

TECHNICAL NOTE

$$
D-1455
$$

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR SOLUTION OF PROBLEMS IN SPACE MECHANICS

BY NUMERICAL METHODS
By William C. Strick, Wilbur F. Dobson, and Vearl N. Huff

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON January 1963
Page
SUMMARY 1
INTRODUCTION 1
STATEMENT OF PROBLEM 2
Origin Body Gravitational Field and Oblateness Perturbations 2
Celestial Body Perturbations 3
Propulsive Thrust 3
Aerodynamic Forces 4
Other Forces 6
METHOD OF SOLUTION 6
Integration Variables 6
Rectangular coordinates 6
Orbit elements 7
Integration Method 7
Origin Translation 8
THE CODE AND ITS USAGE 8
Ephemerides 10
Step Size and Output Control 10
Computer Output 11
Computer Input 11
Sequence of Operations 12
CODING 12
General 12
Examples 14
Example I: Low tangential thrust 14
Example II: Lunar impact probe 18
APPENDIXES
A - SYMBOLS 23
B - VECTOR RESOLUTION 26
C - TRANSFORMATION EQUATIONS BETWEEN RECTANGULAR COORDINATES AND ORBIT ELEMENTS 28
D - RUNGE-KUTTA AND LOW-ORDER INIEGRATION SCHEMES WITH ERROR CONIROL 30
E - GLOSSARY OF VARIABLES 33
F - LEWIS RESEARCH CENTER EPHEMERIS 43
G - INPUT-DATA REQUIREMENTS 47
H - PROGRAM LISTING 56
REFERENCES 84

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1455

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR
SOLUTION OF PROBLEMS IN SPACE MECHANICS

BY NUMERICAL METHODS

By William C. Strack, Wilbur F. Dobson, and Vearl N. Huff

SUMMARY

A general astronomical integration code designed for a large class of problems in space mechanics that may be solved by numerical integration is described. The equations of motion provide for the effects of up to eight gravitating celestial bodies, oblateness and aerodynamic forces from the celestial body at the problem origin, propulsion system thrust, and rotation of the body at the origin.

INTRODUCTION

The general problems of space mechanics (i.e., n-bodies plus nonconservative forces such as thrust) cannot be solved analytically. Therefore, numerical integration through the use of computing machinery is usually employed.

Several codes have been written for the numerical solution of problems in orbit mechanics; for example, the Themis Code of reference lis a doubleprecision code intended primarily for close satellites or interplanetary coasting flight. Reference 2 describes a space-trajectory program of considerable merit. A listing of several other trajectory codes may be found in reference 3.

The general purpose code described herein has several distinctive features not all of which are found in any one of the previously available codes. As described herein, this code is designed to operate on an IBM 704 computer that has an 8000 word (8 K) memory and at least 1 K of drum. The fact that the program is written in FORTRAN should make it applicable to installations having other types of equipment that accept the FORTRAN language. An edition of this program (differing primarily in that segmenting of the program is not required) is available for an IBM 7090 computer that has a $32-\mathrm{K}$ core.

The program is compartmented into 25 subroutines to facilitate modifications for specific problems. The integration is carried out in either rectangular coordinates or orbit elements at the option of the user. A compact ephemeris that
occupies about one-seventh of a reel of tape is utilized for positions and velocities of the planets (except Mercury) and the moon. An atmosphere is included so that aerodynamic forces may be considered.

STATEMENT OF PROBLEM

The problem to be solved may be stated as follows: Given certain initial conditions, compute, using three degrees of freedom, the path of an object, such as a space vehicle, subject to any or all of the following forces:
origin body gravitational field
other celestial body gravitational fields
propulsive thrust
aerodynamic forces
any other defined forces
or, in equation form, with respect to a noninertial Cartesian coordinate system,

$$
\begin{equation*}
\ddot{\vec{r}}=\nabla \mathrm{U}+\left[\mathrm{k}^{2} \sum_{i=1}^{n} m_{i} \nabla\left(\left|\frac{1}{\vec{r}-\vec{r}_{i}}\right|-\frac{\vec{r} \cdot \vec{r}_{i}}{r_{i}^{3}}\right)\right]+\frac{\vec{F}}{m}+\frac{\vec{L}}{m}+\frac{\vec{D}}{m}+\frac{\vec{x}}{m} \tag{1}
\end{equation*}
$$

where n equals the number of perturbating bodies and ∇ denotes the del operator, (All symbols are defined in appendix A.)

Origin Body Gravitational Field and Oblateness Perturbations
The first term, $\nabla \mathrm{J}$, in the equation of motion (eq. (1)) represents the gravitational forces due to the origin body. When the origin body is spherical and made up of homogeneous layers, this term becomes simply $-\mu \vec{r} / r^{3}$. In the case of the Earth, however, the effect of oblateness may be important, and additional terms must be added to account for the oblateness effects. The expression for the gravitational potential U of an oblate spheroid may be written, according to reference 4, as

$$
\begin{equation*}
U=\frac{k^{2} m_{r}}{r}\left\{1+J\left(\frac{R_{r}}{r}\right)^{2}\left(\frac{1}{3}-\frac{z^{2}}{r^{2}}\right)+\frac{k}{30}\left(\frac{R_{r}}{r}\right)^{4}\left[3-30\left(\frac{z}{r}\right)^{2}+35\left(\frac{z}{r}\right)^{4}\right]\right\} \tag{2}
\end{equation*}
$$

where the x, y plane lies in the equatorial plane. The components of gravitational acceleration are as follows:

$$
\begin{align*}
& U_{x}=+\frac{\partial U}{\partial x}=\frac{k^{2} m_{r}}{r^{2}}\left\{-1+5 J\left(\frac{R_{r}}{r}\right)^{2}\left[\left(\frac{z}{r}\right)^{2}-\frac{1}{5}\right]+\frac{K}{2}\left(\frac{R_{r}}{r}\right)^{4}\left[-1+14\left(\frac{z}{r}\right)^{2}-21\left(\frac{z}{r}\right)^{4}\right]\right\} \frac{x}{r} \\
& U_{y}=+\frac{\partial U}{\partial y}=\frac{k^{2} m_{r}}{r^{2}}\left\{-1+5 J\left(\frac{R_{r}}{r}\right)^{2}\left[\left(\frac{z}{r}\right)^{2}-\frac{1}{5}\right]+\frac{K}{2}\left(\frac{R_{r}}{r}\right)^{4}\left[-1+14\left(\frac{z}{r}\right)^{2}-21\left(\frac{z}{r}\right)^{4}\right]\right\} \frac{y}{r} \\
& U_{z}=+\frac{\partial U}{\partial z}=\frac{k^{2} m_{r}}{r^{2}}\left\{-1+5 J\left(\frac{R_{r}}{r}\right)^{2}\left[\left(\frac{z}{r}\right)^{2}-\frac{3}{5}\right]+\frac{K}{6}\left(\frac{R_{r}}{r}\right)^{4}\left[-15+70\left(\frac{z}{r}\right)^{2}-63\left(\frac{z}{r}\right)^{4}\right]\right\} \frac{z}{r} \tag{3}
\end{align*}
$$

The first terms exist for a spherical planet composed of concentric layers of uniform density. The terms containing J and K are frequently called the second and fourth harmonic terms, while J and K are known as the harmonic coefficients.

It is expected that oblateness perturbations need to be computed only for the origin body, since at large distances, such as that between celestial bodies, the gravitational field of an oblate body is essentially an inverse-square field. Consideration of oblate bodies other than the Earth requires only different values of J and K if that body's rotation axis is parallel to the z-axis. When the body has triaxial asymmetry or when the z-axis cannot conveniently be alined with the rotation axis of the origin body, the equations must be extended if oblateness is to be included.

Celestial Body Perturbations

The presence of more than one gravitating body in addition to the object results in the inclusion of the second term of equation (1). The evaluation of this term requires a knowledge of the positions of the bodies as a function of time. The degree of precision desired determines the method to be used to obtain the positions such as elements of ellipses or an ephemeris.

Propulsive Thrust

The propulsive acceleration is completely specified by a direction and a magnitude. The thrust direction may be referred to the velocity vector by two angles: α, the angle between the velocity and the thrust vectors, and β, the
angle between the orbit plane and the velocity-thrust plane. The sense of each angle is indicated in sketch (a).

(a)

The velocity may be referenced with respect to one of several coordinate systems. If the computation refers to a takeoff of a rocket or winged vehicle, the coordinate system rotating with the Earth may be preferred. In such cases the relative velocity (i.e., the velocity of the object relative to the atmosphere) will serve to orient the thrust vector. Resolution of the thrust-vector components along the x, y, z axes is shown in appendix B.

The thrust magnitude of a rocket engine is

$$
\begin{equation*}
F=\dot{m} I g_{c}-P A_{e} \tag{4}
\end{equation*}
$$

This relation is sufficient for many space powerplants and is used in the present program.

Aerodynamic Forces
The aerodynamic forces are usually divided into the two components, lift and drag. The drag force is directed opposite to the relative wind vector, and the lift vector is perpendicular to the relative wind vector. The angles α and β, defined in the previous section, serve as the angles of attack and roll, respectively. Yaw effects are not considered. Resolution of the lift and drag vectors into components along the x, y, z axes is given in appendix B.

The magnitudes of the lift and drag forces may be conveniently determined through use of a tabular group of coefficients in relatively simple equations. The lift and drag magnitudes may then be expressed (as is usual in aerodynamics) as

$$
\begin{align*}
& L=C_{L}\left(\alpha, N_{M}\right) q S \tag{5}\\
& D=C_{D}\left(C_{L}, N_{M}\right) q S \tag{6}
\end{align*}
$$

where
$\alpha=\alpha(t)$
$C_{I}=f_{1}\left(N_{M}\right) \sin \alpha$
$C_{D}=C_{D, O}+C_{D, i}=C_{D, O}\left(N_{M}\right)+f_{2}\left(N_{M}\right) C_{L}^{2}$
$q=\frac{1}{2} \rho\left(V^{\prime}\right)^{2}$
$\rho=\rho(P, T)=\rho(h)$
If $\alpha(t), C_{D, O}\left(\mathbb{N}_{M}\right), f_{1}\left(N_{M}\right)$, and $f_{2}\left(\mathbb{N}_{M}\right)$ are assumed to be quadratic functions and β is assumed to be constant, the expressions for $\alpha, \beta, C_{L}, C_{D, 0}$ and $C_{D, 1}$ become

$$
\begin{gathered}
\alpha=a_{11}+a_{12} t+a_{13} t^{2} \\
\beta=\beta_{0} \\
C_{L}=\left(a_{21}+a_{22} N_{M}+a_{23} N_{M}^{2}\right) \sin \alpha \\
C_{D, 0}=a_{31}+a_{32} \mathbb{N}_{M}+a_{33} \mathbb{N}_{M}^{2} \\
C_{D, i}=\left(a_{41}+a_{42} N_{M}+a_{43} N_{M}^{2}\right) C_{L}^{2}
\end{gathered}
$$

where the quadratic constants $a_{i, j}$ may have different values for different regions of the independent variables t and N_{M}.

It should be remembered that these choices are arbitrary and are not restrictive because other functions may easily be used by simply changing the equation where it appears in the program. In fact, any propulsion system and aerodynamic configuration can presumably be incorporated by writing proper thrust and aerodynamic subroutines.

The pressure, temperature, and density may be determined as a function of altitude in accordance with the ICAO standard atmosphere. The oblate Earth model is used to determine the altitude.

Abstract

The \vec{X} forces may be any forces such as electrostatic, magnetic, or solar radiation pressure that affect the trajectory. While these forces are not considered further herein, their inclusion would usually be feasible and would be similar to thrust, lift, and drag.

METHOD OF SOLUTION

The method of solution selected for the stated problem is presented in this section. A later section discusses the FORIRAN coding.

A description of several numerical integration techniques and their relative merits are contained in reference 5. A straightforward method for finding the position of the object as a function of time is to integrate the total acceleration of the object expressed in rectangular components. An example of this method is Cowell's method (ref. 5).

However, when the system under investigation consists of two nonoblate bodies (one of which is the object) with no forces other than gravitational attraction forces, an exact analytical solution for the motion of the body exists. Further, if the conditions of the actual problem are such as to approximate the two-body problem closely, another approach is to use the exact two-body solution as a basis and simply integrate the changes in the two-body parameters, since they should be slowly varying. This technique, sometimes called the "variation of parameters," will be referred to as "integration of orbit elements."

Since problems both remote and near to the exact two-body problem are encountered in orbit mechanics, and since either type of problem is solved more efficiently by using the technique most suitably applicable, it was considered desirable to use either of the previously mentioned integration techniques at will. Accordingly, two methods of integration are provided in the program, namely, rectangular coordinates and orbit elements.

Integration Variables

In order to use either of these integration techniques, it is necessary to select a suitable set of variables for integration. Because a differential equation may determine the mass of the object (i.e., spacecraft), mass has been selected as a variable to be integrated. Selection of the remaining parameters follows in the subsequent paragraphs.

Rectangular coordinates. - In the first technique, the total acceleration components \ddot{X}, \dot{y}, and \ddot{z} are integrated to obtain x, y, and z where x, y, and z are the rectangular components of the origin-to-object radius \vec{r}. The positive x-axis points in the direction of the mean vernal equinox of 1950.0. The positive y-axis lies in the mean equator of 1950.0 and is perpendicular to and counterclockwise from the positive x-axis. The z-axis points north and completes the
righthanded orthogonal set. The integration in rectangular coordinates involves numerical solution of three second-order linear differential equations; that is, a double integration is required for integrating the accelerations to obtain velocities and the velocities to obtain positions. The rectangular variables have advantages of complete generality and a minimum amount of computing per step.

Orbit elements. - In the variation-of-parameters technique, a set of six independent two-body parameters called orbit elements are integrated. These six parameters may be arbitrarily chosen from a host of possibilities. The set selected for this program is composed of the eccentricity e, the argument of pericenter ω, the equatorial longitude of ascending node δ, the inclination of the orbit plane to the equatorial plane 1 , the mean anomaly M, and the semilatus rectum p. The transformation equations between the two sets of variables are given in appendix C.

The integration of orbit elements requires the numerical solution of six first-order linear differential equations. The rather involved transformation by which the three second-order linear differential equations in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are reduced to six first-order equations in $\dot{e}, \dot{\omega}, \dot{\delta}, \dot{i}, \dot{M}$, and \dot{p} is contained in reference 6. Integration in orbit elements is frequently advantageous because the smaller orbit-element derivatives may permit larger integration intervals that result in fewer steps. In the special case of two-body motion, the derivatives are zero (except \dot{M}, which is a constant).

Mathematical difficulties may arise occasionally with most sets of orbit elements. In particular, for the selected set, these occur when e approaches unity (parabolic trajectory), which causes a loss of numerical accuracy in the frequently used quantity ($1-e^{2}$); and when an asymptote is approached too closely, which causes numerical difficulties in the iterative solution for eccentric anomaly from Kepler's equation. The selected solution to these difficulties is to shift temporarily to rectangular-coordinate integration whenever the difficulty arises.

Integration Method

It is clear that regardless of the choice of integration technique, the magnitudes of the derivatives of the variables to be integrated may vary considerably along the trajectory. With fixed step size (constant intervals in time), the integration scheme will take unnecessary steps in the regions where the changes in the derivatives are small and thus will waste computing time and increase roundoff error. When the derivatives are large and change rapidly, a fixed step size will result in large truncation error (error due to excessive step size). Thus, in the interest of computing accuracy and economy, use of variable step size along the trafectory becomes desirable.

One of the integration schemes that allows variable step-size control to be incorporated easily is the Runge-Kutta scheme. For this and other reasons, it was decided to use a fourth-order Runge-Kutta method with variable step-size control.

Truncation error and step size may be controlled by examining the relative errors between the fourth-order Runge-Kutta integration scheme and a lower-order integration procedure. The arbitrarily chosen low-order integration scheme was an unequal-interval Simpson rule method. Details of the fourth-order Runge-Kutta integration method and the step-size control are given in appendix D. Roundoff error may be reduced by accumulating the integration variables in double precision.

Origin Translation

As noted previously, machine computing time and roundoff error may be minimized by maximizing the integration interval. The largest intervals are possible in orbit elements when the celestial body at the problem origin is the one that has the greatest influence on the vehicle motion. For this and sometimes other reasons, it may become desirable to translate the problem origin occasionally as the vehicle moves along its path.

Such translations of the origin may be made when the object enters a body's "sphere of influence," that is, the sphere about a body within which the greatest influence upon the object is due to forces originating from that particular body. In this program, the orientation of the coordinate system is always alined with the system determined by the Earth's mean equator and equinox of 1950.0, as is standard in astronomy.

THE CODE AND ITS USAGE

The stated problem was programmed in FORTRAN routines that are separately designed to accomplish one task but when combined form a complete program. This feature facilitates modifications.

The program is labeled as a general-purpose code, but an efficient generalpurpose code cannot be a reality. As a result, this code is not especially general, but an attempt has been made to retain efficiency and to provide for easy modification of the routines to recover generality as needed. For example, the program is an "open system," that is, it solves an initial value problem. There is no link provided to obtain specific end conditions. Provision of this link is left to the user for his specific needs. In particular, when certain end conditions of a trajectory are to be met by determining the correct initial conditions (two-point boundary value problem), the user may program an iteration scheme to compute initial conditions from end conditions of previous runs.

The code is designed to operate on an IBM 704 computer that has an $8-K$ core and drum and also a number of tape units. To operate the code on an $8-\mathrm{K}$ computer, it is necessary to divide the program into two segments (core loads). The program of segment 1 arranges certain data in the core. The program of segment 2 overwrites the program but not the data of segment 1 when it is called for. Figure 1 is a simplified diagram that shows how the various major subprograms are arranged in the segments. The segmenting was done as efficiently as possible in

Figure 1. - Block diagram of program segments showing principai subprograms.
terms of execution time, but further gains can be realized by users of larger computers who may wish to modify the code to utilize the increased computer capacity.

In the following sections, discussing the program in terms of the FORTRAN variables and routines is sometimes desirable. A glossary of these variables is given in appendix E.

Ephemerides
To determine the position of each celestial body, there is offered a choice between ellipses and a precision ephemeris. Any appropriate ellipse data may be used, and an example of such data is given in table I.

The precision-ephemeris tape that is used in the program was so made that position and velocity were obtainable through the use of a fifth-order polynomial whose coefficients are stored on tape. The details concerning the making of the tape and its structure are given in appendix F. This master tape is a merged ephemeris containing all the planets (except Mercury), the moon, and the Earthmoon barycenter from October 25, 1.960 to about 2000 (except for the moon, which has an ending date of 1970). The Earth ephemeris is called "sun" because it gives sun to Earth distances.

Direct use of the master merged ephemeris tape would, in general, be wasteful of computing time, since excess tape handling would occur in order to bypass data not required for the particular problem. To minimize tape handling during execution, a shorter merged ephemeris containing only that data needed for a specific problem is constructed at execution time. Several of these working ephemerides may be constructed before the integration of the problem. (Several problems may be loaded simultaneously with the same ephemeris, or each problem may require a distinct ephemeris, or several ephemerides may be desired for a single problem.)

Step Size and Output Control

Truncation error and step size are controlled by computing the relative errors between the Runge-Kutta integration and the lower-order integration procedure. If the greatest relative error between the methods is greater than a maximum limit (ERLIMT), the integration step will be repeated after a smaller step size is computed. In either case, a new step size is computed from the relative errors of the previous steps and is intended to result in an error that is close to a reference value (EREF). Further, the step size may then be reduced by the output controls. In any case, a step can be no larger than three times the size of the previous successful step. (See appendix D.)

Output is sometimes desired at specific points along the trajectory, while at other times this is unimportant. This option is provided for the user so that he may choose output to occur at equal intervals in step number or equal time
intervals (which places a constraint on the step size). Also, he may choose to change from one mode to another along the trajectory. These choices of output spacing are effected through the use of the FORIRAN variables MODOUP, DELMAX, STEPS, and TMIN, which is explained under the MODOUT entry of table II, a table of program control parameters.

Computer Output

A basic output format was progranmed to serve as a basis for modification and is illustrated in table III. It is intended that a user of the code modify the output to suit his purpose. In addition to examining the normal output, it is sometimes desirable to examine the error-control data, such as the relative errors in the integration variables, along the path. These data are printed as a single block after completion of the problem if the sign of the input error reference value $E R E F$ is negative. The sign of EREF is irrelevant in the errorcontrol portion of the program since its absolute value is taken.

Computer Input

The user has a choice of three possible sets of input data that specify position and velocity: (1) the six orbital elements, (2) the three Cartesian components of both velocity and position, and (3) the latitude, longitude, azimuth, elevation, velocity, altitude, and time.

The third set mentioned is progranmed for the Earth only where the latitude and longitude are the geocentric latitude and longitude measured from the equator and Greenwich, respectively. The azimuth angle is measured in a plane tangent to the sphere of radius r at the point on the sphere determined by the geocentric latitude and longitude, and relative to the local meridian, positive eastward from north. The elevation angle is then measured in a plane normal to the tangent plane, positive outward (sketch (b)). The tangent plane is taken horizontal

(b)
with the effects of oblateness and rotation considered if these effects are "on." If oblateness and rotation are "off," the horizontal is perpendicular to the radial direction. This input option ignores the correction between universal time and ephemeris time and between the instantaneous equator and equinox and those of 1950.0 .

A list of input instructions is contained in appendix G along with an input check list.

The input routine described in reference 7 was used because of its simplicity; however, another input routine may be used if it is desired.

Sequence of Operations

Before the program begins to integrate a trajectory, it performs an assortment of operations that may be called "initialization." All these operations are expected to be done once or only a few times during the trajectory integration and, for this reason, are contained wholly in segment 1. Likewise, at the end of a problem, a return to the segment l causes several concluding operations to be performed. A condensed description of the operations carried out in segment 1 is contained in the flow diagram of figure 2. Other than the normal end of a problem (reaching a maximum number of integration steps or a particular time) there is only one way in which segment 1 may be called by segment 2 , namely, a translation of the origin. When the translation occurs, segment l is needed to reorder the body list and perhaps to cause input or ephemeris change.

After completion of the initialization, which leaves numerical data stored in the common area, segment 1 is overwritten by segment 2 , which may be termed the integration segment.

CODING

General

Appendix H contains the code listing of the program. Although most of the program is coded in basic FORTRAN II, on several occasions it was preferable to use the pseudo-SAP statements of FORTRAN II. Typically, the pseudo-SAP statement LXD (I), I is used whenever the index I was to be transferred from one subroutine to another (since FORTRAN II does not do this automatically). Wherever such a statement appears, the FORTRAN II statement $I=I$ can be used instead to accomplish this initialization but with additional commands.

Some of the FORMAT statements are of the G-type. These statements will print output in I, E, or F format depending on the nature of the variable. Fixed-point variables will take the I format, while floating-point variables will assume the F format unless the magnitude of the variable falls outside the useful F range, in which case the E format is used. FORTRAN facilities that do not accept the G-type format statements may easily substitute E-type formats.

Pigury z. - Ficw slagrait of aegment 1.

Table IV is a map of COMMON allocation (blanks are left for the user) and table II contains a description of the program control perameters. The elements of the integration variable array (XPRTM) are given in table V. The assumed values of the astronomical constants are given in table VI. These values are easy to change to any set desired. A selected set is given in reference 8 .

Examples

Two examples of code usage are presented in the following sections. The first example is a problem of raising a low-altitude satellite into a 24-hour orbit by using low-tangential acceleration. The other example is a more complex problem involving a ground-launched lunar probe with a three-stage rocket. Both problems were selected to illustrate the usage of the program rather than to attempt a detailed analysis of the example problem.

Example I: Low-tangential thrust. - The trajectory to be determined is that used to raise a $3850-k i l o g r a m$ package from an initial 300 -statute-mile circular equatorial orbit to a 24 -hour orbit using a $60,000-w a t t$ nuclear electric system with a specific impulse of 2540 seconds and an overall efficiency of 40 percent. The required engine parameters may be calculated as follows:
thrust force:

$$
\mathrm{F}=\frac{2 \mathrm{P}_{\mathrm{W}} \eta}{\mathrm{I} g_{\mathrm{C}}}=\frac{2 \times 60,000 \times 0.4}{2540 \times 9.80665}=1.927 \text { newtons }
$$

initial acceleration:

$$
\frac{F}{m_{0}}=\frac{1.927}{3850}=5.0051948 \times 10^{-4} \mathrm{~m} / \mathrm{sec}^{2}
$$

propellant flow rate:

$$
-\dot{\mathrm{m}}=\frac{F}{I g_{\mathrm{c}}}=\frac{1.927}{2540 \times 9.80665}=7.7361935 \times 10^{-5} \mathrm{~kg} / \mathrm{sec}
$$

A detailed account is given in the following paragraphs for the solution of this problem by the prescribed program. Only those features of the program that have a direct bearing on this particular problem are discussed. Additional program features are discussed in the account of the second example problem. It may prove beneficial to refer to figure 2 during these two discussions.

It is assumed in the program that all memory data stores are cleared (set equal to zero) before operation begins. Control begins when the routine MAIN 1 is entered in segment 1 . After several noninfluencing commands, the reading of a "clock" takes place at statement 10 and this value is stored. This value is later subtracted from the subsequent reading in order to yield the computing
time. (All references to the "clock" may be deleted without ill effect.) Then a set of so-called "standard data" is initialized by executing subroutine STDATA. Before initializing, STDATA clears most of COMMON C.

The next step is calling for input at statement 2l. The following list of parameters constitutes the input:

Parameter	FORTRAN name	Value
Initial mass, mo, kg	RMASS	3850
Semilatus rectum, p, m	P	6.86×10^{6}
Specific impulse, I, sec	SIMP	2540
Flow rate, - $\dot{m}, \mathrm{~kg} / \mathrm{sec}$	FLOW	7.7361935×10^{-5}
Time limit, sec	TMAX	a_{42605}
Initial step size, sec	DELT	a_{1500}
Step number limit, steps	STEPMX	a_{2000}
Frequency of output,	STEPS	a_{200}
steps/output		

$\mathrm{a}_{\text {Assumed }}$ value.

Variables such as eccentricity and mean anomaly that are initially zero are not included in this list since all memory data stores are initially zero.

In accordance with the input routine of reference 7 , the input cards may appear as

```
$DATA=1,$TABLE,41=RMASS,47=P,5=SIMP,33= $$ IDENTIFICATION AND
FLOW,10=DELT,30=TMAX,20=STEPMX,21=STEPS/ $4 TABLE DEFINITION
```

RMASS $=3850$, SIMP $=2540$, FLOW $=7.7361935 E-5$ S $\$$ VEHICLE MASS, ISP, MASS FLOW
$P=6.86 E 6, T M A X=42605$, STEPMX $=2000$ \$ $\$$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT
$D E L T=1500, S T E P S=200 \quad \$ \$$ INITIAL STEP SIZE, OUTPUT EVERY $200 T H$ STEP
SDATA=1, \$\$ LAST CARD
where the entries between the $\$ T A B I E$ and slash (/) reference the subsequent entries to the second argument C of the calling statement. Thus, for example, RMASS is equivalent to $C(41)$, the $41^{\text {st }}$ location from the beginning of COMMON C.

Several commands follow the input none of which has an important effect on this particular problem with one exception: subroutine ORDER (part ll) computes the gravitational constants μ and $\sqrt{\mu}$. The initialization process is now completed.

Segment 2 overwrites segment 1 , except COMMON $C(1)$ to COMMON $C(800)$, and control begins when the routine MAIN 2 is entered. Immediately, the tape that stores the two segments (tape 2 at Lewis) is rewound to position this tape at the beginning of segment 1 .

The next sequence is that of integrating the first two steps. These two steps are of equal size and are integrated before an error check is made. If the first two steps are satisfactory (determined by statement 25), the remaining steps are integrated while the relative error is being checked at the end of each step. Parts 1 and 5 of MAIN 2 are concerned solely with this starting phase. Part 1 sets up the starting sequence and causes the initial conditions to appear on the output sheet. Parts 2 to 4 accomplish the Runge-Kutta integration for a single step.

The derivatives used in the integration are obtained from subroutine EQUATE. The first half of this subroutine finds the Cartesian coordinates and velocities through use of Kepler's equation. The thrust is computed in statement 34, and then subroutine IHRUST is called to determine the components of the thrust acceleration in the Cartesian coordinate system. (After control is returned to subroutine EQUATE, the thrust acceleration is resolved into circumferential, radial, and normal components.) Finally the derivatives of the orbit elements are calculated, and a return is made to MAIN 2.

After the Runge-Kutta integration is performed, the error check is made in part 5B (part 6 after the starting sequence) by computing the difference between the Runge-Kutta integration and the low-order integration. Subroutine ERRORZ is called to determine the largest of the relative errors. If the largest of the relative errors is greater than the limit value, ERLIMT (set in STDATA), part 8, which computes a smaller step size for the same interval, is entered and control is returned to part 1. If the greatest relative error is smaller than the limit value, part 7, which advances the variables of integration, is entered and calls subroutine STEP to compute the next step size and print out the variables of the first step. Part 7 also counts the revolutions past the x-axis and adjusts the argument of pericenter and mean anomaly to within $\pm \pi$ to retain accuracy in the sine-cosine routines. If the step size exceeds $1 / 2$ revolution, the revolution count may be short by an integral number. Control is finally transferred to part 1 to begin computation of the next step.

The problem is terminated when the time limit TMAX is reached. This check is done in subroutine STEP. Had the problem exceeded the step number limit STEPMX, it would have terminated at that point. In either case, control is returned to MAIN 1 in segment 1 to print out the computing time and begin the next problem. When no data for another problem are given, the execution is terminated (i.e., control is returned to the monitor by subroutine INPUT as a result of an end of file on tape 7). The output of the last step is:

| $\mathrm{STEP}=821 .+45$. | ECCENTRICITY $=2.37578762 \mathrm{E}-04$ | OMEGA $=1.57668670$ |
| :--- | :--- | :--- | :--- |
| TIME $=42605.000$ | SEMILATUS $R=6898571.50$ | TRU A $=1.57089765$ |
| JDAY $=2440000.4927$ | MEAN ANOMALY $=1.57042252$ | NODE $=0$. |
| ALFA $=0$. | PATH ANGIE $=1.36122511 E-02$ | INCL $=0$. |

$V=7599.09540$
$V X=43.7259269$
$\mathrm{VY}=-7598.96967$
$\mathrm{VZ}=-0$.
$R=6898571.62$
$\mathrm{X}=-6898447.56$
$\mathrm{Y}=-41333.9687$ $Z=-0$.

