intervals of DEIMAXuntil
t =TMAX

If MODOUT= 3, output occurs at equal time intervals of DEI/WAXuntil
t = TMIN, then MDDOIIPis set equal to 4 by the program

If MODOUT= 4, output occurs every nth step (n = STEPS)until
t =TMAX

_MAX= maximumtime limit before problem is completed

STEPMX= maximumstep limit before problem is completed

DEIMAX= time interval between outputs

STEPS= numberof steps between outputs

TMIN= time whenMODOUTchanges

Note that output control may, at times_ strongly influence the integration step

size especially if MODOUT is 2 or 3 and DELMAX is small. TMAX must be loaded.

All others may be skipped I if so, STDATA will put MODOUT = 4, and STEPS = 1.
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(20) For debugging operations and for occasional supplementary output, it
maybe desirable to obtain G-type format dumps. These maybe obtained through
strategic positioning of the FORTRANcalling statements CALLDUMP(ID_ DATA,
LENGTH)where ID is the identification numberto appear in the output, DATAis
the starting location of the dumparea, and LENGTHis the numberof consecutive
words to be dumped. To actually obtain dumpsat execution time, set

TEST= total desired number of dumps

NDUMP(J)= identification numbersof desired dumps, corresponding to
ID's of calling statement, J _ 4

NSKIP(J) = numberof skips to occur between dumps,NSKIP(J) acts upon

LENGTH= numberof consecutive words to be dumped

Note NDUMP(J)will occur the NSKIP(J)th time control passes through the calling
statement and will occur every NSKIP(J)th time thereafter. If NSKIP(J) is omit-
ted, it is taken to be I. DATAmaybe a commonlocation or the nameof a rela-
tive variable. If the value of a word to be dumpedis zero, it is skipped.

(21) For certain problems, it is desirable to save the initial data read in
on cards or the data generated at the completion of a part of a problem. The
saved data maythen be recalled at a later time to be used as intial conditions
for another problem. To prevent the "standard data" set from being loaded (and
the accompanyingcommonclearing loop), set

SDATA= 99, CLEAR= any nonzero number

To save the initial data before the input is read in (i.e., the result of a pre-
vious calculation), set

SAVE= 2

To save the initial data after the input is read in, set

SAVE= i

To recall the saved data, set

RECALL= any nonzero number

CLEAR= any nonzero number

By taking advantage of the place in the program where each discrimination is
made_several useful combinations of these controls are possible (see fig. 2).
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(22) When a transfer of origin occurs, provision has been made to read

input into the program. This is done with the aid of SDATA = 101, followed by
the data statements desired.

(23) Following is an input check list that may be helpful at execution
time:

INPUT CHECK LIST a

Time and Mass

DTOFFJ =

TOFFY =

DELT =

TIME =

RMASS =

Position and velocity

(completely fill in one and only one block)

Rectangular

X =

Y=

Z=

VX=

VY=

VZ=

IMODE = 2

Orbit elements

E =

OMEGA =

NODES =

INCL =

MA=

P=

IMODE = i

Spherical

LAT =

LONG =

AZI =

ELEV=

ALT =

VEL=

D40DE = 4

Reference and perturbing bodies

BODYCD =

Tape Elliptic

TAPE 3 = 0
_=

TEND =

_I_=

FILE=

(b) ELIPS =

Output control

TMIN =

MODOUT =

STEPS =

DEI_ =

STEPMX =

Error control

EREF=

ERLINT =

Restart

SAVE =

RECALL =

CLEAR=

Thrust(a)

SIMP =

FLOW =

PUSH =

COEF =

ICC :

BETA =

Atmosphere

ATMN=

RATM =

ROTATE =

AREA =

Oblateness

0BLATN =

Dump

NDUMP =

NSKIP =

LENGTH =

TEST =

aThe following standard data are loaded by subroutine STDATA:

DTOFFJ = 2440 000.0 MODOI/f = 4 EREF = l><10-6

IMODE = 1 STEPS = 1.0 ERLD4T = 3XI0 "6

BODYCD(1) = (ALFS)EARTH STEPMX : I00.0 TFILE = 1.0

RMASS = i.0

(b)At input 300, setting TAPE 3 = 0 is necessary to make an ephemeris tape.

(e)A value for TMAX is always required.

(d)use either SIMP = and FLOW = or PUSH =
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APPENDIX H

PROGRTLM LISTING

C MAIN I -- FLOW CONTROL PROGRAM FOR SEGMENT I. THIS ROUTINE IS ENTERED FOR

C EITHER (L) THE START OF A PROBLEM DR (2) AN IN-FLIGHT ORIGIN BODY CHANGE.

C THE REGION OF COMMON FROM 801 TO [600, CEX, IS NOT NEEDED IN SEGMENT 2 AND

C IS THEREFORE SAVED ON DRUM 2 DURING EXECUTION OF THAT SEGMENT TO OPEN UP

C THE ADDITIONAL BOO STORES.

C

COMMON C

C

DIMENSION

I C (1600), BNAME (8}, NPDNG (5),

2 CEX (800), BODYCD (81v BEX (14)

C

EQUIVALENCE

I( CLEAR,C( 19)),( _LOCK,CI 3)|,( BEX,CIBOIII,iINDER_,C(491)),

2( TTOL,C(226)),( IMODE,C( 28)),(RECALL,C( 9}|,1 SAVE,C( 8)),

3( DEL,C(255)),( EREFtC( 37)),(LENGTH,CI257)),I TMAKtC( 30)I,

4( TAB tC(IOOI)Ip(DELMAXpC( 23()_( DELI,C( |Oi)p( ERLOG,C1259)l,

5(REVOLV,C(250)I,IATN N ,C( 26)),(R ATM it( 2gI),IRATMOStCI26B))t

6(ROTATEtC(459)),( NPONG,C( II)),(80DYCD,C(811)),( BNAME,C(402)),

7( TFILE,C( 16)),( FILE,C(269)),( TAPEO,C( 2)I,ITRSFER,CI224)I,

B( CEX,CIBOl))

C

C THE COMMON EXTENSION, CEX, IS RESTORED (JUNK IS BROUGHT IN UPON THE FIRST

C ENTRY). WHEN TAPE3=O.O, SUBROUTINE TAPE IS CALLED TO COMPILE THE

C EPHEM_RIDES. SUBROUTINE TAPE ALWAYS SETS TAPE3-3.

READ DRUM 2_O,CEX

IF (TAPE3) 2,I,2

I CALL TAPE

C

C WHEN AN IN-FLIGHT ORIGIN TRANSFE_ OCCURS, SEGMENT I IS CALLED WITH TRSFER

C =I.D. HERE, AN INPUT IS ALLOWED AND THEN CONTROL IS SENT TO REORDER THE

C BODY LIST.

2 IF (TRSFER) 6,6,3

3 TRSFER - O,

CALL INPUT(IOI,C,TAB)

GO TO 28

C
C PRINT OUT THE ERROR INFORMATION IF EREF HAS A - SIGN.

4 IF (EREF) 5,10,I0

5 WRITE OUTPUT TAPE 6,B

REWIND 4

DO 6 I-I,INDERR

READ TAPE 6, BEX

6 WRITE OUTPUT TAPE 6,9,[BEXIJI,J=I,141

T REWIND 4

INDERR = O

READ DRUM 2,786,BEX

B FORMATITHI STEP,6Xt4HTIME,6X,6HDELT,7X,2HA2,BX,2HE2tTX,¢HMASS,6X,

|4HE,VXe4XeBHOMEGA,VY,2X,BHNODES,VZ,3X,6HINCL,XtSXt4HHA,Yt6X_3HPtZ,

26X,IHK//)

9 FORMATIF5.,IH÷F3.,IPIIGIO.2,I2I

C

C PRINT OUT THE _OMPUTATION TIME ELAPSED SINCE THE LAST ENTRY TO MAT9 I.

I0 CALL TIME| (CLOCKi|

IF (CLOCK) 11,13,II

II TUSED - CLOCKI - CLOCK

WRITE OUTPUT TAPE 6 ,12tTUSED

12 FORMAT( 15HOMINUTES USED -FT, IIIHI)

13 CLOCK " CLOCKI

C

C CALL IN THE STANDARD DATA IF CLEAR=O. INPUT g9 IS BASICALLY AN AUXIALLARY

C INPUT TO ALLOW A CHANGE IN CLEAR. IF SAVE'2.0, THE DATA FROM COMMON

C 5 TO 115 |S SAVED,

CALL INPUT (99,C,IABI

IF (CLEAR) 15,14,15

16 CALL STOAIA

IS 1F ISAVE-2,) 18,16,18

16 O0 |7 J=5,115

17 C(J*1485} - C(J|

C

C WHEN RECALL DOES NOT EQUAL ZERO, THE INITIAL DATA PREVIOUSLY STORED BY A

C SAVE STATEMENT WILL BE RECALLED IN ORDER TO RESTART WITH THE SAME OATA.

18 IF (RECALL ) 19,21,t9

19 DO 20 J'5,115

20 CIJ) = CIJ+14BS)

C

C INPUT I IS THE MAIN INPUT STATEMENT, DATA READ IN HERE OVERWRITES ANY

C STANDARD VALUES SET BY STDATA. IF SAVE-(.O, THE INITIAL SET OF DATA FROM

C COMMON _ TO 115 WILL BE SAVED FOR LATER USE.

21 CALL INPUT [ItCmTAB)

IF (SAVE-I.) 24,ZZ,Z4

22 DD 23 J=5,115

23 C(J+1485) = C(JI

24 IF (DELT) 26,25,26

25 DELT = TMAX/IOO.

26 ERLOG = LOGF(ABSFIEREEII

DEL = DELMAX

TTDL - 5E-B*TMAX

BNAME[|) = BDDYCD(I)
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C IF IMODE IS 4, THE INITIAL DATA IS EARTH CENTERED SPHERLEAL
C COORDINATES AND IS TO BE TRANSFORMED INTO RECTANGULAR COORDINATES. THIS

C IS DONE BY SUBROUTINE TUDES WHERE, ALSO, AN INITIAL STEP MAY BE TAKEN TO

C FACILITATE STARTING. THE COMMON EXTENSION, CEX, IS SAVED. SUBROUTINE

C ORDER IS CALLED TO ORDER THE LIST OF BODIES, COMPUTE THE GRAVITATIONAL

C CONSTANT, AND MODIFY ANY ELLIPTIC EPHEMERIS DATA.

IF (XABSFIIMDDE)-4) 28,Z7_2B

27 CALL TUDES

]MODE = XSIGNF(2,1MODE)

2B WRITE DRUM 2eOtCEX

CALL ORDER

CALL DUMP (I,CeLENGTH]

C

C IF ORIGIN BODY HAS AN ATMOSPHERE, SET _OTATION RATE AND ATMOSPHERE RADIUS.

REVOLV - O.

RATMOS = O.

IF [ATMN - BNAMEI[]) 3[,29,3I

29 REVOLV = ROTATE

RATMOS = RATM

C

C POSITION THE EPHEMERIDES TAPE AT THE BEGINNING OF THE CORRECT EPHEMERIS

C BY MATCHING THE EPHEMERIS NUMBER READ FROM TAPE [FILE) WITH THE DESIRED

C EPHEMERIS NUMBER (TFILE]. THEN CALL IN SEGMENT 2.

31 IF [FILE) 36,36,32

32 CALL BKFILE(3]

33 READ TAPE 3o FILE

IF (FILE-TFILE) 34,36v32

S 34 RTB 3

S 35 CPY
S TRA .35

S TRA *33
S TRA *34

36 CALL PONGiNPONO([]]
C
C END OF THE FORTRAN STATEMENTS. .i.i***o

SUBROUTINE TAPE

SUBROUTINE TAPE USES THE MASTER MERGED EPHEMERIDES TAPE (TAPE B AT LEWIS]

TO COMPILE A WORKING EPHEMERIS TAPE [TAPE 3 AT LEWIS) WHICH CONTAINS ONLY

THAT DATA NEEDED AT EXECUTION TIME. THIS MINIMIZES TAPE HANDLING DURING

EXECUTION. THERE ARE 2 FILES ON TAPE B, FIRST FILE HAS THE DATA AND IS

IDENTIFIED BY THE SECOND WORD DE EACH 256 WORD RECORD {FIRST WORD IS THE

DUMMY FORTRAN COMPATIBLE WORD, SECOND WORD=2)o THE SECOND FILE IS ONLY 2

WORDS LONG, FIRST WORO IS FORTRAN COMPATIBLE, SECOND WDRD=3).

MASTER FILE [ -- PLANETS [EXCEPT MERCURY AND EARTH), SUN, MOON, AND

EARTH-MOON BARYCENTER FROM SEPT.25, [960 TO ABOUT 2000.

EACH EPHEMERIS COMPILED REQUIRES A SET OF INPUT 300 DATA. THE FIRST PIECE

OF DATA WRITTEN ON A FILE IS THE FILE IDENTIFICATION NUMBER, FILE. EACH

FILE IS NUMBERED CONSECUTIVELY STARTING WITH FILE-[. SINCE MOON DATA IS IN

TERMS OF EARTH RADII, THE CONVERSION OF MOON DATA TO A.U. IS MADE BEFORE

WRITING ON TAPE 3. THE COMMON USED IN SUBROUTINE TAPE IS LOCAL AND ALL

BUT TAPE3 IS CLEARED BY A FINAL CLEARING LOOP.

FUNCTION COMPARF[AtB) IS EQUIVALENT TO iA-B) BUT WILL NOT OVERFLOW.

NORMAL INPUT - ELIST, TBEGIN, TEND, TAPE3

ELIST- THE BCD LIST OF EPHEMERIS DATA NAMES TO BE PLACED DN

TAPE 3 . THE NAMES ARE READ FROM CARDS, AND IS USED TO

MAKE THE TMAKE LIST. ELXST IS NOT CHANGED IN STORAGE UNTIL

THE FINAL CLEAR FOR THIS SUBROUTINE.

TMAKE- THE LIST OF EPHEMERIS NAMES WITH DUPLICATES DROPPED AND

ZERO SPACES CLOSED IN. AS THE EPHEMERIDES ARE FINISHED THE

NAMES ARE ERRASED FROM THIS LIST.

TMADE- LIKE TMAKE BUT IS HELD FOR OUTPUT.

TBEGIN- THE BEGINNING DATE EXPRESSED AS A JULIAN DAY.

TEND- ENDING DATE EXPRESSED AS A JULIAN DAY.

INTVAL- THE APPROX. NUMBER OF DAYS COVERED BY ONE SET OF COEFF. IT

IS USED TO DECIDE WHICH DATA ARE TO BE ENTERED DOUBLE. THE

DOUBLE ENTRIES PERMIT FASTER OPERATION IF REVERSAL OF

INTEGRATION IS REQUIRED FOR ANY REASON.

EDATE- JULIAN ENDING DATE FOR THE MASTER EPHEMERIS.

ERTOAU- EARTH RADII PER A.U.

COMMON C

DIMENSION

I C ([6OO), TMAKE I12), LIST (3Olt

Z EDATE (12). INTVAL {3Ol_ KTAG {[21_
3 ELIST [12), TMADE (12)t INTVA (2)t

PNAME [30], TDATUM IllOO)o DATUMT (2IB12)
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T

9

11

12

13

E_UIVALENCE
1( TAPE3,C( 2)I,(ERTOAUtC( 3lip( KTAG,C( 4)),( FILE,C( 16)),

2( ELIST,C( X7)),(rBEGINtC( 29)),( fEND,C( 30)),( PNAME,C( 3X]),

3( KHAMPpC( 61)I,( TMADEtC( 7_))p( TMAKEpC| 85)),(TDATUM,CI44t))p
4( EDATE,C(X27)),(INTVAL,C(157)),( INTVA,C(156)),(DATUMT,C([Bgl)

PART I. REWIND 3 AND CLEAR COMMOn.

COMPARF(AtB) = (A+B)*(-(A*8))

REWIND 3

DO I K=I,1600

CIKI = 0.0

THE FOLLOWING NH STATEMENTS LOAD THE BODY NAMES INTO THE MACHINE.

NOTE. THE EARTH IS NOT IN THIS LIST (NO EPHEMERIS FOR EARTH.)

PNAME(1) = 3HSUN

PNAME(2) = 6HMERCUR

PNAME(3) = $HVENUS

PNAME(4) = 4HMARS

PNAME(5) = 6HJUPIIE

PNAME(6I = 6HSATURN

PNAMEI7) = 6HURANUS

PNAMEiB} = 6HNEPTUN
PNAME(9) = 5HPLUTO

PNAME(IO)= 4HMDON

PNAME(II)= 6HEARTHM

PART 2. SET UP JULIAN DATES ENDING EACH EPHEMERIS.

EDATE(1) = 245[B72.5
EDATE(3) = 2451848.5
EDATE(4) = 245[020.5
EDATE(5) = 2473520.5
EDATE(6) = 2473520.5
EDATE(7) = 2473520.5
EDATE(8) = 2473520.5
EDATE(9) = 2473520°5

EDATE{IO}= 2440916.5
EDATE(ll)= 245[8_8.5
INTVA = 30000

INTVALII) = 8
INTVAL(2) = 5

INTVAL(3) = I5

INTVAL(4) = _4

INTVAL(5| = 330
INTVAL(6) = 825
INTVAL{T) = 121l

INTVAL(B) = II72
INTVAL(9) • IlOl
INTVAL([O) = Z
INTVAL(ll) = I5
FILE = |.

ERTOAU = 4.265_6512 E-5
END FILE 3

MOON = 0
LI = i

PART 2B. CALL INPUT AND SEE IF TAPE IS TO BE MADE. INPUT MUST ALWAYS

MAKE TAPE)=O.O IF TAPE IS TO BE MADE.

TAPE3 = 3.

