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SUMMARY

A method of designing pump impellers is derived from the equations of motion
and continuity for incompressible nonviscous relative flow. The flow is assumed
to follow a known stream surface (representing blade shape) that extends from hub
to shroud. HEquations are also derived for approximate blade-surface velocities
and pressures. A detailed numerical procedure and block diagram are given for
use on a digital computer. A numerical example that illustrates limited use of
the method is presented and further uses are indicated.

INTRODUCTION

Centrifugal pumps are being considered for space applications in chemical
and nuclear-rocket engines using cryogenic fluids and in power-conversion systems
using liquid metals. For these applications, the pumps should be of minimum size
and weight, should have high efficiency, and should operate cavitation-free or
with controlled cavitation at high rotative speeds. A knowledge and control of
the internal flow are necessary to meet these reguirements.

A method based on stream-filament techniques for analyzing the flow in the
impeller of a centrifugal air compressor was developed at the Lewis Research
Center (ref. 1). This method determines velocities, pressures, and streamlines
in the meridional plane (a plane containing the impeller axis) and of approximate
velocities and pressures on the blade surfaces. From the analysis an impeller
design method (ref. 2) was derived that allowed direct control of the hub veloc-
ities and indirect control of the velocities and pressures in the impeller. This
method enabled the designer to avoid velocity gradients conducive to boundary-
layer separation and to avoid eddy formation on the blade surfaces.

The method of reference 2 was used to redesign the shroud shapes of three
existing impellers for air compressors for which experimental data were availl-
able. Data for the redesigned impellers were obtained, and the comparison of
these two sets of data showed significant gains in performance of all three
impellers (ref. 3).

These favorable results with air compressors, together with recent pump
applications that require knowledge and control of the internal flow, led to the



use of this method for the design of centrifugal pumps. To facilitate this use,
it is desirable to determine the specific flow equations and design methods for
the incompressible flow in pump impellers, and to detall the procedures for high-
speed digital-computer use. This report presents the development of such a
method.

The basic flow equations are derived from the equations of motion for a
mean-flow surface that extends from impeller hub to shroud. The required equa-
tion for stream tube volume flow is derived from continuity considerations. An
approximate method of computing blade-surface flow properties is also derived.

In addition, the overall pump-design problem is discussed. Metheds of ob-
taining quantities needed in the design calculations are given, and the numerical
methods of attacking the design equations and a block diagram for a digital-
computer program are presented. Finally, a numerical example illustrating the
use of the method and suggestions for further use are given.

DESIGN PROBLEM

The general design problem can be considered from two points of view,
namely, the engineering and the mathematical. The engineering approach is:
Given a flow rate and a head rise, find a pump that will produce the desired
performance with maximum efficiency. The mathematical approach is: Given the
distribution of some flow property, such as velocity, on the boundaries (hub,
shroud, and blade surfaces) and assumptions regarding the type of flow, find the
impeller geometry that will result in these flow properties.

Fundamentally, the problem is an engineering one; that is, the pump must
produce a certain flow and a certain head rise and possibly meet other restric-
tions, such as a maximum allowable diameter, a specified rotative speed, and so
forth. Commonly, the engineering goal is achieved through the combined use of
a certain amount of mathematical design, the designer's art and experience, and
possibly development.

The ideal approach would be to convert the engineering specifications into
inputs for a complete mathematical design, to specify desirable flow properties
along the impeller boundaries, and to compute the geometry of the impeller.

Unfortunately, complete three-dimensional design methods, such as suggested
in reference 4, are long and complex. Even when a high-speed digital computer
is available for the computation, the setting up of the problem for the computer
would be a long and tedious process. An exact two-dimensional method is used in
references 5 and 6 to obtain blade-to-blade properties in a prescribed pump
stream-tube impeller geometry without and with splitter vanes, respectively.
This method gives an adequate picture of the flow in the leading-edge region and
would be useful for cavitation considerations; however, the exact solution is
quite complex and involves considerable caleculations. It is important, there-
fore, that rapid easy-to-use methods accurate enough for engineering purposes be
developed. Two such methods of obtaining flow properties on the blade surfaces
are given in references 1 and 7. In references 5 and 6, it was found that these




methods gave reasonably accurate results throughout most of the blade passage.
Although these methods are of limited value for studying cavitation conditions,
they are sufficient for eddy detection and for boundary-layer and loading studies
except in the immediate vicinity of the trailing edge and in a region near the
leading edge that extends further into the impeller as the angle of attack devi-
ates from the design value.