REFER=EARTH ORBIT 1
RMASS $=3846.70401$
REVS. $=7.50095356$
$D E L T=263.055664$

The time histories of several trajectory parameters for this example are shown as solid lines in figure 3. The oscillations of the eccentricity and mean

anomaly cause a rather small step size, as is noted in the figure. To indicate how exercising care in selecting the input can increase the computational efficiency, the same problem may again be run with the following initial values (according to ref. 9) of eccentricity and mean anomaly:

$$
e_{0}=\frac{2\left(F / m_{O}\right) p^{2}}{\mu} ; M_{0}=\frac{\pi}{2}-3 e_{0}-\frac{e_{0} V_{0}}{2 I g_{c}}
$$

The input cards for this case make use of the algebraic properties of the input routine to compute the desired value of these parameters. The cards are:

RMASS $=3850, S I M P=2540$, FLOW $=7.7361935 E-5 \$ \$$ VEHICLE MASS, ISP. MASS FLOW $\mathrm{P}=6.86 \mathrm{E}$, TMAX $=42605$,STEPMX $=2000$ S $\$$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT DELT $=1500$, STEPS $=200$ S $\$$ INITIAL STEP SIZE, OUTPUT EVERY $200 T H$ STEP \$TABLE, $42=E, 46=\mathrm{MA} / \mathrm{E}=2 * 5.0051948 \mathrm{E}-4 * \mathrm{P} * \mathrm{P} / 3.983667 \mathrm{E} 14$ \$\$ ECCENTRICITY $M A=-7620.429 /$ SIMP $/ 9.80665-6 * E+3.1415926 / 2, S T E P S=5$ S\$ MEAN ANOMALY,OUTPUT CONTROL SDATA $=1$, $\$ \$$ LAST CARD

The dashed lines in figure 3 show the time histories of the same trajectory parameters when initial values of e and M given immediately preceding are used. The increase in average step size is 20 to l. To compare the accuracy of this approximation with the exact case ($e_{0}=M_{0}=0$), the final time was chosen when the corresponding orbit positions were identical (when the true anomalies were equal). At $t=42,605$ seconds, the orbit positions are nearly identical,
and, at this time, the values of position and velocity may be compared as follows:

	Case A: $e_{0}=M_{0}=0$	Case B e_{0} and $M_{0} \neq 0$ Radius, m
6898571.62	6898571.56	
Velocity, $\mathrm{m} / \mathrm{sec}$	7599.09540	7599.09546
Number of steps	821	39

For most purposes the two answers would be accepted as equivalent and case B would be preferred because of the smaller computer time required.

Example II: Lunar impact probe. This example of a lunar impact probe illustrates the use of the ephemeris tape and the control parameters needed to consider the effects of perturbing bodies, atmospheric forces, oblateness, rotating Earth, and thrust. No effort was made to optimize this trajectory but rather to use at least plausible values for illustrative purposes.

Suppose the probe is launched at Cape Canaveral on December 7, 1961 by a three-stage vehicle with stage parameters as shown in the following table:

Parameters	Stage			
	1	2	3	4
Initial mass, mo, kg Engine exit area, A_{e}, m^{2} Vacuum specific impulse, I, sec Propellant loading, $\mathrm{W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{O}}$ Propellant fraction, $\mathrm{W}_{\mathrm{pf}} / \mathrm{W}_{\mathrm{p}}$ Propellant flow rate, $-\mathrm{m}, \mathrm{kg} / \mathrm{sec}$ Burning time, $t_{b}=W_{p f} / \hat{W}$, sec Aerodynamic reference area, s, m^{2}	$\begin{array}{\|r\|} 150,000 \\ 3.0 \\ 300 \\ .65 \\ .9 \\ 750 \\ 117 \\ 7.5 \end{array}$	$\begin{array}{r} 52,500 \\ 1.0 \\ 420 \\ .55 \\ .9 \\ 125 \\ 207.9 \\ 4.0 \end{array}$	$\begin{array}{r} 23,625 \\ .5 \\ 420 \\ .96 \\ .91765873 \\ 56.25 \\ 370 \\ 2.0 \end{array}$	

Figure 4 shows the assumed variation of $C_{D, O}, C_{D, i}$, and C_{L} with Mach number as well as the angle-of-attack schedule.

The vehicle will be flown as follows: First, a short nondrag vertical flight, after which the desired velocity orientation will be set, and then a turn determined by gravity and the angle-of-attack schedule until first-stage burnout. The second and third stages follow the same turn pattern. The final stage consists of the payload. The staging will be accomplished by treating each stage as

a single flight, with the burnout conditions of the previous stage used as initial conditions. The chosen integration mode will be rectangular for the powered flight but the mode of orbit elements will be used for the coast portion. Other bodies considered besides the Earth and the vehicle are the sun, the moon, and Jupiter. Jupiter is included to illustrate the use of ellipse ephemerides. The sun and moon will illustrate the use of the tape ephemeris.

The correct firing direction and launch time remain to be determined. This determination can be made by finding approximate values and then adjusting these values after one or more shots are fired. The adjustments could be made by an iteration scheme programmed internally to make a closed system. For this example, however, they were made by hand by firing several shots at various azimuth angles close to an estimate obtained by using reference 10 and an ephemeris. From a plot of the z-direction cosine of the vehicle-moon distance against vehicle-Earth distance, the azimuth angle that will intersect the moon orbit can be determined. The correct launch time is found by using the previously determined azimuth angle and various times of day to determine the time of day at which the vehicle intersects the correct position in the moon orbit (location of the moon). This type of analysis gives an azimuth angle of about 78.9° and a time of day of about 7.94^{h} E.T. (E.T. is ephemeris time which is approximately equal to Greenwich mean time.) For the present purpose, these values will be used.

The problem begins by constructing the merged ephemeris tape for the sun and moon. This is done by subroutine TAPE in conjunction with the input shown as follows:

After the merged ephemeris tape is constructed, the clock is read, the standard data are initialized, and the first-stage input is loaded as shown:

```
$DATA=1,5TAB,104=LAT,105=LONG,106=AZI,107=ELEV,108=ALT,
28.=IMODE,31=DTOFFJ,32=TOFFT,811=BODYCD,26=ATMN,29=RATM,459=
ROTATE,41=RMASS,5=SIMP,33=FLOW,35=AREA,24=AEXIT,27=OBLATN,941=
ELIPS,601=COEFN,238,=ICC,37=EREF,17=ERLIMT,19=CLEEAR,30=TMAX,20=
ELIPS,601=COEFN,238.=ICC,37=ERE=,17=ERLIMT,19=CLEAR,30=TMAX,20=
$5 STAGE 1
$$ ID. AND
AT=28.280.LONG =-80.571,FLEV=89.7
$$ LATITUDE,LONGITUDE,ELEVATION
LAT=28.280.LONG=-80.571,ELEV=89.7 $$ LATIT
AZI=78.9,ALT=10,IMODE=4 $$ AZIMUTH,ALTITUDE,INTEGRATION MODE
DTOFFJ=2437640.5,TOFFT=7.94/24 $$ TAKE-OFF DATE AND FRACTION OF DAY
BODYCD=(A5:EARTH,(A4)MOON,(A6)JUPITE,(A3)SUN $$ BODY NAMES, 1ST IS ORIGIN
ATMN=(A5)EARTH,RATM=1E11,ROTATE=7.29211585E-5 $$ ATMOSPHERE NAME,RADIUS,ROTATION
RMASS=150000,SIMP=300,FLOW=750 $$ VEHICLE MASS,ISP(VAC),MASS FLOW RATE
AREA=7.5,AEXIT=3.0.0BLATN=(A5)EARTH $$ DRAG AREA,ENGINE EXIT AREA,OBLATE BODY
ELIPS=(ALF6)JUPITE,(ALF3)SUN,.9547861E-3,4.81E+10.5.1913995, $S ELLIPTIC DATA
.0486288,.1765935,.056971884,.40587194,2433964.,.8664,4333.71535$ FOR JUPITER
COEFN=0,.4,0,.6,1,1.15306,-.16326,.010204,8,.5,,,100,,10,%, $$ AERO. COEFF. AND
100,..025,,,100,,,,,15,-.6,.04,,40,.7,,,117,,,,1E6,ICC=24,14,19,1 $5 INDICES
EREF=1E-5,ERLIMT=5E-5,CLEAR=1 $$ REFERENCE ERROR,LIMIT ERROR,STDATA BY-PASS SWT
TMAX=117,STEPMX=250 $$ MAXIMUM ALLOWED PROBLEM TIME AND STEP NUMBER
TKICK=10,DELT=2 $$ TIME OF THE VERTICAL NON-DRAG STEP,IST INTEGRATION STEP SIZE
MODOUT=2,DELMAX=60, $$ MODE OF OUTPUT,TIME INTERVALS OF OUTPUT
```

The value of IMODE is set equal to 4 , which causes execution of subroutine TUDES. TUDES transforms the spherical Earth coordinates into rectangular coordinates, which are the variables of integration. In addition, TUDES computes the closed-form solution for the initial vertical nondrag step. From this point on, the trajectory is integrated with the initial orientation specified by the spherical coordinates. The small error introduced by this procedure is offset by avoiding the complications associated with integrating the takeoff. One such difficulty is the thrust-direction specification when the velocity is zero, especially if the origin body is rotating.

Subroutine ORDER reorders the list of bodies putting the sun before Jupiter (i.e., the sun's position relative to the vehicle must be found before Jupiter's relative position can be computed). The elliptic data for finding Jupiter's position are modified somewhat and relocated according to the computed body list. After calculating the gravitational constants, control is returned to MAIN 1 .

The atmosphere belongs to the body at the origin (Earth) so that the rotation rate and atmospheric radius are set. The final duty of MAIN l is to position the merged ephemerides tape at the beginning of the correct ephemeris. In this case, only one merged ephemeris was constructed; nevertheless, it still must be identified and spaced to the beginning of the data.

Control then passes to MAIN 2, where integration takes place in the same manner described in example I. Additional subroutines called from EQUATE are EPHMRS, ELIPSE, ICAO, AERO, THRUST, and OBLATE. Subroutine EPHMRS is responsible for computing the perturbations that result from bodies other than the origin body. This computation is accomplished by determining the perturbating body position through use of the merged ephemeris tape or subroutine ELIPSE.

The AERO subroutine determines the aerodynamic accelerations through use of quadratic equations for the lift and drag coefficients and subroutine ICAO, which determines density, pressure, and temperature as functions of altitude. Oblateness accelerations are found in subroutine OBLATE. The thrust direction is determined by subroutine THRUST, while the thrust magnitude is computed in EQUATE as $\mathrm{mg}_{\mathrm{C}} \mathrm{I}-\mathrm{PA}_{\mathrm{e}}$.

The first vehicle stage integration is terminated by subroutine STEP when $t=117$ seconds. Control is then transferred to MAIN l, where the following input initiates the second vehicle stage integration:
$\Phi D=1$, RMAS $=52500, S I M P=420, F L O W=125, T M A X=T M A X+207 \cdot 9, A R E A=4, A E X I T=1 \quad \$ \$ \quad$ STAGE 2

Integration of the second stage proceeds in a manner similar to the integration of the first stage and is terminated when $t=324.9$ seconds. The thirdstage data are similar to the second-stage data and are as follows:
$\$ D=1, R M A S S=23625, F L O W=56 \cdot 25, D E L M A X=100, T M A X=T M A X+370, A R E A=2, A E X I T=.5 \quad \$ \$$ STAGE 3

The fourth stage differs from the preceding stages since the thrust is turned off and integration proceeds in orbit elements rather than in Cartesian coordinates. Output occurs every 6 hours until $t=1$ day; then it occurs at every tenth step. Also, the error-control data are printed (therefore, make EREF negative). The fourth-stage input is as follows:

```
$D=1,RMASS=945.0,DELT=3600,FLOW=0,TMAX=172800 S$ STAGE 4
IMODE=-2, EREF=-1) $$ INTEGRATE ORBIT ELEMENTS. RECORD ERROR DATA.
MODOUT=3,CELMAX=DELT*6,STEPS =10,TMIN=86400 $$ OUTPUT EVERY 6 HOURS UNTIL TIME =
                                    $$ 86400,THEN EVERY IOTH STEP
$D=1, $$ LAST CARD
```

About $1 / 2$ day later the vehicle is close enough to the moon that the coordinate system origin is translated to the moon. This translation is accompanied by
a shift in integration mode to Cartesian coordinates, since the vehicle is approaching the moon far out on a hyperbolic leg. The last step output is reproduced as follows:

STEP=	+	ECCENTRICITY= 10.6771772	OMEGA $=-3.22087839$
TIME $=$	172800.00	SEMILATUS R. $=3.16835663 \mathrm{E} 09$	TRU $A=1.16945998$
JDAY=	2437642.8306	MEAN ANOMALY $=-18.8108633$	$\mathrm{NODE}=0.77242933$
ALFA $=$	0.	PATH ANGLE= 62.2506247	INCL $=0.51408862$
MOON	$\mathrm{R}=2.5560079 \mathrm{E}$	$\begin{array}{llll}08 & -0.391661 & 0.734785 & 0.5\end{array}$	3798
JUPITE	$\mathrm{R}=8.4571112 \mathrm{E}$	$110.581702-0.741635-0.33$	34068
	$\mathrm{V}=3938.07312$	R=6.12713230E 08 REFER	EARTH RECTAN 3
	$V X=2403.45856$	$\mathrm{X}=1.27258404 \mathrm{E} 08$ RMASS $=$	$=944.999992$
	$\mathrm{VY}=-2445.76614$	$Y=-5.36514068 \mathrm{E}$ O8 REVS.	0.78706574
	$\mathrm{VZ}=-1936.50073$	$3 \mathrm{Z}=-2.67161870 \mathrm{E} 08 \mathrm{DEL}$	5887.73633
SUN	$\mathrm{R}=1.4668335 \mathrm{E}$	$11-0.229169-0.8931180 .387$	

At this time the vehicle is again primarily under the Earth's influence after missing the point mass moon by 1.2×10^{6} meters.

Lewis Research Center

National Aeronautics and Space Administration Cleveland, Ohio, September 6, 1962

APPENDIX A

SYMBOLS

$\overrightarrow{\mathrm{A}}$	relative angular momentum per unit mass, $\overrightarrow{\mathrm{r}} \times \vec{V}^{\prime}$ (appendix B)
A_{e}	engine exit area, m^{2}
$a_{i, j}$	coefficients for quadratic functions
$C_{\text {D }}$	total drag coefficient
$C_{\text {D }}$, 0	zero angle-of-attack drag coefficient
$C_{\text {D, }}$ i	induced drag coefficient
$\mathrm{C}_{\text {L }}$	lift coefficient
D	drag force, newtons
E	eccentric anomaly, radians
e	eccentricity
F	thrust force, newtons
$\mathrm{f}_{1}, \mathrm{f}_{2}$	functions of Mach number
g_{C}	gravitational conversion factor, $9.80665 \mathrm{~m} / \mathrm{sec}^{2}$ (sometimes referred to as standard Earth gravity)
h	altitude above Earth's surface, m
I	vacuum specific impulse, sec
i	orbit inclination to mean equator of 1950.0, radians
J	second harmonic coefficient in oblateness equations
K	fourth harmonic coefficient in oblateness equations
k^{2}	```universal gravitational constant, 1.32452139\times1020, m}/(\mp@subsup{s}{}{3}\mp@subsup{c}{}{2})(sun mass units```
L	lift force, newtons
M	mean anomaly, radians
	object mass, kg

$\mathrm{m}_{\text {I }}$	mass of $i^{\text {th }}$ perturbating body, sun mass units
m_{r}	mass of reference body plus m, sun mass units
N_{M}	Mach number
P	atmospheric pressure, newtons/m ${ }^{2}$
\vec{P}	$\vec{V}^{\prime} \times \vec{A}$ (appendix B)
P_{W}	power, w
p	semilatus rectum, m
q	dynamic pressure, $\frac{1}{2} \rho\left(V^{\prime}\right)^{2}$, newtons/m ${ }^{2}$
R_{r}	radius of reference body, m
r	radius from origin to object, m
r_{i}	radius from origin to $i^{\text {th }}$ perturbating body, m
S	aerodynamic reference area, m^{2}
T	temperature, ${ }^{\circ} \mathrm{K}$
t	time, sec
U	gravitational potential
$\mathrm{U}_{\mathrm{x}}, \mathrm{U}_{\mathrm{y}}, \mathrm{U}_{\mathrm{z}}$	x, y, z accelerations due to gravity, m / sec^{2}
u	$\omega+\mathrm{v}$
V	absolute velocity, m/sec
V^{\prime}	relative velocity, $\mathrm{m} / \mathrm{sec}$
v	true anomaly, radians
W	object weight, newtons
W_{p}	propellant loading, fraction of mass that departs during a stage
W_{pf}	propellant fraction, fraction of W_{p} used for propellant
X	forces acting on object other than gravity, thrust, lift, drag, and perturbations due to perturbating bodies
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	components of r, m

α
angle between thrust and velocity vectors (sketch (a)), deg angle of rotation of thrust out of orbit plane (sketch(a)), deg power efficiency factor
$k^{2} m_{r}$
atmospheric density, $\mathrm{kg} / \mathrm{m}^{3}$
argument of pericenter, radians
origin body rotation rate, radians/sec
equatorial longitude of ascending node, radians
Subscripts:
0
initial value
$1,2,3,4$ values at consecutive points along trajectory

APPENDIX B

VECTOR RESOLUTION

Relative Velocity

The relative velocity is defined as the velocity of the object with respect to the origin body. If the origin body is assumed to rotate about the z-axis, this velocity is given by

$$
\begin{equation*}
\vec{V}^{\prime}=\overrightarrow{\mathrm{V}}-\vec{\omega} \times \overrightarrow{\mathrm{r}} \tag{BI}
\end{equation*}
$$

In $\mathrm{x}, \mathrm{y}, \mathrm{z}$ component form,

$$
\begin{gather*}
V_{x}^{\prime}=V_{x}+u y \tag{B2a}\\
V_{y}^{\prime}=V_{y}-u x \tag{B2b}\\
V_{z}^{\prime}=V_{z} \tag{B2c}
\end{gather*}
$$

In the following sections, the atmosphere of the origin body is assumed to rotate as a solid body at the rate $\vec{\omega}$.

Thrust Resolution Along x, y, z Axes

The thrust direction is specified with respect to the relative velocity vector \vec{V}^{\prime} by the angles α and β, as shown in sketch (a). For resolution of thrust vector into x, y, z components, it is convenient to define vectors \vec{A} and \vec{P} normal to and within the \vec{r}, $\overrightarrow{\mathrm{V}}^{\prime}$ plane, respectively, such that $\overrightarrow{\mathrm{V}}$ ', \vec{A}, and \vec{P} form an orthogonal set. Thus,

$$
\begin{equation*}
\overrightarrow{\mathrm{A}} \equiv \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{V}}^{\prime}=\text { Relative angular momentum per unit mass } \tag{B3}
\end{equation*}
$$

$$
\begin{equation*}
\vec{P} \equiv \vec{V}^{\prime} \times \vec{A} \tag{B4}
\end{equation*}
$$

The thrust vector can then be resolved in the $\vec{V}^{\prime}, \vec{A}, \vec{P}$ set as:

$$
\begin{gather*}
\vec{F} \cdot \vec{V}^{\prime}=F V^{\prime} \cos \alpha \tag{B5a}\\
\vec{F} \cdot \vec{A}=F A \sin \alpha \sin \beta \tag{B5b}\\
\vec{F} \cdot \vec{P}=F P \sin \alpha \cos \beta \tag{B5c}
\end{gather*}
$$

Solving for \vec{F} yields

$$
\begin{equation*}
\vec{F}=\frac{F}{P^{2}}\left(V^{\prime} \cos \alpha \vec{A} \times \vec{P}+A \sin \alpha \sin \beta \vec{P} \times \vec{V}^{\prime}+\vec{P} \sin \alpha \cos \beta \vec{P}\right) \tag{B6}
\end{equation*}
$$

or, in x, y, z component form,

$$
\begin{align*}
F_{x}=\frac{F}{P^{2}}\left[V^{\prime} \cos \alpha\left(A_{y} P_{z}-A_{z} P_{y}\right)+A \sin \alpha \sin \beta\left(P_{y} V_{z}^{\prime}-\right.\right. & \left.P_{z} V_{y}^{\prime}\right) \\
& \left.+P \sin \alpha \cos \beta P_{x}\right] \tag{B7a}
\end{align*}
$$

$$
F_{y}=\frac{F}{P^{2}}\left[V^{\prime} \cos \alpha\left(A_{z} P_{x}-A_{X} P_{z}\right)+A \sin \alpha \sin \beta\left(P_{z} V_{X}^{\prime}-P_{X} V_{z}^{\prime}\right)\right.
$$

$$
\begin{equation*}
\left.+P \sin \alpha \cos \beta P_{y}\right] \tag{B7b}
\end{equation*}
$$

$$
F_{z}=\frac{F}{P^{2}}\left[V^{\prime} \cos \alpha\left(A_{x} P_{y}-A_{y} P_{x}\right)+A \sin \alpha \sin \beta\left(P_{x} V_{y}^{\prime}-P_{y} V_{x}^{\prime}\right)\right.
$$

$$
\begin{equation*}
\left.+P \sin \alpha \cos \beta P_{z}\right] \tag{B7c}
\end{equation*}
$$

Aerodynamic Lift and Drag Resolution Along x, y, z Axes
The drag vector is alined with the relative velocity vector \vec{V}^{\prime} and is therefore given in x, y, z components as

$$
\begin{equation*}
\vec{D}=-D \frac{V_{X}^{\prime}}{V^{\prime}}-D \frac{V_{y}^{\prime}}{V^{\prime}}-D \frac{V_{z}^{\prime}}{V^{\prime}} \tag{B8}
\end{equation*}
$$

The lift vector $\overrightarrow{\mathrm{L}}$ may be resolved into components along the previously defined orthogonal set $\vec{V} ', \vec{A}$, and \vec{P} by the following relations:

$$
\begin{gather*}
\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~V}}^{\prime}=0 \tag{B9a}\\
\overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{~A}}=\mathrm{LA} \sin \beta \\
\overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{P}}=\mathrm{LP} \cos \beta \tag{B9c}
\end{gather*}
$$

Solving for \vec{L} yields

$$
\begin{equation*}
\overrightarrow{\mathrm{L}}=\frac{\mathrm{L}}{\mathrm{P}^{2}}\left(A \sin \beta \overrightarrow{\mathrm{P}} \times \vec{V}^{\prime}+P \cos \beta \vec{P}\right) \tag{BIO}
\end{equation*}
$$

or, in x, y, z component form,

$$
\begin{align*}
& L_{x}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{y} V_{z}^{\prime}-P_{z} V_{y}^{\prime}\right)+P \cos \beta P_{x}\right] \tag{Blla}\\
& L_{y}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{z} V_{x}^{\prime}-P_{x} V_{z}^{\prime}\right)+P \cos \beta P_{y}\right] \tag{Bllb}\\
& L_{z}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{x} V_{y}^{\prime}-P_{y} V_{x}^{\prime}\right)+P \cos \beta P_{z}\right] \tag{Blıc}
\end{align*}
$$

From spherical trigonometry used in reference to the celestial sphere shown in sketch (c) the following relations may be derived for the position coordinates:

$$
\begin{gather*}
\mathrm{x}=\mathrm{r}(\cos \Omega \cos u \sim \sin \Omega \sin u \cos i) \\
\mathrm{y}=\mathrm{r}(\sin \Omega \cos u+\cos \Omega \sin u \cos i) \tag{Clb}\\
\mathrm{z}=\mathrm{r}(\sin u \sin i) \tag{Cle}
\end{gather*}
$$

where

$$
\begin{gather*}
r=\frac{p}{1+e \cos v} \tag{C2a}\\
u=\omega+v \tag{c2b}
\end{gather*}
$$

and v is found from the relations

$$
\begin{equation*}
\cos \mathrm{V}=\frac{\cos E-e}{1-e \cos E} \tag{c2c}
\end{equation*}
$$

and

$$
\begin{equation*}
M=E-e \sin E \tag{c2d}
\end{equation*}
$$

The velocity components may be obtained by differentiating the position equations using the two-body relations $\dot{u}=\dot{v}=\frac{\sqrt{\mu p}}{r^{2}}$ and $\dot{r}=\sqrt{\frac{\mu}{p}}$ e $\sin v$:

$$
\begin{gather*}
\dot{x}=-\sqrt{\frac{\mu}{p}}(N \cos i \sin \Omega+Q \cos \Omega) \tag{C3a}\\
\dot{y}=\sqrt{\frac{\mu}{p}}(N \cos i \cos \Omega-Q \sin \Omega) \tag{c3b}\\
\dot{z}=\sqrt{\frac{\mu}{p}}(N \sin i) \tag{c3c}
\end{gather*}
$$

where

$$
\begin{align*}
& N=e \cos \omega+\cos u \tag{c4a}\\
& Q=e \sin \omega+\sin u \tag{C4b}
\end{align*}
$$

APPENDIX D

RUNGE-KUTTA AND LOW-ORDER INTEGRATION SCHFMES WITH ERROR CONTROL
The Runge-Kutta formula used is of fourth-order accuracy in step size h. It is of the form

$$
\begin{equation*}
\mathrm{X}]_{1}^{2} \equiv \mathrm{X}_{2}-\mathrm{X}_{1}=\frac{1}{6}\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right) \tag{DI}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{X}=\mathrm{a} \text { dependent variable } \\
\mathrm{X}]_{1}^{2}=\text { increment in the dependent variable } \\
\mathrm{h}_{2}=\text { increment in the independent variable } \mathrm{t} \\
\mathrm{k}_{1}=\mathrm{h}_{2} \dot{\mathrm{X}}_{2}\left(\mathrm{t}_{1}, \mathrm{X}_{1}\right) \\
\mathrm{k}_{2}=h_{2} \dot{X}_{2}\left(\mathrm{t}_{1}+\frac{h_{2}}{2}, \mathrm{X}_{1}+\frac{k_{1}}{2}\right) \\
\mathrm{k}_{3}=h_{2} \dot{\mathrm{X}}_{2}\left(\mathrm{t}_{1}+\frac{h_{2}}{2}, \mathrm{X}_{1}+\frac{k_{2}}{2}\right) \\
\mathrm{k}_{4}=h_{2} \dot{X}_{2}\left(\mathrm{t}_{1}+h_{2}, \mathrm{X}_{1}+\mathrm{k}_{3}\right)
\end{gathered}
$$

A lower-order formula may be found by utilizing the three derivatives at $t=t_{0}, t_{1}$, and t_{2}. If $h_{1}=t_{1}-t_{0}$ and $h_{2}=t_{2}-t_{1}$, the following Lagrangian interpolation formula gives the derivative at any time $t_{0} \leq t \leq t_{2}$:

$$
\begin{equation*}
\dot{X} \equiv \dot{X}_{0} \frac{\left(t-t_{1}\right)\left(t-t_{2}\right)}{h_{1}\left(h_{1}+h_{2}\right)}-\dot{X}_{1} \frac{\left(t-t_{0}\right)\left(t-t_{2}\right)}{h_{1} h_{2}}+\dot{X}_{2} \frac{\left(t-t_{0}\right)\left(t-t_{1}\right)}{h_{2}\left(h_{1}+h_{2}\right)} \tag{D2}
\end{equation*}
$$

Integration of this equation from t_{1} to t_{2} yields

$$
\begin{equation*}
\left.X^{\prime}\right]_{1}^{2}=\frac{1}{6}\left[\left(\frac{h_{2}}{h_{1}}\right)^{2}\left(\frac{-h_{2}}{1+\frac{h_{2}}{h_{1}}}\right) \dot{X}_{0}+\frac{h_{2}}{h_{1}}\left(h_{2}+3 h_{1}\right) \dot{X}_{1}+\left(2 h_{2}+\frac{h_{2}}{1+\frac{h_{2}}{h_{1}}}\right) \dot{x}_{2}\right] \tag{D3}
\end{equation*}
$$

The difference in the increments over the interval h_{2} between the Runge-Kutta scheme and the low-order scheme may be divided by a nominal value of the dependent variable $\overline{\mathrm{X}}$ to obtain the relative error δ_{2}. Thus,

$$
\begin{equation*}
\delta_{2}=\left|\frac{\left.\left.x^{\prime}\right]_{1}^{2}-x\right]_{1}^{2}}{\bar{x}}\right| \tag{D4}
\end{equation*}
$$

The error is expected to vary as approximately the fifth power of h, which leads to

$$
\begin{equation*}
\delta=A h^{5} \tag{D5a}
\end{equation*}
$$

(where A is a suitable coefficient) or in the logarithmic form

$$
\begin{equation*}
\log \delta=A^{\prime}+5 \log h \tag{D5b}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=\log A \tag{D6a}
\end{equation*}
$$

Let it be assumed that A^{\prime} will vary linearly with t, the variable of integration. Then A^{\prime} at a time corresponding to t_{3} can be found from A^{\prime} at two previous points t_{1} and t_{2} as

$$
\begin{equation*}
A_{3}^{\prime}=A_{2}^{\prime}+\frac{A_{2}^{\prime}-A_{1}^{\prime}}{t_{2}-t_{1}}\left(t_{3}-t_{2}\right) \tag{D6b}
\end{equation*}
$$

and if $h_{3}=\left(t_{3}-t_{2}\right)$ and $h_{2}=\left(t_{2}-t_{1}\right)$

$$
\begin{equation*}
A_{3}^{\prime}=A_{2}^{\prime}+\left(A_{2}^{\prime}-A_{1}^{\prime}\right) \frac{h_{3}}{h_{2}} \tag{D6c}
\end{equation*}
$$

and on this basis δ_{3} would be predicted to be

$$
\begin{equation*}
\log \delta_{3}=A_{3}^{\prime}+5 \log h_{3} \tag{D7}
\end{equation*}
$$

It is desired that $\delta 3$ should approximate $\bar{\delta}$, the reference error; therefore,

$$
\begin{equation*}
\log h_{3}=\frac{1}{5}\left(\log \bar{\delta}-A_{3}^{\prime}\right) \tag{D8}
\end{equation*}
$$

Each dependent variable has an associated relative error and would lead to computation of a different step size for each variable; however, the maximum relative error of all variables may be selected for δ. Obviously, inaccurate predictions of step size can occur when the maximum relative error shifts from one variable to another or when any sudden change occurs. When a step size produces
an excessively large error ($\delta>\delta_{\text {limit }}$), a reduced step size must be used. It may be obtained from the reference error $\bar{\delta}$ as

$$
\begin{equation*}
h_{3}=\exp \left[\frac{1}{5}\left(\log \bar{\delta}-A_{2}^{\prime}\right)\right] \tag{D9}
\end{equation*}
$$

Starting the integration. - The Runge-Kutta scheme is simple to start, since integration from X_{n} to X_{n+1} requires no knowledge of X less than X_{n}. Since the error control coefficient A has no value at $t=0$, however, a prediction of the second step size is difficult. To overcome this difficulty, two equal size first steps may be made before checking the error. The A for the first step may be arbitrarily set equal to the A for the second step so that h_{3} may be predicted. The low-order integration scheme equation in this case becomes, with $h_{2}=h_{1}$,

$$
\begin{equation*}
\left.x^{\prime}\right]_{1}^{2}=\frac{h_{1}}{3}\left(\dot{x}_{0}+4 \dot{x}_{1}+\dot{x}_{2}\right) \tag{D10}
\end{equation*}
$$

Failures. - Should two consecutive predictions of the same step fail to produce an error δ less than $\delta_{\text {limit, }}$ a return to the starting procedure will be made with a third prediction on step size, which is no larger than one-half of the second estimate. The step-size control described here will operate stably with nearly constant error per step only for a well-behaved function. For most problems it will repeat a step occasionally to reduce a large error, and on sharp corners it will restart. This action is not regarded as objectionable. The obfective is to attain a desired level of accuracy with a minimum total number of steps.