CALL INPUT(3OO,E,LIST)

IF (TAPE3) 63,3,63

PART 3° TAPE IS TO BE MADE SO MOVE EPHEMERIS LIST TO TMAKE AND

TO TMADE (FOR OUTPUT), CANCEL ANY ZERO OR DUPLICATE NAMES.

3 KOUNT = I

DO 6 K=I,12

TMAKE(K) = O.

TMADE(K} = O.

4 DO 5 J=I_KOUNT

IF (COMPARFIELISTIK),TMAKE(J-[))) 5,6,5
5 CONTINUE

TMAKE(KOUNT) - ELISTIK)

TMADE{KOUNT) = ELISTIK)
KOUNT = KOUNT+I

6 CONTINUE

KOUNT = KOUNT - [

PART 4. FIND INPUT ERRORS.

IF(TBEGIN-2437202.5) 66,9,9
KM = 2

ERROR = O.

WRITE TAPE 3,FILE
DO 21J=I,KOUNT
KTAG(J) = 0
DO 13 K=l,20
IF (COMPARF(PNAMEiK),TMAKEIJI]) I3,16,13
CONTINUE

11/24100
IO/31/O0

7126198
2060
2060
2060
2060
2060

I1/26/70
IO/31/OO
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PART 5. PRINTS OUT THE MISSPELLED NAMES AND OTHER ERRORS.

14 PRINT 1St TMAKE(J)t TBEGINp TEND

WRITE OUTPUT TAPE 6 p 15t IMAKEIJI, TBEGINt TENDt(PNAME(KIw

LEDATEIKI,K=I_2O)

15 FORMAT( 23H TROUBLE ON TAPE 3 MAKE I 2XtAbtlOH T BEGIN= FIO.I.BH

1 T END= FIO. I//2(2X.A6tF20.1)}

ERROR = I.

GO TO 21

PART 4B. CHECKS DATES AND STORES INDEX FOR MOON SO THAT EARTH

RADII CAN BE CONVERTED TO A.U.

16 IF (IO-K) 18,17,[8

IT MOON = J

lB KTAGIJ( = K

]9 IF [EDATE(K)- TEND) [AtZXt2[

21 CONTINUE

ASSIGN 36 TO N_I

IF (ERROR) 22t22s68

PART 6. FIX UP A TAG (KTAG) TO INDICATE WHETHER TO E_TER DATA DOUBLE OR

NOT. KHAMP WILL BE SHORTEST INTERVAL. KTAG WILL BE NON-ZERO IF

ANY DATA ENTERS MORE THAN ONCE FOR IO ENTRIES OF THE MOST

FREQUENT DATA.

22 KHAMP = INTVAL(O)

DO 23 J=ItKOUNT

K t KTAG[J)

KHAMP = KMINOFIKHAMPtINTVAL(K)I

23 CONTINUE

KHAMP = KHAMP *lO

DO 26 J=IpKOUNT

K = KTAGKJ)

KTAG(J) = INTVALiKI / KHAMP

PART 7. LOCATE FILE 2 ON TAPE B.

RTB 8

STZ J[

CPY DUD

CPY KFILE

TRA -26

TRA m2S

TRA "25

IF [KM-KFILE) 27p32t29

IF (KFILE- 3) 2B.ZB_Zg

CALL BKFILE(8)

GO TO 25

BY PASS A FILE.

RTB B

CPY DUD

TRA *29

TRA *Z5

TRA m29

PART B. THIS IS CORRECT FILE ON TAPE Bt READ DATA. THERE CAN BE UP

TO 12 SETS OF DATA PER RECORD. A SET OF DATA IS 2I WORDS.

J1 = -1

RTB B

CPY DUD

TRA -32

TRA *36

TRA *36

3Z Jl = JI *I

CPY TDATUH(JI)

TRA * )2

TRA *3¢

TRA -33

33 J1 • J1 - I

GO TO NS[_(36t66)

34 WRITE OUTPUT TAPE 6_35t KFILEt(IHAKEIK]tK=XpKOUNT)

35 FORMAT (13H END OF FILE I3t67H ENCOUNTERED ON TAPE B BEFORE END TI

[ME SATISFIED FOR THE FOLLOWING /[Z[3XjA6))

GO TO 68

PART 9. IS THIS A SATISFACTORY STARTING POINTt QUESTION MARK.

THE IST SET OF DATA FOR EACH PLANET MUST PRE DATE TBEGIN.

PART 9 IS EXECUTED ONLY ONCE.

36 DO 42 J=LItKOUNT

DO 37 K=ltJl_21

IF (COMPARF(TDATUM(KItTMAKE(JII} 37139,3T

37 CONTINUE

38 LI • J

BACKSPACE B

BACKSPACE B

GO TO 31

39 IF (TDATUM(Kt[]-TDATUR(K*2I-TBEGIN) 60_60_38

40 DO 61 KJ=I_Z1

KI = K * KJ - 1

61 DATUHTIKJtJ) • TDATUM[KI}

62 CONTINUE

IF (MOON) 63,65,63

63 DO 66 KJ=6tZZ

66 DATUMT(KJtMOON) = DATUMT(KJtMOON)mERTOAU

65 ASSIGN 66 TO NSI

26

C

C

S 25

S

S

S

S

S

S

26

27

28

C

$29

S3O

S

S

S

C

C

C

31

S

S

S

S

S

S

S

S

S
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PART LO. PUT AWAY NEEDED DATA. TEST NAMED TIME OF BEGIN AND END. DO NOT
wRITE TAPE 3 UNTIL TBEG|N PREDATES THE END OF THE FITTED

INTERVAL. 50 REPEATS OLD DATA, ST WRITES NEW DATA. THE NAMES
ARE ERASED FROM TMAKE AS SOON AS THE OATA POST DATES TEND. WHEN
ALL NAMES ARE GONE, RETURN TO [_PUT 300 TO SEE IF ANOTHER

EPHEMERIS IS TO BE CONSTRUCTED.
46 O0 65 K=I,J[_21

DO 47 J=I,KOUNT
IF (COMPARF(TDATUMIK),TMAKE(J))) 4T,48m4T

47 CONTINUE
GO TO 65

48 SwT = TBEGIN-TDATUM|K_|I-TOATUM(K+2)

IF (SWT) 49t49eSZ
49 _F(KTAG(J)) 5OBSZ,50
50 WRITE TAPE 3,(DATUMTIKJoJ) , KJ=lp21]
51 FORMAT ([XeA6oFIO.|I
52 DO 53 KJ=[,21

K1 • K _ KJ
53 DATUMT(KJmJ) = TDATUM(KI-I)

IF (J-MOON) 56,54o56

54 DO 55 KJ = 4,21

55 DATUMT(KJeJ) • DATUMTIKJtJ)oERTOAU
56 IF (SWT) 57,57,58
57 WRITE TAPE 3_(DATUNT(KJtJ),KJ=L,21}
58 IF|TEND-DATUMT|2eJI-DATUMTI3tJ)) 59e59eb5
59 TMAKEIJ) = 0

00 60 KK=ltKOUNT
IF (TMAKE(KK)) 65tbOm65

60 CONTINUE

WRITE OUTPUT TAPE 6B 61, FILEfTBEGIN_TENDe KOUNT,(TMADEIKKI_

1KK=I,KOUNT)

61FORMATI28HOEPHEMERIS COMPLETED, FILE=F3.,6Ht FROM FIO. L,3H TO

[ FIO.[, 6H FOR IZt [BH BOOIES AS FOLLOWS / /Z(2X,A611
62 FORMAT(IX_A6,7E|b.81IIX,7Elb.8))

FILE = FILE • [.

GO TO Z
63 WRITE TAPE 3t FILE

REWIND 3

REWIND 8

TAPE3 = 3.

DO 66 d=3,1bOO
66 C(J) = 0

RETURN

65 CONTINUE

GO TO 31

66 PRINT 67p TBEGIN

WRITE OUTPUT _4PE 6,67tTBEGIN

67 FORMAT(33H TBEGIN PREDATES 2437202.5,IT IS FlO.[}

68 CONTINUE

REWIND 8

END OF THE FORTRAN STATEMENTS.

SUBROUTINE STDATA

C .

C THIS ROUTINE CLEARS COMMON 4 TO 1300 AND LOADS A SET OF STANDARD DATA INTO

C THE MACHINE. ANY VALUES SET HERE MAY BE OVERWRITTEN BY INPUT I IN MAIN L-

C

COMMON C

C

DIMENSION

1 PNAME (12), AMASS (3D), NPONG IS),

2 CON I9)t COEFN l[gO), ICC (41_

3 AK (3Ie ROOT (/51, INO (31,

4 REFER (12}, RCRIT I3OI, AW (4Ie

5 C (1)
C

EQUIVALENCE
[(STEPMXtC( 2O)),(CDNSTU,C( 18)),[ ICC,C(238}),( IMODE,C(28)),

2( ETOLtC( 2S)),(ERLIMT,C( LT)I,( EREF,C( 37)),( SQRDK,C(468)},
3( TFILE,CI Lb)),I NPONG,C( ll))t( RCRIT,CIgLL)),( AMASS,CI88|IIt

4(BODYCD,C(BLI))w(MDDOUT,C([03)I,( INO,C(/gI)),( STEPS,C( 2|)},

5( XDOT,CII61)),( SPO,C(253)lo( CONSU,CI 36))t( COEFN,C(601))_

6(OBLATKvC(39 )),(RESQROpC( 4O)),(PNAME BC(B2[)),IREFER eC(BS[)),
7( RMASSeCI 6I))eIGASFAC,CI4SBJ)eIOBLATJ#CI 3O))p| AWeCl2blI)e
8( CON,C(ST6)),( AK,C(233)),(DTOFFJ,C( 3[)It[ AU,C(46II)

C

C CLEAR COMMON FROM 4 TO 1300.

00 I J = _,|300
| CIJ) = O.O

6O



THE FOLLOWING NH STATEMENTS LOAD THE BODY NAMES INTO THE MACHINE.

PNAME(|) = 3HSUN

PNAME(2) = 6HMERCUR

PNAME(3) = 5HVENUS
PNAME{4( = 5HEARTH
PNAME(S) = 4HMARS
PNAME(6) = 6HJUPITE

PNAME(7( = 6HSATURN
PNAME[8( = 6HURANUS
PNAME(9) = 6HNEPTUN
PNAME[[O)= 5HPLUTO
PNAME([[)= 6HMOON
PNAME(IZ)= 6HEARTHM

FILL OUT SUN REFERENCE LIST.
DO 2 K = 2)[2

REFER[K) = PNAME(|)

FILL OUT EARTH REFERENCE LIST.
REFER{[} = PNAME[4)

REFER(4} = 5HZERO÷
REFER[[[} = PNAME{4)

LOAD THE REMAINING STANDARD DAIA.

AK(I) = 0.5
AK(2) = 0.5

AK(3} = I.O
AMASS(X) = L.O

AMASS(2I = 1.016[20000.0

AMASS{3} = 1,01_06665.0
AMASS(6) = 1.0/332488.0
AMASS(5) = 1.0/3088000.0
AMASS(6] = 1.0/[0¢T.39
AMASS(7) = [.O/3SO0.O
AMASS(8) = 1.0122869o0
AMASS(9( = 1.0/[8889.0
AMASS([O) = |.0/¢00000.0
AMASSi[I( =AMASSI_}/SI.375
AMASS(X2( =AMASS(_)* AMASS(|I)
AU = 1.695 Eli
AW[I)=I./6.
AW(2)=AW(I}*AW(I)
AW(6)=AW[I(

AWI3)=I.-{AW(2]*IAW(II÷AW[4)))

80DYCD = PNAME(6)
COEFN(83) = [EZO
CONil} = 0.2
CON(Z} • 0.2
CON(3} = 0.6

CON(6) = 1.4

CONI5( = 1.4

CON(6) = 2.33333333
CON(7] = 0.[
CON(B] = 0.1
CON(9) = 0.5
CONSTU = 1.0 E-6
CONSU = IE-6
ETOL = 0.0[
DTOFFJ = 244.E4

EREF = 1E-6
ERLIMT = 3E-&

GASFAC = 20.064881
ICC(I) = 79
ICC(2) = 79

ICC(3) = 79
ICC(S) = 79
IMODE = 1
IND(1)=2

IND(2)=3

IND(3)=I

MODOUT = 4

NPDNG([) = 2
NPONG{2) = [

NPONG(3) = 3
NPONG{5) = [
OBLATJ=I.6Z38E-3
OBLATK = 6,6E-6
REMIT({( = 1.0 E+ZO

RCR[T(2) = 1.0 E*8
RCRIT(3) = 6.14 E+8
RCRIT(4) = 9.25 E_8
RCRIT(5) = 5.78 E_8
RCRIT(6) = 4.81E*IO
RCRIT(7) = 5.46 EtlO
RCRITIB) = 5.17 E*IO

RCRITIg| = 8.61E*[O

RCRIT(|O] =3.8[ E÷[O
RCRIT(II} =1.60 E*8
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RESQRD =4.06809887T E+[3
RMASS = [.
SPO = 86600.0
SQRDK = [.32652|39 E+20
STEPMX= LO0,O
STEPS = [.
TFILE = I.
XDOT(8! = l.O
wRITE OUTPUT TAPE 6,3
FORMAT (THOSTDATA)
RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE TUDES

THIS ROUTINE COMPUTES THE RECTANGULAR POSITION AND VELOCITY COMPONENTS

WITH RESPECT TO THE EARTH MEAN EQUINOX AND EQUATOR OF 1950.0 FROM THE

LATITUDE, LONGITUDE, AZIMUTH, ELEVATION, ALTITUDE, TOTAL VELOCITY, AND
TIME. ALSO, WHEN TRICK DOES NOT EQUAL ZERO, A NON-DRAG VERTICAL STEP OF

SIZE TRICK IS MADE IN CLOSED FORM (STATEMENTS 2 TO 4). THE INTEGRATION

WILL THEN BEGIN AT TIME EQUAL TO TIME'TRICK witH THE oRIENTATION SPECIFIED

BY THE ABOVE FOUR ANGLES AND THE COMPUTED VALUES OF ALTITUDE AND VELOCITY.

FOR THE CLOSED FORM APPROXIMATION, A CONSTANT FLOW RATE (FLOW|, VACUUM

SPECIFIC IMPULSE (SIMP) AND ENGINE EXIT AREA {AEXIT) ARE ASSUMED KNOWN.

THE ATMOSPHERIC PRESSURE IS TAKEN TO BE THE SEA LEVEL VALUE.

COMMON C

DIMENSION

1 AMASS (30),
2 COSA (6I,

EQUIVALENCE

L( X,C( 45I),I
Z( VY,C( 43)),(

3IANGLES,CIIOA)},(

41 TIME,C( 48)},(

ANGLES (4), SINA (4|,
ANGLEB (6)

Y,C( 46II,( Z,CI 47)),( VX,C( 42)),

VZ,C( 64)),IDTOFFJ,C( 31)),( TOFFT,C( 321},

ALTtC(108)I,( VELtCIlOP)),(ROTATEIC[459|I,
SIMP,C( 5litl RHASS,CI 61}),( TKICKtC( 7)l,

5( FLOW,C( 33)},ISTEPGO,CiIOIII,(STEPNO, C(I02)),( AEXIT,C( 24)I,

6(OBLATN,C( ZT)},( 8NAME,Ci602)),(RESQRD,C( 60)),(OBLATJ,CI 38)],

7{ AMASS,C(88I)],I SQRDK,C(468)),( SPD,CI253))

ALTL = O.
VELI= VEL
DELl = Oo
DEL = O.
ASSIGN l TO NGO
GREEN = 360.O*(MODF(IDTOFFJ-243766S.S)/.997269566,1.)÷

I MODF(ITOFFT+TIMEISPO-.TIPT93OIII.997269566,1.))

SINAI1) - S1NF{ANGLESII)/57.29577951
RADIUS=b356783.281SQRTF(.O933065783+.OO6693621685*SINA(II**2)÷AL¥
GO TO 8

I X = COSA(2)mCOSAIII*RADIUS

Y = SINA(2)-COSA(II*RADIUS

Z = SINAII)mRADIUS

IF (TRICK) 2,4,2
2 RMASSO = RMASS

RMA}S = RMASS-FLOW*TKICK
wRITE OUTPUT TAPE 6,3,STEPGO,STEPNO,(A_GEES(II,I=I,4}ALT,TIME,VEL,

I RMASSO,XsY,Z

3 FORMATI6HOSTEP=FS. tZH +F4.,4X,6H LAT.=IPG[S.B,TH LONG.=GIS.8wAH AZ

II.=GIS.Bt?H ELEV.=GIS.B,6H ALTo=GI5.8/6H TIME=GIS.B,AH VELo=GIS.8,

67H RMASS=GIS.B,4X,2HX=GIS.B,SX,ZHY=GI5.8,4X,2HZ=G15-BI

TIME = TIME+TRICK

B1 = LOGFIRNASSOIRMASS)

SIMPSL = SIMP-AEXITIFLOW*10332.275

VELI= VEL+SIMPSL-9.8066S-BI-GITKICK
ALTI = TKICK-|VEL-G-TKICK/2.+9.BOAbSmSIMPSL*IL--BIIRMASS/

I (RMASSO-RMASS))|

4 RADIUS = RADIUS + ALTI

GREEN • GREEN + ROTATE*TRICK*57.2957795

ASSIGN 5 TO NGO
GO TO 8

5 X = COSA(2I*COSAIII*RADIUS
Y = SINAI2I*COSAIL|*RADIUS

Z - SINA{I}*RADIUS

IF (OBLAIN-BNAME) 7,6,7
b DELl = ATANFI[C2-1o)/IC3-I.)*SINA[I)/C3SA(II)*57o2957795-ANGLESII)

7 DEL2 = RADIUSIG.SINA(II.COSA(II*ROTATEmROTATE*57.29577951

DEL = DELl ÷ DELZ
ASSIGN [0 TO NGO

B ANGLEB[L) = ANGLES(L} ÷ DEL

ANGLEB(2) = ANGLES(2) * GREEN

ANGLEB(3| = ANGLES(3}

ANGLEB(4! = ANGLES(4)
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DO 9 I=I,4

SINA(I) = SINF(ANGLEB|I)I57.2957795)

COSAIII = COSF(ANGLEBII)/ST.2957195)
C| = S.*RESQRDIRADIUSIRADIUSeOBLATJ

C2 = C[*ISINA(1)*SINA|[)-.B)

C3 = CI*(SINA(I).SINA(L)-.2}

G - SQROK.AMASS(4|/RADIUS/RADIUS
GO TO NGOo (l,5mlO)

COSI = COSA(XImSINA{4I-COSAi4)oCOSAI)I*SINAKI)
COS2 = COSAI4)*SINA{3)

VX - VELI*ICDSI-COSAI2I-COS2*SINA{2II-Y*ROTATE

VY = VELLt{COSI*SINA(2)÷COS2tCOSA(2IItX*ROTATE

VZ = VELI.ISINA(1)tSINAi4)+COSAIIItCDSAI3I-COSA(4|I
RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE ORDER

THIS ROUTINE TAKES THE BODY LIST READ FROM CARDS AND SORTS THEN IN

ORDER SD THAT THE DISTANCE FROM THE REFERENCE TO EACH BODY IS

DEPENDENT UPON ALREADY COMPUTED DISTANCES ONLY.