The hub-shroud design method presented herein (with optional blade-surface
computations) is another such rapid and easy-to-use method. It enables thc
designer to proceed from a known streamline and its velocity distribution to an
adjacent streamline and its velocity distribution. Thus, given the conditions
along the hub, the entire hub-shroud profile is bullt up by preceeding from the
hub streamline to the next streamline, and so on, until the shroud is reached.
Conversion of the pump specifications into input for the design calculations is
described in the DESIGN INPUTS section.

DESIGN EQUATIONS
Stream Tube Volume Flow

The coordinates of an unknown streamline are related to those of an adjacent
known streamline by a form of the continuity equation. In the derivation of this
equation, it is assumed that surfaces of revolution obtained by rotating stream-
lines about the impeller axis are stream surfaces and that all passages between
blades carry the same volume flow. Then the equation for the volume flow per
unit blade passage AQ/M through a cross section of a stream tube bounded by
adjacent surfaces of revolution ny and no and by adjacent blades Qt and

03, as shown in figure 1, is obtained by

np  rO4(n)
A_N?:/WmdA=/ / Wr d6 dn (1)

A Ny "9g(n)

where A 1is the area of a cross section of stream tube everywhere normal to the

meridional or through-flow direction, W, 1s the meridional or through-flow

velocity component and is a function of n and 6, and r is the radial dis-
tance to the center of the element and is a function of n. (All symbols are
defined in appendix A.)

Velocity Gradient

The velocity-gradient equation (which is derived in appendix B) is used to
obtain the velocity on a new streamline when it is known on an adjacent stream-
line. Simplification of the exact three-dimensional equations of motion to a
simple velocity-gradient equation is accomplished in two major steps. In the
first step, the problem is reduced to two dimensions by considering the flow on
a known stream surface 8 (fig. 2) that extends from hub to shroud throughout
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the impeller. Mathematically, this surface can be any stream surface between
blades. It is reasonable to assume that the mean flow follows a mean blade sur-
face throughout the gulded portion of the impeller. At the inlet, the surface
deviates Trom the mean blade surface for nonzero angle of attack and, at the
outlet, it differs because of slip. These two factors can be taken into account
and are discussed in the section on Blade Properties.

In general, flow properties are functions of 6, r, and zj; but on the sur-
face, 6 ig a function of r and z. Therefore, the flow on the surface is a
function of r and =z only; that is, it is mathematically two dimensional. As
a result, the design calculations can be set up as if the flow were in an r-z
or meridional plane. A meridional plane is a plane that contains the impeller
axis, but it is not a physically meaningful plane in the flow field (except in
the case where there is no relative circumferential velocity). An advantage of
working in the meridional plane is that the meridional streamline picture is a
true representation of the through flow associlated with the surface &S.

In the second step, the two-dimensional equations are further simplified by
considering flow conditions along meridional streamlines and gradients along
normals to these streamlines (fig. 3). This consideration results in the
velocity-gradient equation

aw
= =aW-b (2)
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(a) Meridional streamline. (b) Velocity components. (c) Normal to meridional stream-
line.
Figure 3. - Meridional plane.
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and

dw, .
b= 2w sin B cos a + B cos B E9+2wsino, _delJr%;g_;\ (a)