APPENDIX E
GLOSSARY OF VARTABLES

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
A	562	Total angular momentum per unit mass, $\mathrm{m}^{2} / \mathrm{sec}$
A (3)	559-561	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of angular momentum per unit mass, $\mathrm{m}^{2} / \mathrm{sec}$
Al	236	Error control parameter defined by eq. (D6a) at t_{1}
A2	237	Error control parameter defined by eq. (D6a) at t_{2}
ACOEF 1	265	Interpolation polynomial coefficients for variable
ACOEF 2	266	step size (coefficient of $\dot{X}_{0}, \dot{X}_{1}, \dot{X}_{2}$ in eq. (D3))
ACOEF 3	267	
AK (3)	233-235	Runge-Kutta coefficients; set in STIDATA
ALPHA	564	Angle between velocity and thrust vectors, positive when thrust vector is outward (sketch (a))
ALT	463 or 108	Vehicle altitude above an elliptic Earth, m
AMASS (30)	881-910	Permanent list of body masses (sun mass units) in order of PNAME list; set in SIDATA; masses from ELIPS data begin at AMASS(21)
ANGLES (4)	104-107	Same as LAT, LONG, AZI, and ELEV, respectively
AREA	35	Effective area used to compute lift and drag forces in AERO, m^{2}
ASQRD	563	Square of total angular momentum, $\mathrm{A}^{2}, \mathrm{~m}^{4} / \mathrm{sec}^{2}$
ASYMPI	543	See table II
ATMIV	26	See table II
AW (4)	261-264	Runge-Kutta coefficients; set in STDATA
AZI	106	Azimuth angle, measured east from north at local meridian, input in deg
BETA	565	Angle between velocity-thrust plane and orbit plane (sketch (a))

Variable	COMMON location	Definition
BEX (14)	801-813	List of error data
EMASS (8)	417-424	Body masses selected from AMASS list in sequence corresponding to BNAME list
BINAME (8)	402-409	Ordered list of BCD body names
BODY CD (8)	811-818	Original unordered list of $B C D$ body names read from cards
BODY L (8)	801-803	Auxiliary ordered list of BCD body names
$C D$	797	Total drag coefficient per unit area, sec ${ }^{2} / \mathrm{m}$
CDI	795	Induced drag coefficient per unit area, $\sec ^{2} / \mathrm{m}$
CEX (800)	801-1600	Cormon extension; common used in segment 1 but not needed in segment 2 and therefore saved on drum 2 during execution of segment 2
CF (126)	276-401	Coefficients from ephemerides tape used to determine positions of perturbing bodies
CINVCL	495	\cos i
CIRCTM	541	Circumferential component of total perturbative acceleration
CHAMP	246	Smallest critical radius within which object lies
CL	796	Lift coefficient per unit area, $\sec ^{2} / \mathrm{m}$
CLEAR	19	See table II
CLOCK	3	Contains reading of clock (to compute time used for particular problem)
COEFN (190)	601-790	Storage array for coefficients used to compute ALPHA, CL, CDI, CD, or other parameters
COMPA (3)	537-539	Components of total perturbative acceleration in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinate system
CON (9)	576-581	Constants in the oblateness equations; set in STDATA
CONSTU	18	See table II

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
CONSU	36	See table II
$\operatorname{COS~AIF}$	575	$\cos \alpha$
$\operatorname{COS~BET}$	599	$\cos \beta$
COSTRU	493	$\cos \mathrm{v}$
COSV	497	$\cos u$
DE	162	$\dot{\text { e }}$
DEL	255	Used to control output in STEP
DELMAX	23	See table II
DELT	10	Step size, sec
DINCL	165	i
DM	161	$\dot{\mathrm{m}}$
DMA	166	$\dot{\mathrm{M}}$
DNODE	164	$\dot{\delta}$
DNSITY	460	Atmospheric density, $\mathrm{kg} / \mathrm{m}^{3}$
DOMEGA	163	$\dot{\omega}$
DRAG (3)	531-533	x, y, z components of the drag acceleration
DIOFF J	31	Julian date of takeoff
E	42	e
E2	260	Largest of relative errors between Runge-Kutta and Simpson rule integration methods defined by eq. (D4)
EFMRS (7)	410-416	List BCD body names whose positions are to be determined from ephemerides-tape data
ELEV	107	Elevation angle, measured outward, deg

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
ELIPS (120)	941-1060	Ellipse data for perturbing bodies, read from cards; for each body there are 15 pieces of data [NOTE: SUBROUTINE ORDER then converts 15 pieces of data into working set of 15]
EPAR	245	$\sqrt{\mathrm{e}^{2}-1}$
EREF	37	See table II
ERLTMT	17	See table II
ERLOG	259	Natural logarithm of EREF
ETOL	25	See table II
EXMODE	244	Eccentricity (used when IMODE = 3)
EMONE	243	e - 1
FIIE	249	See table II
FLOW	33	Rate of propellant flow, $\mathrm{kg} / \mathrm{sec}$
FORCE (3)	525-527	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of acceleration due to thrust
GASFAC	458	Defined in AERO; set in STDATA
GEOH	465	Geopotential, m
GK2M	469	Gravitational constant, $\mu, \mathrm{m}^{3} / \mathrm{sec}^{2}$
GKM	470	Square root of GK2M
H2	256	Value of DEIT for previous step
IBODY (8)	425-432	Defined in SUBROUTINE ORDER
ICC (5)	238-242	See table II
IMODE	28	See table II
INCL	45	i, radians
IND (3)	791-793	Index set in STDATA

Variable	COMMON location	Definition
INDERR	491	Number of sets of error data; set in ERRORZ for use in MAIN 1
KSUB	254	Index of Runge-Kutta subintervals
LEEVGTH	257	See table II
Lat	104	Geocentric latitude, positive northward, deg
LONG	105	Longitude relative to Greenwich, positive eastward, deg
MA	46	M
MBODYS	441	Number of perturbing bodies
MODOUT	103	See table II
NBODYS	489	Total number of bodies, excluding vehicle
NDUMP (4)	268-271	See table II
NEFMRS (8)	433-440	Defined in SUBROUTINE ORDER
NODE	44	8, radians
NPONG (5)	11-15	See table II
NSKIP (4)	272-275	See table II
NSTART	247	Internal control in MAIN 2 and EQUATE
OBLAT (3)	534-536	x, y, z components of oblateness acceleration
OBLAT J	38	Oblateness coefficient of $2^{\text {nd }}$ harmonic
OBLAT K	39	Oblateness coefficient of $4^{\text {th }}$ harmonic
OBLAT N	27	See table II
OMEGA	43	ω, radians
OLDDEL	225	Value of DELT for previous good step
ORBELS (6)	227-232	Array of output variables, either rectangular or orbit elements

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
P	47	p, m
P (3)	571-573	Defined in eq. (B4)
PAR (3)	798-800	Defined by equations in SUBROUTINE THRUST
PMAGN	574	Defined in equation form by SUBROUPINE THRUST
PRESS	466	Atmospheric pressure, mb
PUSH	34	Thrust force, newtons
PINA	---	ALF list of body names
PNAME (30)	821-850	Permanent list of body names made from PNAA list in SUBROUTINE ORDER; ELIPS names begin at PNAME(21)
PSI	462	Path angle, angle between path and local horizontal, deg
QVAL	794	Defined in SUBROUTINE AERO
QX (3)	522-524	x, y, z perturbátive acceleration components due to perturbing bodies, $\mathrm{m} / \mathrm{sec}^{2}$
R	442	Origin to object radius, m
RADIAL	540	Radial component of total perturbative acceleration, positive outward, $\mathrm{m} / \mathrm{sec}^{2}$
RATIO	600	Ratio of adjacent step sizes
RAIM	29	Radius of atmosphere, m
RATMOS	248	Set equal to RATM when ATMIV equals reference body name (BNAME (1))
$\mathrm{RB}(3,8)$	200-223	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of distance from all bodies to object, m
RBCRIT (8)	450-457	List of sphere-of-influence radil of all bodies in BNAME list, m
RCRIT (30)	911-940	Permanent list of sphere-of-influence radii corresponding to PNAME list of body names, m ; radii from ELIPS data begin at RCRIT(21)
RECALL	9	See table II

Variable	COMMON location	Definition
RFFER (30)	851-880	List of reference bodies corresponding to PNAME list; reference bodies from ELIPS data begin at REFER(21)
REVOLV	250	Rotation rate (rad/sec) of reference body when ATMN = BNAME (1)
RESQRD	40	Square of Earth's equatorial radius, m^{2}; used in SUBROUTINE OBLATE; set in STDATA
REVS	490	Revolution counter, used only for output
RMASS	41	m, kg (
ROTATE	459	Rotation rate of a reference body, radians/sec
RREL (8)	442-449	Distances between bodies and object in order of BNAME list, m
RSQRD	567	Radius squared of object to origin, m2
SAVE	8	See table II
SIMP	5	Specific impulse, I, sec
SINALF	569	$\sin \alpha$
SINBET	568	$\sin \beta$
SINCL	494	$\sin i$
SINTRU	492	$\sin \mathrm{v}$
SINV	496	$\sin u$
SPD	253	Seconds per day; set in STDATA
SQRDK	468	Gravitational constant k^{2}, $\mathrm{m}^{3} /\left(\sec ^{2}\right)$ (sun mass units); set in STDATA; value of $1.495 \times 10^{11} \mathrm{~m} / \mathrm{AU}$ (equivalent to solar parallax of 8.80008445 sec of arc) was used to convert units from $2.959122083 \times 10^{-4}$ $(\mathrm{AU})^{3} /(\text { mean solar day })^{2}($ sun mass units) to $1.32452139 \times 10^{20} \mathrm{~m}^{3} /\left(\sec ^{2}\right)($ sun mass units)
STEPGO	101	See table II
STEPNO	102	See table II

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
STEPMX	20	See table II
STEPS	21	See table II
TAB (189)	1301-1489	Table array of input variables and their common storage assignment; used by SUBROUTINE INPUT; room for 94 variables
TABLT	252	Time measured relative to DIOFFT, days
TAPE 3	2	See table II
TDATA (126)	276-401	Same as CF
TDEL (7)	592-598	One-half of time spacing between two particular adjacent entries of like body name on ephemerides tape; read from tape for each body
TEST	1	See table II
TFILE	16	See table II
TIM (7)	585-591	Time for set of ephemeris data; read from ephemerides tape; one for each body
TITME	48	Time, t, independent variable, sec
TM	467	Temperature, O_{K}, times ratio of molecular to actual molecular weight
TMAX	30	See table II
IMMIN	22	See table II
TOFFT	32	Fractional part of takeoff day (Julian), days
TRSFER	224	See table II
TRU	483	v , radians
TTIEST	251	See table II
TTOL	226	Time tolerance within which problem time minus TMAX must lie to end problem
V	475	Velocity of object relative to origin $V, \mathrm{~m} / \mathrm{sec}$

Variable	$\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$	Definition
VAIM (3)	477-479	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of VQ
$\operatorname{VEFM}(3,8)$	498-521	x, y, z components of object velocity relative to all various bodies, $\mathrm{m} / \mathrm{sec}$
VEL,	109	Initial velocity at input
VQ	480	Velocity of object relative to atmosphere, $\mathrm{m} / \mathrm{sec}$
VQSQRD	481	$(\mathrm{VQ})^{2}, \mathrm{~m}^{2} / \mathrm{sec}^{2}$
VMACH	471	Mach number of object, N_{M}
VSQRD	476	$\mathrm{V}^{2}, \mathrm{~m}^{2} / \mathrm{sec}^{2}$
VX	42	x-component of V; also in COMMON location $C(472)$, $\mathrm{m} / \mathrm{sec}$
VY	43	y-component of V; also in COMMON location $C(473)$, $\mathrm{m} / \mathrm{sec}$
VZ	44	z-component of V ; also in COMMON location $\mathrm{C}(474)$, $\mathrm{m} / \mathrm{sec}$
X	45	x-component of R, m
X (15)	131-145	Working set of integration variables
XDOT (15)	161-175	Array of integration derivatives
XIFT (3)	528-530	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of lift acceleration, $\mathrm{m} / \mathrm{sec}^{2}$
XINC (15)	146-160	Increments of integration variables per step
XP $(3,8)$	176-199	x, y, z components of perturbing body positions relative to origin
$\operatorname{XPRIM}(15,2)$	41-70	Two 15-variable arrays; second is integrated and first contains values of integration variables for last good step; see table V
XPRIMB $(15,2)$	71-100	Least significant half of double precision integration variables corresponding to XPRIM
XWHOLE (15)	544-558	Temporary storage for integration variables
Y	46	y-component of R

Variable	CoMMON location	Definition
Z	47	z-component of R
ZN	487	Mean angular motion of object, radians $/ \mathrm{sec}$ ZMA ZORMAL
546	M	
z-component of total perturbative acceleration, $\mathrm{m} / \mathrm{sec}^{2}$		

APPENDIX F

LEWIS RESEARCH CENIER EPHEMERIS

General Description

The ephemeris data initially available on magnetic tape for use on the IBM 704 computer were from the Themis code prepared by the Livermore Laboratory, evidently from U. S. Naval Observatory data. Later, an ephemeris was obtained from the Jet Propulsion Laboratory assembled as a joint project of the Jet Propulsion Laboratory and the Space Technology Laboratory. These data are given relative to the mean vernal equinox and equator of 1950.0 and are tabulated with ephemeris time as the argument.

An ephemeris was desired for certain uses in connection with the IBM 704 computer that would be shorter than the original ephemeris tapes mentioned and would be as accurate as possible consistent with the length. A short investigation of the various possibilities led to adoption of fitted equations. In particular, fifth-order polynomials were simultaneously fitted to the position and velocities of a body at three points. This procedure provides continuity of position and velocity from one fit to the next, because the exterior points are cormon to adjacent fits. Polynomials were selected rather than another type of function, because they are easy to evaluate. Three separate polynomials are used for the x, y, and z coordinates, respectively.

Procedure Used to Fit Data

The process of computing the fitting equations is as follows:
(1) A group of 50 sets of the components of planetary position was read into the machine memory for a single planet together with differences as they existed on the original magnetic tape. The differences were verified by computation (in double precision because some data required it); and any errors were investigated, corrected, and verified. Published ephemeris data were adequate to correct all errors found.
(2) The components of velocity $\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}$, and v_{z} were computed and stored in the memory for each of the 50 positions by means of a numerical differentiation formula using ninth differences, namely,

$$
\begin{align*}
\dot{X}=\left(T_{1}-T_{-1}\right)[& \frac{\Delta I_{-1}+\Delta I_{+1}}{2}-\frac{\Delta I I I_{-1}+\Delta I I I_{+1}}{12}+\frac{\Delta V_{-1}+\Delta V_{+1}}{60} \tag{Fl}\\
& \left.-\frac{\Delta V I I_{-1}+\Delta V I I_{+1}}{280}+\frac{\Delta I X_{-1}+\Delta I X_{+1}}{1260}\right]
\end{align*}
$$

(See ref. 11 pp .42 and 99 for notation,) Double-precision arithmetic was used for differences, but velocities were tabulated with single precision.
(3) Coefficients C, D, E, and F in the fifth-order polynomial
$X=X_{0}+\dot{X}_{0}\left(T-T_{0}\right)+C\left(T-T_{0}\right)^{2}+D\left(T-T_{0}\right)^{3}+E\left(T-T_{0}\right)^{4}+F\left(T-T_{0}\right)^{5}$
and its derivative

$$
\begin{equation*}
\dot{\mathrm{X}}=\dot{\mathrm{X}}_{0}+2 \mathrm{C}\left(\mathrm{~T}-\mathrm{T}_{0}\right)+3 \mathrm{D}\left(\mathrm{~T}-\mathrm{T}_{0}\right)^{2}+4 \mathrm{E}\left(\mathrm{~T}-\mathrm{T}_{0}\right)^{3}+5 \mathrm{~F}\left(\mathrm{~T}-\mathrm{T}_{0}\right)^{4} \tag{F3}
\end{equation*}
$$

were found to fit a first point (which was far enough from the beginning point to have all differences computed) and two equally spaced points for each component of position and velocity. (The initial spacing is not important, as will be seen later.) Spacing is defined as the number of original data points fitted by one equation. Single-precision arithmetic was used.
(4) The coefficients C, D, E, and F in step (3) were then used in equations (F2) and (F3) to calculate components of all positions and velocities given in the original data and lying within the interval fitted. These values were checked with the original data. Radius R and velocity V were computed at the times tabulated in the original data. If any component of the position differed from the original data by more than $R \times 10^{-7}$ or if any velocity differed from the original by more than $\mathrm{V} \times 10^{-6}$, the fit was considered unsatisfactory.
(5) If the fit were considered unsatisfactory, this fact was recorded; and the spacing was reduced by two data points. Steps 2 to 4 were then repeated. If the fit were considered satisfactory, this fact was recorded; and the spacing was increased by two spaces. Steps 2 to 4 were repeated. The largest satisfactory fit was identified when a certain spacing was satisfactory and the next larger fit was not satisfactory.
(6) The coefficients that corresponded to the largest satisfactory fit were recorded on tape in binary mode as follows:

Word number	Data	Mode	Definitions and/or units
1	Planet name	BCD	Six characters (first six)
2	Julian date	Floating point	Date of midpoint of fit, Julian date
3	Delta T		Number of days on each side of midpoint
4	F_{x}		$\mathrm{a}_{\mathrm{AU} / \mathrm{day}}{ }^{5}$
5	E_{x}		$\mathrm{a}_{\mathrm{AU} / \mathrm{day}}{ }^{4}$
6	D_{x}		$\mathrm{a}_{\text {AU/ } / \mathrm{day}}{ }^{3}$
7	C_{x}		$a_{A U} /{ }^{\text {day }}{ }^{2}$
8	$\dot{\text { x }}$		${ }^{\text {a }}$ A/day
9	x		${ }_{\text {a }}{ }^{\text {a }}$
10	F_{y}		$a_{\text {AU/ }} / \mathrm{day}^{5}$
11			$\mathrm{a}_{\text {AU/ }} \mathrm{day}^{4}$
12	D_{y}		$\mathrm{a}_{\text {AU/day }}{ }^{3}$
13	${ }^{\text {c }}$		$\mathrm{a}_{\text {AU }} / \mathrm{day}^{2}$
14	$\hat{y}^{\text {y }}$		${ }^{\text {a }}$ AU/day
15	y		${ }^{\text {a }}$ AU
16	F_{z}		$\mathrm{a}_{\text {AU/day }}{ }^{5}$
17	E_{z}		$a_{\text {AU/ }} \mathrm{day}^{4}$
18	D_{z}		$a_{\text {AU/ }}$ day 3
19	C_{2}		$\mathrm{a}_{\text {AU/ }} / \mathrm{day}^{2}$
20	$\dot{z}^{\mathbf{z}}$		${ }^{\text {a }}$ AU/day
21	z	γ	${ }^{a_{A U}}$

$\mathrm{a}_{\text {Except }}$ for moon data, which are in Earth radii and days.
(7) As soon as a set of coefficients was selected for an interval, additional data were read from the source ephemeris tape and used to replace the points already fitted (except the last point). These data were processed as described in steps 1 and 2 so that the next 50 points were ready to be fitted. Steps 3 to 6 were then used to find the next set of coefficients, and steps 1 to 6 were repeated until all data for all planets and so forth, were fitted.

Data Treated

The preceding process was applied to all data available at the time. For the moon, the technique usually led to the use of every point in the fitted
interval (i.e., only three points were fitted). Thus, a check of accuracy was not available. The error on the attempt to fit the next greater interval (five points) was not excessive, however, and it is judged that the accuracy obtained from these fits is about equal to that held on the other bodies.

Merged Ephemeris Tape

Once all the positions and velocities of all the bodies then available were fitted, the coefficients were merged in order of the starting date of each fit. The resulting tape was written in binary mode with 12 sets of fits per record.

The detail of this record is as follows:

Successive sets follow one another with a total of 12 sets.
Set $12 \quad$ (last set) $\begin{cases}234^{\text {th }} \text { word: } & \text { planet name } \\ 235^{\text {th }} \text { word: } & \text { Julian date, floating point } \\ 254^{\text {th }} \text { word: } & \text { z } \\ 255^{\text {th }} \text { word: } & \text { zero } \\ 256^{\text {th }} \text { word: zero } \\ \text { End-of-record gap }\end{cases}$
One record contains 256 words, the first is for FORTRAN compatibility, the second is a file number used for identification in the system. It is a fixed point 2. The third is the beginning of the first set of data, and 12 sets follow, each with 21 words. The last word is the $256^{\text {th }}$ word (counting the FORTRAN compatible word) followed by an end-of-record gap. The remaining records are compiled in the same manner with an end-of-file recorded as a terminating mark.

Because of the merging operation, all bodies are given in one list in a random order according to the starting date of the interval. The starting date is the Julian day (word 2) minus the half interval (word 3) (see procedure, paragraph 6). The entire ephemeris occupies about one-seventh reel of tape. A summary of data is given in table VII.

APPENDIX G

INPUT-DATA REQUIREMENTS

The procedure needed to run actual problems with the ald of this routine is described herein. It is intended to permit a person with a specific problem in mind to make a complete list of data required and to select desirable operating alternatives from those available to him. The details of this procedure are contained in the following instructions:
(1) Provision has been made for two types of ephemeris data to specify the locations of celestial bodies that perturb the vehicle. They are ellipse data and ephemeris-tape data. If the problem does not involve perturbing bodies (except a reference body) or if elliptic data are used for all the perturbing bodies, skip to instruction 5.
(2) If the perturbing-body data are to be taken from an ephemeris tape, list the names of the ephemerides and Julian dates to be covered along with the following auxiliary information:

```
\(1^{\text {st }}\) card: \(\$\) DATA \(=300, \$\) TABLE, \(2=\) TAPE \(3,17=\) ELIST, \(29=\) TBEGIN,
    \(30=\) TEND \(/\)
Other cards: TAPE \(3=0\)
TBEGIN = ephemeris beginning Julian date
TPIDD \(=\) ephemeris ending Julian date
ELIST = (names of perturbing bodies in "ALF" format, see
    example in text)
```

The ephemerides of all planets except Earth bear the name of the planet. The ephemeris giving the distance from Earth to the sun is called "sun," as is astronomical practice.
(3) If successive files on the ephemeris tape are to be made, punch the corresponding sets as follows:

$$
\text { \$DATA }=300, \operatorname{TAPE} 3=0, \text { TBEGIN }=, \text { TEND }=, \operatorname{ELIST}=
$$

As many similar sets as are needed may be appended.
(4) If ellipse data are to be loaded from cards, they are prepared later under instruction 12.
(5) On the first execution after loading the routine, the common area is cleared whether an ephemeris tape is constructed or not. It is now necessary
to load a table of variable names. Once loaded, this table will not be cleared again (except if the control variable TAPE 3 is set to zero). These names are for use on the input cards. If a different name is desirable for any variable, it may be changed in the table and where it appears on the input card (ref. 7). The cards are:

```
$DATA=1,$TABLE, 104=LAT,105=LONG,106=AZ1,107=ELEV,108=ALT,109=VEL,7=TKICK
,28. =IMODE,45=X,46=Y,47=2,42=VX,43=VY,44=VZ,42=E,43=OMEGA,44=NODES,45=
INCL,46=MA,47=P,41=RMASS,31=DTOFFJ,32=TOFFT,48=TIME,811=BODYCD,16=TFILE,
941=ELIPS,27=OBLATN,38=OBLATJ,39=OBLATK,34=PUSH,5=SIMP,33=FLOW,24=AEXIT,
565=BETA,601=COEFN,238.=1CC,26=ATMN,29=RATM,459=ROTATE,35=AREA,37=EREF,
17=ERLIMT,103.=MODOUT, 30=TMAX,20=STEPMX,23=DELMAX,21=STEPS,22=TMIN,1=
TEST,268* =NDUMP,272*=NSKIP,257* =LENGTH,19=CLE^R,8=SAVE,9=RECALL,10=DELT/
```

(6) The initial position and velocity of the vehicle may be given in any one of three coordinate systems. If the initial data are given in orbit elements, skip to instruction 8 . If the initial data are given in rectangular coordinates, skip to instruction 7. If the initial data are given in Earthcentered spherical coordinates, the following variables should be punched:

```
IAT = latitude, deg, positive north of equator
LONG = longitude, relative to Greenwich, deg
AIT = altitude above sea level, m
AZI = azimuth angle, east from north, deg
ELEV = elevation angle, horizontal to path, deg
VEL = initial velocity, m/sec
TKICK = size of initial vertical, nondrag step to facilitate starting,
    sec
IMODE = 4
```

These geocentric coordinates are converted by subroutine TUDES to rectangular coordinates and IMODE will be changed to 2 with its original sign. Skip to instruction 9.
(7) If the initial data are in rectangular coordinates, set the following variables:
$X=x$-component of position in x, y, z coordinate system, m
$Y=y$-component of position in x, y, z coordinate system, m
$Z=z-c o m p o n e n t$ of position in x, y, z coordinate system, m
$\mathrm{VX}=\mathrm{x}$-component of velocity in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinate system, $\mathrm{m} / \mathrm{sec}$
VY $=y$-component of velocity in x, y, z coordinate system, $m / s e c$
$V Z=z$-component of velocity in x, y, z coordinate system, $m / s e c$
TMODE $=2$

Skip to instruction 9.
(8) If the initial data are in orbit elements, set the following variables: $E=$ eccentricity

OMFGA = argument of pericenter, radians
NODES $=$ longitude of ascending node (to mean vernal equinox of 1950.0), radiens

INCL $=$ orbit inclination to mean equator of 1950.0 , radians
$M A=$ mean anomaly, radians
$P=$ semilatus rectum, II

IMODE $=1$
(9) Integration is performed on either rectangular variables or orbit elements. If the initial data are of the same type as the desired integration variables, the positive sign on IMODE, as given in instmution 8, will signal a matching condition; but if the desired integration variables are of the opposite type to the input variables, a minus sign should be affixed to the value of MMODE. Note that in the case of geocentric coordinates, an automatic conversion to rectangular coordinates is effected. To convert geocentric coordinates to orbit elements requires $I M O D E=-4$, whereupon subroutine TUDES will convert the geocentric coordinates to rectangular coordinates, TMODE will be set to -2, and then in MAIN 2 the further conversion to orbit elements will be sensed with MMODE finally being set to +1 by the program.
(10) To specify vehicle mass and takeoff time, set the following variables:

RMASS = mass of vehicle, kg
DIOFFJ = Julian day number
TOFFT = fraction of day
TIME = time from previously set Julian date, sec

Takeoff occurs at the instant corresponding to the sum of the last three quantities. If a specific date or time is not required, these variables may be skipped. In that case, the STDATA subroutine sets DTOFFJ to 2440000.
(11) To specify the origin and any perturbing bodies, list them as $\mathrm{BODYCD}=$ (list of body names in "ALF" format, see text example). The first body in the list is taken to be the reference body. The distances between the bodies in this list must be computable from either ellipse data (instruction 12) or ephemeris-tape data (instruction 2). There may be no more than eight names in the list. Also, if the ephemeris tape is being used, the correct file must be found on it. For this purpose, set TFILE = desired ephemeris tape file. The ephemeris files were numbered in sequence when written in instruction 2. If TTFILE is not given, it will be set equal to 1.0 by the STDATA subroutine.
(12) For each body whose path is represented by an ellipse, a 15 -element set of data must be loaded. A l5-element set consists of:
I. body name in "AIF" format (maximum of six characters)
2. reference body name in "ALF" format (maximum of six characters)
3. mass of body, sun mass units
4. radius of sphere of influence, m
5. semilatus rectum, AU
6. eccentricity
7. argument of pericenter, radians
8. longitude of ascending node (to mean vernal equinox of 1950.0), radians
9. orbit inclination (to mean equator of 1950.0), radians
10. Julian day at perihelion
11. fraction of day at perihelion
12. period, mean solar days
13.
14. $\}$ zero
15.