ELLIPSE DATA ARE READ INTO A BLOCK OF I20 STORES RESERVED FOR

EIGHT ELLIPSES. ONE ELLIPSE IS READ INTO A 15 STORE BLOCK.

THE SINES OF THE 3 ANGLES ARE COMPUTED AND REPLACE THE 3 ANGLES.
THE COSINES ARE CDMPUTEO AND STORED LAST IN A BLOCK.
A BLOCK IS ARRANGED AS FOLLOWS-

(1) = NAME OF BODY IN BCD,ONLY 6 CHARACTERS.

(Z) = NAME OF REFERENCE BODY IN BCD_SAHE RESTRICTION.

(3) = MASS OF THE BODY IN SUN MASS UNITS.
1¢) = RAOUIS INSIDE OF WHICH COORDINATES WILL BE TRANSLATED TO THIS BODY.
(51 = SENILATUS RECTUM IN ASTRONOMICAL UNITS.

(6) = ECCENTRICITY OF THE ORBIT.

7) = SINE OF ARGUMENT OF PERIGEE.
B) = SINE OF NODES.

9} = SINE OF INCLINATION OF THE ORBIT.
10)= PERIGEE PASSAGE JULIAN DAY.

IT|= PERIGEE PASSAGE FRACTION OF DAY.

12) = PERIOD OF THE ELLIPSE IN MEAN SOLAR DAYS.

13)= COSINE OF ARGUMENT OF PERIGEE.
14)= COSINE OF NODES.

15)= COSINE OF INCLINATION OF THE ORBIT.

DEFINITIONS-- NOTE. COMMON EXTENSION IS TRANSFERRED TO DRUM 2 DURING SEG2.

AMASS = MASS OF EACH BODY, SUN MASSES. ORDER OF PNAME. COMMON EXTENSION.

BMASS = SELECTED FROM AMASS. CORRESPONDS TO BNAME LIST. COMMON EXTENSION.

BNAME _ THE ORDERED LIST OF BCO BODY NAMES. CAN BE USED IN OUTPUT.COMMON.

BDDYCD = THE ORIGINAL BCD NA_S READ FkOM CARDS. COMMON EXTENSION.
BODY L = THE LIST OF BCD BODY NAMES WITH THE REFERENCE BODY AT TOP.

INITIALLY EQUAL TO BODY CARD LIST (80DYCD). COMMON EXTENSION,

IBDDY - ARRAY OF SUBSCRIPTS. WHEN A DISTANCE IS FOUND FROM EPHEMERIS, IT

MAY BE ADDED {OR SUBTRACTED) FROM THE BODY POSITION GIVEN BY

XP(IBODY) TO OBTAIN THE POSITION OF THE PRESENT BODY. COMMON,
KZERO = COUNT OF ZERO REFERENCES. THERE MUST BE ONE AND ONLY DNE ZERO.

NAME = ARRAY OF SUBSCRIPTS. GIVES OLD LOCATION OF NAMES IN BODYL
FROM LOCATION IN BNAME LIST. NOT IN COMMON.

MANE = ARRAY OF SUBSCRIPTS. INVERSE OF NAME. GIVES NEW LOCATION OF

8NAME LIST IN TERMS DF BODYL. NOT IN COMMON.

NBODYS = COUNTED INTERNALY. TOTAL NUMBER OF BODYS.

MBODYS = COMPUTED INIERNALY. TOTAL NUMBER DF EPHEMERIDES INBODYS-1}.

NEFMRS = ARRAY OF SUBSCBIPTS. GIVES LOCATION OF BODY IN P_AME LIST
IN TERMS OF THE EFMRS LIST. STORED IN COMMON.

NREFER = ARRAY OF SUBSCRIPTS. LOCATES THE REFERENCE BODY IN BODYL.

ORDER OF THE ARRAY CORRESPONDS TO BODYL. NOT IN COMMON.

NNREFR = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERS AND CORRESPONDS TO
BNAME LIST. NOT IN COMMON.

PNAME = A PERMANENT LIST OF BCD BODY NAMES. I WORD EACH (6 CHARACTERS
MAX). USED TO IDENTIFY MASS, REFERENCE NAMES, ETC. THE LIST IS

A MAXIMUM OF 30 NAMES. PRECISION TAPE N_MES ARE FROM [ TO 2Op

ELLIPTIC NAMES ARE FROM 2[ TO 30. COMMON EXTENSION.

REFER = A PERMANENT LIST OF BCD BODYS THAT ARE THE REFERENCES OF
DISTANCES GIVEN IN EPHEAMERIDES (TAPES OR ELLIPSE). CORRESPONDS

TO PNAME LIST. STORED IN COMMON EXTENSION.

COMMON C

DIMENSION

L AMASS {30], BMASS {8), BNAME (B),

Z BUDYL (8|, EFMRS {7), IBODY (B),

3 MANE (8), NAME {8I, NEFMRS (8),

3 NEFMRT (B), NNREFR 18), BODYCD (81,
4 NREFER (8I, PNAME (3D|, RBCRIT ITIB
5 RCRIT (30), REFER {30I, TDATA (LB,TIj

6 TDEL (7), TIM lT)o ELIPS 1120I,
l NDUD I9)
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C

EQUIVALENCE
l( AMASSpCIBBI)ItIMBODYSpC(44LIIt( GK2MoCI669I)tl SQRDKeCI468))w
2| BMASSfC(4ITI)wINBODYStC(489IIol GKN_C|ATO))p( TDATA_CI276)Iv
3{BNAME =C(AO2))=(NEFMRStC(¢331Io[P NAMEICI82I)|=| TDELtCIS92)Iv

4[80DY LtC(8OL)IpIfDDYCO,C(81[IIpIRBCRIr,c|650)I=( TlMoCiS85))t
5( EFMRSeC(4|O)I,( RMASS,CI 4Illwi RCRIT,cIgI[)),( ELIPStCI96[I)t
6(180OY ,C(625)1,I FILE_C(269)I=( REFERtCI85I))tINANEII)tNDUDI2)}

C
C THIS SECTION SEES wHAT ELLIPSE DATA WAS READ FROM CARDS AND PUTS THE

C NAMES IN PLACE SO THAT DATA WILL BE USED IF NEEDED. ELLIPSE DATA HAS

C PRIORITY OVER TAPE DATA BECAUSE LAST DATA IN LIST IS THAT ACTUALLY USED.

C FUNCTION COMPARFIA_Bb IS EQUIVALENT TO (A-8I BUT WILL NOT OVERFLOW,

C

B COMPARFIA,B) = (A+B)eI-iA.BI]

DO 3 K=ltl20,15

IFIELIPSIK)) 1=3,1
l KOUNT = (K-I)/|5+21

PNAMEIKOUNT) = ELIPSIK)
REFERIKUUNT) • ELIPS(K÷I)

AMASS(KOUNT} - ELI,S(K÷2)

RCRITIKOUNT) = ELI,S(K*3)

DO 2 J=bt8
I=K÷J
ELIPSII+6} = COSFIELIPSIII)

2 ELIPSIII = SINFIELIPS(1))
3 CONTINUE

C
C PART O. THROW AWAY BLANKS AND DUPLICATES IN BNAME LIST.

C ALSO COUNT THE BODIES.

4 DO 5 K=I,B
5 BNAMEIK+ll = BODYCD(KI

L = I
BOOYL(OI = O.

DO 8 l=Io9
BODYL(I} = O.
DO 6 K=ltL
IF ICOMPARF (BNAMEIIIt BOOYL(K-II)) 6,7=6

6 CONTINUE
80OYLILI = BNAMEII)

L = L*I

T BNAMEII} = O.
8 CONTINUE

NBODYS = L-I
MBODYS = NBODYS-I

C

C PART I. FIND THE REFERENCE BODY FOR EACH BODY IN THE LIST OF BODYS

C READ FROM CARDS. CLEAR NREFER AND 6NAME.

DO 13 KL=I.NBODYS

NREFERIKL) = 0

NEFMRTiKL) =0

BNAME |KL) = O.

DO 12 KP= 1,30

IF (COMPARFIBODYLIKL}tPNAMEIKP))I IZtgtl2
g NEFMRTIKLI = KP

DO It KR = 1,8

IF (COMPARFiREFERIKPI,BODYLiKR))) II,10.II

IO NREFERIKLI = KR
ll CONTINUE
12 CONTINUE
13 CONTINUE

C
C PART 2 . COUNTS O REFERENCES AND SAVES TEMPORARY SET DF INDEXS.

I4 IF {NBODYS] 2%2%15
15 KZEROS = 0

MISPEL = 0
DO 20 K = 1.NBODYS

NNREFRiK) = NREFER{K9

16 IF [NEFMRTIKI) [BtllT18
IT MISPEL = HISPEL • t
18 IF(NREFERIKI) 20,19u20
lg KZEROS = KZEROS + 1
20 CONTINUE
21 IF (KZEROS- i) 24,22,24

22 IF (HIS,EL) 24,23,24

23 IF (NBODYS-8} 28.28,24
C
C PART 3 • REPORTS ERRORS IN BODY LIST.

24 WRITE OUTPUT TAPE 6.25 ,NBODYS.MISPEL.KZEROS.IBODYL|K),K=I,NBODYS!

WRITE OUTPUT TAPE 6.26 ,{NREFERIKI.K=I,NBODYS)

WRITE OUTPUT TAPE 6.27 _(K,PNAMEIK).REFERIK|,K=I.30)

25 FORMAT (26HOGOOFY BODY LIST (NBUDYS =I2_13H, MISSPELL =[2_

i IIH, KZEROS =I2,IHI/IIHOBODYLIST =8(3X,AAII

26 FORMAT (IIH NREFEK =Ib. TIg}
FORMAT [/S(3H K3X,4H_ODY4XtSHREFERSX,IISII3,2XtA6,2X,Ab,SXII

GO TO 50
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C PART 4. TRACES OUT ..REFERENCE TO BODY.. RELATIONSHIPS

28 KK = 2

KN = l
NAMEII) = l

29 IF (NREFER[KN)) 24,31_30

30 NAMEIKK) = NNREFR[KN)

NNREFR(KN) = O
KN = NAME(KK)

KK = KK ÷ 1
GO TO 29

C
C PART 5. TRACES OUT ..BODY TO REFERENCE.. RELATIONSHIP

3[ 00 34 KN = I_flBODYS

DO 34 K = I,NBODYS

32 IF (NNKEFRIKI - NAME(KN]) 36,33,34
33 NAMEIKKI = K

KK = KK + 1
36 CONTINUE

C

C PART 6. INVERTS NAME TO MANE,STORES BNAMEt BMASSe RBCRII, AND A

C TEMPORARY NEFMRS.

DO 35 K = I,NBODYS

N = NAME(K)

MANE(N) = K

NEF = NEFMRT(N}

BNAME(K) = PNAME[NEFI

BMASSIK] = AMASS(NEF)

RBCRITIK) = RCRIT(NEF)

NEFMRS(K) = NEF
35 CONTINUE

C
C PART 7. FINDS NNREFR REFERENCE FOR BNAME LIST t ALSO TEMP. IBODY

DO 36 K = i, NBODYS

N = NAMEIK]

NRF = NREFERIN)

NNREFR(K) = MANEINRFI

36 [BODYIK} = MANEiNRF}

C

C PART 8 . FINDS [BODY FOR BACKWARD REFERENCE.

DO 39 K=IjB

37 IF(NNREFR[K)) 26140_38
38 N • NNREFR(K)

IBODYIN) = -K

39 CONTINUE

C I@ODY LIST IS COMPLETE,

C

C PART 9 . WRITES OUT EPHEMERIS LIST TO BE USED IN STORING DATA AND

C MAKES FINAL NEFMRS LIST.
60 KK = l

DO 43 K=ItNBODYS
61 IF[NNREFR(K)} 42_43_62
42 EFMRSIKK) = BNAMEIK)

NEFMRSIKK) = NEFMRS(K)

KK = KK ÷ l
63 CONTINUE

NEFMRS(NBODYS) = 0
C

C PART IO. SAVES ELLIPSE DATA

FILE = O.

00 6B K=[_MBOOYS

64 IF(NEFMRSiK)-20} 47,67,65

45 DO 66 J=5,15
L = (NEFMRS(K] - 21) * 15 _J
TOATAIJ-6,K) = ELIPS(L)

46 CONTINUE

GO TO 68
C
C PART IOA. LOADS A FALSE (VERY EARLY) TAPE TIME TO FORCE TAPE

C READING BY THE EPHMRS ROUTINE. FILE - 0 UNLESS TAPE IS USED.

67 TOELIK} = O.
TIM(K) = 2600000.5

FILE = tO,
68 CONTINUE

C
C PART IT. COMPUTE GRAVITATIONAL CONSTANTS. 1.9866 E+3O • KILOGRAMS/SUN MASS

GK2M = SQRDK*iBMASSII)_RMASS/ 1.98bb E_30 )

GKM = SQRTF(GK2M)

PART I2. wRITES THE BNAME LIST ON TAPE 6 .

WRITE OUTPUT TAPE 6_49,8NAME(I}t(BNAMEIK)tK=2,NBODYS)

69 FORMAT (IgHOREFERENCE BODY IS AA_5X_23H PERTURBING BODIES ARE

TIZX,AAiI
RETURN

5O CONTINUE

END OF THE FORTRAN STATEMENTS.
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MAIN 2

MAIN 2 CONTROLS THE PROGRAM SEQUENCING FOR THE SECOND SEGMENT. IT ALSO

CONTAINS THE INTEGRATION SCHEMES. THE SET OF INTEGRATION VARIABLES IS

IDENTIFIED BY IMODE ACCORDING TO THE FOLLOWING

IMDOE

l

2

3

-i

-2

-3

VARIABLES

ORBIT ELEMENTS

RECTANGULAR

RECTANGULAR TEMPORARY

ORBIT ELEMENTS--CHANGE TO RECTANGULAR

RECTANGULAR--CHANGE TO ORBIT ELEMENIS

ORBIT ELEMENTS--CHANGE TD TEMPORARY RECTANGULAR

COMMON C

DIMENSION

l XPRIM II5,2), XPRIMB {15,2), XDOTPM I15,2),

2 X (15), XINC {LbI, OLDINC (L5I,

3 XDOT (15), RB 13), XK (15),

4 C (I), AK (3), AW (4),

5 XWHOLE (15), VX (3)

EQUIVALENCE

l( IMODE,CI 28)},ITRSFER,CI224)

2(XPRIMB,C( 7})),I RATIO,CI600)

3| AW,C(261)),I AK C(233}

4{ACOEF2,CI266)),IACOEF3 C(267)

5[ERLIMI,C( [7}),( KSUB C{254}

6[STEPNO,CiI02)},I ASQRD C(563)

7( ETOL,C{ 25}),( TTESI C(2SII

8I TRU,C(483)},I VSQRD C{476)

9I ERLOG,CI25g)),( AI C(236)

EQUIVALENCE

}(NSTART,CI2_7)),( R,C(442)

2(LENGTH,C(2ST}|,( H2,C(256)
3( EMONE,C{243))

),IXWHOLE,CI544)),

),( XDOT,CIIBE)),

),(OLDDEL,C(225)),

I,( XINC,C(146)),
),( DEL,C(255)),

)p( GK2MmC(4bg))p
|,|CONSTU,CI I8))t

I,( RBoC[200)),

I,( X,CII3II),

XPRIM,CI 4I}),

DELT,C( I0)I,

ACOEFL,C(265)I,

E2,&(2bOI},

STEPGO,CI}OI}Ip

REVS,C|490}},
ASYMPT,C(543))_

VX,CI472}),

STEPMX,C( 20))

ItIMBODYS,C{44L|),l TIME,CIL38II,

I,( A2,C(237)),( LN,C1487Ilt

C

C PART l- SET UP THE STARTING SEQUENCE FOR ERROR CONTROL AND DELAY CHECKING

C THE ERROR UNTIL IWO STEPS ARE COMPLETED. THE ASSIGNED GO TOS NSTARr AND

C IBEGIN CONTROL STARLING. REWINDING 2 USUALLY SAVES TIME ON PING-PONG TAPE.

REWIND 2

I DO 2 J=l,B

XPRIM(J,2} = XPRIMIJtl)

XPRIMB(J,2) = XPRIMB(J,L}

2 X(J) = XPRIMIJ,L)

NSTART = 0

H2 =DELI

DELT = DELT/2.