It is convenient to punch a l5-element set in sequence and to separate the elements by commas on as many cards as are required. Several sets may then be
loaded consecutively. The order of the sets is immaterial. Ellipse data, if present, take precedence over ephemeris-tape data. The sets are loaded consecutively, in any order, as follows:

ELIPS $=$ set 1, set 2, set $3, . . .$, set $n ; n \leq 8$ (see example in text)
(13) To specify the initial integration step size, set

DELT = initial integration step size
If no value of DEIT is given, it will be set to TMAX/100 by MAIN 1.
(14) If oblateness effects of the Earth are to be included, set OBLATN $=($ ALF5 $)$ EARTH
(15) If thrust forces are present, set either
(1) $\mathrm{PUSH}=$ thrust magnitude, newtons (for $\dot{\mathrm{m}}=0$)
or
(2) SIMP = specific impulse (vacuum), sec

FLOW = mass-flow rate, $\dot{\mathrm{m}}, \mathrm{kg} / \mathrm{sec}$

For either choice, set
AEXIT = engine exit area, m^{2}
Also, the thrust orientation must be specified by setting
BETA = angle β, deg (see sketch (a))
COFFN (I) = angle-of-attack schedule, $\alpha=\alpha(t)$ (see instruction 17)
ICC $=$ fixed-point integer (see instruction 17)
For the special case of tangential thrust, none of the last three variables need be set.
(16) If aerodynamic forces are present, set

ATMN = name of body that has atmosphere, in "ALF" format
RATM = radius above which atmospheric forces are not to be considered, m

ROTATE $=$ atmospheric-rotation rate, radians $/ \mathrm{sec}\left(7.29211585 \times 10^{-5}\right.$ for Earth)

```
AREA \(=\) reference area, \(m^{2}\)
BETA = angle \(\beta\), deg (see sketch (a))
COEFN (I) \(=\) angle-of attack schedule, \(\alpha=\alpha(t), C_{L} / \sin \alpha, C_{D, 0}\), and
    \(\mathrm{C}_{\mathrm{D}, \mathrm{i}} / \mathrm{C}_{\mathrm{L}}^{2}\) curves (see instruction 17 )
ICC \(=\) fixed-point integers (see instruction 17)
```

(17) If neither thrust nor aerodynamic forces are present, skip to instruction 18. The relations $\alpha(t), C_{L} / \sin \alpha, C_{D, 0}$, and $C_{D, i} / C_{L}^{2}$ are assumed to be quadratic functions that involve coefficients which are located in the COEFN(J) array. The arrangement of these coefficients is best explained by an example. Suppose the functions $\alpha(t)$ is as follows:

$$
a=\left\{\begin{array}{cc}
a_{11}+a_{12} t+a_{13} t^{2} & \left(t_{1} \leq t \leq t_{2}\right) \\
a_{21}+a_{22} t+a_{23} t^{2} & \left(t_{2}<t \leq t_{3}\right) \\
a_{31}+a_{32} t+a_{33} t^{2} & \left(t_{3}<t \leq t_{4}\right) \\
\cdot & \cdot \\
\text { etc. } & \text { etc. }
\end{array}\right.
$$

The coefficients a_{i}, j should then be loaded into the $\operatorname{COFFN}(J)$ array as:
$\operatorname{COEFN}(J)=t_{1}, a_{11}, a_{12}, a_{13}, t_{2}, a_{21}, a_{22}, a_{23}, t_{3}, a_{31}, a_{32}, a_{33}, t_{4}, \ldots, t_{n}$
Furthermore, additional sets of coefficients for the other functions may simply be added to the $\operatorname{COEFN}(J)$ array, which results in a string of sets of coefficients, and can be represented, for example, as:
$\operatorname{COEFN}(J)=\alpha$ coefficients, $C_{I} / \sin \alpha$ coefficients, $C_{D, 0}$ coefficients, etc.

$$
=t_{1}, a_{11}, a_{12} \cdot \ldots, t_{n}, N_{M, 1}, b_{11}, b_{12}, \ldots ., N_{M, k} \text {, etc. }
$$

The starting point in the $\operatorname{COEFN}(J)$ array of each function must also be loaded to identify the correct region of coefficients. To this end, the following array must also be loaded:

$$
\begin{aligned}
& \text { ICC(1) }=\text { fixed-point value of } J \text { where } \alpha \text { coefficients begin } \\
& \text { ICC(2) }=\text { fixed-point value of } J \text { where } C_{I} / \sin \alpha \text { coefficients begin }
\end{aligned}
$$

$\operatorname{ICC}(3)=$ fixed-point value of J where $C_{D, i} / C_{L}^{2}$ coefficients begin $\operatorname{ICC}(4)=$ fixed-point value of J where $C_{D, 0}$ coefficients begin

For this purpose, all values in the $\operatorname{COEFN}(J)$ array are called coefficients (i.e., the t's and the \mathbb{N}_{M} 's are coefficients). The sequence of the sets is arbitrary, since changing the sequence requires only a change in the ICC(I) array. See Example II - Lunar impact probe section.
(18) The size of the integration steps is determined primarily by the error control variables. These are loaded as:

EREF = error reference value; $\bar{\delta}$ in appendix D
ERLIMT = maximum value of δ that is acceptable on any particular step
EREF is always treated as a positive number; however, if it is loaded with a minus sign, this will cause error information to be printed at the completion of the problem. If no error control data is loaded, STDATA subroutine will set EREF $=1 \times 10^{-6}$, $\mathrm{ERLIMT}=3 \times 10^{-6}$.
(19) The output control offers a choice on the frequency of output data as follows:

If MODOUT $=1$, output will occur every $n^{\text {th }}$ step ($n=$ STEPS) until
$t=T M I N$, and then MODOUT is set equal to 2 by the program
If MODOUT $=2$, output occurs at equal time intervals of DEIMAX until
$t=$ TMAX
If MODOUT $=3$, output occurs at equal time intervals of DEIMAX until $t=$ TMMTN, then MODOUT is set equal to 4 by the program

If MODOUT $=4$, output occurs every $n^{\text {th }}$ step ($n=$ STEPS) until $t=$ TMAX

TMAX = maximum time limit before problem is completed
STEPMX = maximum step limit before problem is completed
DEIMAX = time interval between outputs
STEPS = number of steps between outputs
TMIIN = time when MODOUT changes
Note that output control may, at times, strongly influence the integration step size especially if MODOUT is 2 or 3 and DEIMAX is small. TMAX must be loaded. All others may be skipped; if so, STDATA will put MODOUT $=4$, and STEPS $=1$.
(20) For debugging operations and for occasional supplementary output, it may be desirable to obtain G-type format dumps. These may be obtained through strategic positioning of the FORTRAN calling statements CALL DUMP (ID, DATA, LEINGTH) where ID is the identification number to appear in the output, DATA is the starting location of the dump area, and IENGTH is the number of consecutive words to be dumped. To actually obtain dumps at execution time, set

TEST = total desired number of dumps
$\operatorname{NDUMP}(J)=$ identification numbers of desired dumps, corresponding to ID's of calling statement, $J \leq 4$
$\operatorname{NSKIP}(J)=$ number of skips to occur between dumps, $\operatorname{NSKIP(J)\text {actsupon}}$ $\operatorname{NDUMP}(J), \mathrm{J} \leq 4$

LEIVGTH = number of consecutive words to be dumped
Note $\operatorname{NDUMP}(J)$ will occur the $\operatorname{NSKIP}(J)^{\text {th }}$ time control passes through the calling statement and will occur every $\operatorname{NSKIP}(J)^{\text {th }}$ time thereafter. If $\operatorname{NSK} \operatorname{IP}(J)$ is omitted, it is taken to be l. DATA may be a conmon location or the name of a relative variable. If the value of a word to be dumped is zero, it is skipped.
(21) For certain problems, it is desirable to save the initial data read in on cards or the data generated at the completion of a part of a problem. The saved data may then be recalled at a later time to be used as intial conditions for another problem. To prevent the "standard data" set from being loaded (and the accompanying common clearing loop), set
\$DATA $=99$, CLEAR $=$ any nonzero number
To save the initial data before the input is read in (1.e., the result of a previous calculation), set

SAVE $=2$
To save the initial data after the input is read in, set
SAVE $=1$
To recall the saved data, set
RECALL = any nonzero number
CLEAR = any nonzero number
By taking advantage of the place in the program where each discrimination is made, several useful combinations of these controls are possible (see fig. 2).
(22) When a transfer of origin occurs, provision has been made to read input into the program. This is done with the aid of $\$ \mathrm{DATA}=101$, followed by the data statements desired.
(23) Following is an input check list that may be helpful at execution time:

INPUM CHECK LIST ${ }^{\text {a }}$

Time and Mass	Position and velocity (completely fill in one and only one block)						Reference and perturbing bodies	
	Rectangular		Orbit elements		Spherical		$\begin{aligned} & \text { BODYCD }=\quad \text { Elliptic } \\ & \text { Tape } \end{aligned}$	
$\begin{aligned} & \text { DIOFFJ }= \\ & \text { TOFFT = } \\ & \text { DELT }= \\ & \text { TIME }= \\ & \text { RMASS }= \end{aligned}$	$\begin{aligned} & X= \\ & Y= \\ & Z= \\ & V X= \\ & V Y= \\ & V Z= \\ & \text { IMODE }=2 \end{aligned}$		$\mathrm{E}=$ OME NOD INC MA $\mathrm{P}=$ IMOD			$\begin{aligned} & = \\ & = \\ & = \\ & = \\ & = \\ & E=4 \end{aligned}$	$\begin{align*} & \text { PE } 3=0 \tag{b}\\ & \text { EGIN }= \\ & \text { ND }= \\ & I S T= \\ & I L E= \end{align*}$	ELIPS $=$
Output control	Error control		tart	Thrust	(d)	Atmosphere	Oblateness	Dump
$\begin{aligned} & \text { TMAX }=\quad(\mathrm{c}) \\ & \text { TMTN }= \\ & \text { MODOUT }= \\ & \text { STEPS }= \\ & \text { DETMAX }= \\ & \text { STEPMX }= \end{aligned}$	$\begin{aligned} & \text { EREF = } \\ & \text { ERLIMT = } \end{aligned}$	$\begin{aligned} & \text { SAVE }= \\ & \text { RECALL = } \\ & \text { CLEAR = } \end{aligned}$		$\mathrm{SIMP}=$ FLOW = PUSH =		$\begin{aligned} & \text { ATMN }= \\ & \text { RATM }= \\ & \text { ROTATE }= \\ & \text { AREA }= \end{aligned}$	OBLATN $=$	$\begin{aligned} & \text { NDUMP }= \\ & \text { NSKIP }= \\ & \text { LENGTH }= \\ & \text { TEST }= \end{aligned}$

$a_{T h e}$ following standard data are loaded by subroutine SIDATA:

DIOFFJ $=2440000.0$	MODOUT $=4$	EREF $=1 \times 10^{-6}$
MMODE $=1$	STEPS $=1.0$	ERLIMT $=3 \times 10^{-6}$
$\operatorname{BODYCD}(1)=($ ALF5 $)$ EARTH	STEPMX $=100.0$	TFILE $=1.0$

RMASS $=1.0$
(b) At input 300 , setting TAPE $3=0$ is necessary to make an ephemeris tape.
(c) A value for IMAX is always required.
(d) Use either $\operatorname{SIMP}=$ and FLOW $=$ or PUSH $=$.

PROGRAM IISTING

```
nom
    equivalence
    1(ELEAR,C( 191,! ELDCK,CI 3)],( BEX,CIBO11),IINDERR,C(491)1,
```



```
    31 DEL,C(255)),I EREF,C( 37)),(LENGTH,C(257)1,1 TMAX,C( 30)1.
    4( TAB ,C(1301),'IOELMAX,C( 23)I,', DELT,C( IOH,', ERLOG,C1259)1;
    S(REVOLV,C(250)),(ATM N ,C( 26)),(R ATM ,C( 291),(RATMOS,C(248)).
    G(ROTATE,C(459)),( NPONG,CI 11)),(BODYCD,C(811)., BNAME,C(402)),
    7( TFILE,C( 16)),( FILE,C(249)),( TAPE3,C( 2)I,(TRSFER,C(224)),
    8! GEX,C(801)
        the common extensidn, cex, is restored (juyk is brought in upon the first
        ENTRY}. HHEN TAPE3=0.0, SUBROUTINE TAPE IS CALLED TO COMPILE THE
        ephemerides. Subroutine tape always sets tape3=3.
        READ DRUM 2,O,CEX
        If (TAPE3) 2,i,2
    l CALL TAPE
        WHEN AN IN-FLIGHT ORIGIN TRANSFER DCCURS, SEGMENT I IS CALLED WITH TRSFER
        =1.0. HERE, AN INPUT IS ALLOWED AND THEN CONTROL IS SENT TO REORDER THE
        BODY LIST.
    2 IF (TRSFER) 4,4,3
    2 IF IRSER =0.
        CALL INPUT(101,C,TAB)
        GO TO 28
    PRINT OUT THE ERROR INFORMATION IF EREF HAS A - SIGN
    4 IF IEREF) 5,10,10
    5 HRITE OUTPUT TAPE 6,8
        REWINO 4
        00 6 I=1,INDERR
        READ TAPE 4, BEX
    6 WRITE DUTPUT TAPE 6,9,[BEX(J),J=1,14)
    7 REWIND 4
        INDERR = 0
        READ DRUM 2,786,BEX
    8 FORMATITHI STEP,6X,4HTIME,6X, 4HOELT,7X, 2HA 2,8X, 2HEZ,7X,4HMASS,6X,
        I 4HE,VX,4X,8HOMEGA,VY, 2X, 8HNODES,VL, 3X,GHINCL, X, 5X,4HMA,Y,6X,3HP,Z,
        24X,1HK/1)
    9 FORMAT(F5.,1H+F3.,1PIIG10.2,I2)
C
    PRINT DUT THE EOMPUTATION TIME ELAPSED SINGE THE LAST ENTRY TO MAIV l.
    10 CALL TIMEI {CLOCKI)
        IF (CLDCK) 11,13,11
        TUSED = CLOCKI - CLOCK
        WRITE QUTPUY TAPE B ,l2;TUSED
    FORMAT( l5HOMINUTES USED =F7.1/IHII
    13 CLOCK = CLOCKL
C
    CALL IN THE STANDARD DATA IF CLEAR=O. INPUT 99 IS &ASICALLY AN AUXIALLARY
        INPUT TO ALLOW A CHANGE IN CLEAR. IF SAVE=2.0, THE DATA FROM COMMON
        5 TO 1l5 IS SAVED.
        CALL INPUT (99,C,TAB)
    14 CALL STOATA
    15 IF (SAVE-2.) 18,16,18
    16 00 17 J=5.115
    17(15+1485)=C(J)
    WHEN RECALL DOES NDI EQUAL ZERO, THE INITIAL DATA PREVIOUSLY STORED BY A
        Save statement will ge recalled in order to restart with the same jata.
    IF (RECALL 19,21.19
    19 DO 20 J=5,115
    20 C(J)=C(J+1485)
    INPUT I IS THE MAIN INPUT STATEMENT, OATA READ IN HERE OVERWRITES ANY
    STANDARD VALUES SET GY STOATA. IF SAVE=1.0. THE INITIAL SET OF DATA FROM
    STANDARD VALUES SET GY STDATA. IF SAVE=1.0.
    21 CALL [NPUT {I,C,TAB!
        IF (SAVE-1,) 24,22,24
    2200 23 J=5.i15
    23(\)+1485)=C(J)
    24 IF (DELT) 26,25,26
    24 IF (DELI) 26,25,26
    25 OELY TMAX/100.O
        ERLOG = LDGF(ABSFIEREF)
        DEL = DELMAX
        TTOL = 5E-8*IMAX
        BNAMEII]=BDDYCD(1)
c
```



```
    ETAPEB,C! 211,(ERTOAU,Cl 31).1 KTAG,Cl 4)1,1 FILE,C( 161),
        2( ELIST,C( 17)|,(TBEGIN,CI 291),( FEND,C( 30)),( PNAME,C( 31).,
        31 KHAMP,C( 611), TMADE,C( 73)),( TMAKE,[( 85)), (TOATUM,C(441)1,
        4(EDATE,C(127)),(INTVAL,C(157)),( INTVA,C(156)),(DATUMT,C(189))
    PART 1. REWIND 3 AND CLEAR COMMOV.
    COMPARF}(A,B)=(A+B)*(-(A*B)
    REWIND 3
    00 1 K=1,1600
    lC(k)=0.0
    the following nh statements ldad the bjoy names into the machine.
    NOTE. THE EARTH IS NOT IN THIS LIST (NO EPHEMERIS FOR EAKTH.I
    PNAMEII) = 3HSUN
    PNAME(2) = GHMERCUR
    PNAME(3) = SHVENUS
    PNAME(4) = 4HMARS
    PNAME(5) = 6HJUPITE
    PNAME(6) = GHSATURN
    PNHMEDI GHSATUR
    PNAME(7) = GHURANUS
    PNAME(8) = GHNEPTUN
    PNAME(9) = 5HPLUTO
    PNAME(10)=4HMDON
    PNAME[lll= 6HEARTHM
C
    PART 2. SET UP JULIAN DATES ENDING EACH EPHEMERIS.
    EDATE(1) = 2451B72.5
    EDATE(3)=2451848.5
    11/24/00
    EDATE(4) = 2451020.5 7/26/98
    EDATE(5) =2473520.5 2060
    EDATE(6)=2473520.5 2060
    EOATE(7)=2473520.5 2060
    EDATE(8) = 2473520.5 ( 2060
    EOATEI91 = 2473520.5 11/26/70
    EDATE(10)= 2440916.5 }r:11/26/70
    EDATE|11)= 2451848.5
    INTVA = 30000
    INTVAL(1) = 8
    INTVAL(2)=5
    INTVAL(3)=15
    INTVAL[4]=44
    INTVAL(5) = 330
    INTVAL(6)=825
    INTVAL(7)}=121
    INTVAL(7)}=121
    INTVAL(B)=1172
    INTVAL(9)=110
    INTVAL(10)}=
    FILE = l.
        ERTOAU = 4.26546512 E-5
    2 END FILE 3
    MOON = 0
    MOON=
    part 2b. CALl INPuT and See if tape is to be made. input must almays
                MAKE TAPE 3=0.0 IF TAPE IS TO BE MADE.
    TAPE3 = 3.
    CALL INPUTI 300,C.LISTI
    IF (TAPE3) 63,3,63
    part 3. tape is to be made so move ephemeris list to tmake and
        to tmade (for outputi, cancel any zero or duplicate names.
    3 KOUNT = 1
    006 K=1,12
    TMAKE(K)=0
    TMADE(K) = 0.
    4O 5 j=1,KOUNT
    IF (COMPARFIELIST(K),TMAKE(J-1))] 5,6,5
    5 CONTINUE
    TMAKE(KOUNT) = ELIST(K)
    TMADE(KOUNT) = ELIST(K)
    KOUNT = KOUNT +I
    6 \text { CONTINUE}
    KOUNT = KOUNT - I
C
    7 IF(TBEGIN-2437202.5) 66,9,9
    9 KM = 2
    11 ERROR = O.
        WRITE TAPE 3,FILE
        DO 21 J=1, KOUNT
    KTAG(J)=0
    12 00 13 K=1,20
    IF (COMPARF(PNAME(K).TMAKE[J)!) 13,16,13
    13 CONTINUE
C
```

```
C
    14 PRINT 15, TMAKEIJI, TBEGIN, TEND
        15, TMAKE\Jl, TBEGIN, TEND I
        WRITE OUTPUT TAPPE 6, 15, TMAKEIJJ, IBEGIN, TEND, (PNAME\KI,
        LEDATE(K),K=1,20)
    15 FORMATI 23H TROUBLE ON TAPE 3 MAKE / 2X,A6,1OH T BEGIN=FLO.I,BH
        1T END=F10.1//212X,A6,F20.1)।
        ERROR = 1.
C
    RADII CAN BE CONVERTEO TO A.U.
    16 IF (10-K) 18,17,18
    17 MOON = J
    8 KTAG(J) = K
    19 IF (EDATE(K)- TEND) 14,21,21
    2l CONTINUE
        ASSIGN 36 TO NSI
        IF (ERROR) 22,22,68
C PART 6. FIX UP A TAG (KIAG) TO INDICATE HHETHER TO ENTER DATA DOUBLE QR
                NOT. XHAMP WILL BE SHDRTEST INTERVAL. KTAG WILL BE NON-ZERD IF
                NOT. XHAMP WILL BE SHORTEST INTERVAL. KTAG WILL BE NON-Z
                ANY DATA ENTER
    22 KHAMP = INTVALIOS
        DO 23 J=1,KOUNI
        K=KTAG(J)
        KHAHP = XMINOF{KHAMP,INTVAL(K))
    23 CONTINUE
        KHAMP = KHAMP * 10
        DO 24 J=1,KOUNT
        K=KTAG(J)
    24 KTAG(J) = INTVALIK) / KHAMP
        PART 7. LOCATE FILE }2\mathrm{ ON TAPE B.
    25 RTB 8
        STZ JL
        CPY KFILE
        IRA -26
        IRA =25
    26 IF (KM-KFILE) 27,32,29
    27 IF (KFILE - 3) 28,28,29
    28 CALL BKFILE(B)
        GO TO 25 
C
529 RTB B
    CPY DUD
        TRA *29
        TRA -25
        PART 8. THIS IS CORRECT FILE ON TAPE 8, READ DATA. THERE CAN BE UP
            TO I2 SETS OF DATA PER RECORD. A SET DF UATA IS 21 WOKDS.
    31 J1 = -1
        RTB B
        CPY DUD
        TRA - 32
        TRA - 34
        TRA =34
    32 Jl = Jl +1 (JPY IDATUM(J1)
        TRA * 32
        TRA -34
    33 Jl = Jl-1
        GO TO NSI, (36,46)
    34 HRITE DUTPUT TAPE 6,35, KFILE, (TMAKEIK),K=1, KOUNT)
    35 FORMAT I13H END OF FILE I3,67H ENCOUNTERED ON TAPE B BEFURE END TI
    IME SATISFIED FOR THE FOLLOWING /I2(3x;AG))
        IME SATISF
C PART 9. IS THIS A SATISFACTORY STARTING POINT, QUESTION MARK.
        PART 9. IS THIS A SATISFACTORY STARTING POINT, QUESTION MA
        THE 1ST SET OF DATA FOR EACH PLANET MUST PRE DATE TBEGIN.
        PART }9\mathrm{ IS EXECUTEO ONLY ONCE.
    36 DO 42 J=LI, KOUNT
        OO 37 K=1,J1,21
        IF (COMPARF(TDATUMIK),TMAKE{J)\) 37.39.37
    37 CONTINUE
    3BLI=J
        BACKSPACE B
        GO TO 3I
    39 IF (TDATUM(K+1)-TDATUM(K+2)-TBEGIN) 40,40,38
    40 DO 41 KJ=1,21
        K1 =K+KJ - 1
    41 DATUMT(KJ,J) = TOATUM(KI)
    41 DATUMTIK
        IF (MOON) 43,45,43
        IF (MOON) 43,4
    4300 44 KJ=4,21
    44 DATUMT(KJ,MOON) = DATUMT(KJ,MOON)EERTOAU
    45 ASSIGN 46 TO NSI
C
```

```
C
C
    PART 10. PUT AWAY NEEDED DATA. TEST NAME, TIME OF BEGIN AND END. OO NOT WRITE TAPE 3 UNTIL TBEGIN PREOATES THE END OF THE FITJED INTERVAL. 50 REPEATS DLD DATA, 57 HRITES NEW DATA. THE VAMES ARE ERASED FROM TMAKE AS SOON AS THE DATA POST OATES TEND. WHEN ALL NAMES ARE GONE, RETURN TO IVPUT 300 TO SEE IF ANDTHER EPHEMERIS IS TO BE CONSTRUCTED.
\(460065 \mathrm{~K}=1, \mathrm{~J} 1,21\)
    OO 47 J=1,KOUNT
    IF (COMPARF(TDATUM(K),TMAKE (J))) 47.48.47
    47 CONTINUE
        GO TO }6
    48 SWT = TBEGIN-TDATUM(K+1)-TOATUHIK+2)
    IF (SWT) 49,49,52
    49 IF(KTAG(J)) 50,52,50
    50 WRITE TAPE 3,{DATUMT(KJ,J) ,KJxl,21)
    I FORMAT (IX,AG,F1O.1)
    5 DO 53 KJ=1.21
    KI=K + KJ
    53 DATUMT(KJ;J) = TDATUM(K1-1)
        IF (J-MDON) 56,54,56
    4 DO 55 KJ = 4,21
    55 DATUMT(KJ,J) = DATUMT(KJ,J) ERRTOAU
    56 IF (SHT) 57,57.58
    57 WRITE IAPE 3,(DATUMT(KJ,J),KJ=1,21)
    58 IF(TEND-DATUMT(2,J)-DATUMT(3,J)) 59,59,65
    59 TMAKE(J) = O
        OO 60 KK=1,KOUNT
        IF ITMAKE[KK)] 65,60,65
    60 CONTINUE
        WRITE QUTPUT TAPE 6, 6L, FILE,TBEGIN,TEND, KDUNT,ITMADEIKKI,
        IKK=1, KOUNTI
    61 FORMATIZ8HOEPHEMERIS COMPLETED. FILE=F3.,6H, FROM FIO.L, 3H TO
        I F10.1, 4H FOR I2, 18H BODIES AS FOLLDNS/ 12(2X,A6)]
    62 FORMAT|IX,AG,7ELG.8/({X,7E16.8))
        FILE = FILE + L.
        GO TO 2
    63 WRITE TAPE 3* FILE
        REWIND 3
        REWIND 8
        TAPE3 = 3.
        OD 64 J=3,1600
    64C(J)=0
        RETURN
C
    6 5 ~ C O N T I N U E ~
        GO TO 3l
    6 \text { PRINT 67, TBEGIN}
        HRITE OUTPUT TAPE 6,67,TBEGIN
    67 FORMATI33H TBEGIN PREDATES 2437202.5.IT IS F10.1J
    68 CONTINUE
        REWIND 8
        END OF THE FORTRAN STATEMENTS. E#E*****
        subroutine stdata
        THIS ROUTINE CLEARS COMMON 4 TO 1300 AND LDADS A SET OF STANDARO OATA INTO
        THE MACHINE. ANY VALUES SET HERE MAY bE OVERWRITTEN BY INPUT I IN MAIN l-
        COMMON C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ON} \\
\hline \multicolumn{7}{|l|}{1 PNAME (12). AMASS (30). NPONG} \\
\hline \multicolumn{7}{|l|}{2 CON (9). COEFN (190). ICC [4]} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{4 REFER (12). RCRIT (30). AH (4),}} \\
\hline 5 & & & & & & \\
\hline
\end{tabular}
EQUIVALENCE
( (STEPMX,C( 20)), (CONSTU,C( 18)), ( ICC,C(238)), (IMODE, (28)). \(2(\) ETOL,C( 25)), (ERLIMT,C(17)), (EREF,CI 371), (SQROK,C(468)).
```



``` 6(OBLATK,C(39)),(RESORD,C(40)), (PNAME,C(821)), (REFER , [(851)), 7 ( RMASS,C( 41)), (GASFAC,C(458)), (OBLATJ,C( 38)), ( AW, C(261)).
```


CLEAR COMMON FRDM 4 TO 1300.
DO 1 J = 4,1300
1C{J)=0.0

```
            PNAMEII) = 3HSUN
            PNAME(2) \(=\) GHMERCUR
            PNAME(3) \(=5\) HVENUS
            PNAME(4) \(=5\) HEARTH
            PNAME(5) \(=4\) HMARS
            PNAME (6) \(=6\) HJUPITE
            PNAME(6) \(=\) GHJUPITE
            PNAME (T) \(=6\) HSATURN
            PNAME (B) \(=\) GHURANUS
            PNAME (8) \(=\) GHURANUS
PNAME \((9)=\) GHNEPTUN
            PNAME 10\()=5\) HPLUTO
            PNAME \((11)=4 \mathrm{HMOON}\)
            PNAMEII2l = GHEARTHM
FILL OUT SUN REFERENCE LIST.
    DO \(2 \quad K=2,12\)
    2 REFER(K) \(=\) PNAME (1)
C
FILL OUT EARTH REFERENCE LIST.
REFER(1) = PNAME (4)
REFER(4) \(=\) 5HZERO
REFER(11) = PNAME(4)
LOAD THE REMAINING STANDARD DATA.
\(A K I 1)=0.5\)
\(A K(2)=0.5\)
\(\operatorname{AK}(3)=1.0\)
AMASS(1) \(=1.0\)
AMASS(2) \(=1.0 / 6120000.0\)
AMASS(3) \(=1.0 / 406645.0\)
AMASS(4) \(=1.0 / 332488.0\)
AMASS(5) \(=1.0 / 3088000.0\)
AMASS \((6)=1.0 / 1047.39\)
AMASS \((7)=1.0 / 3500.0\)
AMASS(7) \(=1.0 / 3500.0\)
AMASS(8) \(=1.0 / 22869.0\)
AMASS(9) \(=1.0 / 18889.0\)
AMASS(10) \(=1.0 / 400000.0\)
AMASS(11) =AMASS(4)/81.375
AMASS(12) =AMASS(4)+AMASS(11)
\(A U=1.495 \mathrm{Ell}\)
AW(1)=1./6.
\(A W(2)=A W(1)+A W(1)\)
\(A H(2)=A W(1)+\)
\(A H(4)=A W(1)\)
\(A W(3)=1 .-(A W(2)+(A W(1)+A W(4)))\)
AH(3) \(1 .-(A W(2)+(\)
BODYCD \(\#\) PNAME (4)
COEFN(83) : IE20
CON(1) \(=0.2\)
\(\operatorname{CON}(2)=0.2\)
\(\operatorname{CON}(3)=0.6\)
\(\operatorname{CON}(4)=1.4\)
\(\operatorname{CON}(4)=1.4\)
\(\operatorname{CON}(5)=1.4\)
\(\operatorname{CON}(5)=1.4\)
\(\operatorname{CON}(6)=2.33333333\)
\(\operatorname{CON}(6)=2.333\)
\(\operatorname{CON}(7)=0.1\)
\(\operatorname{CON}(7)=0.1\)
\(\operatorname{CON}(B)=0.1\)
\(\operatorname{CON}(8)=0.1\)
\(\operatorname{CON}(9)=0.5\)
\(\operatorname{CON}(9)=0.5\)
CONSTU \(=1.0 \mathrm{E}-6\)
CONSU \(=1 \mathrm{E}-6\)
ETOL \(=0.01\)
DTOFFJ \(=244 . E 4\)
DTOFFJ \(=244\)
EREF \(=1 E-6\)
EREF \(=1 E-6\)
ERLIMT \(=3 E-6\)
\(\begin{aligned} \text { ERLIMT } & =3 E-6 \\ \text { GASFAC } & =20.064881\end{aligned}\)
GASFAC \(=20.0\)
ICC(1) \(=79\)
ICC(1) \(=79\)
ICC(2) \(=79\)
ICC(2) \(=79\)
ICC(3) \(=79\)
ICC(3) \(=79\)
ICC(4) \(=79\)
IMDDE \(=1\)
IMODE \(=\)
IND \(11=2\)
IND 11 : 2
IND (2) = 3
IND(3) \(=1\)
MODOUT \(=\)
\(\begin{array}{ll}\text { MODOUT } & =4 \\ \text { NPDNG11 } \\ =2\end{array}\)
NPONG(1) \(=2\)
NPDNG(2) \(=1\)
NPONG(2) \(=1\)
NPDNG(3) \(=3\)
NPONG(5) \(=1\)
OBLATJ=1.6238E-3
OBLATK \(=6.4 \mathrm{E}-6\)
RCR!T(1) \(=1.0 \mathrm{E}+20\)
RCR!T(1) \(=1.0 E+20\)
\(R C R I T(2)=1.0 E+8\)
RCRIT(2) \(=1.0 E+8\)
RCRIT(3) \(=6.14 E+8\)
RCRIT(3) \(=6.14 E+8\)
RCRIT(4) \(=9.25 E+8\)
RCRIT(5) \(=5.78 \mathrm{E}+8\)
RCRIT \((6)=4.81 E+10\)
RCRIT(7) \(=5.46 E+10\)
RCRIT(日) \(=5.17 \mathrm{E}+10\)
RCRIT(B) \(=5.17 \mathrm{E}+10\)
RCRIT(9) \(=8.61 \mathrm{E}+10\)
RCRIT(IO) \(=3.81 E+10\)
\(\begin{array}{ll}\text { RCRIT(II) } & =3.81 \mathrm{E}+10 \\ \text { RCRIT(II) } & =1.60 \mathrm{E}+8\end{array}\)
```

 RESQRD =4.068098877 E+13
 RMASS = 1
 SPO = 86400.0
 SQRDK = 1.32452139 E+20
 STEPMX = 100.0
 STEPS = 1.
 TFILE = 1
 XDOT(B) = 1.0
 WRITE OUTPUT TAPE 6,3
 3 FORMAT (7HOSTDATA)
 RETURN
 DIMENSIDN

```
\begin{tabular}{ll}
1 & AMASS \((30)\), \\
2 & \(\operatorname{COSA}(4)\), \\
ANGLES \((4)\)
\end{tabular}\(\quad\) SINA \((4)\),

EQUI VALENCE
 3(ANGLES,C(104)), ( ALT,C(1081), VEL,C(109)), (ROTATE,C(459)),
 5( FLOW,C( 33)), (STEPGO,C(101)), (STEPNO,C(102)), ( AEXIT, C( 24)), G(OBLATN,C1 27)), ( BNAME, C(402)), (RESQRD,C( 401\()\), (OBLATJ,CI 3B)). \(7(\) AMASS,C(881)), \((\operatorname{SQRDK}, C(468)),(S S P, C(253))\)

\section*{subroutine tuoes}

THIS ROUTINE COMPUTES THE RECTANGULAR POSITION AND VELOCIIY COMPONENTS WIYH RESPECT TO THE EARTH MEAN EQUINOX AND EQUATQR OF 1950.0 FROM THE LATITUDE, LONGITUDE, AZIMUTH, ELEVATION, ALTITUDE, TOTAL VELOCITY, AND TIME ALSO, HHEN TKICK DOES NDT EQUAL ZERD, A NON-ORAG VERTICAL STEP OF SIIE TKICK IS MADE IN CLOSED FORM ISTATEMENTS 2 TO 41. THE INTEGRATION WILL THEN BEGIN AT IIME EQUAL TO TIMETTKICK WITH THE ORIENTATION SPECIFIED BY THE ABQUE FQUR ANGLES ANO THE COMPUTED VALUES OF ALTITUDE AND VELOCIIY. FOR THE CLOSED FQRM APPROXIMATION, A CONSTANT FLDM RATE [FLOW), VACUUM SPECIFIC IMPULSE (SIMP) AND ENGINE EXIT AREA (AEXIT) ARE ASSUMED KVOWN. THE ATMOSPHERIC PRESSURE IS TAKEN TO bE THE SEA LEVEL VALUE.

COMMON C
DIMENSIDN
```

ALTL = 0.

```
ALTL = 0.
    VELI = VEL
    VELI = VEL
    DELI =0.
    DELI =0.
    DEL = O
    DEL = O
    DEL =O.
    DEL =O.
    ASSIGN 1 TO NGO
    ASSIGN 1 TO NGO
    GREEN = 360.0&(MODF(|OTOFFJ-2437665.5)/.997269566.1.)+
    GREEN = 360.0&(MODF(|OTOFFJ-2437665.5)/.997269566.1.)+
    1 MODFI(TOFFT+TIME/SPO-.719793011/.997269566.1.1)
    1 MODFI(TOFFT+TIME/SPO-.719793011/.997269566.1.1)
    SINA{1)= SINF(ANGLES(I)/57.2957795)
    SINA{1)= SINF(ANGLES(I)/57.2957795)
    RADIUS=6356783.28/SQRTFI.9933065783*.006693421685*SINA(1)**2)+ALT
    RADIUS=6356783.28/SQRTFI.9933065783*.006693421685*SINA(1)**2)+ALT
    GO TO 8
    GO TO 8
1 X = COSA(2)*COSA(1)*RADIUS
1 X = COSA(2)*COSA(1)*RADIUS
    Y = SINA(2)*COSA(1)*RADIUS
    Y = SINA(2)*COSA(1)*RADIUS
    = SINAILI#RADIUS
    = SINAILI#RADIUS
    IF (TKICK) 2,4,2
    IF (TKICK) 2,4,2
2 RMASSO = RMASS
2 RMASSO = RMASS
    RMASS = RMASS-FLOW*TKICK
    RMASS = RMASS-FLOW*TKICK
    WRITE OUTPUT TAPE 6,3,STEPGO,SIEPNÖ, (ANVGLESIII,I=I,4IALT,TIME,VEL,
    WRITE OUTPUT TAPE 6,3,STEPGO,SIEPNÖ, (ANVGLESIII,I=I,4IALT,TIME,VEL,
    1 RMASSO,X,Y,Z
    1 RMASSO,X,Y,Z
3 FORMATIGHOSTEP=F5., 2H +F4.,4X,6H LAT. =1PGI5.8,7H LONG. =G15.B,6H AL
3 FORMATIGHOSTEP=F5., 2H +F4.,4X,6H LAT. =1PGI5.8,7H LONG. =G15.B,6H AL
1I =G15 B,7H ELEV =G15.8,6H ALT, =G15,8/6H TIME=G15,8,6H VEL.=G15.8
1I =G15 B,7H ELEV =G15.8,6H ALT, =G15,8/6H TIME=G15,8,6H VEL.=G15.8
    67H RMASS=G15.8,4X,2HX=G15.B,5X,2HY=GI5.8,4X,2HZ=G15.8)
    67H RMASS=G15.8,4X,2HX=G15.B,5X,2HY=GI5.8,4X,2HZ=G15.8)
    67H RMASS=G15.8,4X
    67H RMASS=G15.8,4X
    TIME = TIME+TKICK
    TIME = TIME+TKICK
    B1 = LDGF(RMASSO/RMASS)
    B1 = LDGF(RMASSO/RMASS)
    SIMPSL = SIMP-AEXIT/FLDW=10332.275
    SIMPSL = SIMP-AEXIT/FLDW=10332.275
    VELI = VEL+SJHPSL*9.80665*B1-G*TKICK
    VELI = VEL+SJHPSL*9.80665*B1-G*TKICK
    ALTI = TKICK*IVEL-GETKICK/2.*9.80665*SIMPSL*(1.-8I*RMASS/
    ALTI = TKICK*IVEL-GETKICK/2.*9.80665*SIMPSL*(1.-8I*RMASS/
    L (RMASSO-RMASS)))
    L (RMASSO-RMASS)))
    4 RADIUS = RADIUS + ALTI
    4 RADIUS = RADIUS + ALTI
    GREEN = GREEN + ROTATEMTKICK*57.2957795
    GREEN = GREEN + ROTATEMTKICK*57.2957795
    ASSIGN 5 TO NGO
    ASSIGN 5 TO NGO
    GO TO B
    GO TO B
5X=COSA(2)*COSA(1)*RADIUS
5X=COSA(2)*COSA(1)*RADIUS
    Y = SINA(2)*COSA(1)*RADIUS
    Y = SINA(2)*COSA(1)*RADIUS
    Z S SINA(l)&RADIUS
    Z S SINA(l)&RADIUS
    IF (OBLATN-BNAME) 7,6,7
    IF (OBLATN-BNAME) 7,6,7
6 DELI = ATANF(IC2-1.|/(C3-1.)*SINAIL)/CJSA\1)|*57.2957795-ANGLESII)
6 DELI = ATANF(IC2-1.|/(C3-1.)*SINAIL)/CJSA\1)|*57.2957795-ANGLESII)
7 DEL2 = RADIUS/G*SINAIL)=COSA(1)*RUTATE*ROTATE*57.29577951
7 DEL2 = RADIUS/G*SINAIL)=COSA(1)*RUTATE*ROTATE*57.29577951
    DEL = DELI + OELZ
    DEL = DELI + OELZ
    ASSIGN 10 TO NGO
    ASSIGN 10 TO NGO
B ANGLEB(1)=ANGLES(1) * DEL
B ANGLEB(1)=ANGLES(1) * DEL
    ANGLEB(2) = ANGLES(2) +GREEN
    ANGLEB(2) = ANGLES(2) +GREEN
    ANGLEB(3) = ANGLES(3)
    ANGLEB(3) = ANGLES(3)
    ANGLEE(4) = ANGLES(4)
```

 ANGLEE(4) = ANGLES(4)
    ```
```

 00 9 I=1,4
 SINA(I)= SINF(ANGLEB(1)/57.2957795)
 9 COSAII) = COSF(ANGLEB(I)/57.2957795)
 CI = 5.*RESSRD/RADIUS/RADIUS*OBLATJ
 C2 = CIF(SINA(1)*SINA(I)-.6)
 C3 = CI-(SINA(1) -SINA(1)-.2)
 G = SORDK*AMASS(4)/RADIUS/RADIUS
 go TO NGO, (1,5,10)
 10 COS1 = COSA(1)*SINA(4)-COSA(4)*COSA(3)-SINA(1)
 COS1=\operatorname{COSA(1)-SINA(4)-COSA(4)-COSA(3)-SINA(1)}
 VX = VELI*(COSI*COSAI2)-COS2*SINAI2)I-Y&ROTATE
 VY = VEL1*(COS1*SINA(2)+COS2*COSA(2))+X*ROTATE
 VZ=VELI*(SINA(1)*SINA(4)+\operatorname{COSA(1)*COSA(3)-COSA(4))}
 RETURN
 THIS ROUTINE TAKES THE BODY LIST READ FROM CARDS AND SORTS THEM IN ORDER SO THAT THE DISTANCE FROM THE REFERENCE TO EACH BODY IS DEPENDENT UPON ALREADY COMPUTED DISTANCES ONLY．
ELLIPSE OATA ARE READ INTO A BLOCK OF 120 STORES RESERVED FOR
EIGHT ELLIPSES．DNE ELLIPSE IS READ INTO A 15 STORE BLOCK．
THE SINES OF THE 3 aNGLES ARE COMPUTED AND REPLACE THE 3 ANGLES． THE COSINES ARE COMPUTED AND STORED LAST IN A BLOCK．
A BLOCK IS ARRANGED AS FOLLONS－
$\{1\}=$ NAME OF BODY IN BCD，ONLY 6 CHARACTERS．
$(2)=$ NAME OF REFERENCE BODY IN BCD，SAME RESIRICTION．
$(3)=$ MASS QF THE BODY IN SUN MASS UNITS．
$(4)=$ RADUIS INSIDE OF WHICH COOROINATES WILL BE TRANSLATED TO THIS BODY．
$(5)=$ SEMILATUS RECTUM IN ASTRONOMICAL UNITS．
$(6)=$ ECCENTRICITY OF THE ORBIT．
$(7)=$ SINE OF ARGUMENT OF PERIGEE．
$(8)=$ SINE OF NODES．
［9）＝SINE OF INCLINATION OF THE ORBIT．
$(10)=$ PERIGEE PASSAGE JULIAN DAY．
$111)=$ PERIGEE PASSAGE FRACTION OF DAY．
（11）＝PERIGEE PASSAGE FRACTION OF DAY－
$(12)=$ PERIOD DF THE ELLIPSE IN MEAN SOLAR DAYS．
$(12)=$ PERIOD OF THE ELLIPSE IN MEAN
$(13)=$ COSINE OF ARGUMENT OF PERIGEE．
114 ）$=$ COSINE OF NODES．
$\{15)=$ COSINE OF INCLINATION OF THE DREIT．
OEFINITIONS－－NOTE．COMMON EXTENSION IS TRANSFERREO TO DRUM 2 DURING SEG2． AMASS＝MASS OF EACH BODY，SUN MASSES．ORDER OF PNAME．COMMON EXTENSION． BMASS＝SELECTED FROM AMASS．CORRESPONDS TO BNAME LIST．COMMON EXTENSION． BNAME $=$ THE DRDERED LIST OF BCD BODY NAMES．CAN BE USED IN DUTPUT．COMMON． BNAME $=$ THE OROERED LIST OF BCD BODY NAMES．CAN BE USED IN DUTPUT．
BODYCD $=$ THE ORIGINAL BCD NAMES READ FKOM CARDS．COMMON EXTENSION．
BODY L $=$ THE LIST OF BCD BODY NAMES WITH THE REFERENCE BDOY AT TOP． INITIALLY EQUAL TO BODY CARD LIST IBODYCDI．COMHON EXTENSION．
IBODY＝ARRAY OF SUBSCRIPTS．WHEN A DISTANCE IS FOUND FROM EPHEAERIS，IT MAY BE ADDED IOR SUBTRACTEDI FROM THE BODY POSITION GIVEN BY XPIIBODYI TO OBTAIN THE POSITION OF THE PRESENT BODY．COMMON．
KZERO＝COUNT OF ZERO REFERENCES．THERE MUST BE DNE AND ONLY DNE ZERO．
NAME＝ARRAY OF SURSCRIPTS．GIVES OLD LOCATION OF NAMES IN BODYL
FROM LOCATION IN BNAME LIST．NOT IN COMMON．
－ARRAY DF SUBSCRIPTS．INVERSE OF NAME．GIVES NEH LOCATION DF BNAME LIST IN TERMS DF GDDYL．NOT IN COMMON．
NEDDYS $=$ COUNTED INTERNALY．TOTAL NUMBER OF BODYS．
MBODYS＝COMPUTED INTERNALY．TOTAL NUMBER OF EPHEMERIDES（NBODYS－1）．
NEFMRS＝ARRAY OF SUBSCRIPTS．GIVES LOCATION OF BODY IN PNAME LIST IN TERMS OF THE EFMRS LIST．STORED IN COMMON．
NREFER＝ARRAY OF SUBSCRIPTS．LOCATES THE REFERENCE BODY IN BODYL． ORDER OF THE ARRAY CORRESPONDS TO BODYL．NOT IN GOMMON．
NNREFR＝ARRAY OF SUBSCRIPTS．LIKE NREFER BUT REFERS ANO CORRESPONDS TO BNAME LIST．NOT IN COMMON．
PNAME＝A PERMANENT LIST DF BCD BDOY NAMES． 1 HDRD EACH 16 CHARACTERS HAXI．USED TO IDENTIFY HASS，REFERENCE NAMES，ETC．THE LIST IS A MAXIMUM OF 30 NAMES．PRECISION TAPE NAMES ARE FROM I TO 20 ，
ELLIPTIC NAMES ARE FROH 21 TO 30．COMMON EXTENSION．
REFER＝A PERMANENT LIST OF ECD BODYS THAT ARE THE REFERENCES OF DISTANCES GIVEN IN EPHERMERIDES（TAPES OR ELLIPSEJ．CORRESPONDS TO PNAME LIST．STORED IN COMMON EXTENSION．
COMMON C

| AMASS | （30）， | BMASS | （8）， | BNAME | （8）． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BODYL | （8）， | EFMRS | （7）， | IBODY | （8）， |
| MANE | （8）， | NAME | （8）， | NEFMRS | （8）． |
| NEFMRT | （8）： | NNREFR | （8）． | BODYCD | （8）． |
| NREFER | （8）． | PNAME | （30）． | RBCRIT | （7）， |
| RCRIT | （30）． | REFER | （30）． | toata | $(18,7)$ ， |
| IDEL | （7）， | T IM | 17）． | ELIPS | （120）， |
| NDUD | （9） | | | | |

```
```

 equivalence
 1(AMASS,C(881)),(MBODYS,C(441)),1 GK2M,C(469)),1 SQRDK,C(468)).
 2(BMASS,C(417)),(NBOOYS,C(489)I,: GKM,C(470)),(TDATA,C(276)),
 3(BNAME ,C(402)),INEFMRS,C(4331),TP NAME,C(821)!,I TOEL,C(592):.
 4(BOOY L,C(801)),(800YCD,C(8IIH),(RBCRIT,C(450)),(TIM,C(585)),
 5(EFMRS,C(410)),(RMASS,CI 41)),\ RCRIT,C(911)),(ELIPS,C(941)),
 G(1800Y ,C(425)),1 FILE,C(249)),(REFER,C(851)),(MANE(1),NDUD(2))
 C
this sectidn seES what ellipse data was read from caros and puts the
Names in place so that data will be uSed If needed. ellipSe data has
PRIDRITY OVER TAPE DATA BECAUSE LAST DATA IN LIST IS THAT ACTUALLY USED.
FUNGTION COMPARFIA,B) IS EQUIVALENT TO (A-B) BUT WILL NDT OVERFLOW.
COMPARF(A;B)=(A+B)=(-{A*B))
OO 3 K=1,120,15
IF(ELIPS(K)) 1,3.1
1 KOUNT = (K-1)/15+21
PNAME(KOUNT) = ELIPS(K)
REFER(KUUNT) = ELIPS(K+1)
AMASS(KOUNT) = ELIPS(K+2)
RCRIT(XOUNT) = ELIPS(K+3)
DO 2 J=6,8
I=K+J
ELIPS(I+6) = COSFIELIPSIII)
2 ELIPS(I) = SINFIELIPS(I)I
3 CONTINUE
part O. ThROW away blankS and duplICates in bname list.
also count the bodies.
4 DO 5 K=1,8
5 BNAME(K+1)= BODYCO(K)
L = 1
BODYL(O) = 0.
DO 8 I=1.9
BODY(II) = 0.
DO 6 K=1,L
IF ICOMPARF (BNAME\II, BODYL(K-I)I) 6,7,6
6 CONTINUE
BODYL(LI) = ONAME(I)
L=L+l
7 BNAME(I) = 0.
a continue
NBODYS = L-L
MBODYS = NBODYS-1
PART 1. FIND THE REFERENCE gODY FOR EACH body in the list of boovs
read from cardS. Clear nrefer and bName.
OO 13 KL=1,NBODY5
NREFER(KL) =0
NEFMRT(KL) =0
BNAME (KL) = 0.
BNAME (KL) = 0.30
|F (COMPARF(BDDYL(KL), PNAME (KP))) 12,9,12
9 NEFMRT(KL) = KP
DO 11 KR = 1.8
IF (COMPARF(REFERIKPI,800YL(KR)\) 11,10,11
10 NREFER(KL) = KR
ll CDNTINUE
l2 continue
13 CONTINUE
C
part 2 . counts O references and saves temporary Set of indexs.
14 IF (NBODYS) 24,24,15
15 KLEROS = 0
MLEROS = 0
MISPEL * K
NNREFR(K) = NREFER(K)
16 IF (NEFMRT(K)) 18,17,18
17 MISPEL = MISPEL + l
18 IF(NREFER(K)) 20,19,20
GLEROS = KLEROS + 1
CONTINUE
21 IF (K2EROS- 1) 24,22,24
22 IF (MISPEL) 24,23,24
23 IF (NBODYS-8) 28,28,24
C
44 WRITE DUTPUT TAPE 6,25 ,NBODYS,MISPEL,KLERDS,(BODYL(K),K=1,NBODYS)
WRITE OUTPUT TAPE 6,26,(NREFER(K),K=1,NBODYS)
WRITE UUTPUT TAPE 6,26 ;(NREFERIK),K=1,NBODYS)
25 FORMAT (26HOGOOFY BODY LIST INBOUYS = 12,13H, MISSPELL =12,
1 IIH, KZEROS = I2,iH:/IIHOBODYLIST = 8(3X,AG))
26 FORMAT (11H NREFER =16,7191
27 FORMAT (/5(3H K3X,4HBODY4X,5HREF[R5X,)/5{(3,2X,A6,2X,A6,5X))
go IO 50
C

```
```

C PART 4. TRACES DUT .. REFERENCE TO BODY.. RELATIONSHIPS
28 KK = 2
KN = 1 NAME(1)=1
29 IF (NREFER(KN)) 24,31,30
30 NAME(KK) = NNREFR(KN)
NNREFR(KN) = 0
KN = NAME(KK)
KK = KK + 1
MK = Kk +
C
31 PART 5. TRACES OUT .. BODY TO REFERENCE.. RELATIONSHIP
31 DO 34 KN = 1,NBODYS
DO 34 K = 1,NBODYS
32 IF (NNREFR(K) - NAME(KN)) 34,33,34
33 NAME(KK) = K
KK = KKK + 1
34 CONTINUE
C
PART 6. INVERTS NAME TO MANE,STORES BNAME, BMASS, RBCRIT, AND A
TEMPORARY NEFMRS
OO 35 K = 1,NBODYS
N=NAME(K)
MANE(NI = K
NEF = NEFMRT(N)
BNAME(K) = PNAME (NEF)
BMASS(K) = AMASS(NEF)
RBCRIT(K) = RCRIT(NEF)
NEFMRS(K) = NEF
35 CONTINUE
C
c
N(K) = MANE(NRF)
NNREFR(K) = MANE(NRF)
PART g . FINDS IBOOY FOR BACKWARD REFERENCE.
DD 39 K=1,8
37 IF(NNREFR(K)) 24,40,38
38 N = NNREFR(K)
IBODY(N) = -K
39 cONTINUE
IBODY LIST IS COMPLETE.
C
40 KK = 1
DO 43 K=1,NBODYS
41 IFINNREFR(K)) 42,43,42
42 EFMRS (KK) = BNAME (K)
NEFMRS(KK)=NEFMRS(K)
KK=KK + 1
4 3 CONTINUE
NEFMRS(NBODYS) = 0
C
PART 10. SAVES ELLIPSE DATA
FILE = 0.
DO 48 K=1,M8ODYS
44 IF(NEFMRS(K)-20) 47,47,45
45 DO 46 J=5,15
L= (NEFMRS(K) - 21) - 15 +J
TDATA(J-4,K)= ELIPS(L)
46 CONTINUE
GD TO 48
C
47 TDEL (K) = 0
TIM(K) = 2400000.5
FILE = 10
48 CONTINUE
c
C
PART 11. COMPUTE GRAVITATIONAL CONSTANTS. 1.9866 E+30 = KILOGRAMS/SUN MASS
GK2M = SQROK*(BMASS(I)+RMASS/ 1.9866 E+30)
GKM = SQRTF(GK2M)
PART 12. WRITES THE BNAME LIST ON TAPE 6
WRITE OUTPUT TAPE 6,49, ENAME(1),(BNAMEIK),K=2,NBODYS)
49 FORMAT (I9HOREFERENCE BODY IS AG,5X,23H PERTURBING BODIES ARE
l 7(2x,A6))
RETURN
50 CONTINUE
C
end of the fortran statements.

```

C MAIN 2
C MAIN 2 CONTROLS THE PROGRAM SEQUENCING FOR THE SECOND SEGMENTII IT ALSO
C CONTAINS THE INTEGRATION SCHEMES. IHE SET OF INTEGRATION VARIABLES IS IDENTIFIED by imode according to the following
```

IMODE VARIABLES
gRBIT ELEMENTS
RECTANGULAR
RECTANGULAR TEMPGRARY
-1 ORBIT ELEMENTS--CHANGE TO REGTANGULAR
-2 RECTANGULAR--CHANGE TO ORBIT ELEMENIS
-3 ORBIT ELEMENTS--CHANGE TO TEMPDRARY RECTANGULAR
COMMON C

```
OIMENSIUN
\begin{tabular}{|c|c|c|c|c|c|}
\hline XPRIM & (15,2). & XPRIMB & (15,2). & XDOTPM & (15.2), \\
\hline x & (15), & XINC & (15). & OLDINC & (15), \\
\hline XDOT & (15). & RB & (3). & XK & (15). \\
\hline C & (1), & AK & (3), & AW & (4), \\
\hline XWHOLE & (15). & & & & \\
\hline
\end{tabular}

XWHOLE (15). vx (3)

EQUIVALENCE
11 (MOOE,C( 28)),(TRSFER,C(224)),(XWHOLE,C(544)), (XPRIM,C( 41)), 2(XPRIMB,C( 71)),( RATIO,C(600)), (XDOT,C(161)), ( DELT,C( 10)), 31 AW,C(261)), I AK,C(233)), (OLDDEL,C(225)), (ACOEF1,C(265)), 4(ACOEF2,C(266)), (ACOEF3,C(267)), XINC,C(146)), ( E2, (A(260)), 5(ERLIMT,C1 17)), 1 KSUB,C(254)): DEL,C(255)), (STEPGO,C(1011), G(STEPNO,C(102)), ( ASORD,C(563)), (GK2M,C(469)), ( REVS,C(49011, 71 ETOL,C( 25)), ( TTEST,C(251)),(CONSTU,C( 18)), (ASYMPT,C(5431),

 EQUIVALENCE
I(NSTART,C(247)), R R,C(4421), (MBODYS,C(441)), TIME,C(138)), 2(LENGTH,C(257)), H2,C(256)I, A2.C(237)l, L LN.C(487)I, 31 EMONE,C1243))

Part 1. SET UP The starting sequence for error control and delay checking THE ERROR UNTIL THO STEPS ARE COMPLETED. THE ASSIGNED GO TOS NSTART AND IBEGIN CONTROL STARTING, REWINDING 2 USUALIY SAVES TIME ON PING-PONG TAPE. REWIND 2
1 DO \(2 J=1\), 8
XPRIM(J,2) \(=\) XPRIM(J,1)
\(\operatorname{XPRIMB}(J, 2)=\operatorname{XPRIMB}(J, 1)\)
\(2 \times(J)=\operatorname{XPRIM}(J, L)\)
NSTART \(=0\)
\(\mathrm{H} 2=\mathrm{DELT}\)
DELT = DELT/2.
CALL EQUATE
call output
DO \(3 \mathrm{~J}=1,3\)
XWHOLE (J) = Vx(J)
3 XWHOLE \((J+3)=\) RB(J)
Change integration variables if imode is -. return from testtr is at
BEGINNING DF MAIN 2.
IF (IMODE) 4.5,5
4 CALL TESTTR
5 ASSIGN 21 TO NSTART STATEMENTS 7 TO 9 INITIALIZE NREVI AND NREVZ FOR USE IN PART 74. IF (RB(2)) 7,6.8
6 IF(V)(2)) 7,8,8
7 ASSIGN 37 TO NREVI ASSIGN 35 TO NREV2
GO TO 9
\(B\) ASSIGN 33 TO NREVI
ASSIGN 37 TO NREV2
9 DO \(10 \mathrm{~J}=1,8\) XOOTPM(J,l) \(=\operatorname{XDOT}(\mathrm{J})\) \(\operatorname{XINC}(J)=0\).
10 CONTINUE
11 KSUB = 1
ASSIGN IG TO N
part 2. runge-kutta subinterval scheme. equate produces the neccessary DERIVATIVES XDOT(J).
\(120013 \mathrm{~J}=1,8\)
\(X K(J)=\operatorname{XOOT}(J)\) DELT
XINC(J) \(=\) XINC(J) \(+A W(K S U B)=X K(J)\)
\(13 \times(J)=X P R I M(J, 2)+A K(K S U B)+X K(J)\)
14 CALL EQUATE
CALL DUMP (3,C,LENGTH)
15 GO TO N, (16,17,18,20)