CALL EQUATE

CALL OUTPUT
DO 3 J=l,3

XWHOLE(J|=VX(J)

3 XWHOLEIJ+3) = RB{J}

C CHANGE INTEGRATION VARIABLES IF IMODE IS -. RETURN FROM TESTTR IS AT

C BEGINNING OF MAIN 2.

IF (IMODE) 4,5,5

4 CALL TESTTR

5 ASSIGN 2[ TO NSTART

C STATEMENTS 7 TO 9 INITIALIZE NREVI AND NREV2 FOR USE IN PART TA.

IF (RBI2)) 7,6,8

6 IF(VX(2)) 7,8pB

7 ASSIGN 37 TO NREV!
ASSIGN 35 TO NREV2

GO TO 9

B ASSIGN 33 TO NREVI

ASSIGN 37 TO NREV2

9 DO 10 J=l,8

XDOTPMIJ,I} = XDOTIJ)

XINCIJ| = O.

lO CONTINUE

11KSUB = 1

ASSIGN [6 TO N

C

C PART 2. RUNGE-KUTTA SUBINTERVAL SCHEME. EQUATE PRODUCES THE NECCESSARY

C DERIVATIVES XDOTIJI.

[2 00 13 J=l,8

XK(J) = XDOT(J) * DELT
XINC(J} = XINCIJ) _ AW(KSUB)*XK(J|

13 X(J) = XPRIM(J_2) + AK(KSUB)*XK(J)

14 CALL EQUATE

CALL DUMP (3,C,LENGTM)

15 GO TO N,(16,17118,20)
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C PART 3. SUBINTERVALS 2e 3, AND 4t TO STATEMENT Ig FINISH A

C RUNGE-KUTTA STEP AND INCREMENT XPKIMIJ,2) IN DOUBLE PRECISION.

16 KSUB = 2

ASSIGN 17 TO N
GO TO X2

[7 KSUB = 3
ASSIGN [8 TO N

GO TO I2
IB DO 19 J=I,B

XINCIJ) = XINCIJ) + AW{4) eXDOTIJ) * DELT
CALL EXADDIXPRIM|Je2Ip XPRIMBIJe2It XINC|J))
XlJ] = XPRIMIJ,2]

19 CONTINUE
C
C PART ;. BEGIN A NEW RUNGA-KUTTA STEP. THIS ALSO GIVES DERIVATIVES
C FOR THE LOWER ORDER INTEGRATION CHECK.

ASSIGN 20 TO N
GO TO [_

20 GO TO NSTART_I27,Z3t2I)
C

C PART 5. STARTING PHASE PROGRAM.

C PART 5A. THIS SECTION COMPLETES THE FIRST SIEP OF STARTING PHASE.

2[ ASSIGN 23 TO NSTART

DO 22 J=l,B
OLD[NCIJI=XINC(JI

XINCIJ)=O.

XDOTPMIJt2I = XDOTIJ)
22 CONTINUE

GO TO IX
C
C PART 5B. MAX ERROR TEST--STARTING ONLY--CHECK THE MAX ERROR AND

C EITHER ENTER RUNNING MODE OR REPEAT START WITH SMALLER STEP.

23 DO 24 J=1_7
24 XINC(J) =(XINCIJI÷OLDINCIJIIm3.-IXDDTPMIJ,II÷XDOTPMIJtZ)m4.

X+XDOTIJ))*DELT

CALL ERRORZ
25 IFIE2-ERLIMT] 26,26w56

26 ASSIGN 27 TO NSTART

ASSIGN [[ TO IBEG1N
A1 = AZ
GO TO 3L

C
C PART 6. RUNNING PHASE PROGRAM.

C PART 6A. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST

C RUNGE KUTTA STEP BUT USE DOTS FOR LAST TWO INTERVALS, OLDDEL

C AND DELT RESPECTIVELY. STATEMENT 28 IS THE LOWER INTEGRATION

C MINUS RUNGE-KUTTA INCREMENTS. ERRORZ COMPUTES THE MAXIMUM RELATIVE

C ERROR AND STATEMENT 29 TESTS THIS ERROR AGAINST THE LIMIT VALUE.

27 RATIO = DELTIOLDDEL

HFACT=DELTI(I.+RATIOI

ACOEFI=-RATIO*RATIDmHFACT

ACOEF2=RATIO*IDELT_3.*OLDDEL)

ACOEF3=OELT÷DELT÷HFACT

DO 28 J=1,8

28 XINCIJ] = ACOEFI*XDOTPM{J,I)+ACOEF2*XDOTPMIJ,2]-b.*XINCIJ)

I+ACOEFZmXOOTIJ)
CALL ERRORZ

2g IF [E2-ERLIMT} 30tJOp57

C
C PART 7A. LAST POINT OKAY. COUNT THE REVOLUTIONS PAST THE X-AXIS.

C A STEP GREATER THAN I12 REV. MAY FAIL TO ADO IN.

30 H2 = DELT

31 IF(RB{2)) 32t34,36
32 GO TO NREVLt i37,33I

33 ASSIGN 37 TO NREV[

ASSIGN 35 TO NREV2

GO TO 37
3_ GO TO NREV2o (3T,35]
35 ASSIGN 33 TO NREV[

ASSIGN 37 TO NREV2

36 REVS = REVS ÷ 1.
S 37 LXD IMODE,(IMODE)

GO TO (38,42,62It IMOOE
C
C PART 7B. IN ORBIT ELEMENTS. ADJUST ARGUMENT OF PERICENTER AND MEAN ANOMALY

C TO + OR - PI TO MAINTAIN ACCURACY IN SIN-COS ROUTINES.

3B IF (EMONEI 3g,Azt42

39 DO 41J=3,6t3
ADJ2=INTFIXPRIMIJ,2I/&.28318532*SIGNF(.5tXPRIMIJ_2)|)

IF {ADJ2) 40,41,40
40 ADJ3 = -ADJZ.6.2B125

CALL EXADDIXPRIMIJ_2ItXPRIMBIJ,2I_ADJ3}
ADJ3=-ADJ2*.O019353072
CALL EXADD(XPRIMIJp2ItXPRIMBIJI2ItADJ3}

41 CONTINUE
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PART 7C. ADVANCE THE REMAINING PARAMETERSe FIND NEW STEP SIZE,

AND TEST FOR AN ORIGIN TRANSLATION.

42 DO 43 K=l,3

XWHOLE(KI=VX(K)

43 XWHDLEIK÷3) " RBIK]

DO 44 J=It8

XDOTPM(J,II = XDOTPM(J,Z|

XDOTPMIJ,ZI = XDOT(J)

XPRIMIJ,I) = XPRIMIJ,2}

XPRIMBIJ,I| = XPRIMBIJt2|

XINCIJI = O.

64 CONTINUE

OLDDEL = OELT

45 CALL STEP

IF (MBDDYS) 66,47,_6

46 CALL TESTTR

47 GO TO III,11148) , IMDDE

PART 7D. IF IN TEMPORARY RECTANGULAR CODRDINATESp TEST FOR RETURN

TO ORBIT ELEMENTS. FIRST, E IS FOUND. IF TIME HAS NOT ADVANCED

SUFFICIENTLY, INTEGRATION CONTINUES IN RECTANGULAR VARIABLES ISTATE. 48).

STATEMENT 49 DETERMINES IF KEPLERS EQUATION CAUSED IMDDE = 3. IF NOT,

AN E CLOSE TO I CHECK IS MADE IN STATEMENT 50. IF IT DID, RECTANGULAR

VARIABLES WILL BE USED IF THE LIMIT IS TO0 SMALL (STATEMENT 52), OR

IF E IS 5 DR GREATER (STATEMENT 53I OR IF THE PATH LIES CLOSE IO AN

ASYMPTOTE (STATEMENT 55).

6B CALL CDNVTI (VX,C(559))

EXMDDE=SQRTFII.÷ASORDIGKZMu(VSQRD/GKZM-2./R))

EMONE=EXMODE-I.

IF ({TIME-TTEST)*DELTI IltIIt_9

49 IF (ASYMPTI 51,50,51

50 IF (ETOL-ABSFIEMONEII 55plI,lI

51 IFIEMONE) 55,55,52

52 IF(CONSTU-I.E-7I L1,53,53

53 IF (EXMODE-5,) 54,1It1[

54 CALL CONVT2

IF IABSFITRU|-2.Z/SQRTFIEXMODEII 55t55,11

55 ASYMPT = O.O

IMODE=-Z

GO TO 4b

PART 8. COMES HERE WHEN ERROR TEST FAILED--BOTH STARTING AND RUN.

RETRIEVE OLD POINT AND RECOMPUTE WIIH SMALLER INTERVAL.

IF TWO CONSECUTIVE TRYS FAIL ISTATEMENT 591 THE STARTING SEQUENCE OCCURS.

56 ASSIGN I TO IBEGIN

57 DO 5B J=ItB

XPRIMIJu2) = XPRIMIJtI)

XPRINB(J,2) • XPRIMBIJ_I}

XDOT(J)=XDDTPMIJ,2)

XINC(J)= O.

5B CONTINUE

STEPNO=STEPNO_I.

H2 = DELT

DELT=SIGNFIEXPFI(ERLDG-AZI/5.I,DELT|

A2 =AL

59 IF (FAIL-STEPGD} 6016Iw60

60 FAIL = SIEPGO

GO TO IBEGINt IIEtII

6[ ASSIGN I TO IBEGIN

IF ISTEPNO ÷ STEPGO - STEPMXI 62,62,45

62 GO TO IBEGINt {ll,ll

END OF THE FORTRAN STATEMENTS. .......e

SUBROUTINE EQUATE

THIS SUBROUTINE IS CALLED FROM MAIN 2 TO EVALUATE THE DERIVATIVES OF THE

VARIABLES OF INTEGRATION. EITHER RECTANGULAR COORDINATES DR ORBIT ELE-

MENTS MAY BE USED AS THE VARIABLES OF INTEGRATION, BUT IN THE CASE OF THE

LATTER, THE CORRESPONDING RECTANGULAR COORDINATES MUST FIRST BE FOUND.

THIS IS DONE AT THE BEGINNING THRU THE USE OF KEPLERS EQUATION. THE

PERTURBATING ACCELERATIONS ARE FOUND BY CALLING VARIOUS OTHER SUBROUTINES

AND THEIR SUM RESOLVED ALONG THE XtY,Z AXIS. FINALLY, THE DERIVATIVES

ARE CALCULATED. IN THE CASE OF ORBIT ELEMENTS, THE X,YtZ PERTURBATING

ACCELERATION COMPONENTS MUST FIRST BE RESOLVED INTO CIRCUMFERENTIAL,RADIAL

AND NORMAL COMPONENTS. THIS ROUTINE ALSO CHANGES THE INTEGRATION VARI-

ABLES FROM ORBIT ELEMENTS TO RECTANGULAR VARIABLES IF THE ECCENTRICITY

APPROACHES UNITY.

COMMON C

DIMENSION

1 C {lit

2 RB (3It

3 XPRIMB (15_2I_

4 DRAG (3It

5 XDD I6)t

VX 131, OX (3),

NEFMRS (8)p X I3)j

FORCE (3It XIFT 13It

OBLAT (3)t COMPA I3It

XOOTTR I6)t XPRIMIISt2I

68



EQUIVALENCE
1( DM,C(E6[]

2I ASQRDtC(563)

3(NSTART_CI247)

4(CINCL,C(695)

S(CIRCUMtC(54[)

6( SIMPtC( 5)

T( CDMPAtC{S3T)

8( BNAMEtC(402)

g(ZORMALtC(542))

EQUIVALENCE

|lASYMPTvCI563))

2(CONSTU,C( [8))

3(COSTRUtC(4g3))

6( COSV,C(497))

5( DE,El1621)

6( ZNtC(4BT))
7( DINCL,C(165))
8(DNODEvCII64))

9(DOMEGA,C(163))

,( DMA,C(166)],i P,C{I)7)},( DRAG,C(531)),

,I E,C[132)),( PHI,CI685)),(TRSFER,C(2261),

,! PRESStC(666)),( QX_C(SZ2})_(RATMOS,C(268))_
,( EMONE,C(243)(,I R,C(662)),( TTEST,C(25IIIt

t( EPARtC[Z65)I,(RADIAL,C(560)),( ZNODEI_(136IIt

,I ETOL,C( 2S)),(UBLATN,C( 27)1,( V,C(675)I,

,(EXMODE,C{266)),( RB,C(200)),( VSQRD,C[676)),

,( FORCE,C{525)I,( TOFFTtC( 32})t( VX,C(672)),

_I GKMIC(670))_I RMASSICIZ3I))m{ X,CII35))

,( GK2M,C(Bbg)),{ RSQRD,C(567]|,( XDD,C[I62)It

t( IMODEtC{ 28)(,( SINCLtC(696))t(XDOTTR,C(I)2|I,

,( KSUB,C(256)I,( SINV,C(B96)),( XIFT,C{528)),
,(SINTRUtC(Bg2)|,[ SPD,C(253))t( XPRIMtC( 61)I,

,(MBODYS,C(661)),( DPtC(167)),(XPRIMBtC( 71)),

,(OMEGA _C([33)),I TABLI,CI252)),IXWHOLE,C(566}],

,(NEFMRS,C(633)),( PUSH,C( 36)),( ZINCL,CII35II,

,( OBLAT,C(536)),( FLOWtCI 33))_( ZMtCII36II,

t(OBLATJtC( 38}),( TIME,CII38)]t( AEXITtC( 26)}

TABLT=TIME/SPD÷TOFFT

LXD IMODE,{IMDDEI

GO TO I2tI6,16),IMODE

STATEMENTS 2 TO 16 FIND THE RECTANGULAR POSITION AND VELOCITY FROM ORBIT

ELEMENTS AND TRUE ANOMALY. THE TRUE ANOMALY IS FOUND FROM ITERATIVE

SOLUTION OF KEPLERS EQUATION.

E2 =EeE
E2MI=[.-E2

EMONE=E-Z.

EPAR=SQRTF(ABSFIE2MI)I

VCIRCL=GKM/SQRTFIP)

COMPUTE SINE AND COSINE OF TRUE ANOMALY.

PART A. E=I

IF {EMONE) 10tB,S

SINTRU = O.

COSTRU = 1.
GO TO 16

PART B. E IS GREATER THAN I

5 DO 7 J=[,[O0

DELM=ZM-UeE*SINHFIUI

ECOSU=E*COSHF(U)
DELU = DELM/(I.O-ECOSU)
U • U+DELU

6 IF (ABSF(DELMI-CONSTU) 9tgt7
7 CONTINUE

ASYMPT = 1.0

IF (MBODYS) 8t23,8
8 CALL EPHMRS

GO TO 23

9 COSU • COSHF(UI
DEMI = I.O-E*COSU

COSTRU = (COSU-E)IDEM1
SINTRU =-EPAReSINHF(U)/OEM|

GO TO 16

PART C. E IS LESS THAN 1

[0 DO 12 J=I,5

DELM=ZM-U+EeSINFiU)

ECOSU = E*COSF(U]
DELU = DELM/(1.O-ECOSU÷O.OI*ECOSU**3)
U = U+DELU

1'1 IF (ABSF(DELM)-CONSTU) 13,13,12

12 CONTINUE

13 EOSU = COSF(U)

DEMI = 1.O-E*cosu
COSTRU = (COSU-EIIOEM|

SINTRU = EPAR*SINFIUIIDEM1

16 PDVR • I.÷EeCOSTRU

15

COMPUTE POSITION AND VELOCITY FROM ORBIT ELEMENTS AND TRUE ANOMALY.
ALSO, CLEAR THE PERTURBATING ACCELERATIONS.

SOMEGA=SINFIDMEGA)

COMEGA=COSF(OMEGA)

SNODE=SINFIZNODEI
CNOOE=COSF{ZNODE)
SINCL=SINFIZINCL)

CINCL=COSF(ZINCL)

SINV=SINTRU*COMEGA+COSTRU*SOMEGA

COSV=COSTRU*COMEGA-SINTRU*SOMEGA
AR=COSV*CNODE-SINV*SNODEeCINCL
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BI=SINV.CNODE+COSVeSNODEeCINCL

CI'COSV.SNODE+SINV-CNODE*CINCL

DI=SINV'SNODE-COSVeCNDDEtCINCL

EI=EeSOMEGA÷SINV

FI=EeCOMEGA÷COSV

ASzEIQCNODE÷FI*SNODEmCINCL

B2=FI*CNODEeCINCL-EIeSNODE

R - PIPDVR

RSQRD = ReR

SINVY=SINV*SINCL

RBiI) = ReAR

RB(2) = ReC[

RB(3) = R-SINVY

VX(I)=-VCIRCLeAS

VX(2)=VCIRCLeB2

VX(3)=VCIRCLeFI*SINCL

GO TO IB

C

I6 O0 17 K=I,3

VXIK]=XDO[TR(K)

IT RB|K) = X[K)

RSQRD = RB{I)*RB(I) • RB(2)eRB(2) ÷ RBI3)eRB(3)

R=SQRTF(RSQRD)

IB VSQRD:VXil).VX(I)÷VX[2).VX(2]÷VXI3)-VX(3)

V = SQRTF(VSQRD)

DO 19 I=l,15

19 C(I.521) = O.

C

C TEST FOR PRESENCE OF PERTURBING BODIES.

IF (MBODYS) 20,21t20

20 CALL EPHMRS

21 IF (XABSFiIMDOE}-I) 26,22,26

C

C TEST FOR CHANGE FROM ORBIT ELEMENTS TO TEMPORARY RECTANGULAR

C COORDINATES IF E IS TOO NEAR [0 UNITY.