PART 3. SUBINTERVALS 2, 3, AND 4, TO STATEMENT 19 FINISH A RUNGE-KUTTA STEP AND INCREMENT XPKIMIJ,2) IN DOÜBLE PRECISION.
\(16 \mathrm{KSUB}=2\)
ASSIGN 17 TO N
GO TO 12
17 KSUB \(=3\)
ASSIGN l8 TO N
G0 TO 12
\(180019 \mathrm{~J}=1, \mathrm{~B}\)
\(\operatorname{XINC}(J)=X \operatorname{INC}(J)+A H(4) \cdot \operatorname{XDOT}(J) \cdot \operatorname{DELT}\)
CALL EXADD(XPRIM(J,2), XPR[MB(J,2), XINC(J))
X(J) \(=X \operatorname{PRIM}(J, 2)\)
19 CONTINUE
Part 4. begin a new runga-kutta step. this also gives derivatives
for the lower order integration check.
ASSIGN 20 TO N
GO TO 14
20 GO TO NSTART,(27,23,21)
PART 5. STARTING PHASE PROGRAM.
Part 5a. this section campletes ihe first step of starting phase.
21 ASSIGN 23 TO NSTART
DO \(22 \mathrm{~J}=1,8\)
OLDINC(J)=XINC(J)
XINC(J)=0.
XDOTPM(J.2) = XDOT(J)
22 continue
go TO 11
    23 DO \(24 \mathrm{~J}=1,7\)
    24 XINC(J) \(=(X I N C(J)+\) DLDINC(J) \()=3 .-(X D O T P M(J, l)+X O D T P M(J, 2)=4\).
    \(1+\) XDOT(J)) ADELT
    CALL ERROR2
    25 IF(E2-ERLIMT) 26.26.56
    26 ASSIGN 27 TO NSTART
        ASSIGN II TO IBEGIN
        \(A 1=A 2\)
        GO TO 31
    PART 6. RUNNING PHASE PROGRAM.
    PARI 6A. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST
    PART GA. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST
RUNGE KUITA STEP BUT USE DOTS FOR LAST TWO INTERVALS, OLDDEL
    RUNGE KUITA STEP BUT USE DOTS FOR LAST TWO INTERVALS, JLDDEL
AND DELI RESPECIIVELY. STATEMENT 28 IS THE LONER INTEGRATION
    minus runge-kutta increments. errorl computes the maximum relative
    ERROR AND STATEMENT 29 TESTS THIS ERROR AGAINST THE LIMIT VALUE.
    27 RATIO = DELT/OLDDEL
        HFACT=DELT (1.+RATIO)
        HFACT \(=\) DELT/(1.*RATIO)
ACOEFI \(=-\) RATIO*RATIO HFACT
        ACOEF1=-RATIO*RATIO*HFACT
ACOEF2=RATIO*(DELT + 3.*OLDDEL)
        \(A C O E F 3=O E L T+D E L T+H F A C T\)
        DO \(28 \mathrm{~J}=1\), 8
    28 XINC(J) = ACOEFI*XDOTPM(J,1)+ACOEF2*XDOTPM(J,2)-6.*XINC(J)
    1+ACOEF 3=XDOT(J)
        CALL ERRORI
    29 IF (E2-ERLIMT) \(30,30,57\)
    PART 7a. LAST pOINT OKAY. COUNT THE REVOLUTIONS PAST THE X-aXIS.
- A Step greater than \(1 / 2\) rev. may fail to ado in.
    \(30 \mathrm{~Hz}=\mathrm{DELT}\)
    31 IF(RBI2)) 32,34,34
    32 GO TO NREVI, 137,331
    33 ASSIGN 37 TO NREVI
        ASSIGN 35 TO NREVZ
        GO 1037
    34 GO TO NREVZ, 137,351
    35 ASSIGN 33 TD NREVI
        ASSIGN 37 TD NREVZ
    36 REVS = REVS + 1 .
\(S 37\) LXD IMDDE, (IMODE)
            GO TO \((38,42,42)\), Imode
C
C TO + OR - PI TO MAINTAIN ACCURACY IN SIN-CDS ROUTINES.
    38 IF (EMONE) 39,42,42
    38 DO \(41 \mathrm{~J}=3,6,3\)
        ADJ \(2=I N T F(X P R I M(J, 2) / 6,28318532+5 I G N F(.5, X P R I M(J, 2)))\)
        IF (ADJ2) \(40,41,40\)
    40 ADJ3 \(=-A D J 2 * 6.2 B 125\)
        CALL EXADD (XPRIM(J,2), XPRIMBIJ,21, ADJ3)
        ADJ3 \(=\)-ADJ2.. 0019353072
        CALL EXADD (XPRIMIJ,2), XPRIMBIJ,2),ADJ3)
    41 CONTINUE
c
```

C
Part TC. ADVANCE THE REMAINING PARAMETERS, FIND NEW STEP SILE,
AND TEST FOR AN ORIGIN TRANSLATIDN
DO 43 K=1,3
XWHOLE (K)=VX(K)
43 XWHOLE (K+3)=R8(K)
DO 44 J=1,8
XO44 J=1,8
XDOTPM(J,2)=XDOT(J)
XDOTPM(J,2)= XDOT(J)
XPRIMB(J,1)= XPRIMBIJ,2)
XINC(J)=0.
44 CONTINUE
OLDDEL = DELT
45 CALL STEP
IF (MQODYS) 46,47,46
4 6 ~ C A L L ~ T E S T T R ~
47 GO TO (11,11,48), IMODE
PART TD. IF IN TEMPORARY RECTANGULAR CODRDINATES, TEST FJR RETURN
TO DRBIT ELEMENTS. FIRST, E IS FOUND. IF TIME HAS NOT ADVANCED
SUFFICIENTLY, INTEGRATION CONTINUES IN RECTANGULAR VARIABLES (STATE. 4BI.
STATEMENI 49 DETERMINES IF KEPLERS EQUATIOY CAUSED IMDDE = 3. IF NOT,
AN E CLOSE TO I CHECK IS MADE IN STATEMENT 50. IF IT DID, RECTANGULAR
VARIABLES HILL BE USEO IF THE LIMIT IS TOO SMALL (STATEMENT 52), DR
IF E IS 5 OR GREATER (STATEMENT 53) DR IF THE PATH LIES CLOSE TO AN
ASYMPTOTE {STATEMENT 55).
48 CALL CONVT1 (VX,C(559))
EXMODE = SQRTF(I.+ASORD/GK2M*(VSORD/GK2M-2./R))
EXMODE=SQRTFII.
IF ((TIME-TJEST)*DELT) 1L,11.49
49 IF [ASYMPT] 51,50,51
50 IF {ETOL-ABSF{EMONE
 55,11,11
51 IFIEMONE\ 55,55,52
52 IFICONSTU-1.E-7) 11,53,53
53 IF (EXMODE-5.) 54,11,11
54 CALL CONVT2
IF (ABSF(TRU)-2.2/SQRTF(EXMODE)) 55,55.11
55 ASYMPT = 0.0
IMODE = -2
GO 10 46
C

```
```

 56
 57 DD 5B J=1,8
 2) = XPRIM(J,1)
 XPRIMB(J,2)= XPRIMB(J,1)
 XDOT(J)=XDOTPM(J,2)
 XINC(J)=0.
 58 CONTINUE
 STEPNO=STEPNO+1.
 HZ = DELT
 DELT=SIGNF(EXPF{(ERLOG-AZ)/5.), DELT\
 A2 =A1
 59 IF [FAIL-STEPGO) 60,61,60
 6 FAIL * STEPGO
 GO TO IBEGIN, (111,1)
 I ASSIGN 1 TO IBEGIN
 IF (STEPNO + STEPGO - STEPMX) 62,62,45
 62 GO TO IBEGIN, (11,1)
 C
END DF THE FORTRAN STATEMENTS.
-5E*4.0.4

```

\section*{SUBROUTINE EQUATE}
```

IHIS SUBROUTINE IS CALLED FROM MAIN 2 to EVALUATE THE DERIVATIVES OF THE VARIABLES OF INTEGRATION. EITHER REGTANGULAR COORDINATES DR ORBIT ELEMENTS MAY bE USED AS THE VARIABLES DF INTEGRATION, BUT IN THE CASE DF THE LATTER. THE CORRESPONDING RECTANGULAR COORDINATES MUST FIRST BE FOUND. THIS IS DONE AT THE BEGINNING THRU THE USE DF KEPLERS EQUATION. THE PERTURBATING ACCELERATIONS ARE FOUND BY CALLING VARIOUS OTHER SUBROUTINES AND THEIR SUM RESOLVED ALONG THE X, Y, Z AXIS. FINALLY, THE DERIVATIVES ARE CALCULAIED. IN THE CASE DF ORBIT ELEMENTS, THE X,Y,Z PERTURBATING ACCELERATION COMPONENTS MUST FIRST BE RESOLVED INTD CIRCUMFERENTIAL, RADIAL AND NORMAL COMPONENTS. THIS ROUTINE ALSO CHANGES THE INIEGRATION VARIABLES FROM ORBIT ELEMENTS TO RECTANGULAR VARIABLES IF THE ECGENTRIGITY APPROACHES UNITY.
COMMON E
I MENSION

| 1 | C | (1), | $\checkmark x$ | (3), | Qx | (3). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | R8 | (3), | NEFMRS | (8). | X | (3), |
| 3 | XPRIMB | (15,2). | FORCE | (3). | XIFT | (3), |
| 4 | DRAG | (3). | OBLAT | (3). | COMPA | (3) |
| 5 | XDD | (6), | XDOTTR | (6). | XPRIM(15 | 5,2) |

```
```

 EQUIVALENCE
 11 DM,C(161)),1 DMA,C(166)),1 P,C(137)),1 DRAG.C(531)),
 21 ASQRD,C(563)),1
 E,C(132)I,I
 F), EMOSS,C(466):,
 R,C(442)),(ITEST,[(251)),
 5(CIRCUM,C(541)),(EPAR,C(245)),(RADIAL,C(540)),I ZNODE,C(134)),
 Gl SIMP,C(5)I,1 ETOL,C(25)I,1OBLATN,C(2TII,I V,C(475)!,
 7(COMPA,C(537)),(EXMODE,C(244)),(RB,C(200));(VSQRD,E(476)),
 8(BNAME,C(402)),1 FORCE,C(525)I,I TOFFT,C(321),I VX,C(472)),
 9(zORMAL,C(542)),1 GKM,C(470)),1 RMAS5,C(131)),1 x,C(135))
 EQUIVALENCE
 1(ASYMPT,C(543)),(GK2M,C(469)I,I RSORD,C(5671),1 XDD,C(162)),
 2(CONSTU,C(18)),(IMODE,C(28)I,1 SINCL,C(494)),(XDOTTR,C(132)),
 3(CDSTRU,C(493)):(KSUB,C(254)I,1 SINV,C(496)):(XIFT,C(528)),
 COSV,C(497)),(SINTRU,C(492)I,! SPD,C(253)),(XPRIM,C1 41)),
 DE,C(162)),(MBODYS,C(441)),1 DP,C(167)),(XPRIMB,C(71)),
 ZN,C(487)),(OMESA ,C(133)),(TABLT,C(252)),(XHHOLE,C(544)).
 7(DINCL,C(165)),(NEFMRS,C(433)),(PUSH,C(34)),1 ZINCL,C(135)),
BI DNODE,C(164)),(OBLAT,C(534)I,(FLOW,CI 33)), (ZM,C(136)):
9(DOMEGA,C(163)I,(OBLATJ,Cl 38)),i TIME,C(138)I,(AEXIT,C(24))
TABLT=TIME/SPD+TOFFT
LXD \MODE,(IMODEI
1 GO TO (2,16,16),IMODE
SIATEMENTS 2 TD 16 FIND THE RECTANGULAR POSITION AND VELOCITY FROM ORBIT
ELEMENTS AND trUE ANOMALY. tHE truE aNOMALY IS founo from iterative
SOLUTION OF KEPLERS EQUATION.
2 E2 = E*E
E2MI=1.-E2
EMONE=E-1.
EPAR=SORTF(ABSF(E2ML))
VCIRCL=GKM/SQRTF(P)
PART A. E=l
3 IF (EMONE) 10,4,5
4 SINTRU = 0.
COSTRU = 1.
GO TO }1
PART B. E IS GREATER THAN 1
500 7 J=1,100
OELM=2M-U+E\#SINHF(U)
ECOSU=E\&COSHF(U)
DELU = DELM/(1.0-ECOSU)
U = U+DELU
6 IF (ABSF(DELM)-CONSTU) 9,9,7
7 LONTINUE
ASYMPT = 1.0
IF (MBODYS) 8,23,8
- CALL EPHMRS
GD TO 23
9 COSU COSHFIUI
DEMI = 1.0-E\#COSU
CDSTRU = (COSU-E)/DEM1
SINTRU =-EPAR*SINHF(U)/DEMI
GO TO 14
C
1 0
DO 12 J=1,5
DELM=2M-U+E*SINF(U
ECOSU = E*COSF(U)
DELU = DELM/11.0-ECOSU+0.01=ECDSU**31
U = U+DELU
1 IF (ABSF(DELM)-CONSTU) 13,13,12
12 CONTINUE
13 cosu = cosf(u)
DEML = 1.0-E*COSU
COSTRU = (COSU-E)/DEMI
SINTRU = EPAR*SINFIUI/DEMI
14 PDVR = 1.+E*COSTRU
COMPUTE POSITION AND VELOCITY FROM ORBIT ELEMENTS AND TRUE ANOMALY.
ALSD, CLEAR THE PERTURBATING ACCELERATIONS.
5 SOMEGA=SINF (DMEGA)
COMEGA=COSF (OMEGA)
SNODE=SINF (ZNODE)
CNODE=COSF(ZNODE)
CINCL=COSF(ZINCL)
SINV=SINTRU*COMEGA+COSTRU*SOMEGA
COSY=COSTRU*COMEGA-SINTRU\#SOMEGA
AR=COSV=CNODE-SINV*SNODE*CINCL

```
```

 Bl=SINV*CNODE+COSV*SNODE*CINCL
 CI=COSVESNODE+SINV*CNODE*CINCL
 DI=SINV*SNODE-COSV*CNDDE*CINCL
 EI=E*SOMEGA+SINV
 FI=E*COMEGA+COSV
 AS=EI*CNODE+FI*SNODE*CINCL
 B2*FI*CNODE*CINCL-EI*SNODE
 R=P/PDYR
 RSQRD = R*R
 SINVY=SINVESINCL
 RBII) = R*AR
 RB(2) = R*C1
 RB(3)=R*SINVY
 VX(1) =-VCIRCL*AS
 VX(2)=VCIRCL*B2
 VX(3)=VCIRCL*FI*SINCL
 GO T0 18
 C
16 DO 17 K=1,3
VX(K)=XDOITR(K)
17 RB(K) = X (K)
RSQRD = RB(1)*RB(1) + RB(2)*RB(2) + RB(3)*RB(3)
R=SORTF(RSQRD)
1B VSORD=VX(1) V V(1)+VX(2) VX(2)+VX(3):VX(3)
V = SQRTF(VSQRD)
OO 19 I=1,15
19C(1+521)=0.
C
TEST FOR PRESENCE OF PERTURBING BODIES.
IF (MBODYS) 20.21.20
20 CALL EPHMRS
21 IF (XABSFIIMDDE)-1) 26,22,26
TEST FOK CHANGE FROM ORBIT ELEMENIS TO TEMPORARY RECTANGULAR
COORDINATES IF E IS TOO NEAR IO UNITY.
22 IF (ETOL-ABSF(EMONE)) 26,23,23
23 IF (IMODE) 54,24,24
24 I MODE =-3
|F (NSTART) 25:54;25
25 TTEST=TIME
CALL TESTTR
TEST FOK OBLATENESS PERTURBATION GOMPUTATION.
CLA OBLATN
CAS BNAME
TRA - 30
TRA=29
TRA - 30
29 CALL OBLATE
TEST FOR PRESENCE OF THRUST. COMPUTE THRUST MAGNITUDE IF NOT SPECIFIED.
30 DM = -FLOW
IF (R-RATMOS) 31,31,32
31 CALL ICAD
GO TO 33
PRESS=0.
33 IF(SIMP) 34,35,34
34 PUSH = SIMP*FLON*9.80665-AEXIT*PRES5*100.
IF(PUSH) 37,36,37
36 ASSIGN 4O TO NDONE
GO TO 38
37 CALL THRUST
ASSIGN 41 TO NDDNE
38 IF (PRESS) 39,42.39
39 GO TO NDONE, 140,41)
40 CALL THRUST
41 CALL AERO
C
4200 43 j=1,3
43COMPA(J)= -QX(J)+DBLAT(J) +FORCE(J)+XIFT(J) +DRAG(J)
44 CO TO (47,45,45),IMODE
C
COMPUTE DERIVATIVES FOR THE REGTANGULAR VARIABLES DF INTEGRATION.
45 DO 46 K=1,3
XOD(K) = COMPA(K)-GK2M=X(K)/R/RSQRD
46 XDD (K+3) = XDOTTR(K)
GOTO 54

```
\(C\)

47 CIRCUM \(=\) COMPA ACCELERATION INTO CIRCUMFERENTIAL, R R
RADIAL \(=\) COMPAI 11 *AR + COMPA \((2)=\) CI + COMPA 13\() *\) SINVY
ZORMAL = COMPA(1)*SNDDE*SINCL-COMPA(2)*CNGDE*SINCL +COMPA(3)*CINCL
ZN=VCIRCL*E2MI*EPAR/P
RDVPPI = l./PDVR + 1 .
RDVA \(=E 2 M 1 /\) PDVR
DP=2.*R/VCIRCL*CIRCUM
DP=2.*R/VCIRCLG
IF(E) 4B,48,49
48 CSQRD \(=\) CIRCUMACIRCUM
RASORD = RADIAL॥RADIAL
DEMI \(=(4 . *\) CSORD + RASQRD \() * V C I R C L\)
VOVZR=VCIRCL/R/2.
DE \(=\) SQRTF14.*CSORD+RASQRDI/VCIRCL
DOMEGA \(=\) VDV2R+12.*CSORD+RASORDI/DEMI*RADIAL
DMA \(=I N-V O V 2 R+16 . * C S Q R D+R A S Q R D I / D E M I * R A D I A L\) go to 50
49 DE \(=\) (SINTRU*RADIAL + (PDVR-RDVA)/E *CIRCUMI/VCIRCL DOMEGA=(SINTRU/E*RDVPPI*CIRCUM-COSTRU*RADIAL/EI/VCIRCL DMA=ZN+EPAR/VCIRCL*(ICOSTRU/E-2./PDVRI*RADIAL-ISINTRU/E*RDVPPI=CIR 1 CUM)
50 IFISINCLI 51,52.51
51 DNODE = SINV/SINCL*ZORMAL/VCIRCL/PDVR
GD TO 53
DNDDE \(=0.0\)
53 DINCL \(=\) COSV 2 IORMAL/PDVR/VCIRCL
54 RETURN

\section*{subrdutine errorz}
this subroutine computes the relative errors between the r-k and loh-order integration schemes. it also computes the error coefficient, a, and saves THE ERROR DATA WHEN EREF HAS A - SIGN. THE BRANCH DN IMODE DETERMINES WHICH SEI OF NORMALIZING FACTORS ARE TO BE USED.
common c
dimension relerrit)
equivalence
II RMASS,C(56)I. E,C( 571), ( AS,C(15l)),(OMEGAS,C
2(RMASSS,C(146)), \(P, C(62)),(\quad E S, C(147)],(Z N O D E S, C(149))\),
31 R,[(442)], PS,C(152)),(Z1NCLS,C(150)), (XINC , [(146)),

 \(\begin{array}{rrrr}\forall X, C(147)),( & V Y, C(148)),( & V Z, C(149)), i \\ Y, C(151)),( & Z, C(152)),(R E L E R R, C(146)),( & A 2, C(237)),\end{array}\)
 g(STEPNO,C(102)), (INDERR,C(491))

\section*{\(E 2=0\).}

RELERR(1)=RMASSS/RMASS
IF (IMODE-1) 2,1,2

RELERR(2)=ES/(E+1.0)/10.0
RELERR(3)=DMEGAS/62.831853
RELERR(4) \(=2\) NOOES \(/ 62.831853\)
RELERR(5) \(=2\) INCLS/62.831853
RELERR(6)=AS/62.831853
RELERR(T) \(=\) PS/P/10.0
GO TO 3
compute the normalizeo integration errors in rectangular variables.
\(2 V_{1}=v+100\).
RELERR(2) \(=V X / V 1\)
RELERR(3) \(=V Y / V I\)
RELERR (4) \(=\) VI/VI
\(\operatorname{RELERR}(5)=x / R\)
RELERR \((6)=Y / R\)
RELERK (7) \(=\mathrm{Z} / \mathrm{R}\)
SELECT MAXIMUM ERRDR, COMPUTE ERROR COEFFICIENT, POSSIBLY SAVE ERROR DATA.
3 DO \(5 \mathrm{~J}=1\), 7
IF (ABSF(RELERR(J))-E2) \(5,5,4\)
\(4 K=J\)
EZ = ABSF(RE\{ERR(J))
5 CONTINUE
\(E 2=E 2+2 E-B\)
\(A 1=A 2\)
\(A 2=\operatorname{LOGF}\{E 2)-5 . \operatorname{LOGF}(A B S F(D E L T)\)
IF (EREF) 6,7,7
6 WRITE TAPE 4,K,RELERR,E2,A2,DELT,TIME,STEPNO,STEPGI
INDERR = INDERR + 1
7 RETURN
C
```

 SUBROUTINE STEP
 c Subroutine step tests for the end of the problem, computes step size, and
CONTROLS QUANTITY OF OUTPUT DATA. WHEN END OF PROBLEM IS DETECTED, OUTPUT
ocCurs, the errdr data tape IS rewound, and the first segment is called to
ALLOW input. fOLLJWING IS AN EXPLANATION OF CONTRDL ON QUANITY OF OUTPUT.
MODOUT=I OUTPUT EVERY NTH STEP(N=STEPS) UNTIL TIME = TMIN, THEN
GO TO MODE 2.
OUTPut at INTERVALS Of delmax until time = tmax.
gutput at intervals df delmax until time = Thin, then
gO TO MDDE 4.
OUTPUT EVERY NTH STEP UNTIL TIME = TMAX.
common c
DIMENSION NPONG(5)
equivalence

```


```

 3(DELMAX,CI 23)),ISTEPNO,C(102)).(STEPS.C(21)),(SPACES,C(258)),
 4(STEPMX,C(20)),(STEPGO,C(101):,(TMAX,C(301),\ H2,C(256):
 5(MODOUT,C(103));, A2,C(237));(RATIJ,C(600));i TrOL,C(226):'
 c
part 1. test for end of the problem (maximum problem time dr maximum
NUMBER OF STEPSI.
STEPGO = STEPGO + 1.
IF (ABSF(TMAX-TIME)-TTOL) 1,1,3
l CALL DUTPUT
WRITE OUTPUT TAPE G,2
PRINT Z
2 FORMATI25HOCASE COMPLETED,TIME=TMAXI
GO TO %
IF (STEPGO*STEPNO-STEPMX) 7,4,4
CALL OUTPuT
WRITE OUTPUT TAPE 6,5,STEPMX
FORMAT 122HOSTEPGO+STEPND=STEPMX=F6.1
6 REWINO 4
CALL PONGINPONG(5))
c
part 2. compute step size ldelt) and control dutput.
7 A3 = (A2-AI)*RATIO*A2
8 DELT = SIGNF(EXPF(IERLOG-A3)/5.),DELT)
IF (OELT/H2-3.) 10,10,9
DELT = 3.*H2
S 10 LXO MODOUT,IMDDOUT)
GO TO (11,15,13,21),MODDUT
11 IFIDELT*(TIME + 3.*DELT-TMIN)) 21,12,12
12 MODOUT =2
OEL = TMIN - TIME
GO TO 16
13 IFIDELT (TIME - TMIN)) 15.15.14
14 MDDOUT = 4
G0 to 2l
15 OEL = DEL-H2
16 SPACES \& INTF(IOEL/DELT)+SIGNF(.9,|DEL/DELI|)|
17 IF(SPACES) 20, 18,20
18 CalL duTput
DEL = DELMAX
IF (ABSF(DEL) - ABSF(DELT)) 19,16,16
19 OELT = SIGNF(DEL,DELT)
GO TO }1
20 DELT = DEL/SPACES
CO TO 23
21 IF (MODF(STEPGO,STEPS)) 23,22,23
21 IF (MODFIST
22 CALL OUTPUT
23 GO TO (26,24,26,24),MODOUT
24 IFIITIME + DELT - TMAX) ODELT) 26,25,25
25 DELT = TMAX-TIME
26 RETURN
c
end of the fortran statements.
SubroutINE TEStTR
Subroutine testtr may be called for one of tho reasons, {ll to test for and
pOSSIBLY TRANSLATE THE ORIGIN (WHEN IMODE IS +) OR (2) TO CHANGE THE
variables of integration Ihmen Imode is -). A translation of the drigin
OCCURS WHEN THE OBjECT MOVES INTO A SPHERE OF INFLUENCE WHICH IS SMALLER
THAN ANY OTHERS IT MAY AL SO be IN. hHEN THIS HAPPENS. THE NAME OF THE NEM
ORIGIN IS MOVED TD THE BEGINNING OF THE BNAHE LIST AND THE FIRST SEGMENT
CALLED TO REORDER THE bNAME LIST.
common c

```
```

 DIMENSIDN BMASS(8), BNAME(8), RB(3,8), RBCRIT(8), RREL(8), C(1),
 X(3),XPRIM(15,2),XPRIMB(15,2),XWHOLE(6),VEFM(3,8), NPONG(5),
 2VX(3),ORBELS(6)
 1 ASSIGN 27 TON
CHAMP= $1, E+30$
CHAMP $=1 . E+30$
DO $4 \mathrm{JB}=1$, NBODYS
IF (RRELIJB)-RBCHIT(JB)) 2,4,4
2 IF (CHAMP-RBCRIT(JB)) 4,4,3
3 CHAMP $=$ RBCRIT(JB)
NCHAMP $=J B$
4 CONTINUE
IF (NCHAMP-1) $26,26,5$
5 TRSFER $=1.0$
ASSIGN 29 TO N
8 BTEMP = BNAME(I)
BNAMEII) = BNAME (NCHAMP)
BNAME (NCHAMP) = BTEMP
TTEST $=0$.
PRINT 10, BNAME (NCHAMP) , BNAME(1)
WRITE OUTPUT TAPE 6,10, BNAME (NCHAMP), BNAME(1)
10 FORMAT ($28 H O O R I G I N$ IS TRANSLATING FROM AG,4H TO AB)
CALL EPHMRS
DO $11 \mathrm{~K}=1,3$
$V X(K)=V X(K)-V E F M(K, N C H A M P)$
$X(K)=R B(K, N C H A M P)$
XPRIM(K+1,1)=VX(K)
XPRIM(K+4,1)=X(K)
$X P R I M B(K+1,1)=0$.
$X P R I M B(K+4 ; 1)=0$.
XWHDLE $(K)=V X(K)$
11 XWHOLE $(K+3)=X(K)$
GO TO 20
IF IMODE IS - CHANGE THE VARIABLES OF INTEGRATION.
12 ASSIGN 28 TO N
DO $13 \mathrm{~K}=1,3$
XPRIM(K+1, $11=$ XWHOLE (K)
XPRIM(K+4;1) $=$ XWHOLE $(K+3)$
XPRIMB $(K+1,1)=0$.
XPRIMB(K+4, I) = 0 .
$V X(K)=X W H O L E(K)$
$13 X(K)=X W H O L E(K+3)$
GD TO (16,14,15), IMODE
14 COOE $=5$ HOREII
IMODE $=1$
GO TO 18
15 IMOOE $=3$
GO TO 17
16 IMODE $=2$ ROECTAN
18 NCHAMP $=1$
PRINT 19. CODE
WRITE OUTPUT TAPE 6,19, CODE
19 FORMAT (33HOINTEGRATION MODE IS CHANGING TO AG)
20 GO TO $(21,26,26)$, IMODE
21 CALL CDNVTIIVX,C15591)
GK2M= SGROK=(BMASS (NCHAMP) + XPRIMII,11/1.9866 E+30)
CALL CONVTZ
L IF ORIGIN TRANSLATION CAUSES PATH TOLIE NEAR AN ASYMPYOTE, CHANGE INTEGRATION VARIABLES TO RECTANGULAR If THEY ARE ORBIT ELEMENTS. IF (E-1.) $24,24,22$
22 IF (ABSF(TRU)-2.3/SQRTF(EI) 24,24,23
23 ASYMPT $=1.0$
GO 1015
24 DO $25 \mathrm{~J}=1,6$
25 XPRIM(J+I, 1) = ORBELS(J)
26 GOTON, $127,28,29)$
27 RETURN
28 CALL PDNG (NPONGII)
29 CALL PONG (NPONG(5))

subroutine icad

 SUBROUTINE ICAO DETERMINES THE ATMOSPHERIC TEMPERATURE, PRESSURE, AND
 OENSITY AS A FUNCTION OF ALTITUDE ABOVE AN DBLATE EARTH IN ACCORDANCE WITH
 NACA
 NACA 1235 AND U.S. EXTENSION TO THE ICAD STANDARD ATMOSPHERE INTD MACHINE.
 II MUST BE LOADED DIRECTLY AFTER ICAO. IF THE LENGTH OF ICAO IS CHANGED,
 the data must be relocateo.
 R IS DISTANCE TO CENTER DF EARTH IN MEIERS.
 ALT IS VEHICLE ALTITUDE ABOVE AN ELLIPTIC EARTH IN METERS.
 GEO H IS THE GRAVITATIONAL POTENTIAL IN METERS.
 TABLE H 15 METERS DF ALTITUDE FRDM IHE EARTHS SURFACE AND IS
 THE ARGUMENT OF ATMOSPHERE PROPERTY TABLE.
 THE ARGUMENT OF ATMUSPHERE PROPERTY TABLE. AT TABLE H.
 ALM IS THE MEAN SLOPE
 PEF P THE PRESSURE IN MIULIBARS AT IABLE H
 REF TM IS TME TEMPERATURE TIMES STD. MOLECULAR WEIGHT / ACTUAL
 TM IS TME TEMPERATURE TIMES STD. MOLECUL
 mOLECULAR WEIGHT. DEGREES KELVIN.
PRESS IS PRESSURE IN MILLIBARS.
PRESS IS PRESSURE IN KILGGRAMS PER CUBIC METER.
COMMON C
DIMENSION TABLE H(II), TMRIIII, REF P(11), ALM(11)
21 GEO H, (1465)), 1 PRESS,C(4661), (TM,C(467)), (ONSITY,C(460)).
$3($ TABLT, C(252)), ART,C(463)), (R, C(442)), (2,6(137)),
4(TABLE H(12), TMR), (TABLE H(23), ALM). (TABLE H(34),REF P)
$A L T=R-6356783.28 / S Q R T F(.9933065783+.006693421685(2 / R) * 2)$
$A L T=R-6356783.2 B / S Q R T F(.993306578$
$G E D H=A L T /(1 . D+A L T / 6356766.0)$
FIND THE GEOPOTENTIAL HEIGHT IN A TABLE OF BASE DATA. DATA ARE
ARRANGED IN DECENDING GEO H WITH TEN REGIONS, AN IITH IS GIVEN
FOR EXTRAPOLATION. ABOVE THAT, PRESSURE AND DENSITY ARE SET =0.
LXD K, (K)
1 IF (K-11) 2,6,6
2 IF (GEOH-TABLE H(K+1)) $5,3,3$
$3 K=K+1$
$\begin{array}{ll}60 T 01 \\ K & =1\end{array}$
$4 \mathrm{~K}=\mathrm{K}=1$
$5 \mathrm{IF}(\mathrm{K}) 7,7,6$
$6 \mathrm{H} I N \mathrm{C}=\mathrm{GEO} \mathrm{H}$-TABLE H(K)
IF (H INC) $4,8,8$
$7 K=1$
8 GO TO (9,11,9,11,9,11,9,9,9,9,121,K
C
C
9 TM = TMR(K) * ALM(K) $-H$ INC
PRESS= REF P(K):(EXPF(I.03416475/ALM(K)) - LOGF(TMR(K)/TM)))
10 DNSITY = PRESS/(2.8704*TM)
GO TO 13
C
C
c
C
11 TM $=$ TMRIK)
PRESS = REF P(K)=EXPF(-0.03416475*M INC/TMRIK))
GO 1010
12 PRESS $=0.0$
$=0.0$
$T M=2000$.
13 RETURN
END OF THE FORTRAN STATEMENTS.
REM THIS IS THE SAP PROGRAM WHICH LOADS ICAD OATA INTO MACHINE
REM THE ITO IN ORG 170 WAS FOUND BY SUBIRACTING 10 FROM THE DEC LDCATIUN
REM OF REF P IFRDM SAP LISTING UF ICAD. THIS WAS FDUND TO BE IBOJ.
REM THUS. $180-10=170$.
REM
REM AI IS REF PIII)
REM AI IS REF PIII
REM A2 IS ALMIIIl
REM A3 IS TMR(11)
REM A4 IS TABLE H(11)
REM
ORG 170
REL
DEC $1.01 E-8,1,477 E-8,6.19 E-7,1.451 E-5,1.815 E-3,2.452 E-2,5.832 E-1$
1
DEC $1.2044,24,886,226.32,1013.25$
DEC $0.0,0.0005,0.0058,0.01,0.035,0.0,-0.0039,0.0,0.003,0.0$
A2 DEC $0.0,0.0005,0.0058,0.01,0.035,0.0,-0.0039,0.0,0.003,0.0$
DEC -0.0065
A3 DEC $0.0,1537.86,812.86,322.86,196.86,196.86,282.66,282.66,216.66$
DEC $0.0,1537.86,812.86,322,86,196.06,196.06,282.06,282.66,216.66$
DEC $216.66,288.16$
DEC $3000000.0,300000.0,175000.0,126000.0,90000.0,75000.0,53000.0$
DEC $47000.0,25000.0,11000.0,0.0$
DEC $47000.0,25000.0,11000.0,0.0$
REM END OF THE SAP STATEMENTS.
REM END OF THE SAP STATEMENTS.
END
SINBET = SINF(BETA)
CUSBET = COSF(BETA)
VATM[I]=VX+REVOLV*Y
VATM(2)=VY-REVDIV*X
VATM(2)=VY
CALL CONVTI(VATM,AQ)
CALLL CONVTINVATMPAQ)
ALPHA = QUAD(TIME;
SINALF=SINF(ALPHA)
COSALF=COSF
J2=[ND(J1)
J3=INDIJ21
l P(JI) = (VATM{J2)*AQIJ3)-VATM(J3)*AQ(J2))/8589934592.
PMAGN= SORTF(P(1)*P(1)+P(2)*P(2)+P(3)\&P(3))
TDPMAG = PUSH/RMASS/PMAGN
R4 = SINBET/VO
K5 = COSALF/AQ(4)
00 2 J1=1,3
J2=IND\Jll
J3=1NO(N2)
PAR(J1)=P(J2)*VATM(J3)-P(J3)*VATM(J2)
2 FOKCE(Jl) = TOPMAG*{SINALF*ICOSBET*P(Jl)*R4*PAR(Jl))-R5*(P(J2)*AQ
2 FORCE(J)= (J3)-P(J3)+AQ(J2)))
RETURN
END OF THE FORTRAN STATEMENTS.

SUBROUTINE AERD
SUBRDUTINE AERD COMPUTES THE LIFI AND DRAG ACCELERATIONS. AS IN SUBROUTINE THRUST, THESE VECTORS ARE REFERENCED TO JHE RELATIVE WIND VELOCITY. COEFFICIENTS OF LIFT, INDUCED DRAG. AND DRAG AT ZERD ANGLE DF ATTACK ARE aSSUMED TO be FUNCTIONS OF MACH NUMBER AND ANGLE OF ATTACK. TABLES OF COI/CL**2, CL/SIN(ALPHA), AND CDO ARE ASSUMED AS FITTED QUADRATIC EQUATIONS IN THE COEFN ARRAY. GASFAC IS THE SQRTFISPECIFIC HEAT RATIO STANDard acceieralion of gravity universal gas constanti. for earthe gasfaca ARD ACCELERAIION OF GRAVITY KELVIN DEGREE).
COMMDN C
DIMENSION (\{1), VATM(3), P(3), XIFT(3), DRAG(3), PAR(3)

EquIVALENCE

COMPUTE THE X,Y,z COMPONENTS OF dRAG
4 CO = CDI +QUAD (VMACH,4)
DO $5 \mathrm{~K}=1,3$
5 DRAG(K) = -CD*OVAL*VATMIKI/VQ
return
end of the fortran statements.

SUBROUTINE OBLATE
THIS SUBROUTINE COMPUTES THE OBLATENESS ACCELERATIONS IOBLATI DUE TO AN
AXIALLY SYMMETRIC EARTH. THE ZND AND $4 T H$ SPHERICAL HARMONIC CDEFF. ARE
OBLATJ AND OBLATK, RESPECTIVELY. DBLATJ, OBLATK, RESQRD, AND THE CONSTANTS CON ARE LOADED BY STDATA.

COMMON C
DIMENSION RB(3), OBLAT(3), CON(9)
EQUIVALENCE
L(CON,C(576)), (R,C(442)),1 GK2M,C(469)), (RSQRD, C(567)),
$2(R E S O R D, C(40))$ (OQLATJ,C(38)) (OBLATK,C(39)), (RS,C(200)), 3(OBLAT,C(534))

Z2DVR2=RB(3)*RB(3)/RSQRD
REDVR=RESQRD/RSQRD
OO $1 K=1,3$
1 OBLAT(K)=RB(K)=REDVR=GK2M=5*0/R/RSQRD*(OBLATJ*(Z2OVR2-こON(K)) +
1 OBLATK*REDVR*(Z2OVR2* (CON(K+3)-2. L*2 2 DVR2)-CON(K+6) $)\}$
RETURN

SUBROUTINE EPHMRS
SUBROUTINE EPHMRS IS CALLED TO COMPUTE THE POSITIONS DF THE PERTURBING BODIES RELATIVE TO THE VEHICLE AND. FROM THESE, THEIR PERTURBING ACCELERATIONS UPON THE VEHICLE. OCCASIDNALLY THIS ROUTINE IS CALLED FOR THE PURPOSE OF TRANSLATING THE DRIGIN IN WHICH CASE (TRSFER=I) THE RELATIVE VELOCITIES ARE ALSO CALCULATED. IF A BODYS POSITIOV IS TO BE COMPUTED FROM AN ELLIPIIC APPROXIMATION SUBROUTINE ELIPSE IS CALLED. OTHERHISE, THE POSITION WILL BE CALCULATED IN EPHMRS FROM THE PRECISION TAPE EPHEHERIS. THE DD 19 LOUP ENCDMPASSES ALMOST THE ENTIRE EPHMRS SUBROUTINE AND, IN EFFECI, ELIPSE IOO.

COMMDN C
DIMENSION OX(3),IBODY(8), EFMRS(7),XP(3, B),R8(3, 8), RREL(8),NEFMRS
1 (8), TDATA(18,7),CF(6,3,7),TIM(7),TOEL(7),BMASS(8),XDOT(3,8),C(1)
EQUIVALENCE (OX ,C(522)). (IBODY,C(425)), (M8ODYS,C(441)1, 1(EFMRS ,C(410)), (XP ,C(176)), (RB ,C(200)), (RREL ,C(442)): $2($ NEFMRS, C(433)) ; (TRSFER,C(224)), (TABL T,C(252)), (OTOFFJ,C(31)).

 5 (AU, ($(461)),($ IBF,FIBI)

PART 2. SET INDEXS, FIND POSITION IF ELLIPSE IS USED (NEFMRS $=20$ DR UPI. DO $19 \mathrm{JB}=1$, MBODYS
$J B 1=J B+1$
$I B F=1800 Y(J B I)$
$I B=X A B S F(I B F)$
IF (NEFMRS(JB)-20) 2,2,1
1 CALL ELIPSE IJBI)
IF (TRSFER) 12.12.17
PART 3. TAPE EPHEMERIS IS TD BE USED. FINO DIFFERENCE (DTI BETHEEN
CURRENT PRDBLEM TIME (DIOFFJ+TABLI) AND MIDPOINT TIME ITIM) OF CURRENTLY STORED TAPE DATA. THEN SEE IF CURRENT DATA IS OKAY. TDEL = TIME INTERVAL DN EITHER SIDE OF TIM FOR WHICH CURRENT DATA IS GOOD.
$2 D T=T A B L T$ - (TIM(JB) -DTOFFJ)
[F (ABSF(DT)-TDEL(JB)) $10.10,3$
PART 4A. CURRENT DATA NOT OKAY. READ IN NEXT DATA SET. IF OT IS -, BACK UP THE TAPE 2 RECORDS BEFORE READING.
3 IF (OT) 4,5,5
4 BACKSPACE 3
BACKSPACE 3
5 READ TAPE 3, (C(J), J=8051,8071)
$L Y E=8051$

```
    PART 4B. IF THIS DATA IS FOR A BODY IN THE BNAME LIST, STORE IT=
    IIF NOT SIORED, WE MIGHT HAVE TO RETURN FOR IT.I IF ELLIPSE DATA IS
    provided for the bodY found, bY-pasS the tape data and read in next set.
    00 7 J = 1,MBODYS
    CLA C(LYE)
    CAS EFMRS(J)
        TRA -7
        TRA *6
        TRA *7
    6 IF (NEFMRS(J)-20) B,B,3
    CONTINUE
    GO TO 3
    part 4C. move the data into place and then go back and see if It is okay.
    8 TIM(J) = C(LYE+1)
    TOEL(J) = C(LYE+2)
    D0 9 JJ=1,18
    (DAIAIJJ,J) = [(JJ+8053)
    9 CONTINUE
    GO to 2
C
C
```



```
10 DO 11 K=1,3
    XP(K,JBI) = CF(I,K,JB)
    XP(K,JBI)= XP(K,JBII* DI +CF(KT,K,JB)
    11 CONTINUG
    IF (IRSFER) 12,12,15
C
    12 DO 13 K=1,3
    XP(K,JBI)= XP(K,IB) +XP(K,JBI)*SIGNF(AU,FIB)
    13 RB(K,JBI)= RB(K,1) - XP(K,JBI)
    PART 7. COMPUTE PERIJRBING AGEELERATIONS (0X). 4194304=2**22 IS REMOVED
    TO PREVENT OVERFLOW. 204B=2=&11 AND 8589934592=2=*33 RESTORE THE SCALE.
    PRSQRD = {RB(1,JBl\**2 + RB(2,JB1)**2 + RB(3,JBl)**21/4194304.
    RRELL = SQRTF(PRSQRD)
    RSQRD = {XP(1,JBI)=E2 + XP{2,JB1)*E2 +XP{3,JB1)=22)/4194304.
    REUBE = RSQRD SQRTF(R SQRD)
    PRCUBE = PRSQRD * RRELL
    RREL(JB|) = RRELL* 2048.
    DO 14 K=1,3
    14 QX(K)=SQRDK * BMAS5(JBI) * ({XP(K,JB|)/RCUBE) + RB(K,JB|)/PRCUBE)/
    1 8589934592. + QX(K)
        GO T0 19
C
1500 16 K=1,3
        XDOT(K,J81)}=0
        OD 16 KT=1,5
    16 XDOT(K,JBI) = (XDOT(K,JBI) & DT + CF(KT,K,JB) &FLOATFI-KT+6) )
    17 DO 18 K=1,3
    IB XDOT(K,JBI) = XDOT(K,IB) + XDOT(K,JBI)ESIGVF(AU/86400.0.FIB)
    G0 to 12
    19 CONTINUE
    CALL DUMP (4,C,LENGTH)
    RETURN
¢
SUBROUTINE ELIPSE (JBI)
this subroutine is calleo from ephmrs to compute the position of a body USING APPROXIMATE ELLIPTIC DATA. THE VELOEITY IS ALSO COMPUTED IF THE ORIGIN IS BEING TRANSLATED (TRSFER=1.01. THE ELLIPSE DATA IS READ FROM INPUT CARDS ANS ORGANIZED IY SUBROUTINE ORDER. IPD IS TIME SINCE PERIHELION PASSAGE, ZM IS MEAN ANOMALY, U IS EGCENTRIG ANOMALY, E IS EEEENTRICITY.
COMMON C
OIMENSION
```



```
    EQUIVALENCE
    1( XDOT,C(498)),(DTOFFJ,C( 31)),(COMEGA,C(284)):(CNJDE,C(285)),
    2( P,C(276)),( E,C(277)),(SOMEGA,C(218)),( SNODE,C(279)).
    3( SINCL,C(280)),( PPJD,C(281)),(PPFRAC,C(262)),(PERIOD,C(283)),
    4( CONSU,C( 36)),( TABLT,C(252)),1 XP,C(176)),(TRSFER,C(224)),
    5(CINCL,C(286))
C
C
C
    k=18*(J*l-2)+1
    TPD = (DTOFFJ-PPJD(K)) +(TABLT-PPFRAC(K))
    ZN = 6.28318533/PERIOD(K)
    LM = LN*MODF(TPD,PERIDD(K))
    gET THE SINEISINTRUY AND THE GOSINE ICUSTRU) DF THE TRUE ANOMALY
    BY ITERATING KEPLERS EQUATION. THEN COMPUTE X,Y,Z (XP).
    U = 2M+E(K)*SINF(ZM)+0.5*E(K)*2*SINF(2.0*ZM)
    OO l J=1,lO
    DELM = ZM-U+E(K)*SINF(U)
    DELU = DELM/(1.-E(K)*COSF(U))
    U = U+DELU
    IF (ABSF(DELM)-CONSU) 2,2,1
    l CONTINUE
2 COSU = COSF(U)
    DENOM = 1.-E(K)*COSU
    COSTRU = (COSU-E(K))/DENOM
    R=P(K)/[1.+E(K)*COSTRU)
    SINTRU=SURTF(1.-E(K)**2)*SINF(U)/DENOM
    SINV = SINTRU*COMEGA(K) +COSTRU*SUMEGA(K)
    CUSV = CUSTRU*COMEGA(K)-SINTRU*SGMEGA(K)
    XP(1,JBI)= R*(COSV*CNOUE (K)-SINV*SNODE(K)*CINCL(K))
    XP(2,JB1)=R*(COSV*SNODE(K)+SINV*CNOUE(K)*CINCL(K))
    XP(3.JHI) = R*SINV*SINCL(K)
    IF (TRSFER) 3,4,3
    COMPUTE THE VELOCITIES FOR TRANSFER OF GRIGIN.
    3 EX = t(K)*SOMEGA(K) +SINV
    FX=E(K)*OOMEGA(K)+COSV
    CFACT = ZN*P(K)/(SQKTF((1.O-E(K)**2)**3))
    AX = EX*CNODE (K) +FX*SNODE(K)*CINCL(K)
    BX=FX*CNODE(K)*CINCL(K)-EX*SNOOE(K)
    XOOT(1,JBL)=-AX*CFACT
    XDOT(2,JH1)= BX*CFACT
    XDOT(3,JBL) = FX*CFACT*SINCL(K)
    4 \text { RETURN}
C
    END OF THE FORTRAV STATEMENTS.
    SUBROUTINE CONVTI(VX,A)
    THIS ROUTINE COMPUTES -- (1) ANGULAR MOMENTUM, A(4)
            (2) ANGULAR MDMENTUM SQUAKED, A(5)
            (3) X,Y,L COMPONENTS OF ANG. MOM., A(1),Al2),A(3)
            (4) VELOCITY, VX(4)
            (5) VELOCITY SQUARCD, VX(5)
    COMMON C
    DIMENSIUN A(5),VX(5),X(3),IND(3)
    EQUIVALENCE (X,C(200)),(IND,C1791))
C
C
    OO 1 J J = 1,3
    J2=IND(J1)
    J3=IND(J2)
    1 A(J3)=X(J1)*VX(J2)-X(J2)*VX(J))
    A(5)=A(1)*A(1)+A(2)*A(2)+A(3)*A(3)
    A(4)=SQRTF(A(5))
    Vx(5)=VX(1) v V (1) +VX(2) *VX(2)+VX(3)*VX(3)
    VX(4)=SQRTF(VX(5))
    RETURN

SUBROUTINE CONVT2
\(P=A S Q R D / G K 2 M\)
\(R=\operatorname{SQRTF}(X(1) * * 2+X(2) * * 2+X(3) * * 2)\)
\(\operatorname{TRU}=\operatorname{ARCTAN(A)GKZM*(X(1)*VX(1)+x(2)*Vx(2)+x(3)*V\times (3)),P-R)}\)
IF (A2) \(2,1,2\)
\(1 \angle N O D E=0.0\)
GOTO 3
2 ZNODE = ARCTAN(A2,-A3)
3 ZINCL = ARCTAN(SORTF(A2**2+A3**2).A1)
SNDDE \(=\) SINF (ZNOUE)
CNODE \(=\) COSF(ZNOOE)
\(X T W O D=X(1) * C N O D E+X(2) * 5 N O D E\)
YTWOD \(=X(3) * \operatorname{SINF}(2 I N C L)+\operatorname{COSF}(\angle I N C L) *(X(2) * C N O D E-X(1) * S N O D E)\)
OMEGA=ARCTAN(YTWUD, XTWOD)-TRU
\(E=\operatorname{SWRTF}(A B S F(1 .+P *(V S Q R D / G K 2 M-2 . / K)))\)
EPONE \(=\operatorname{SURTF}(1 .+E)\)
\(E 2 M I=1 .-E * E\)
EPAR = SQRTF(ABSF(E2MI))
SINTRU=SINF (TRU)
COSTRU=COSF (TRU)
EPAS = SURTF(ABSF(1.-E))*SINTRU/(1.0+COSTRU)
ETHETA \(=E * S I N T R U /(1.0+E * C O S T K U) * E P \wedge R\)
4 IF (E2MI) 5,6,6
5 LMA = LDGF((EPONE+EPAS)/(EPONE-EPAS)) - ETHETA
GO 10 7
6 ZMA \(=2.0\) ARCTAN(EPAS,EPONE) - ETHETA
7 KETURN
END DF THE FORTRAN STATEMENTS.

FUNCTION ARCTAN \((Y, X)\)
THE FORTRAN II LIBRARY ATANFI+ OR - \(L=\) TAN(THETAI) USES A SINGLE ARGUMENT WITH ITS SIGN TO GIVE THCTA IN THE FIRST ( +2 ) OR FOURTH (-Z) QUADRANT.
the arctan function may be used If tor - \(L\) IS DERIVED from a
FRACTION SO THAT ARCTAN \((Y, X)=\) TAN-1 (I +UR-Y=SIN(THETA))/I+OR-X= COS(THETA) ). THUS THE ARCTAN \(\{Y, X)\) GIVES THETA IN ITS PROPER QUADRANT FROM - 180 DEGREES TO +180 DEGREES.
IF \((x) 2,1,2\)
1 ARCTAN \(=5 \operatorname{IGNF}(1.57079632, Y)\)
GO TO 4
\(2 \operatorname{ARCTAN}=A \operatorname{TANF}(Y / X)\)
IF(X) 3,1,4
3 ARCTAN=ARCTAN+SIGNF \(13.14159265, \mathrm{Y})\)
4 RETURN

1 (2,1,1),IMODE
1 CODE = GHRECTAN
CALL CONVT 2
GO TO 4
2 DO \(3 \mathrm{~K}=1.6\)
3 ORBELS(K)=C(K+131)
CODE \(=5\) HORB I T
TRU=ARCTAN(SINTRU, SUSTRU)
4 PSI \(=\) PATHANF (VX,VY,VZ)
WRITE DUTPUT TAPE 6, 11, STEPGO, STEPND, E, OMEGA,V,RRELII), BNAME II). ICODE, IMODE, TIME ,P, TRU,VX,X,RMASS, OAYJ, ZMA, ZNODE, VY, Y, REV, ALPHAI, 2PSI,ZINCL,VZ,Z,DELT

IF WITHIN AN ATMOSPHERE COMPUTE DRAG, LIFT, G, ETC. AND PRINT EXTRA LINE. IF (PRESS) \(5,7,5\)
\(5 \mathrm{~J}=0\)
DO 6 I \(=1,4\)
\(J=J+3\)
6 VAR(I) \(=\) SQRTF(C \((J+525) * 2+C(J+526) *-2+C(J+527) * 2) * R M A 55 / 9.80665\)
\(G=V A R(4) / R M A S S\)
CALL CONVTI(VATMI,C1559))
PSI \(x\) PATHANF (VATMI,VATM2, VATM3)
WRITE OUTPUT TAPE 6,12,ALT,PSI,VAR(2),VQ,G,VAR(1)

7 IF (MBGDYS) B, 10.8
\(8009 \mathrm{~J}=2\), NBODYS
DO \(9 K=1,3\)
9 DIRCOS \((K, J)=-R B(K, J) / R R E L(J)\)
WRITE OUTPUT TAPE 6,13,
I (BNAME (J), RREL(J), DIRCOS (1, J), DIRCOS(2, J), DIRCOS(3, J), J=2, NBODYS)
10 CALL DUMP (2,C,LENGTH) RETURN
11 FORMATIGHOSTEP=F5.,2H \(+F 4 *, 4 X, 13 H E C C E N T R I C I T Y=1 P G 15.8,7 H\) OMEGA \(=G 15\) \(1.8,4 \mathrm{H} \quad \mathrm{V}=\mathrm{G} 15.8,3 \mathrm{H} \quad \mathrm{R}=\mathrm{G} 15.8,7 \mathrm{H} \quad \mathrm{REFER}=\mathrm{A} 6,1 \mathrm{X}, \mathrm{A}, \mathrm{I}, \mathrm{I} 2 / 6 \mathrm{H} \mathrm{T} 1 \mathrm{ME}=1 \mathrm{IPG14.7,14}\) \(2 H\) SEMILATUS R. \(=G 15.8,7 \mathrm{H}\) TRU \(A=G 15.8,4 \mathrm{H} \quad \vee \mathrm{X}=\mathrm{G} 15.8,3 \mathrm{H} \quad \mathrm{X} \times \mathrm{G} 15.8\), 7H RMAS \(3 S=G 15.8 / 9 H\) JOAY \(=24 O P F 10.4,15 H \quad\) MEAN ANOMALY=1PG15.8.7H NODE \(=G 15\). \(48,4 \mathrm{H} \quad V Y=G 15.8,3 \mathrm{H} \quad \mathrm{Y}=\mathrm{G} 15.8,7 \mathrm{H}\) REVS. \(=\mathrm{G} 15.8 / 6 \mathrm{H}\) ALFA=G14.7.14H PATHA \(5 N G L E=G 15.8,7 H \quad I N C L=G 15.8,4 H \quad V Z=G 15.8,3 H \quad Z=G 15.8,7 H \quad D E L T=G 15.8)\)
12 FORMAT( \(6 H\) ALT. \(=1\) PGI4.7,14H R PATH ANGLE=G15.9,7H DRAG=G15.8.4H VR \(L=G 15.8,3 H \quad G=G 15 . B, 7 H \quad L I F T=G 15 . B I\)
13 FORMAT(211X,A6,3H R=1PG14.7,OP3F10.6.11XI)

SUBROUTINE DUMP (IDENT, DATA,LENGTH)
```

no
C THIS SUBROUTINE WILL DUMP IN G TYPE FORMAT A VARIABLE NUMGER OF CONSECUTIVE
C WOROS, BEGINNING AT A SPECIFIED LOLATION. DUMP OCCURS WHEN THE FOLLOWING
C CONDITIONS ARE SATISFIEO
C
C
C
C
C
C

```
    IF OIVIDE CHECK 1,2
    I ASSIGN 2 TO N
    WORDI = 6HDIVIDE
    WORD2 = 6H CHECK
    GO TO }
    2 IF ACCUMULATOR OVERFLOW 3,4
    3 ASSIGN 4 TO N
        WORDI = GHACC OV
        WORD2 = GHER FLO
        GO TO 6
    4 IF QUOTIENT OVERFLOW 5,8
    5 ASSIGN 8 TO N
        WORDI = GHMQ OVE
        WORD2 = GHR FLOW
    6 WRITE OUTPUT TAPE 6,7,WORDI,WDRD2,IDENT
    7 FORMAT(IHO2AG,18H IOENTIFICAIION= I4)
        GO TO V,(2,4,8)
C
C PART 2. DETERMINE IF DUMP MAY OCCUR.
    8 IF (TEST) 15,26,9
    9 DO 12 I=1,4
        IF {IDENT-NDUMP(I)\ 12,10,12
    10 [F {XABSF(NSKIP(I))-NSKIPN{I|) 13,13.11
    ll NSKIPN(I) = NSKIPNIII+I
    12 CONTINUE
        GO TO 26
    13 NSKIPN(II = 0
        IF (NSKIP(I)) 14,15,15
    14 NSKIPII) = 0
C
    PART 3. DUMP OCCURS. DUMP NON-IERQ WORDS AND THEN REDUCE IEST BY 1.
    15 WRITE QUTPUT TAPE 6,23,TEST,IDENT,LENGTH
        K2=6
        J=0
    16 00 21 K=1,6
    17 J = J+1
        IF (J-LENGTH) 18,18,19
    18 IF (DATA(J)) 20,17,20
    19 K2=K-1
        IF(K2) 22,25,22
    2O DATAG(K)=DATA(J)
    21 IG(K) = J
    22 WRITE DUTPUT TAPE 6,24,(16(K1),DATAG(K1),Kl=1,K2)
    23 FORMAT (12HODUMP, TEST=F6.1,18H IDENTIFICATION I5,14, 2OH, NUMBER
        IOF WDRDS IS, I5)
    24 FORMAT (1X,14,1PG15.8,5(17,1PG15.8))
        GO TO 16
    25 TEST = TEST-1.
    26 RETURN
C
    END OF THE FORTRAN STATEMENTS.
```

```
    FUNCTION QUAD (x,IC)
C THIS ROUTINE COMPUTES ANY VARIABLE, QUAD, AS A QUADRATIC FUNCTION OF X.
    QUAD = A + BX + EXX. THERE MAY BE SEVERAL SETS OF COEFFIENTS, EACH SEI
    BELONGING TO A PARTICULAR REGION OF X. THE COEFN ARRAY IS ARRANGED AS --
```



```
        WHERE AI,BI,CI ARE THE COEFFIENTS TO BE USED FOR X BETWEEN XI AND XZ,ETC.
        AND XI IS LESS THAN X2, X2 IS LESS THAN X3, X3 IS LESS THAN X4, ETC.
        IC IDENTIFIES WHICH DEPENDENT VARIABLE, QUAO, IS BEING SOUGHT.
        ICCIIC) DEFINE THE STARTING LOCATIONS IN THE COEFN ARRAY FOR VARIABLES X.
        COMMON C
        C
C
C
    I=ICC\ICI
    1 IF (X-COEFN(I)) 2,3.3
    2 I = I-4
        G0 10 1
    3 [F(X-CDEFN(1+4)) 5,5,4
    4 I = I +4
        60 ro 3
    5GUAD = COEFN(I+1)+X*(COEFNII+2)+X-COEFN(I+3))
    ICC(IC)=I
    RETURN
    END OF THE FORTRAN STATEMENTS.
```

 REM SUBROUTINE EXADD \((A, B, C)\)
 REM THIS ROUTINE WILL ADO IN DOUBLE PRECISIOM A QUANTITY C TO THE DOUBLE
 REM PRECISION VARIABLE AHE WHERE A IS THE HOST SIGNIFICANT PART AND B IS
 REM THE LEAST SIGNIFICIANT PART.
 REM THE
 ORG
PGM
PLE END+1,0,0
PZE
BCD LEXADD
PZE EXAOO
ORG 0
REL
Q1 SYN 32700
Q2 SYN 32701
TEMP1 SYN 32702
TEMP 2 SYN 32703
BCD IEXADD
EXADD CLA 1,4
STA TOPI
STA TDPZ
CLA 2.4
STA BDTL
STA BDT2
CLA 3.4
5 TA ARGI
TOPI CLA *
ARGI FAD *
STQ Q1
BOT1
FAD *
STO 02
FAD Q1
STO 01
STO TEMPI
CLA QL
FAD 02
STO TEMPZ
FAD TEMP2
FAD TEMPI
FAD TEMP
STQ Q1
STQ QI
FSB TEMP2
TOP2 STO \#\#
STQ Q2
CLA Q1
FAD 02
BOT2 STO :
END TRA 4,4
REM END OF THE SAP STATEMENTS.
END