22 IF (ETDL-ABSF(EMDNE)) 26,23,23

23 IF (IMODE) 54t24_2#
2_ IMOOE=-3

IF (NSTART) 25t5_t25
25 /TEST=TIME

CALL TESTTR

C

C TEST FOR OBLATENESS PERTURBATION COMPUTATION.

S 26 CLA OBLATN

S CAS BNAME

S TRA .30

S TRA -29
S TRA .30

2g CALL OBLATE

C

C TEST FOR PRESENCE OF THRUST. COMPUTE THRUST MAGNITUDE IF NOT SPECIFIED.
30 DM = -FLOw

IF (R-RATMOS) 31,31,32

3I CALL ICAO

GO TO 33
32 PRESS=O.

33 IF(SIMP) 34_35t34

36 PUSH = SIMPeFLOW.g. B0665 - AEXIT*PRESS*IOO.

35 IF(PUSH) 3Tt36,37

36 ASSIGN 60 TO NDONE

GO TO 38

37 CALL THRUST

ASSIGN 4l TO NDDNE
C

C TEST FOR EXISTENCE OF ATMOSPHERE. FIND AERODYNAMIC FORCES.

38 IF (PRESS) 39_42B39

39 GO TO NDONE, (40,41)

40 CALL THRUST

41 CALL AERO

C

C SUM COMPONENTS OF THE PERTURBING ACCELERATION.

42 DO 43 J=l,3

43 COMPAIJ) = -QX(J)+OBLATIJ)+FORCE(J)_XIFT(J)÷DRAG(J)

44 GO TO {4T,45,45),IMODE
C

C COMPUTE DERIVATIVES FOR THE RECTANGULAR VARIABLES OF INTEGRATION.

45 DO 46 K=l,3

XDD(K) = COMPA(K)-GK2MeXIKIIRIRSQRD

46 XDD(K÷3) = XDOTTR(K)

GO TO 54
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C COMPUTE THE DERIVATIVES OF THE ORBIT ELEMENTS. |AFTER RESOLVING

C PERTURBATING ACCELERATION INTO CIRCUMFERENTIAL, RADIAL, NORMAL CDMPONENTSI

47 CIRCUM=COMPAI3I.COSV*SINCL-COMPAIIJ*BL-COMPA|2)*DL

RADIAI=COMPA|IImAR+COMPAI2I'CI÷COMPAI3I*SINVY

ZORMAL=COMPAIII.SNODE*SINCL-COMPA{2I*CNODE*SINCL÷COMPAI3I'CINCL

ZN=VCIRCL-E2MI'EPARIP

RDVRPI = L./PDVR ÷ I.

RDVA = E2MI/PDVR

DP=Z.*RIVCIRCL-CIRCUM

IF(E) 4B,48,49

48 CSQRD = CIRCUM.CIRCUM

RASQRD = RADIALmRADIAL

DEMI = 14.-CSQRD+RASQRD)*VCIRCL

VDVZR=VCIRCL/R/2.

DE = SQRTFI4.*CSQRD+RASQRD)/VCIRCL

DOMEGA = VDV2R+I2.*CSQRD+RASORDIIDEMIwRADIAL

DMA = ZN-VDVZR+I6.*CSQRD÷RASQRDIIDEMI*RADIAL

GO TO 50

49 DE = (SINTRU.RADIAL+IPDVR-RDVAI/E-CIRCUMIIVCIRCL

DOMEGA=ISINTRU/E*RDVPPI.CIRCUM-COSTRU'RADIALIEJ/VCIRCL

DMA=ZN+EPAR/VCIRCL*{ICOSTRU/E-2.1PDVRImRADIAL-ISINTRUIE'RDVPPL'CIR

I CUMI}

50 IFISINCL) 51,52,51

51 DNODE = SINV/SINCL*ZORMALIVCIRCLIPDVR

GO TO 53

5Z DNDDE = O.O

53 DINCL = COSV-ZORMALIPDVR/VCIRCL

54 RETURN

C

C END OF THE FORTRAN STATEMENTS. *''''''"

SUBROUTINE ERRORZ

THIS SUBROUTINE COMPUTES THE RELATIVE ERRORS BETWEEN THE R-K AND LOW-ORDER

INTEGRATION SCHEMES. IT ALSO COMPUTES THE ERROR COEFFICIENT, A, AND SAVES

THE ERROR DATA WHEN EREF HAS k - SIGN. THE BRANCH ON IMODE DETERMINES

WHICH SET OF NORMALIZING FACTORS ARE TO BE USED.

COMMON C

DIMENSION RELERRIT)

EQUIVALENCE

[| RMASStC{ 56)),1 E,CI 57] ,1 AS,C(151))p{OMEGAS,C[|48)

21RMASSS,C[146)).( P,C( 62) ,I ES,CI147)I,IZNODES,C11_91

31 K,EI442)I,[ PS,CII52) ,(ZINCLS,CI|SO)),{XINC ,CII461

41 V,C[475)),l IMDDE,C( 28) _1 TIME,CI138){,[ E2,C[260}

51 VX,CII47)),{ VY,C(148) ,1 VZ,ClI49)],I X,CII50I

61 Y,C1151)1,1 Z,C(152] ,(RELERR,C(I4bI|,( A2,CI23T}

T{ DELT,CI iO)),I AI,C1236) ,1 EREF,C{ 37)}p(STEPGO,C{IO[I

8ISTEPNO,CIIO21),IINBERR,C(49[]

E2 _ O.

RELERR(II=RMASSSIRMASS

IF |{MODE-X) Z,I,2

COMPUTE THE NORMAliZED INTEGRATION ERRORS FOR THE ORBIT ELEMENTS.

1 RELERRI2)=ES/IE÷I.O)/LO.O

RELERR(3I=OMEGAS/62.831853

RELERRI4)=ZNOOESI62o831853

RELERR(SI=ZINCLS/6Z.831853

RELERR(TI= ASI62.B3[B53

RELERRIT)=PS/P/IO.O

GO TO 3

COMPUTE THE NORMALIZEO INTEGRATION ERRORS IN RECTANGULAR VARIABLES.

2 Vl = V+lO0.

RELERRI2}=VX/VX

RELERR(3I=VY/VL

RELERR|4)=VZ/VI

RELERRIS)=X/R

RELERR(6|=Y/R

RELERRI?I=Z/R

SELECT MAXIMUM ERRORt COMPUTE ERROR COEFFICIENT, POSSIBLY SAVE ERROR DATA.

3 DO 5 J=I,T

IF (ABSF(RELERR(JII-E2) 5t5,4

4 K=J

E2 = ABSFIRELERR(JII

5 CONTINUE

E2 = E2 * 2E-B

AI = A2

A2 = LOGF{E2I-5..LOGF(ABSF(DELT)I

IF (EREF) 6,7,7

6 WRITE TAPE 4,KtRELERR,E2,A2,DELTtTIME,STEPNOtSTEPGO

INDERR = INDERR + 1

7 RETURN

END OF THE FORTRAN STATEMENTS.
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SUBROUTINE STEP

C

C SUBROUTINE STEP TESTS FOR THE END OF THE PROBLEM, COMPUTES STEP SIZE, AND

C CONTROLS QUANTITY OF OUTPUT DATA. WHEN END OF PROBLEM IS DETECTED, OUTPUT

C OCCURS, THE ERROR DATA TAPE IS REWOUND, AND THE FIRST SEGMENT IS CALLED TO
C ALLOW INPUT. FOLLOWING IS AN EXPLANATION OF CONTROL ON QUANITY OF OUTPUT.

C

C MODOUT=I OUTPUT EVERY NTH STEP(N=STEPS) UNTIL TIME = IMIN, THEN

C GO TO MODE 2 •

C 2 OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = TMAX.

C 3 OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = THIN, THEN

C GO TO MODE 4 .

C _ OUTPUT EVERY NTH STEP UNTIL TIME = TMAX.

C

COMMON C

C

DIMENSION NPONG(5)

C

EQUIVALENCE

I( DELT,C( IO)),[ E2,C(260)I,( NPONG_C( IT)It[ A1,C(2361),

2[ DEL,C(255)),( ERLOGpC(259)),( TIME,CII3B]),{ TMINmC( 22)I,
3(DELMAX,C( 23)),(STEPNO,C(IO2)),( STEPS,C( 21)),(SPACES,_(258)),
4(STEPMX,C( 2O)),(STEPGO,C{IOI)It( TMAX,C( 3O))t( H2_Ci256))t

5(MODOUT,C(I03)),( A2,C(237)),( RATI3,C(AOO)),( TTOL,C(226))

PART I° TEST FOR END OF THE PROBLEM (MAXIMUM PROBLEM IIME OR MAXIMUM

C

C

C NUMBER OF STEPS).

STEPGO = STEPGO • I.

IF (ABSF(TMAX-TIME)-TTOL) 1,I,3

I CALL OUTPUT

WRITE OUTPUT TAPE 6_2

PRINT 2

2 FORMATI25HOCASE COMPLETED,TIME=TMAX)
GO TO 6

3 IF (STEPGO•STEPNO-STEPMX) 7t_t_
4 CALL OUTPUT

WRITE OUTPUT TAPE 6,5tSTEPMX

5 FORMAT (22HOSTEPGO_STEPNO=STEPMX=F6.)

6 REWIND

CALL PONG(NPONG(5))

C

C PART 2. COMPUTE STEP SIZE (DELT) AND CONTROL OUTPUT.

T A3 - (A2-AL)*RATIO•A2
8 DELT = SIGNF(EXPF((ERLOG-A3)/5.]_DELT)

IF (DELT/H2-3.) 10,10,9
9 DELT = 3°*H2

S [0 LXD MOOOUT,(MDDOUT)
GO TO {II,I5,13,21),MODOUT

II IF(DELT,(TIME • 3.*DELT-TMIN)) 21,12,12

12 MODOUT = Z
DEL =TMIN - TIME
GO TO 16

|3 IF(OELT • (TIME - THIN)) 15,I5,1_

L_ MDDOUI =

GO TO Zl
|5 OEL = OEL-HZ
[6 SPACES • INTFi(DEL/DELT)•SIGNFI.9,(DEL/DELTI))

17 IFISPACES) ZO, 18,20
LB CALL OUTPUT

DEL = DELMAX
IF (ABSFIDEL) - ABSF(DELT)) Igpl6,16

I90ELT = SIGNFiDEL,DELT)

GO TO 16

20 DELT = UEL/SPACES
GO TO 23

21 IF (MODFISTEPGO,STEPS)) 23,22,Z3

22 CALL OUTPUT
23 GO TO (26,24,26,2_)_MODOUT
24 IFI(TIME • DELT - TMAXI*DELT) 26,25,25

25 DELT = /MAX-TIME

26 RETURN

C

C END OF THE FORTRAN STATEMENTS.

SUBROUTINE TESTTR

SUBROUTINE TESTTR MAY BE CALLED FOR ONE OF TWO REASONS, Ill TO TEST FOR AND
POSSIBLY TRANSLATE THE ORIGIN (WHEN IMODE IS •) OR (2) TO CHANGE THE
VARIABLES DE INTEGRATION (WHEN IMODE IS -). A TRANSLATION OF THE ORIGIN

OCCURS WHEN THE OBJECT HOVES INTO A SPHERE OF INFLUENCE WHICH IS SMALLER

THAN ANY OTHERS IT MAY ALSO BE IN. WHEN THIS HAPPENS, THE NAME OF THE NEW

ORIGIN IS MOVED TO THE BEGINNING OF THE BNAME LIST AND THE FIRST SEGMENT
CALLED TO REORDER THE BNAME LIST.

COMMON C
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DIMENSION

IXI3)tXPRIM(ISI2),XPRINBiIST2IvXWHOLE(6I_VEFN(3pB), NPONGISIt
2VX(3)wORBELSI6|

EQUIVALENCE

l[ BNASSpC(417)I,( BNANEpC(602)I,| CHAMPtC(2_6))t( NPONG_C{ lll}_
2( GK2MtC(669)|_( IMODEIC( 28III(N8ODYS,C(489))tiSTEPNOIC(ZST))w
3( RBtC(2OOI|,[RBCRITtC(_SO||,( RRELmC(662)}t( SQRDK,C(_68))v
4IORBELS,G(227))I(TRSFER_C(226)Iw| XtCi2OO))t( XPRINIC( 61|)_
5iXPRIMfjC( TI))w(XHHOLEtC(546)),( TTEST,C(2SI)),( VEFM,CJ698I),
b( VX,C(672]),( REVStC(_90)Iw{ DELT,C( 10)),1 TNAXIC( 3O))t
7( TIMEjCII38))m( EtC1227))t( TRUtC(683)|,|ASYMPTtC(S63))

LXD IMODE,IINODE|
IF (IMODE) 12,12el

IF INODE IS +t TEST FOR TRANSLATIuN OF THE ORIGIN.
I ASSIGN 27 TDN

CHAMP= 1.Ee3O
DO k JB=IjNBOOYS

IF (RREL(JB)-RBCKITIJB)) 2,6,_

2 IF (CHAMP-RBCRIT{JB)! _,4,3

3 CHAMP - RBCRIT|J8)

NCHAMP - JB
4 CONTINUE

IF (NCHANP-I| 26,26,5
5 TRSFER = l.O

ASSIGN 29 TO N
8 BTEMP = BNANE(1)

BNAME(1) = 8NANEINCHANP}

BNANE(NCHAMP) - BTEMP
TTEST = O.
REVS = O.

9 PRINT 1Or BNANE(NCHANP)mBNAMEII)
WRITE OUTPUT TAPE 6tlO_BNAME(NCHAMPI,BNAME(1)

10 FORMAT (28HODRIGIN IS TRANSLATING FROM A6tkH TO A6)

CALL EPHMRS
DO II K=I,3

VX(K) = VXIK)-VEFN(KtNCHAMP|

X(K) = RB[KtNCHANP)

XPRINiK*I,II-VX|K)

XPRIMIK*4tI)=X[K)

XPRIMB(K*I,1) = O.

XPRIMBIK+4tI) - O.

XWHOLE(K)= VX(K)
II XWHOLEIK_3) = X(KI

GO TO 20

IF IMODE IS -, CHANGE THE VARIABLES OF INTEGRATION.

12 ASSIGN 28 TO N

DO 13 K=l,3
XPRIM{K_I,II=XWHOLEIK)
XPRINIK+k,II=XWHOLEIK÷3)
XPRIMB(K+I,1) • O.
XPRINB(K_4_I} - O.
VX(K) = XWHOLE(K|

13 X(K) = XWHOLE(K+3)
GO TO (16,14,15),IMODE

16 CODE = 5HDRBIT
IMODE = l
GO TO 18

15 IMODE = 3
GO TO 17

16 IMODE = 2
17 CODE = 6HRECTAN
18 NCHAMP = I

PRINT 19, CODE

WRIIE OUTPUT TAPE 6,19tCODE

I9 FORMAT (33HOINTEGRATION NODE IS CHANGING TO A6|
20 GO TO (21,26,26),[MODE

21 CALL CDNVTI(VX,C|559))

GKZM- SQRDK*(BMASS(NCHAMP)+XPRIMII,I)/I.9866 E+30}
CALL CDNVT2

IF ORIGIN TRANSLATION CAUSES PATH TO LIE NEAR AN ASYMPTOTE, CHANGE

INTEGRAIION VARIABLES TO RECTANGULAR IF THEY ARE ORBIT ELEMENTS.

IF (E-I.) 26,24,22

22 IF (ABSF(TRU)-2.3/SQRTF(E)) 24,2_23
23 ASYMPT = l.O

GO TO IS
Z4 DO 25 J=l,6
25 XPRIM(J*I,1] = ORBELS(J)

26 GO TO N,(27_28,29)
27 RETURN
28 CALL PONG (NPONG(I))
2q CALL PONG |NPONG|5))

END OF rHE FORTRAN STATEMENTS.

BMASSI8), BNAME{8), RB(3t8), RBCRIT(8), RREL(8), CIl),
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SUBROUTINE ICAO

C

C SUBROUTINE ICAO DETERMINES THE ATMOSPHERIC TEMPERATURE_ PRESSURE, AND

C DENSITY AS A FUNCTION OF ALTITUDE ABOVE AN OBLATE EARTH IN ACCORDANCE WITH

C NACA 1235 AND U.S. EXTENSION TO THE ICAO STANDARD ATMOSPHERE. A SHORT SAP

C PROGRAM FOLLOWS ICAO wHICH PROVIDES A MEANS OF LOADING DATA INTO MACHINE.

C IT MUST BE LOADED DIRECTLY AFTER ICAD. IF THE LENGTH OF ICAD IS CHANGED,

C THE DATA MUST BE RELOCATED.

C

C R IS DISTANCE TO CENTER DF EARTH IN METERS.

C ALT IS VEHICLE ALTITUDE ABOVE AN ELLIPTIC EARTH IN METERS.

C GEO H IS THE GRAVITATIONAL POTENTIAL tN METERS.

C TABLE H IS METERS OF ALTITUDE FROM THE EARTHS SURFACE AND IS

C THE ARGUMENT OF ATMOSPHERE PROPERTY TABLE.

E ALH IS THE MEAN SLOPE DF THE TABLE H VS. TM CURVE AT TABLE H.

C TMR IS TM AT TABLE H.

C REF P IS THE PRESSURE IN MILLIBARS AT TABLE H.

C IM IS THE TEMPERATURE TIMES STD. MOLECULAR WEIGHT I ACTUAL

C MOLECULAR WEIGHT. DEGREES KELVIN.

C PRESS IS PRESSURE IN MILLIBARS.

C DNSITY IS DENSITY IN KILOGRAMS PER CUBIC METER.