```
        SUBROUTINE BKFILE(N)
        this routine simply backspaces tape n one file.
\(c\)
\(c\)
5
\(s\)
    1 CAL 1
        \(M=10-\mathrm{N}\)
        BST 10.1 M
        BST \(10,(\mathrm{M})\)
    2 BST 10.(M)
        NOP
        RTB \(10,(\mathrm{M})\)
        CPY DUD
            TRA 3
            TRA \({ }^{3} 4\)
TRA 4
            TRA 3
    3 GST \(10,(\mathrm{M})\)
    4 RETURN
C
    END OF THE FORTRAN STATEMENTS.
```


1. Vienop, Edna, and Brady, Joseph L.: The Themis Code: An Astronomical Numerical Integration Program for the IBM 704. UCRL 5242, Radiation Lab., Univ. Calif., May 20, 1958.
2. Holdridge, D. B.: Space Trajectories Program for the IBM 7090 Computer. TR 32-223, Jet Prop. Lab., C.I.T., Mar 2, 1962.
3. Technical Staff of Radiation, Inc., ed.: Space Trajectories. Academic Press, Inc., 1960.
4. O'Keefe, John A., Eckels, Ann, and Squires, R. Kenneth: The Gravitational Field of the Earth. Astronomical Jour., vol. 64, no. 7, Sept. 1959, pp. 245-253.
5. Baker, R. M. L., Jr., et al.: Efficient Precision Orbit Computation Techniques. ARS Jour., vol. 30, no. 8, Aug. 1960, pp. 740-747.
6. Dobson, Wilbur F., Huff, Vearl N., and Zimmerman, Arthur V.: Elements and Parameters of the Osculating Orbit and Their Derivatives. NASA TN D-1106, 1962.
7. Turner, Don N., and Huff, Vearl N.: An Input Routine Using Arithmetic Statements for the IBM 704 Digital Computer. NASA TN D-1092, 1961.
8. Clarke, V. C., Jr.: Constants and Related Data Used in Trajectory Calculations at the Jet Propulsion Laboratory. TR 32-273, Jet Prop. Lab., C.I.T., May 1962.
9. Dobson, Wilbur F., Mackay, John S., and Huff, Vearl N.: Starting Conditions for Nonoscillatory Low-Thrust Planet-Escape Trajectories. NASA TN D-1410, 1962.
10. Weber, Richard J., Pauson, Werner M., and Burley, Richard R.: Lunar Trajectories. NASA TN D-866, 1961.
11. Kopal, Zdenek: Numerical Analysis. John Wiley \& Sons, Inc., 1955.

| Name | Refer ence | Mass, sun mass units | $\begin{gathered} \text { Radius of } \\ \text { influence } \\ \text { sphere, } \\ \mathrm{m} \end{gathered}$ | Semilatus rectum, AU | Eccentricity | $\begin{aligned} & \text { Argument of } \\ & \text { pericenter, } \\ & \text { radians } \end{aligned}$ | Longitude of ascendlng node, radians | Inclination, radians | Julian day of perihelion passage | Fractional day of perthelion passage | Period, mean solar days |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | Sun | 1/6,120,000 | 10^{8} | 0.3707315 | 0.205627 | 1.1679154 | 0.1896133 | 0.49924366 | 2437163 | 0.283386 | 87.969252 |
| venus | Sun | 1/466,645 | 6.14×10^{8} | . 72329663 | . 006792 | 2.1567353 | . 13931743 | . 42703751 | 243713 | . 682782 | 224.70087 |
| Mars | Sun | 1/3,088,000 | 5.78×10^{8} | 1.5104078 | .093369 | 5.7966845 | . 058500499 | . 4310002 | 2437081 | . 09531 | 686.97964 |
| Jupiter | Sun | 1/1047.39 | 4.81×10^{10} | 5.1913995 | . 0486288 | . 1765935 | .056971884 | . 40587194 | 2433964 | . 6664 | 4333.7153 |
| Saturn | Sun | 1/3500 | 5.46×10^{10} | 9.5554288 | . 0509895 | 1.4938359 | . 10416467 | . 39404007 | 2431246 | . 5163 | 10,829.478 |
| Uranus | Sun | 1/22,869 | 5.17×10^{10} | 19.100903 | . 0457866 | 2.9848628 | . 032257032 | .41321621 | 2409019 | . 272 | 30,587.016 |
| Neptune | Sun | 1/18,889 | 8.61×10^{10} | 30.197622 | . 0045616 | . 3302296 | . 061416599 | . 38947933 | 2404118 | . 842 | 60,612.193 |
| Pluto | Sun | 1/400,000 | 3.81×10^{10} | 36.969138 | . 2502358 | 3.1999771 | . 76630286 | .41231716 | 1639376 | . 44 | 904,658.99 |
| Sun | Earth | 1.0 | 10^{20} | .99972025 | . 016716 | 4.923277 | - | . 4092062 | 2436937.1 | 0 | 365.256 |

tande il. - prooram control farameters

| $\begin{gathered} \text { Control } \\ \text { variables } \end{gathered}$ | $\begin{aligned} & \text { COHMON } \\ & \text { Location } \end{aligned}$ | Possible values | Settins | Deacription of use |
| :---: | :---: | :---: | :---: | :---: |
| ASYMPT | 543 | 0.0 or 1.0 | Internal | Normally equal to 0.0 , set equal to 1.0 in Sumpoutine equate when Kepler's equation raila to converge for e> 1, and then used to control branching in MANN 2 for TMODE $=3$. |
| ATMW | 25 | Any ALP coded body name | Input | Contains nane of body which is to have an atmosphere. Causes SUBROUTTME AERO to be called in subrouthne Equate if object is within that atmosphere. |
| ciear | 19 | Ary value | Input | If CLEAR $=0$, SUBROUTTNE STDATA is called from MAIN 1 ; if CLEAR $f 0$, SUBROUTINE STDATA is bypassed. STDATA clears C(4) to C(1300). |
| CONSTO | 18 | $\begin{aligned} & 30, ~ \\ & \text { redian } \\ & \text { res } \end{aligned}$ | $\text { STDATA: } \begin{gathered} 10^{-6} \\ \text { Input } \end{gathered}$ | Controls branching in sUBactinc Equate, which determines how accurate eccentric anonaly will be computed by Eepler's equation. |
| consu | 36 | $>0, \operatorname{madan}_{10^{-8}} \text { to }-10^{-2}$ | $\text { STDATA: }{ }^{10^{-6}}$ | Similar to CONSTJ except that it is used in SUBROUTDNE ELIPSE for perturbing bodiea instead of object. |
| DETMAX | 23 | Any number or seconds | Input | If MODOLT $=2$ or 3 , output is given only at intervals of mamax. |
| EREF | 37 | Any number | $\text { STDATK: } \quad 10^{-6}$ | Desired error value. Error control predicts step size such that E2 - EREF. If EREF < 0 , it will be treated as +EREF; however, error data will be recorded and printed. |
| ERLIMT | 17 | Any plus number | $\text { STDATA: } \begin{gathered} 3 \times 10^{-6} \\ \text { Input } \end{gathered}$ | Maximum error value that allows step in question to be passed as good step. If E2 > ERLIMT, step is recomputed with smaller atep size. |
| ETOL | 25 | Poaltive number of order 0.01 | STDATA; 0.01 Input | If eccentricity falls in region $I \pm$ ETOL and integration is in orbit elenents, integration mode is awitched to temporary rectangular until eccentricity falls outside this region. |
| FIIE | 249 | Any plus integer | Internal | Set equal to 10.0 in SuBroutine ornar if tape data is used to determine positiona, velocities, and attractions of perturbing bodien. Then read as file number or tape 3 in MAnN i. See TFILE. |
| ICC(5) | 238-242 | Any fixed-point integer | Tnput Intermaz | Incex of independent varisble in COEN array used in FiNCTION QUAD. For each get of coerficients there is an ICC. They are aet at input time and are reset each time QJAD is called. |
| IMODE | 28 | $\begin{aligned} & 1,2,3,4,-1,-2,-3,-4 \\ & (\text { Pixed point) } \end{aligned}$ | | Indicates integration mode. Must agree with Input data (if input data is rectangular, MODE should equal 2 or -2). Falues indicate:
 $1=$ orbit elenenta $\quad-1=$ orbit elements, change to rectangular
 2 = ractangular variables $-2=$ rectangular, change to orbit elements
 3 - temporary rectangular -3 - orbit, change to temporary rectanguar
 4 = Earth spherital change -4 . Earth spherical, change to orbit element to rectangular |
| L. L NOTH | 257 | Any fixed-point integer | Input | Length of dump (i.e., number of worda to be dumped). |
| MODOTT | 103 | $\begin{gathered} 1,2,3,4 \\ \text { (rixed point) } \end{gathered}$ | STDATA: $\begin{gathered}{ }^{4} \\ \text { Input } \\ \text { Internal }\end{gathered}$ | |
| $\operatorname{NDMP}(4)$ | 268-271 | Any fixed-point integer | Input | If 1 in CALT DUMP ($1, C$, IRNGTH) command equala any number in NDUMP array, dump will be executed conditionally (see NBKIF). |
| NSKIP(4) | 272-275 | Any rixed-point integer | Input | Causes akippling of $\operatorname{NSXIP}(1)$ dumps where NSKIP(1) correaponds to NDUMP(1). See suBHOUTINE DKYP. |
| NPONO〈5) | 11-15 | $\begin{aligned} & \text { Any P1xed-point in- } \\ & \text { teger } \end{aligned}$ | $\text { STDATA: } \underset{\text { Input }}{2,1,}, 1$ | NPONG(1) refers to segnent that is being called in atatements call pong (NPONG(1)). Control is to beginning of segment. |
| OELATN | 27 | Any ALF coded body name | Input | If otiateness effects are to be considered, loading a body name will cause SUBROUTINE OBIATE to be called from SUBROUTINE EQUATE when ORLATN matchea reference body. |
| RECAIL | 9 | Any value | Input | If RECALL $\neq 0.0$, "starting" data will be reatored from $O(5)$ to C(115) in MAIN 1 . See SAVE. |
| save | 8 | $\begin{aligned} & 1.0,2.0 \text {, or any } \\ & \text { other vaiue } \end{aligned}$ | Input | If SAVE $=1.0$, "starting" data from C(5) to C(115) will be saved to be used later for another start requiring same data. If SAVE - 2.0 , game thing happens, only before CALL IMFUT (1) statement in MaIN 1. This saves result of previous integration for future use. |
| STEPC0 | 101 | Any plus number | Internal | Total number of good steps. |
| 9TEPNO | 102 | Any plus number | Internal | Total number of bad steps. Fad step dees not pass error control test. |
| STEPNK | 20 | Any plus number | $\begin{aligned} & \text { STDATA: } 100.0 \\ & \text { Input } \end{aligned}$ | If (STEFGO + STEFNO) \geq STEPMX, problen terminates. |
| STEPS | 21 | Any plus number | $\begin{aligned} & \text { STDATA: } 1.0 \\ & \text { Input } \end{aligned}$ | Jsed when MODOUT $=1$ or 4. Output will occur at every $\mathrm{n}^{\text {th }}$ step where $\mathrm{n}=$ - STEPS. |
| TAPR 3 | 2 | 0.0 or 3.0 | Internal Input | If "working" ephemerts tape is to be made, Thpe 3 nust be set equal to zerc through input antained in SUBROUTINE TAPE. If no tape is to be made, or after tape ia made, TafE 3 is aet to 3.0. |
| TEST | 1 | Any integer | Input
 Internal | Total number of dumps. Initisily set through input and therearter decreased by one each time a dump occurs until TEST $=0$. When TEST $=0.0$ no more dumps will occur. If negative value of TEST is loaded, there is no limit on number of dumps. |
| TPILS | 16 | any plus integer | $\text { STDATA: } \begin{array}{r} 1.0 \\ \text { Imput } \end{array}$ | selecis which rile of "working" ephemeris tape io to be used. Main I positions tape in correct position by matching desired file number (TFILE) with code word (FILE) written at beginning of each file on tape. |
| Tmax | 30 | Any nurnber in seconds | Input | When TIME = IMAX control is switched to MAIN I to either read new input or end problem. |
| TMIN | 22 | Any number in seconds | Input | When TIME = TMIN output mode is chariged. See MODOUT. |
| TRSFER | 224 | 0.0 or 1.0 | Internal | Normally TRSFER $=0.0$, but wher origin 1 a being tranalated TRSFER $=1.0$ which causes SUBROUTTNES EFHMRS and KLIPSE to compute velocities an well as positions. |
| TYEST | 251 | Any number in seconds | Internal | When integration mode is changed to temporary rectangular, TIEST is set as time at which program will begin oheciking for return to orbit elements. See MANN 2 , part 7D. |

(a) Sample output

(b) Parameter identification

| FORTRAN code name | | Identification |
| :---: | :---: | :---: |
| Output format mnemonic | Internal | |
| STEP | STEPGO, STEPNO | Count of total number of successfiul integration steps to left of plus sign and count of failures on right |
| TIME | TIME | Time since beginning of integration process, t, sec |
| JDAY | DAYJ | Current Julian date |
| ECCENTRICITY | E | Osculating orbit eccentricity, e |
| SEMILATUS R. | P | Semilatus rectum of osculating orbit, p, m |
| MEAN ANOMALY | ZMA | Mean anomaly of osculating orbit, M |
| OMEGA | OMEGA | Argument of pericenter, ω, radians |
| TRU A | TRU | True anomaly of osculating orilt, v, radians |
| NODE | ZNODE | Equatorial longitude of ascending node of osculating orbit, Ω, radians |
| INCL | ZINCL | Orbit inclination referred to mean equator and equinox of 1950.0, 1, radians |
| ALFA | ALPHA | Angle between thrust and velocity, α, deg |
| PATH ANGLE | PSI | Angle between path and local horizontal, deg |
| $\mathrm{V}, \mathrm{VX}, \mathrm{VY}, \mathrm{VZ}$ | V,VX,VY, VZ | Velocity and its x, y, z components, $\mathrm{V}, \mathrm{m} / \mathrm{sec}$ |
| R, X, Y, Z | $\begin{gathered} \operatorname{RREL}(1), \\ X, Y, Z \end{gathered}$ | Radius and its x, y, z components, r, m |
| REFER | BNAME (1) | Name of reference body, followed by integration mode, IMODE |
| RMASS | RMASS | Vehicle mass, m, kg |
| REVS. | REV | Revolutions past x -axis |
| DELT | DELT | Step size for current step, h , sec |
| AL,T. | ALT | Altitude above oblate Earth, m |
| R PATH ANGLE | PSI | Relative path angle, relative to Earth, deg |
| DRAG | $\operatorname{VAR}(2)$ | Total drag force, D, kg |
| VR | VQ | Velocity relative to rotating reference body |
| G | G | Total Earth g's acting on missile |
| LIFT | $\operatorname{VAR}(1)$ | Total lift force, L , kg |
| BNAME(1) R | $\underset{\operatorname{DIR} \operatorname{COS}(1),}{ }$ | Vehicle to perturbing body distance, r_{1}, plus direction cosines |

NOXLWDOITV NOWWOD - -AI TYTEVW

| Index | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! | | XPRIM ${ }^{\text {(15,2) }}$ | RB(1,1) | 11,2,2. | - | - | RAT 10 | - | PAR(3) | - | - |
| 1 | TFST | STEPGO | - | - | $\operatorname{TDATA}(6,3,7)$ | (1,2) | COEFN(1) | - | BODYL(1) | - | (1,5) |
| $?$ | TAPE2 | STEPNO | - | - | BNAME(1) | - | - | - | - | - | (1.5) |
| 3 | CLOCK | MODOUT | (1,2) | - | - | - | - | - | - | - | - |
| 4 | | ANGLES(1) | - | - | - | (1,3) | - | - | - | - | - |
| 5 | 519 | - | - ${ }^{-}$ | (1, 3.21 | - | - | - | - | - | - | - |
| 6 | | - | (1.3) | $(1,3,2)$ | - | - | - | - | - | - | |
| 7 | TKICK | ANGLES(4) | - | - | - | (1,4) | - | - | - | - | - |
| $\stackrel{8}{8}$ | SAVE | ALT | (2- | - | - - | - | - | - | 9ODYL (8) | - | - |
| 9 | RECALL | VEL | (12,4) | - | BNAME (8) | - | - | - | | - | - |
| 10 | DELT | | - | - | EFMRS(1) | (1,5) | - | - | | AMASS(30) | - |
| 11 | NPONG (1) | | (1-5) | - | | , | - | - | BODYCD(1) | RCRIT(1) | - |
| 17 | - | | (1,5) | (1:1,3) | - | - | - | - | - | - | - |
| 13 | - | | - | - | - | $(1,6)$ | - | - | - | - | - |
| 174 19 | NPONG- 5 - | | (1.6) | - | - | - | - | - | - | - | - |
| 16 | TFILE | | (1.6) | - | EFMRS ($\overline{7}$) | (1,7) | - | - | - | - | 11,61 |
| 17 | ERLIMT | | - | - | BMASS(1) | (12) | - | - | - | - | (1,6) |
| 18 | CONSTU | | 12.71 | (1,2,3) | - | - | - | - | BODYCD(8) | - | - |
| 19 | CLFAR | | - | - | - | (1,8) | - | - | | - | - |
| 20 | STEPMX | | - | - | - | - | - | - | | - | - |
| 21. | STEPS | | (1,8) | - | - | $\operatorname{VEFM}(3,8)$ | - | - | PNAME (1) | - | - |
| 22 | TMIN | | - | - | - | QX11) | - | - | PNAME(1) | - | - |
| 23 | DFLMAX | | RB(3.8) | - | - | Ox(2) | - | - | - | - | - |
| 24 | AFXIT | | TRSFER | (1.3.3) | BMASS (8) | Qx(3) | - | - | - | - | - |
| 25 | ETOL | | OLDOEL | - | 1800Y(1) | FORCE(1) | - | - | - | - | - |
| 24 | ATMN | | TTOL | - | - | FORCE 2) | - | - | - | - | - |
| 27 | Ofl 4 TN | | ORGELS(1) | - | - | FORCE (3) | - | - | - | - | - |
| 28 | IMODE | | - | - | - | XIFT(1) | - | - | - | - | - |
| 20 | RATM | | - | - | - | XIFT(2) | - | - | - | - | - |
| 30 | TMAX | | - | (1,1,4) | - | XIFT(3) | - | - | - | - | - |
| 3 ? | DTOFFJ | $x(1)$ | - | - | - ${ }^{-}$ | DRAG(1) | - | - | - | - | 11,71 |
| 32 | TOFFT | - | ORBELS (6) | - | 18009 (8) | ORAG(2) | - | - | - | - | - |
| 33 | FLOW | - | AK (1) | - | NEFMRS (1) | DRAG(3) | - | - | - | - | - |
| 34 | PUSH | - | AK (2) | - | - | oblat (1) | - | - | - | - | - |
| 35 | ARFA | - | AK (3) | - | - | oblat (2) | - | - | - | - | - |
| 36 | CONSU | - | A1 | (1,2,4) | - | OBLAT (3) | - | - | - | - | - |
| 77 | FDEF | - | A2 | - | - | COMPA 11 | - | - | - | - | - |
| 38 | ORLATJ | - | ICC(1) | - | - | compar 21 | - | - | - | - | - |
| 30 | ORLATK | - | - | - | - ${ }^{\text {a }}$ | COMPA (3) | - | - | - | - | - |
| 40 | RESOmD | - | - | - | NEFMRS(8) | RADIAL | - | - | - | RCRIT (30) | - |
| 41 | XPRIM(1.1) | - | (5) | - | MEODYS | CIRCUM | - | - | - | ELIPS(1.1) | - |
| 42 | - | - | ICC(5) | (1,3,4) | | ZORMAL | - | - | - | - | - |
| 43 | - | - | EMONE | - | RREL(2) | ASYMPT | - | - | - | - | - |
| 44 | - | - | EXMODE | - | - | XWHOLE(1) | - | - | - | - | - |
| 45 | - | X(15) | EPAR | - | - | - | - | - | - | - | - |
| 46 47 | - | XINC(1) | CHAMP | - | - | \cdots | - | - | - | - | (1,8) |
| 4 A | - | - | ratmos | (1,1,5) | - | - | - | - | - | - | - |
| 49 | - | - | FILE | - | RREL18) | - | - | - | - | - | - |

NOILYOOTTY NOWWOD 'pepntorion - ' II gTravil

| Index | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | - | - | REVOLV | - | RBCRIT(1) | - | - | - | PNAME (30) | - | - |
| 51 | - | - | TTEST | - | - | - | - | - | REFER(1) | - | - |
| 52 | - | - | TABLT | - | - | - | - | - | - | - | - |
| 53 | - | - | SPD | 11.2.51 | - | - | - | - | - | - | - |
| 54 | - | - | KSUB | (1.2.5) | - | | - | - | - | - | - |
| 55 | - | - | DEL | - | - | | - | - | - | - | - |
| 56 | (1,2) | - | H2 | - | R - | - | - | - | - | (1,2) | - |
| 57 | - | - | LENGTH | - | RoCRIT(8) | - | - | - | - | - | - |
| 58 | - | - | SPACES | - | GASFAC | XWHOLE(15) | - | - | - | - | - |
| 59 | - | - | ERLOG | 11, - | rotate | Afla | - | - | - | - | 511 |
| 60 | - | XINC(15) | E2 | $(1,3,5)$ | ONSITY | A (2) | - | - | - | - | ELIPS(15,8) |
| 61 | - | XOOT(1) | AW(1) | | AU | $A(3)$ | - | - | - | - | 1061 |
| 62 | - | - | AW(1) | - | PS 1 | A | - | - | - | - | |
| 63 | - | - | - | - | ALT | ASQRD | - | - | - | - | |
| 64 | - | - | AW(4) | - | | ALPHA | - | - | - | - | |
| 65 | - | - | ACOEFl | - | GEOH | BETA | - | - | - | - | |
| 65 | - | - | ACOEF2 | $(1,1,6)$ | PRESS | | - | : - | - | - | |
| 67 | - | - | ACOEF 3 | - | TM | RSQRD | - | - | - | - | |
| 68 68 | - | - | NDUMP (1) | - | SORDK | SINBET | - | - | - | - | UNUSED |
| 68 70 | XPRIM (15, ${ }^{\text {a }}$ | - | - | - | GK2M | SINALFF | - | - | - | - | UNUSED COMMON |
| 71 | XPRIMR(1,1) | - | NDUMP (4) | - | VMACH | P(1) | - | - | - | (1,3) | COMMON |
| 72 | - | - | NSKIPIII | (1,2.6) | VX | $P(2)$ | - | - | - | , | |
| 73 | - | - | - | 1.2 | VY | P(3) | - | - | - | - | |
| 74 | - | - | - | - | Vz | PMAGN | - | - | - | - | |
| 75 | - | XDOT (15) | NSKIP(4) | - | V | COSALF | - | - | - | - | |
| 76 | - | XP(1,1) | TOATA(1.1.1) | - | VSORD | CON(1) | | - | | - | |
| 77 | - | - | - | - | VATM(1) | - | - | - | - | - | 1 |
| 78 | - | - | - | $(1,3,6)$ | VATM(2) | - | - | - | - | - | 1300 |
| 79 | - | (1,2) | - | - | VATM(3) | - | - | - | - | - | 1301 |
| 80 | - | - | - | - | Vo | - | - | - | REFER(30) | - | 1 |
| 81 | - | - | - | - | VOSORD | - . | - | - | AMASS (1) | - | |
| A) | - | (1,3) | 11.2.1) | - | | - | - | - | - | - | |
| 83 | - | - | 1. | - 11. | TRU | - | - | - | - | - | |
| 24 | - | - | - | (1,1.7) | | $\operatorname{CON}(9)$ | - | - | - | - | TAB1189) |
| 85 | - | (1,4) | - | - | | TMM(1) | - | - | - | - | + |
| 86 | (1,2) | - | - | - | | - | - | - | - | (1,4) | |
| 87 | - | - | - | - | | - | - | - | - | - | , |
| 3 A | - | (1,5) | (1,3,2) | - | $Z M$ | - | - | - | - | - | \dagger |
| 80 | - | - | - | , | N300ys | - | - | OEFN120 | - | - | 1489 |
| 90 | - | - | - | (1,2, ?) | REVS | - | - | COEFN(190) | - | - | 1490 |
| 91 | - | (1,6) | - | - | INDERR | TIM(7) | - | IND(1) | - | - | 1 |
| 97 | - | - | - | - | SINTRU | TDEL(1) | - | IND (2) | _ | _ | |
| 92 | - | - | , | - | COSTzU | | - | IND (3) | - | - | |
| 74 | - | (1,7) | 11.1.2) | - | SINCL | - | - | QVAL | - | - | SAVE |
| 95 | - | - | - | - | CINCL | - | - | CDI | - | - | storage |
| 94 97 | - | (1,8) | - | 11.3.71 | SINV | - | - | CL | - | - | +1 |
| 97 08 | - | (1,8) | - | - | COSV | - | - | CD | - | - | , |
| 98 98 | \cdots | XP(3,8) | - | - | VEFM(1,1) | TDEL (7) | - | PAR (1) | - | - | \dagger |
| 99 | - | $x P(3,8)$ | - | - | | COSoET | - | PAP(?) | - | - | 1600 |

TABLE V. - ELEMENTIS OF INIEGRATION VARIABLE ARRAY XPRIM

| Integration variables | XPRIM | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Rectangular variables | $\begin{aligned} & \text { RMASS } \\ & (\text { mass }) \end{aligned}$ | $\begin{aligned} & \text { VX } \\ & \text { (x-component } \\ & \text { of velocity) } \end{aligned}$ | $\begin{gathered} \text { VY } \\ \text { (y-component } \\ \text { of velocity) } \end{gathered}$ | $\begin{gathered} \text { VZ } \\ (z \text {-component } \\ \text { of velocity }) \end{gathered}$ | $\begin{gathered} \text { X } \\ \text { (x-component } \\ \text { of position) } \end{gathered}$ | $\begin{gathered} Y \\ (y \text {-component } \\ \text { of position) } \end{gathered}$ | $\begin{gathered} z \\ (z-c o m p o n e n t \\ \text { of position } \end{gathered}$ | $\begin{aligned} & \text { TIME } \\ & \text { (time) } \end{aligned}$ |
| $\begin{array}{r} \text { Orbit } \\ \text { elements } \end{array}$ | RMASS
 (mass) | $\left(\begin{array}{c} \mathrm{E} \\ (\text { eccentricity }) \end{array}\right.$ | $\begin{gathered} \text { OMEGA } \\ \text { (argument of } \\ \text { pericenter) } \end{gathered}$ | NODES (longitude of ascending nodes) | $\begin{aligned} & \text { INCL } \\ & \text { (orbit } \\ & \text { inclination) } \end{aligned}$ | $\begin{aligned} & \text { ZMA } \\ & \text { (mean } \\ & \text { anomaly }) \end{aligned}$ | $\begin{aligned} & P \\ & \text { (semilatus } \\ & \text { rectum) } \end{aligned}$ | $\begin{aligned} & \text { TIME } \\ & \text { (time) } \end{aligned}$ |

TABIE VI. - ASSUMED VALUES OF ASTRONOMICAL CONSTANTS

| Constant | Assumed value | FORTRAN name | $\begin{aligned} & \text { COMMON } \\ & \text { location } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Astronomical unit, m | 1.495×10^{11} | AU | 461 |
| Gravitational constant, k^{2} $\mathrm{m}^{3} /\left(\sec ^{2}\right)($ sun mass units) | $1.32452139 \times 10^{20}$ | SQRDK | 468 |
| Equatorial Earth radius squared, m^{2} | $4.068098877 \times 10^{13}$ | RESQRD | 40 |
| Earth oblateness coefficient, J | 1.6238×10^{-3} | OBLATJ | 38 |
| Earth oblateness coefficient, K | 6.4×10^{-6} | OBLATK | 39 |
| Earth radii per AU | $4.26546512 \times 10^{-5}$ | ERTOAU | a_{3} |
| Day, sec | 86400 | SPD | 253 |
| Mass, reciprocal sun mass units: | | | |
| Sun | 1.0 | AMASS (1) | 881 |
| Mercury | 6,120,000 | AMASS (2) | 882 |
| Venus | 406,645 | AMASS (3) | 883 |
| Earth | 332,488 | AMASS (4) | 884 |
| Mars | 3,088,000 | AMASS (5) | 885 |
| Jupiter | 1047.39 | AMASS (6) | 886 |
| Saturn | 3500.0 | AMASS (7) | 887 |
| Uranus | 22,869 | AMASS(8) | 888 |
| Neptune | 18,889 | AMASS(9) | 889 |
| Pluto | 400,000 | AMASS (10) | 890 |
| Moon | AMASS(4)/81.375 | AMASS (11) | 891 |
| Earth-moon | $\operatorname{AMASS}(4)+\operatorname{AMASS}(11)$ | AMASS(12) | 892 |
| Sphere-of-influence radii, m: | | | |
| Sun | 1.0×10^{20} | RCRIT (1) | 911 |
| Mercury | 1.0×10^{8} | RCRIT (2) | 912 |
| Venus | 6.14×10^{8} | RCRIT (3) | 913 |
| Earth | 9.25×10^{8} | RCRIT (4) | 914 |
| Mars | 5.78×10^{8} | RCRIT (5) | 915 |
| Jupiter | 4.81×10^{10} | RCRIT (6) | 916 |
| Saturn | 5.46×10^{10} | $\operatorname{RCRIT}(7)$ | 917 |
| Uranus | 5.17×10^{10} | RCRIT (8) | 918 |
| Neptune | 8.61×10^{10} | RCRIT (9) | 919 |
| Pluto | 3.81×10^{10} | RCRIT (10) | 920 |
| Moon | 1.60×10^{8} | RCRIT(11) | 921 |

${ }^{a}$ Location relative to COMMON of subroutine TAPE (TAPE has a COMMON that is independent of all other subroutines).
TABLE VII. - LEWIS RESEARCH CENIER EPHEMERIS TAPE DATA

| Body | Source | Find date | | Number of fits | Average, days/fit | Average, deg/fit | Source checked against | Average error | Maximum error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Gregorian | Julian | | | | | | |
| Venus | Themis | Oct. 31, 2000 | 2451848.5 | 968 | 15 | 24 | JPL | 1.7 | 7.3 |
| Earth-moon barycenter | | Oct. 31, 2000 | 2451848.5 | 962 | 15 | 15 | JPL | 1.8 | 9.5 |
| Sun | η | Nov. 24, 2000 | 2451872.5 | 1821 | 8 | 8 | JPL
 Themis | 5.0 .06 | $\begin{array}{r} 21.0 \\ 3.0 \end{array}$ |
| Moon | JPL | Nov. 26, 1970 | 2440916.5 | 1851 | 2 | 26 | JPL | . 14 | 9.5 |
| Mars | JPL | July 26, 1998 | 2451020.5 | 315 | 44 | 23 | | 1.1 | 7.2 |
| Jupiter | Themis | March 2, 2060 | 2473520.5 | 110 | 330 | 27 | | 1.6 | 9.5 |
| Saturn | | | | 44 | 825 | 27 | | 1.5 | 8.6 |
| Uranus | | | | 30 | 1211 | 14 | | . 95 | 6.5 |
| Neptune | | | | 31 | 1172 | 7 | \downarrow | . 52 | 3.2 |
| Pluto | γ | γ | 1 | 33 | 1101 | 4 | Themis | . 41 | 3.2 |

| NASA TN D-1455
 National Aeronautics and Space Administration.
 THE N-BODY CODE - A GENERAL FORTRAN CODE FOR SOLUTION OF PROBLEMS IN SPACE
 MECHANICS BY NUMERICAL METHODS.
 William C. Strack, Wilbur F. Dobson, and Vearl N. Huff. January 1963. i, 92p. OTS price, \$2.25. (NASA TECHNICAL NOTE D-1455)
 A general astronomical integration code designed for a large class of problems in space mechanics that may be solved by numerical integration is described. The equations of motion provide for the effects of up to eight gravitating celestial bodies, oblateness and aerodynamic forces from the celestial body at the problem origin, propulsion system thrust, and rotation of the body at the origin. | I. Strack, William C.
 II. Dobson, Wilbur F.
 III. Huff, Vearl N.
 IV. NASA TN D-1455 |
| :---: | :---: |
| NASA TN D-1455
 National Aeronautics and Space Administration.
 THE N-BODY CODE - A GENERAL FORTRAN CODE FOR SOLUTION OF PROBLEMS IN SPACE MECHANICS BY NUMERICAL METHODS. William C. Strack, Wilbur F. Dobson, and Vearl N. Huff. January 1963. i, 92p. OTS price, \$2.25. (NASA TECHNICAL NOTE D-1455)
 A general astronomical integration code designed for a large class of problems in space mechanics that may be solved by numerical integration is described. The equations of motion provide for the effects of up to eight gravitating celestial bodies, oblateness and aerodynamic forces from the celestial body at the problem origin, propulsion system thrust, and rotation of the body at the origin. | I. Strack, William C.
 II. Dobson, Wilbur F.
 III. Huff, Vearl N.
 IV. NASA TN D-1455 |
| | NASA |