C

COMMON C

C

DIMENSION TABLE HIII),TMRIItI, REF PItt),ALMItl{

C

EQUIVALENCE

2I GEO H,CI665)Iwl PRESS+CI466|),l TM,CI467)),(DNSITV,CI4601)t

3I TABLT,CI252))p( ALT,C(463)],( R,CK4t*2)),( Z,CIt3T)I,

41TABLE HII2),TMR)t(TABLE H(23ItALH),IIABLE HI34),REF Pl

C

ALT = R-6356783.2BfSQRTF{.gg33065TB3+,OO669342168S(Z/R)weZ)

GEO H = ALTIII.O + ALTI635676b. OI

C

C FIND THE GEOPOTENTIAL HEIGHT IN A TABLE OF BASE DATA. DATA ARE

C ARRANGED IN DECENDING GED H WITH TEN REGIONS, AN ttTH IS GIVEN

C FOR EXTRAPOLATION. ABOVE THAT, PRESSURE AND DENSITY ARE SEI =O.

S LXO K,IKI

t IF (K-Ill 2,6,6

2 IF (GEO H - TABLE HIK+II) 5,3,3

3 K = K+l

GO TO 1

6K=K-I

5 IF (K| 7,7_b

6 H INC = GEO H -TABLE H(KI

IF (H INC) t*,B,B

7K=I

8 GO TO (9,1t,g,tt,9,tl,9,9,9,9,12l,K

C

C CONTROL CONES HERE FOR NONISOTHE_MAL LAYERS

g TM = TMRIK| + ALMIK),H INC

PRESS= REF PIK}*(EXPFII.D3416475/ALM{K))*LDGF(TMR|K)/TM)|)

I0 ONSITY = PRESSI(Z.BTO4,TM)

GO TO 13

C

C CONTROL COMES HERE FOR ISOTHERMAL LAYERS

It TH = T_R{K)

PRESS= REF PIK)-EXPFI-O.O3416475-H INC/TMRIK))

GO TO tO

C

C CONTROL COMES HERE FOR EXTREME ALTITUDES

I2 PRESS = 0.0

ONSITY = O,O

TM = 2000.

t3 RETURN

END OF THE FORTRAN STATEMENTS.

AL

A2

A3

At,

KEM THIS IS THE SAP PROGRAM WHICH LOADS ICAO DATA INTO MACHINE.

REM THE 170 IN DRG tTO WAS FOUND BY SUBTRACTING 10 FROM THE DEC LOCATION

REM OF REF P {FROM SAP LISTING UF ICAO, THIS WAS FOUND TO BE t80).

KEN THUS, IBO-tO=tTO.

REM

REM A1 IS REF Pill3

REH A2 IS ALMKIt}

REM A3 IS THRIll)

REM A4 IS TABLE fl(tII

REM

ORG 170

REL

DEC I.OIE-8,L.477E-B,b.tgE-7, t._StE-5,t.815E-3,2.452E-2,5.832E-I

DEC t.2044t24.BB6=226.32,1013.25

DEC O.OtO.OOOS,0.OOSBtO.OttO.O35,0.O,-O.OO39tO.OlO.O03,0.O

DEC -0.0065

DEC O.O,i537.Bb,BIZ.86,322.Bb_tgB.B&,Igb. BB,282._6,282.66,216.66

DEC 2tb.66,288.[6

DEC 3000000,O,300000.O,175000°O,126000.O,90000.OtT50OO.O,5300D.O

DEC 47000.O,25000.O,ItOO0.O,O.O

REM END OF THE SAP STATEMENTS. "'+.+...
1END
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SUBROUTINE THRUST

THIS ROUTINE COMPUTES XtY,Z THRUST ACCELERATIONS. THE THRUST VECTOR IS

ASSUMED COINCIDENT WITH THE LONGITdNDINAL AXIS OF THE VEHICLE, WHICH IS

ORIENTED TO THE RELATIVE WIND VELOCITY BY THE ANGLE OF ATTACK [ALPHAI AND

THE ROLL ANGLE (BETAI. ALPHA IS ASSUMED TO BE A QUADRATIC FUNCTION OF TIME

WHEREAS BETA IS ASSUMED TO BE CONSTANT.

REVOLV IS THE EARTHS ROTATION RATE IN RADIANS/SEC {7.292[lSBSE-5I AND THE

FACTOR d5899345g2.= 2''33 IS REMUVED TO PREVENT OVERFLOW.

COMMON C

DIMENSION FORCE [3), PARE3), C(30I,VATMI3),P(3I,AQ(SItIND(3)

EQUIVALENCE ( SIMP,C( 5)l,( FLOW,C( 33]),( FORCE,C(525)I,

2( RMASS,C(13I)),( PAR,C(798)I,( RSQRDpC(SbTIIt|CDSBET,C(S99)It

3( VX,C(472)),( IND,C(79I)},[ X,C(2OOI)t(SINALF,CIS691),

_( VY,C(473)],I TIMEtC(I3B)],I YtC(20|))t[SINBETtC(568)),

5( VZ,CI474II,ICOSALFtC(575)],( Z,CI202}),IREVDLV,C(2SOII,

6IALPHA ,C(564)),( PMAGN,C(574)),( P tCISlX|),(RATMOStC(248)),

I( BETAtC(S6S)I,(VQSQRDtE{ABI)I,{ R,EI442))t( VATM,C(477)It

8! VQ,C(ABO))*( PUSH,C( 34)1

SINBEF = SINF(BETAI

COSBET = CDSFIBEFA)

VATMIII=VX+REVOLVeY

VATMI2)=VY-REVDLV*X

VATMI3|=VZ

CALL CONVTIIVATM,AQ)

ALPHA = QUADITIME,I)/ST.2957795I

SINALF=SINF(ALPHA)

COSALF=COSF(ALPHA)

00 I JI=I,3

JZ=INDIJI)

J3=INDIJZI

I PIJI) = IVATM|J2)eAQIJ3)-VATMIJ3)*AQIJ2I)/8589934572.

PMAGN= SQRTF(PIII*PIII*P(2)*PI2I*PI3)'P(3)I

TDPMAG = PUSH/RMASS/PMAGN

R4 = SINBET/VQ

R5 COSALFIAQ(AI

DO Z JI=[,3

J2=IND[JI}

J3=]NDIJ2)

PARIJI)=PIJZIeVATM(J3]-PIJ3]*VAFMIJ2I

2 FOKCE(JI) = TDPMAG*ISINALFQ(COSBET*PIJI]+RA*PAR(JI)I-RS=(P[J2)eAQ

l (J3I-P(J3IeAQ(JZ)))

RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE AERO

C

C SUBROUTINE AERD COMPUTES THE LIFE AND DRAG ACCELERATIONS. AS IN SUBROUT-

C INE THRUST, THESE VECTORS ARE REFERENCED TO THE RELATIVE WIND VELOCITY.

C COEFFICIENTS OF LIFT, INDUCED DRAG, AND DRAG AT ZERO ANGLE OF ATTACK ARE

C ASSUMED TO BE FUNCTIONS OF MACH NUMBER AND ANGLE OF ATTACK. TABLES OF

C CDIICL**2, CL/SINIALPHA), AND COO ARE ASSUMED AS FITTED QUADRATIC EQUAT-

E IONS IN THE COEFN ARRAY. GASFAC IS THE SQRTF(SPECIFIC HEAT RATIO * STAND-

C ARD ACCELERATION OF GRAVITY * UNIVERSAL GAS CONSTANTI. FOR EARTHp GASFAC=

C 20.0648BI (METERS / SEE / KELVIN DEGREE).

C

COMMON C

C

DIMENSION C IT] ,VATMI3) ,P(3) ,XIFT{ 3),DRAG(3I,PAR(3I

C

EQUIVALENCE

I( QVAL,C{796I I _( AREA_C( 35]],( TIME, C(|3B) ), (DNSITYt L'.(460) ) p

Z( BETA,CIS65I),I PMAGNoC{574) I p( TM,C(467) ) _ (SINALF,C (569) } ,

3( PHIP,C(A62) ) , (VQSQRD ,C I48[) ) t ( VU, C(ABO) ), ISINBET,C(56B) ] ,

4| XIFT,CI528)) ,( RMASS,C[ I3].} I , ( R,C(442)],( CDI,C(795)},

St DRAG,CI531I) tI VATM,CI47T}) t ( PtC( 57] | ) v (GASFACtC(_58) I ,

b(COSALF,C[575)]_.( VMACH,C|47II),( ALPHA,CIS64|),ICOSBET,C(599|I,

7( PARpCITOB)) pI CDoCIT97| Ip( CL,CI796))

C

OVAL=D. S'DNSI TY*VOSORD-AREA/RMASS

VMACH= SQR TF ( VQ SQRD/TM )/ GASF AC

C

C COMPUTE THE X,Y,Z COMPONENTS OF LIFT.

IF (ALPHA) 2,[,2

I CL = 0.0

CDi=O.O

XIFT|I) = O.

XIFT(2) = O.

XIFT|3) = O.

GO TO _,

2 CL = QUADIVMACH,ZIeSINALF

00 3 K=I,3

3 XIFTIK| = OVAL*ELIPMAGNeISINBET*PAR[KIIVQ÷COSBET.P(K))

COl =QUAD (VMACH, 3) ,CL*CL
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COMPUTE THE X,Y,Z COMPONENTS OF DRAG.

4 CD = CDI÷QUAD(VMACH,4)

DO 5 K=I,3
5 DRAG[K) = -CD*QVAL*VATMIKI/VQ

RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE OBLATE

C

C THIS SUBROUTINE COMPUTES THE OBLATENESS ACCELERATIONS (OBLAT) DUE TO AN

C AXIALLY SYMMETRIC EARTH. THE 2NO AND 6TH SPHERICAL HARMONIC COEFF. ARE

C OBLATJ AND OBLATK, RESPECTIVELY. OBLAIJI OBLATX, RESQRDt AND THE CONSTANTS

C CON ARE LOADED BY STDATA.

C

COMMON C

C

DIMENSION RB(3}, OBLAT{3}, CON(9)
C

EQUIVALENCE

I( CDN,CIS7b)),( RtCI462)It( GK2M,CI4bO))p{ RSQRD,C(567)I,

2(RESQRD,C( 4O)),(OBLATJ,C( 38)I,(OBLATK,CI 39)),( RB,C(2OO])f

3(OBLAT,CI534))
C

ZZDVR2=RBI3)*RBI3I/RSQRO

REDVR=RESQRD/RSQRD

00 l K=I,3

I OBLATIKI=RB(K)*REOVR*GK2M*5.OIR/RSQKD*{OBLATJ*(Z2OVR2-_ON(K))*
l OBLATK*REDVR*(Z2DVRZ*ICON(K+3I-Z.I*Z2DVRZ)-CON|K+6)]I

RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE EPHMRS

C

C SUBROUTINE EPHMRS IS CALLED TO COMPUTE THE POSITIONS OF THE PERTURBING

C BODIES RELATIVE TO THE VEHICLE AND, FROM THESE, THEIR PERTURBING ACCELERA-

C TIONS UPON THE VEHICLE. OCCASIDNALLY THIS ROUTINE IS CALLED FOR THE PURPOSE

C OF TRANSLATING IHE ORIGIN IN WHICH CASE [TRSFER=[) THE RELATIVE VELOCITIES

C ARE ALSO CALCULATED. IF A BODYS POSITION IS TO BE COMPUTED FROM AN ELLIPTIC

C APPRDXIMATION SUBROUTINE ELIPSE IS CALLED. OTHERWISE, THE POSITION WILL BE

C CALCULATED IN EPHMRS FROM THE PRECISION TAPE EPHEMERIS. THE DO 19 LOOP

C ENCOMPASSES ALMOST THE ENTIRE EPHMRS SUBROUTINE AND ,IN EFFECT, ELIPSE TO0.
C

COMMON C

C

DIMENSION QXIO),IBODY(BI,EFMRS(7I,XPIO,B),RB(3,B),RRELI8),NEFMRS

I [8),TDATA(I8,7),CF(6,3,7),TIMITI,TDEL(7),BMASS(BI,XDOT(3,8),C(I)

C

EQUIVALENCE {QX ,C(522)|,( IBODY,CI425)I,|MBODYS,CI441))s

I(EFMRS ,C(410]),IXP ,C(17bII,IRB ,C(20O)),(RREL tC(442I),

2(NEFMRS,CI433)I,ITRSFER,C(ZZ4))IITABL TtCIZ52)I,(DTOFFJ,C( 31ll,
3(TDATA ,C(27bI)t(CF ,C(276II,(TIM ,C(5BS)),ITDEL ,C(592)1,
4(BMASS tCI417)I,(SQRDK ,C(468)I,|XDO[ ,C(498)),(LENGTH,EI257)|,
S( AU,C(661]],( IBF,FIB)

C

C PART 2. SET INDEXS, FIND POSITION IF ELLIPSE IS USED (NEFMRS = 20 OR UP).

DO 19 JB=I,MBODYS

JB[ = JB÷[

IBF = IBODYIJB|)

IB = XABSFIIBFI

IF (NEFMRS(JB)-2O) 2,2,1
I CALL ELIPSE {JBI)

IF (TRSFERI 1Z,IZ,IT

C

C PART 3. TAPE EPHEMERIS IS TO BE USED. FIND DIFFERENCE COT] BETWEEN

C CURRENT PROBLEM TIME (DIOFFJ+TABLI) AND MIDPOINT TIME ITIM) OF CURRENTLY

C STORED TAPE DATA. IHEN SEE IF CURRENT DATA IS OKAY. TOLL = TIME INTERVAL

C ON EITHER SIDE OF TIM FOR WHICH CURRENT DATA IS GOOD.

2 DT = TABL T - (TIMIJB) -DTOFFJ!

IF {ABSF(DT]-TDELIJ_)) iO,IO,3

C

C PART 4A. CURRENT DATA NOT OKAY. READ IN NEXT DATA SET. IF DT IS -,

C BACK UP THE TAPE 2 RECORDS BEFORE READING.

3 IF (DT} 6,5,5

4 BACKSPACE 3
BACKSPACE 3

5 READ TAPE 3, (CIJ), J=805I,BOTI)
LYE = 8051
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pART _B- IF THIS OAT_ IS FOR A BODY IN THE BNAME LISTm STORE IT.
(IF NOT STORED, dE MIGHT HAVE TO RETURN FOR |T,) IF ELLIPSE DATA IS
PROVIDED FOR THE BODY FOUND. BY-PASS THE TAPE DATA AND READ IN NEXT SET.

DO 7 d = I.MBODYS
CLA C(LYEI
CAS EFMRS[JI

IRA *T
IRA *6
TRA *T

IF [NEFMRSIJI-20) B,Bt3

CONTINUE
GO TO 3

PART hC. MOVE THE DATA INTO PLACE AND THEN GO BACK AND SEE IF IT IS OKAY.

TIM(J] = C(LYE+I)
TDEL(J} = C(LYE÷21

DO 9 JJ=l,18
TDATA|JJtJ) = C(JJ÷805])
CONTINUE

GO TO 2

PARr 5. CURRENT OAT& IS OKAY. GET POSITION FROM THE POLONOMIAL

P = A + BX + CX**2 ÷ DX**$ ÷ EX**_ ÷ FXe*5.

I0 O0 I] K=1,3
XP[KpJB1] = CF(ItK,JB)
DO II KT=2.6
XPIK,JBI] = XP[KwJBII* DT ÷CFIKT_K_J8)

!1 CONTINUE

IF (TRSFERI 12.12.15
C
C PART 6. COMPUTE DISTANCE FROM REFERENCE AND FROM ROCKET •

12 DO 13 K=1,3
XPIK_JB1) = KPIKtIB} ÷XP(KtJB11*SIGNF(AUtFIB)

13 RB(KzJBI)= RB[Kjl) - XPiK,JB1)

C
C PART 7. COMPUTE PERTJRBIN_ A_CELERATIONS (qXl. _19_30_=2--22 IS REMOVED

C TO PREVENT OVERFLOW. 20kB=2-,11 AND B58993_592=2,'33 RESTORE THE SCALE.
PRSQRD = {RBII,JB1)**2 ÷ RB[2,JB1)**2 ÷ RBI3,JBII*,2)/klg_]Ok.

RRELL = SQRTFIPRSQRD)

RSQRD = { XPII.JBi)**2 + XP(2,JBl)-*2 ÷ XPI$_JBI),*2)/WI9W3OW.
RCUBE = RSQRO • SQRTF(R SQRO)

PRCUBE = PRSQRO * RRELL

RRELIJB1) = RRELL* 20_B.

DO 14 K=l,3
ik QX|KI=SQRDK * BMASS{JBI} * ((XPIK_JB1)/RCUBE) + RBIK,JBI)IPRCUBE)/

I 8589954592. + QXIK)

GO TO 19
C
C PART B. COMPUTE VELOCITY FROM V = B + 2CX ÷ 30X*-2 ÷ WEXi,3 ÷ 5FXe*k
C AND FROM REFERENCE BODY VELOCITY (XDOT[IBII.

15 DO 16 K=I,3
XOOTIK.JBl) = O.
DO 16 KT=I_5

16 XDOT(KtJBI) = |XDOTIK,JBI) • OT ÷ CFIKTsK.JB) -FLOATF[-KT+6| )

17 DO 1B K=i.3
18 XDOT(K.JBI| = XDOIIKtIB) ÷ XOOT(KmJB1)*S[GNFiAUIB6400. OtFIBI

GO TO 12
19 CONTINUE

CALL DUMP (_,C,LENGIN)

RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE ELIPSE |JBI)

C

C THIS SUBROUTINE IS CALLED FROM EPHHRS TO COMPUTE THE POSITION OF A BODY

C USING APPROXIMATE ELLIPTIC DATA. THE VELOCITY IS ALSO COMPUTED IF THE

C ORIGIN IS BEIN; TRANSLATED (TRSFER=I.0). THE ELLIPSE DATA IS READ FROM

C INPUT CARDS AN3 ORGANIZED IW SUBROUTINE ORDER. TPD IS TIME SINCE PERIHELION

C PASSAGE, ZM IS MEAN ANOMALY, U IS ECCENTRI_ ANOMALY, E IS ECCENTRICITY.

C

COMMON C

C

DIMENSION

I XP (3_8)t XDOT [3t81_ P [11,
2 E (11, SINCL 111. SNODE (11,
5 SOqEGA (1Iv PPJD (1). PPFRA_ (lit

k PERIOD Ill, CINCL (lit CNDDE (I),

5 COMEGA 11)
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EQUIVALENCE

L( XDOT,C(498)),(DTOFFJ,C{ 31)),(COMEGA, C(2B4)),( CNODE,C(285}},

2( P,C(276)),( E,C(277)I,(SOMEGA,C(218))t{ SNODE,C{279)},

3( SINCL,C(280)),( PPJD,C(281)},(PPFRAC,C(262))t(PERIDD,C(28]}),

4{ CONSU,C( 36)),( TABLTtC(252)),( XP,C(I/6)),|TRSFER,C(224}),

5( CINCL,C(286))

K = LB*IJBI-2)*I

TPD = (DTOFFJ-PPJD(K))+(TABLT-PPFRAC(K)}

ZN = 6.28318533/PERIOD(K}

ZM = ZNeMODF(TPD,PERIODIK})

GET THE SINE(SINTRU) AND THE CDSI_E {CUSTRU) OF THE TRUL ANOMALY

BY ITERATING KEPLERS EQUATION. THEN COMPUTE X,Y,Z (XP).

U = ZMeE{K)mSINF{ZM)+O.5*E(K)*.2*SINF{2.0*ZM)

DO i J=_,LO

DELM = ZM-U÷E(K},SINFIUI

DELU = DELM/{I.-E{K)*COSF(U})

U = U+DELU

IF (ABSF(DELM)-CONSU) 2,2,1

CONTINUE

COSU = COSF{U}

DENOM = I.-E{K}*COSU

COSTRU = (COSU-E(K))/DENOM

R = P(K)/|I.+E{K)*COSTRU)

SINTRU=SwRTF|I.-E(K)**2)*SINFIU)/OENOM

SINV = SINTRU*COMEGA|K)÷COSTRU*SOMEGA(K)

CUSv= CUSTRU*COMEGAIK)-SINTRU*SOMEGAIK)

XP(L,JB[) = R*ICOSVwCNODE(K)-SINV,SNODE(K)*CINCL(K))

XP(2,JUI) = R*ICOSV*SNODEIK)÷SINV.CNODEIK)*CINCL(K}}

XP(3,JBL) = R-SINV*SINCL{K)

IF (TRSFER) 3,4,3

COMPUTE [HE VELOCITIES FOR TRANSFER OF ORIGIN.

3 EX = _(K).SOMEGA(K}÷SINV

FX = E{K)*COMEGA|K}÷COSV

CFACT = ZN*P(K)/(SQRTFI{L.O-E(K)t*2)*tJ))

AX = EXmCNOOE(K)÷FX*SNODE(K)*CINCLIK)

BX = FX*CNOOE(K}*CINCL|K)-EX*SNODE(K)

XDOT(L,JB[) = -AX*CFACT

XDOTI2,JBL} = BX*CFACT

XDOT(3,JBI) = Fx*CFACT*SINCL{KI

4 RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE CONVTL|VX,A)

THIS ROUTINE COMPUTES -- (l)

(2)

(3)

|4)

(5)

ANGULAR MOMENTUM, A{4)

ANGULAR MOMENTUM SQUARED, A(5)

X,Y,Z COMPONENrS OF ANG. MOM.,

VELDCITYt VX{4)

VELOCITY SQUARED, VX(5)

COMMON C

DIMENSION A(5),VX{5},X|3},IND(3I

EQUIVALENCE (X,CI2DO)),{IND,C{791}}

DO [ J[=l,3

J2=INDIJ[)

J3=IND(J2I

A(J3)=X(JII*VX(J2I-X(J2)*VX(J[}

A(5}=A(L)*A(L)+A(2)*A(2)÷A(3)*A(3}

A{4)=SQRTF(A|5))

VX(5}=VX(L)*VX(L)+VX(2}*VX(2)÷VX(3)*VX(3)

VXI4)=SQRTF(VX{5))

RETURN

END OF THE FORTRAN STATEMENTS.

A(L},A{2),A(3}
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SUBROUTINE CONVT2

THIS ROUTINE CONVERTS RECTANGULAR COORDINATES INTO ORBIT ELEMENTS.

RECTANGULAR COORDINATES- POSITION CUMPONENIS,X,AND VELOCIIY COMPONENTS,VX.

URBIT ELEMENTS - (L) ECCENTRICITY,E (4) INCLINAIION, ZINCL

(2) ARG. OF PERICENTLR,OMEGA (5) MEAN AMOMALY,ZMA

I3)LONG. OF ASCENDING NODE,ZNODE I6) SLMILATUS RECTUM,P

COMMON C

DIMENSION C(1),VX(3),XI3)

EQUIVALENCE

LI A2,C(559)

2( A3,C(560)

3[ A[,C{56L)

4[ P,C(232)

5{ R,CIA_2)

b{ E,C(227)

,( OMEGA,C(228)

,( ZNODE,C(229)

,( ZINCL,C(230)

,{ ZMA,C(23L)

,[SINTRU,C(492)

,( A,C(562)

,( ASQRD,C(563)),I VX,C{4/2)I,

,( V,C{4?5)),( GK2M,C{4b9)},

,( VSQRD,CIAt6)),( EPAR,C(245)),

,( TRU,C(k_3)),(TRSFER,C(224)),

,(CI)STRU,C{A93)),( XtC(200)|o

P=ASQRD/GK2M

R = SQRTF(X(L)I*2÷X(2)iI2÷X(3}.*2I

TRU=ARCTANIA/GK2Ma(x(L)wVX(1)+Xi2)*VX{2)+X{3)mVX(3}),P-R)

IF {A2) 2,[,2

I ZNODE = O.O

GO TO 3

Z ZNODE = ARC[AN{A2,-A3)

3 ZINCL = ARCTANISQRTFIA2.*2÷A3.*2I,A_}

SNOOE = SINF(ZNODE)

CNODE = COSF(ZNOOE)

XTWOD = X(I)mCNOOE÷X(2)*SNODE

YIWOD = XI])*SINF(ZINCL) ÷ COSF(ZINCL} *[XI2)*CNODE-x(1)*SNODE)

OMEGA=ARCTAN(YTwUD,XTWOD)-TRU

E = SURIFIABSF(I.÷P*IVSQRD/GK2M-2./R}))

EPONE = SQRTF(L.÷E)

E2ML = L.-EmE

EPAR = SQRTF(ABSF(E2ML))

SINTRU=SINF(TRU)

COSTRU=COSF(TRU)

EPAS = SQRTF(ABSFll.-E})*SINTRU/II.O*COSTRU)

ETHETA=E*SINTRU/([.O÷E*COSTRu)*EPAR

4 IF (E2MI) 5,6,6

5 ZMA = LOGF((EPONE+EPAS)/(EPONE-EPAS)) EIHETA

GO _0 7

6 ZMA = 2.0*ARCTAN(EPAS_EPONE) - ETHETA

7 RETURN

END OF THE FORTRAN STATEMENTS.

FUNCTION ARCTAN (Y,X)

THE FORTRAN IT LIBRARY ATANF(÷ OR - Z=rAN(THETA)) USES A SINGLE

ARGUMENT wITH ITS SIGN TO GIVE THETA IN THE FIRST (÷Z) OR FOURTH

{-Z) QUADRANT. \

THE ARCTAN FUNCTION MAY BE USED IF ÷ OR - Z IS DERIVED FROM A

FRACTION SO THAT ARC[AN (Y,X) = TAN-L ((÷OR-Y=SIN(THETA))/(÷OR-X=

COS(THETA)}). THUS THE ARCTAN IY,X) GIVES THETA IN ITS PROPER

QUADRANT FROM -|80 DEGREES TO ÷180 DEGREES.

IF IX} 2,1,2

I ARCTAN=SIGNF(I.STOTg632,Y)

GO TO 4

2 ARCTAN=ATANF(Y/X)

IF{X) 3,L,4

3 ARCTAN=ARCTAN÷SIGNFI3.14159265,Y)

4 RETURN

END OF THE FORTRAN STATEMENTS. @lJ@@@@J
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SUBROUTINE OUTPUT

THIS IS THE ROUTINE WHICH FORMS THE BASIC DATA OUTPUT. BOTH ORBIT ELEM-

ENTS AND RECTANGULAR COORDINATES ARE OUTPUTTED. IF THE OBJECT IS NOT WITH

IN AN ATMOSPHERE (PRESS=O.), ONE LINE OF DATA IS DELETED. LIKEWISE,

ONLY THOSE PERTURBING BODIES PRESENT HAVE THEIR DISTANCES OUTPUTTED.

COMMON C

DIMENSION

[ RREL (8), ORBELS (6), C (II,

2 BNAME (B), RB(3,8}, DIRCOS(3wB)p

3 VAR (4)

EQUIVALENCE

i( TABLT,C(252)),(

2( E,C 227)

3( ZMA,C 23I]

4{ V,C 475)

5I RREL,C 442)
6(STEPGOtC lOl)

7(DIRCOS,C 176)

8(MBODYS,C(441)

9(SINTRU,C(492)

EQUIVALENCE

[(

2(

TIME,C(138}I,iSTEPNO,CIlOZ)),(BNAME ,C(402)l,

,( OMEGA,C(228)), ZNODE,C{229)},( ZINCL,EI230)),

,( P,C[232)), RB,C{200)),[ TRU,E(483I),

,( VX,C{472)), VY,C(473)),{ VZ,C(474)),

,( X,C(2OO)), Y,C(201}),( Z,C(2O2)],

,( DELT,C(256|), RMASS,C{131)),[ ALPHA,C{564}),

,(ORBELS,CIZ2T)), IMODE,C( 28)),( PRESS,C{466)),

,(NBDDYS,C(48g)), DTOFFJ,C( 31)),( A,C(562)),

,[COSTRU,C(493)}, RCVS,CI490)),(LENGTH,C(257))

ALT,C(463)),{ VATMI,C(477)),( VATM2,C(478))_( VATM3,CI4T9|),

VQ,CI4BO)),{ PSI,C(462})

PATHANFIVX,VY,VZ) = ATANF((X*VX+Y=VY+Z*VZ}/A)*57.29577951

DAYJ=(DTOFFJ-2.4EB)eTABLT

ALPHA1 = ALPHA*57.2957795[

REV = REVS ÷ ARCTAN(-Y,-X)/b.28318532 + .5

CALL CONVTl(VX,C[559))

LXD IMODE, (IMODE|

GO TO [2,1,I),IMODE

I CODE=BHRECTAN

CALL CONVT 2

GO TO 4

2 DO 3 K=l,b

30RBELSIK) = CIK+131)

CODE=SHORBIT

TRU=ARCTAN(SINTRU,CUSTRU)

4 PSl = PATHANFIVX,VY,VZ)

WRITE OUTPUT TAPE 6, [I,STEPGO,STEPNO,E,OMEGA,V,RREL|I),BNAME(I),

[CODE,IMODE,TIMEtP,TRU,VX,X,RMASS,DAYJ,ZMA,ZNODE,VY,Y,REV,ALPHAI,

2PSI,ZINCL,VZ,Z,DELT

IF WITHIN AN ATMOSPHERE COMPUTE DRAG, LIFT, G, ETC., AND PRINT EXTRA LINE.

IF (PRESS) 5,7,5

J=O

DO 6 I=1,4

J = J+3

VAR([) = SQRTF(CIJ+525)**2+CIJ+526)..2+C(J÷527)**Z}*RMASS/9.80665

G = VAR(4)IRMASS

CALL CONVT1{VATM[,C(559))

PSI = PATHANF(VATMI,VATM2,VATM3)

WRITE OUTPUT TAPE 6,I2,ALT,PSI,VARI2),VQ,G,VAR([)

IF PERTURBATING BODIES ARE PRESENT, FIND THEIR DISTANCES AND PRINT THEM.

7 IF(MBODYS) B,IO,B

8 DO g J=2,NBODYS

DO 9 K=I,3
g DIRCOS{K,J) = -RB(K,J)IRREL(J)

WR_tTE.OUTPUT TAPE 6,13,

I(BNAME(J),RREL(J),DIRCOSII,J),DIRCOS(2,J),DIRCOS{3,JI,J=2,NBODYS)

[0 CALL DUMP{2,C,LENGTH)

RETURN

11FORMAT(bHOSTEP=F5.,2H *F4.,4X,13HECCENTRICIIY=IPGI5.8, TH OMEGA=GI5

I.BI4H V=GIS.B,3H R=GIS.B,7H REFER=A6,1X,A6,12/BH T]ME=[PG[4.7,I_

2H SEMILATUS R.=G[5.8,TH TRU A=GIS.8,4H VX=GIS.B,3H X=G15.8,TH RMAS

3S=GI5.B/9H JDAY= 240PFIO.4,15H MEAN ANOMALY=IPGI5.B,TH NODE=G[5.

48,4H VY=GIS.8,3H Y=GI5.Q,7H REVS.=GlS.B/6H ALFA=G14.7,14H PATH A

5NGLE=GIS.B,TH INCL=GLS.B,4H VZ=GI5.B,3H Z=GIS.B,TH DELT=GIS.8)

12 FORMAT(bH ALT.=IPGI4.7,14H R PATH ANGLE=GIS.B,7H DRAG=GIS.B,4H VR

I=GI5.B,3H G=GI5.B,IH LIFT=GI5.B)

13 FORMAT(2(IX,AB,3H R=IPGI4.7,OP3FIO.6,EIX))

END OF THE FORTRAN STATEMENTS.
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SUBROUTINE DUMP (IDENTtDATA,LENGTH)

THIS SUBROUTINE WILL DUMP IN G TYPE FORMAT A VARIABLE NUMBER OF CONSECUTIVE

WORDS, BEGINNING AT 4 SPECIFIED LO3ATION. DUMP OCCURS WHEN THE FOLLOWING

CONDITIONS ARE SATISFIED

A) IDENTIFICATION NUMBER (IDENT) = AN INPUT DUMP NUMBER [NDUMP).

B} DUMP NUMBER IDENT HAS BEEN SKIPED NSKIP TIMES.

C) TOTAL NUMBER {TEST) OF DESIRED DUMPS HAS NOT BEEN EXCEEDED. (IF TEST

IS NEGATIVE, DUMP ALWAYS OCCURS).

NOTE- IDENT = IDENTIFICATION NUMBER OF DUMP

DATA = STARTING LOCATION OF DUMP

LENGTH = NUMBER OF CONSECUTIVE WORDS TO BE DUMPED.

ARE NOT DUMPED)

{ZEROES COUNT BUT

COMMON C

DIMENSION

I DAIA (I)_ 16 (6), DATA6 (6),

2 NSKIPN {4), NDUMP (4It NSKIP {4)

EQUIVALENCE

I( TEST,C{ I)),1 NDUMP,C(268)I,{ NSKIP,C(272))

PART I. TEST FOR OVERFLOW AND DIVIDE CHECK.

IF DIVIDE CHECK t,2

I ASSIGN 2 TO N

WORDI = 6HDIVIDE

WORD2 = 6H CHECK

GO TO 6

2 IF ACCUMULATOR OVERFLOW 3,4

3 ASSIGN 4 TO N

WOROI = 6HACC OV

WORD2 = 6HER FLO

GO TO 6

4 IF QUOIIENT UVERFLOW 5,8

5 ASSIGN B TO N

WORD[ = 6HMQ OVE

WORD2 = 6HR FLOW

6 WRITE OUTPUT TAPE 6,7,WORDI,WORD2,1DENT

7 FORMAT(IHO2A6,1BH IDENTIFICATION=[A}

GO TO N,(2,4,8)

PART 2. DETERMINE IF DUMP MAY OCCUR.

B IF {TEST) 15,26,9

9 00 12 I=[,4

IF (IDENT-NDUMP(1)) 12,10,12

lO IF IXABSF(NSKIP(1)I-NSKIPN(1)) 13,[3,[I

ii NSKIPNI[) = NSKIPN{I)*[

12 CONTINUE

GO TO 26

13 NSKIPN[I) = 0

IF (NSK[P{I}) 14,15,15

14 NSKIP{[) = O

PART 3. DUMP OCCURS. DUMP NON-ZERO WORDS AND THEN REDUCE IEST BY I.

15 WRITE OUTPUT TAPE 6,23,TEST,IDENT,LENGTH

K2=6

J=O

16 DO 21K=[,6
17 J = J+l

IF {J-LENGTH) 18,18t19

IB IF [DATA(J)) 20,17,20

I9 K2=K-[

IF{K2) 22,25,22

20 OATAb(K)=DATA(J)

21 16{K) = J

22 WRITE OUTPUT TAPE 6,24,(I6(KI),DATA6(KII,KI=I,K2)

23 FORMAT (12HODUMP, TEST=F6. I,18H IDENTIFICATION I$_14, 2OH, NUMBER

IOF WORDS IS, 15)

24 FORMAT {IX,14,1PGIS.8,S(IT,IPGIS°8))

GO TO 16

25 TEST = TEST-I.

Z6 RETURN

END OF THE FORTRAN STATEMENTS.
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FUNCTION QUAD IXtlCJ

THIS ROUTINE COMPUTES ANY VARIABLEt QUADt AS A QUADRATIC FUNCTION OF X.
QUAD = A ÷ BX + CXX. THERE MAY BE SEVERAL SETS OF COEFFIENTS, EACH SET

BELONGING TO A PARTICULAR REGION OF X. THE COEFN ARRAY IS ARRANGED AS --

XI,AX,BX,CI,X2,A2,B2,C2,X3pA3,B3,C3,X4, ..............

WHERE AX,BXBCI ARE THE COEFFIENTS TO BE USED FOR X BETWEEN X1 AND X2,ETC.

AND XI IS LESS THAN X2, X2 IS LESS THAN X3, X3 IS LESS THAN X4_ ETC.

IC IDENTIFIES WHICH DEPENDENT VARIABLE, QUAD, IS BEING SOUGHT.

ICCIIC) DEFINE THE STARTING LOCATIONS IN THE COEFN ARRAY FOR VARIABLES X.

COMMON C

C

DIMENSION C(IO),COEFNII90)_ICC(5)

C

EQUIVALENCE { ICC,C(23B| ),( CUEFN,C(601) )

C

I=ICC(IC)

I IF (X-COEFN(1)) 2,3,3

2 I = I-4

GO TO L

3 [F(X-CDEFN{I+4)) 5,5,4

4 I = I÷4

GO TO 3

5 QUAD = COEFN(I+L)+X*(COEFN(I*2)+X'COEFN(I+3} )

ICC( IC}=I

RETURN

C

C END OF THE FORTRAN STATEMENTS.

REM

REM

REM

REM THE LEAST SIGNIFICIANT PART.

ORG 0

PGM

PZE END+I,0,O

PZE

BCD [EXADD

PZE EXAOD

ORG 0
REL

Q1 SYN 32700
Q2 SYN 3270[
TEMP[ SYN 32702

TEMP2 SYN 32703

BCD IEXADD

EXADD CLA [,4

STA TDPX

STA TOP2

CLA 2t4
STA BOTI

STA BOT2

CLA 3,4

STA ARGI

TOPl CLA _m

ARGI FAD -*

STQ QX

BOTI

lOP2

BOT2

END

FAD mm

STQ 02
FAD Q1

SUBROUTINE EXADD (A,B,C)

THIS ROUTINE WILL ADD IN DOUBLE PRECISION A QUANTITY C TO THE DOUBLE

PRECISION VARIABLE A+8 WHERE A IS THE MOST SIGNIFICANT PART AND B IS

STQ QX

STO TEMPI

CLA QX

FAD Q2

STO TEMP2

FAD TEMP2

FAD TEMPI

STQ QL
FSB TEMP2

STO ""

STQ 02

CLA QI
FAD Q2

STO m.

IRA 4,4

REM END OF THE SAP STATEMENTS.

END
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SUBROUTINE 8KFILEIN)

C THIS ROUTINE SIMPLY BACKSPACES rAPE N ONE FILE,

C

S I CAL "1

S STP *2

M=IO-N

S BST LOpiM)

S BST lO, IN)

S 2 BST IO,(N)

S NOP

S RTB XOtiM)

S CPY DUO

S TRA t3

S TRA e_

S TRA e3

S 3 BST lOp(M)

6 RETURN

C

C END OF THE FORTRAN STATEMENTS.

SPCO

PING

SELPGM

PONG

SPC|

SPC2

SPC3

SPC_

SPC5

SPCb

SPCT

SPC8

ERR[

ERR2

ERR

END

T

COMMON

REM

REM

REM

REM

ORG

PGM

PZE

PZE

BCD

PZE

BED

PIE

BCO

PZE

REL

ORG

PZE

TSX

CLA

CLA

STA

CLA

SSP

TZE

SUB

TPL

ADD

ARS

STO

SUBROUTINE PONGIN)

THIS ROUTINE FINDS THE SEGMENT N ON TAPE ANO LOADS IT IN THE CORE,

IF SEGMENT N IS ALREADY IN THE COMEt CONTROL IS SIHPLY SWITCHED TO

THE BEGINNING OF SEGMENT N.

ENO+I,OmO

-I

ISELPGH

SELPGM

IPING

PING

IPONG

PONG

DEC IS TOTAL RECORDS, AODRS IS THIS RECORD, SET BY PING-PONG.

SPC¢,I

1,4

eel

el

PING

SPCO

ERR

SPCO

18

COMMON

PROGRAM NUHBER TOO SHALL.

COMPARE WITH TOTAL

PROGRAM NUMBER TOO LARGE.

DESIRED NUMBER IN ADDRESS.

CLA SPCO

ADM SPCT

ANA SPC8

SUB COMMON

PAX ,1

TXL SPCB,I,O

TXH SPCl,l,1

PXO

IRA SELPGM

TNI SPC2

8ST T

TRA SPC3

RTB T

TIX SPCI,I,I

RTB T

CPY O

TRA SPCS

MEW T

TRA SPC6

CAL O

ANA SPCB

SUB CDNHON

TXH SPCT, IeI

TIE SPCT

HPR ItS

TRA SPC6

CPY [

TRA O

PIE -I

BED IOPONG

BCD IFAIL,

WTD 6

CPY ERR1

CPY ERR2

IDD

RDR 1

CPV 0

CPY [

TRA 0

EQU 2

SYN -L

REH

END

PRESENT POSITION IN ADDRESS.

ROD ONE IN ADDRESS.

SAVE ADDRESS ONLY.

NUMBER OF RECORDS TO HOVE.

PROPERLY POSITIONED IF ZERO.

CORE LOAD OK IF ONE.

GO TO THE TRANSFER TO BEGINNING OF PROGRAM.

ADVANCE TAPE.

BACKSPACE TAPE.

KEEP MOVING TAPE.

RIGHT POSITION NOW SO LOAD IT.

EOFt NEXT IN SEQUENCE IS FIRST RECORD.

FALSE EOR.

ADDRESS OF FIRST WORD IS REQUIRED NUNBER.

DESIRED NUMBER.

BYPASS CHECK ON SELPGM ENTRY,

PROPERLY FOUND,

IMPROPER POSITIONING DUE TO MACHINE ERROR.

GO TO LOADER.

IS ONEA.

THIS IS THE ERROR PRINTOUT ROUTINE.

CALL MONITOR,

END OF THE SAP STATEMENTS.

tfeltll;
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TA_E If. - PROORAM CONTROL pAE_TERS

Posslble Values Settln_ Description of uBe

0.0 or 1.0 ynternal Normally equal to 0.0, set equal to 1.0 In SU_OUTINE EQUATE when Kepler's equation

fails to converge for e > 1, and then used to control branching in MAIN 2 for

IMODE = 3.

Control COMMON

varlables location

ASYMPT 545

ATMN 26

CLEAR 19

CONSTU 18

00NSU _6

_J 23
_ 37

pILE 2_9

ICC(5) 238-242

IMODE 28

LI_O_ 257

MODOUT 103

_Dtr_p(_) s68-2_d

Any ALF coded body

name

Any value

>0, -10 -8 to ~10 -2

Pad!an

>0, -10 -8 to -10 -2

radlan

Any number of seconds

Any ntu_ber

Any plus number

Input

Input

STDATA: lO -6

Input

STDATA: I0 "6

Input

Input

STDATA: 10 -6

Input

STDATA: 5×I0 -6

Contains name of body which is to have an atmosphere. Causes SU_ROUTTNEAER0 to be

called in SUBROUTINE EQUATE if object IB within that atmosphere.

If CLEAR - 0, SUBROUTINE STDATA Is called from MAIN I; I f CLEAR _ O,

SUBROUTINE STDATA is bypassed. ZTDATA clears C(4) to C(1300).

Controls branching in _JBEOUTINE EQUATE, which determines how accurate eccentric

anomaly will be computed by Kepler's equation.

Sdmllar to CONSTU except that it is used in SUBROUT_{E _ITSE for perturbing bodies

Instead of object.

if MODOUT - 2 or 3, output is given only st intervals of DELMAX.

Desired error value. Error control predicts step size such that E2 - EKEF. If

EREF < 0, it will be treated as +EREF; however, error data will be recorded and

printed.

Maximum error value that allows step In question to be passed as good step.

Input If E2 > ERLIMT, step Is recomputed wlth smaller step size.

Posltlve number of STDATA: 0.oi If eccentricity falls in region I _ ETOL and integration is In orbit elements,

order 0.01 integration mode is awltched to temporary rectangular _tll eccentricity falls out-

Input side thls region.

Any plus integer Internal Set equal to lO.O in_0UTT_0P_If tape data is used to determine positions,

velocities, and attractions of perturhlnK bodle_. Then read as f_le number of

tare S in MAIN i. See TFILE.

Any flxed-polnt in- _nput

beget Internal

STDATA: I1,2,3,4,-i,-2,-3,-4

(fixed point)

_uy flxed-polnt in-

teger

1,2,5,4

(fixed point)

Input

Intbrnal

Input

STDATA: 4

Input

Internal

Index of independent Variable in COEFN array used in Ft_CTYON _JAD° _or each set of

coefficients there is an l_C. They are set at input time and are reset each time

QUAD is called.

Indicates integration mode. Must agree with input data (if input data IS reetar_ular,

IMODE should equal 2 or -2). Values indicate:

i - orbit elements -I = orbit elements, change to rectangular

2 - rectangular variables -2 = rectangular, change to orbit elements

5 - temporary rectangular -3 = orbit, charge to temporary rectangular

4 = Earth spherlcal charge -4 w Earth spherical, change to orbit element

to rectangular

Lan_th of dump (i.e., number of words to be dumped}.

MODOUT - I

-2

Output every n th step (n - STEPS) until TIME = TRIN, then shift to mode 2.

Output at time _ntervals of EELMAXuntil T]_- TMAX.

Output at time _ntervals of E_LMAXuntil TYRE- _MIN, then sTdft to mode 4.

Output every n t" step until TIME -- _MAX.

Any f_xed-polnt in- Input

teger

If i in CALL DUMP (1, C, L_G_) command equals any number in NDO74P array,

dump will be executed conditionally (see NSKIP).

NSXlP(4) 2_2-27S

NPONG(5) ll-15

D_ATN 27

Any flxed-polnt in- Input

teger

Any flxed-point in- STDATA: 2,I, , ,1

t_g_r Input

Any ALF coded body Input

name

Causes skipping of NSKIP(1) dumps where NSKIP(1) corresponds to ND_P(1). See SUB-

ROUTINE DUMP.

NPONG(1) refers to se_ent that is being called in statements CALL PONG (NPONG(i)).

_ontrol is to beglnnir_ of 8e_ent.

If oblateness effects are to be cons_dered_ loading a body name will cause SUBROUTINE

OBLATE to be called from SD'_OUTI_ EQUATE when O_ATN matches reference body.

RECALL

SAVE

STEPO0

STEPE0

STEPMX

STEPS

9 Any value input

8 I.O, 2.O, or any Input

other Value

I01 Any plus number

102 Any plus number

20 Any plus nt_mber

21

Internal

Internal

If RECALL _ O.0, "starting" data will be restored from C(5) to C(i15) In MAIN I. See

SAVE.

If SAV_ - 1.0, "starting" data from C(5) to C(I15) wlll be saved to be used later for

another start requlr_ng s_e data. If SAIrE- 2°0, s_e thing P_ppens, only before

CALL INPUT (I) statement in MAIN I. This saves result of previous integration for

future use.

Total number of good steps.

Total number of bad steps. Bad step does not pass error control test.

If (STEP@O +STEPNO) _ STEP_UX, pPobl_m terminates.STDATA: I00.0

Input

Any plus number STDATA: loO Used when MODDUT - 1 or 4. Output wlll Occur at every n th step where n - STEPS.

Input

0.0 or _.0 Internal If "working" ephemeris tape is to be made, TAPE 3 must be set equal to zero throagh

Input input contained in SUBROUTINETAPE. if no tape IS to be_de, or after tare is

made_ TAPE S is set to 3.0.

Any integer Input Total numbe_ o_ dumps. Initlslly _et through input and thereafter decreased by one

Internal each time a dutmp Occurs ttntll TEST - 0. When TEST - 0.0 no mope d%Imps will Occur.

I_ negative value of TEST is loaded, there la no limit on n_L_bsr of dumps.

TAPE 5

TEST

2

i

IS Anypi.s1.tags= STDATA: 1.o
Input

Selects which file of "worklng" ephemeris tape Is to be used. MAIN 1 positions

tape in correct position by matchlng deslred ftle number (TFILE) with code

word (FILE) written at beginning of each file on tape.

TMAX

TEIN

TKSFBR

TTEST

50

22

224

231

Any nUmber in seconds Input

Any number in seconds Input

0.0 or l.O Internal

Any number in seconds Internal

When TIME - _ control is switched to MAIN I to elther read new input or end prOblem.

When TIME . T_IN output mode is changed. See MODOUT.

Normal_yTES_= 0.0, but when origin is beln_ translated TRSFER. 1.0 which

causes SUBROUTIN-ES EPHMRS and ELAPSE to compute velocities as well as posltlons.

When integration mode is changed to temporar_ rectangular, TTKST is set as tlme at

which program will begin checking for return to orbit elements. See MAIN 2,

part 7D.
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TABLE IIl. - BASIC OUTPUT FORMAT

(a) Sample output

STEP= O. + O. ECCENTRICITY= 1.00000000 OMEGA=-2.84801353

TIME= 0. SEMILATUS R.= 1.93844640E-09 TRU A= Z.14159262

JDAY= 2437840.8350 MEAN ANOMALY= 0. NODE= 2.02516600

ALFA= 0. PATH ANGLE= 89.9209976 INCL= 1.57079409

ALT.=-0.1875000 R PATH ANGLE= 89.9209976 DRAG=- 4.99665982E-03

SUN R= 1.4728028E II -0.281730 -0.885466 -0.383989

MOON

(b) Parameter identification

FORTRAN code name Identification

V= 9.99999976E-02 R= 6375546.50 REFER=EARTH RECTAN 2

VX=-5.86224559E-02 X=-2465571.57 RMASS= 150000.000

VY= 7.90702742E-02 Y= 5045168.50 REVS.= 0.52251534

VZ= 4.74994606E-02 Z= 3019569.50 DELT= 8.00000000

VR= 9.99999976E-02 G= 1.49946962 LIFT=- O.

R= 5.8295912E 08 -0.387680 -0.874846 -0.290456

Output

format

mnemonic

STEP

TIME

JDAY

EC CENTR IC ITY

SEMILATUS R.

MEAN ANOMALY

OMEGA

TRU A

NODE

INCL

ALFA

PATH ANGLE

V,VX,VY,VZ

R,X,Y,Z

REFER

RMASS

REVS.

DELT

ALT.

R PATH ANGLE

DRAG

VR

G

LIFT

BNAM_(1) R

Internal

STEPGO,
STEPN0

TIME

DAYJ

E

P

ZMA

OMEGA

TRU

ZN0 DE

Z INCL

ALPHA

PSI

V,VX,VY,VZ

R_L(1),
X,Y,Z

BNAME (1)

RMASS

REV

DELT

ALT

PSI

VAR(2)

VQ

G

VAR(1)

BNA_m(1),
DIR COS

Count of total number of successful integration

steps to left of plus sign and count of fail-

ures on right

Time since beginning of integration process, t, sec

Current Julian date

Osculating orbit eccentricity, e

Semilatus rectum of osculating orbit, p, m

Mean anomaly of osculating orbit, M

Argument of pericenter, _, radians

True anomaly of osculating orbit, v, radians

Equatorial longitude of ascending node of

osculating orbit, _, radlans

Orbit inclination referred to mean equator and

equinox of 1950.0, i, radians

Angle between thrust and velocity, _, deg

Angle between path and local horizontal, deg

Velocity and its x,y,z components, V, m/sec

Radius and its x,y,z components, r, m

Name of reference body, followed by integration

mode, IMODE

Vehicle mass, m, kg

Revolutions past x-axls

Step size for current step, h, sec

Altitude above oblate Earth, m

Relative path angle, relative to Earth, dog

Total drag force, D, kg

Velocity relative to rotating reference body

Total Earth g's acting on missile

Total lift force, L, kg

Vehicle to perturbing body distance, rl, plus
direction cosines
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TABLE VI. - ASSX/MED VALUES OF ASTRONOMICAL CONSTANTS

Constant

Astronomical unit, m

Gravitational constant, k 2

mS/(sec2)(sun mass units)

Equatorial Earth radius

squared_ m2

Earth oblateness coefficient, J

Earth oblateness coefficient, K

Earth radii per AU

Assumed value

1. 495X10 II

1 .52462139Xl020

4.068098877XlO 13

i. 6238XI0 -3

6.4XIO -6

4.26546512XI0 -5

Day, sec

Mass, reciprocal sun mass units:
Sun

Mercury
Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Moon

Earth-moon

86400

1.0

6,120,000

406,645

552,488

3,088,000
1047.39

5500.0

22,869

18,889

400,000

AMASS( 4 )/81. 375

AmSS(4)+ AmSS(Zl)

Sphere-of-influence radii, m:

Sun

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Moon

i. OxlO 20

I. OxlO 8

6.14XlO 8

9.25xi08

S. 78xi08

4.8 ixlolO

5.46x10 I0

5.17xlO I0

8.61><1010

3.81xlolO

i. 60XlO 8

FORTRAN COMMON

name location

AU

SQRDK

RESQRD

OBIATJ

OBLATK

ERTOAU

SPD

AmSS(1)
AmSS(2)
AMASS(3)
AMASS(4)
AMASS(5)
AMASS(6)
AMASS(V)
AMASS(8)
_,_ss(9)

AmSS(10)
AmSS(ll)
AMASS(Z2)

RCP_T(Z)
RCRIT( 2 )

2cRzT(3)
RCRi_(4)
RCRZ_(5)
RORITt 6 )

RCRn_7)
RCRITI 8 )

RCRIT( 9 )

RCRZT(lo )
RCRIT (ii )

461

468

4O

38

39

a3

253

881

882

883

884

885

886

887

888

889

890

891

892

911

912

913

914

915

916

917

918

919

920

921

aLocation relative to COMMON of subroutine TAPE (TAPE has a COMMON that is

independent of all other subroutines).
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