In equation (2), W is the fluid velocity relative to the rotating impeller and
n 1is distance along a normal to the meridional streamline. All quantities in

a and b are given as design inputs (e.g., w) or are computed from the geometry
(e.g., a) or from flow properties (e.g., dWé/dn) of a known (i.e., initially

prescribed or previously calculated) meridional streamline. These quantities are
discussed as they appear in the derivation in appendix B. Briefly, from the
meridional streamline geometry shown in figure 3{a),

dr

tanoa:(—iz
dm = \dr? + dz®

1_d

~ dm

and from blade-shape specification, d6/0r and 06/dz,

B=r éﬁ sinao -7 éﬁ cos o
Z r
tan B = r éﬁ sin o + T §9 cos a
or 7

Physically, B 1is the angle measured from the meridional projection to the
streamline of the flow surface (fig. 4). The angle is positive when measured in
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the direction of rotation. The remaining quantities in b are obtained as
follows: Wy equals W sin B; ®w, the rotative speed of the impeller, is pre-

di; A
Mn
. . ) - A A dH3
at the inlet and An 1s obtained from continuity; and o= A o8 for o

With the two equations, velocity (eg. (2)) and continuity (eq. (1)), the
hub-shroud profile can be constructed from a given meridional streamllne and its
velocity distribution and a given blade shape. The velocity on the stream
surface throughout the impeller is of necessity obtained as part o

calculation.
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Head
The static head h along a streamline can be obtained from equation (BZZ):
W o®r® @A

fEhTE e T

where H; is the inlet total head that is given for each streamline.

The total head along a streamline can be computed from equation (B28):

gom +-anVé _ ok +oﬂ%@ wlr? o
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This completes the incompressible nonviscous flow calculations on the stream
surface S.

Blade~to-Blade Calculations

Approximate blade-surface velocities and static heads can be obtained from
equations {C3) to (C7). These equations are derived in appendix C with the
assumption o0f & linear variation of static head from blade to blade. They pro-
vide results of satisfactory accuracy except in the leading- and trailing-edge
regions of the blades. If more exact results are required, the blade-to-blade
analysis method of references 5 or 6 can be used.

DESIGN INPUTS

The equations presented in the previous section enable computation of the
internal-flow conditions and the shroud shape of a pump impeller provided that
the following quantities are known, that is, given or prescribed: volume flow

scribed; el —= where AH; 1s obtained from a prescribed distribution of Hj
|
\
|



rate, Q; head rise, AH; inlet-total-head distribution, H;; inlet-prewhirl dis-
tribution, A; rotative speed, w; meridional contour of some streamline such as
the hub, r = r(z); velocity along this streamline, W = W(r,z); the mean blade
surface in terms of the curvature components, ae/ar and 06/0z; the blade thick-

ness, t, or tg; the number of blades, M; and any deviation of the flow surface

from the blade surface such as slip or angle of attack.

The flow rate @ and the head rise AH will usually be given as pump
specifications. The rotative speed w 1s sometimes given. In general, w, Q,
NI, Hy, and A are not directly related to hub shape, velocity along the hub,

blade shape, and number of blades, so the designer has considerable freedom in
prescribing these quantities. At the inlet and at the outlet of the pump, how-

ever, certain relations among these quantities and §Q and AH must be satis-
fied.

Outlet Conditions

At the outlet, two equations must be satisfied. The first is Euler's tur-
bine equation:

M = %? (rW sin B + wr? - Nav (5)
In equation (5), 1 is the hydraulic efficiency defined by

AHactual
M5 geal

The hydraulic efficiency may be estimated from a consideration of losses or
it may be assigned from experience. The rotative speed w may be chosen to be
consistent with other free choices in equation (5) or it may be predetermined by
other considerations; for example, the w of a direct-drive turbine that will
drive the pump.

If slip is to be taken into account, equation (5) becomes

rH =B [rfs(w sin B + ar) - %]
g av

where T, 1is the slip factor and is defined and discussed in the section on
Blade Properties.

The second equation is the equation for volume flow rate:

s = Th
Q = (W cos B)gylnr - Mty I (62)

av




or for a radial outlet when o = 90° and rg = Ty

Q = (W cos B)gylnr - Mbg] (25 - 2y) (6b)
av
The values of any quantities (W, B, etc.) needed in the design must be pre-
scribed at the outlet to be consistent with equations (5) and (6) and with any

other constraints imposed, for example, the existing geometry of the system in
which the pump will be used. Tn equations (2\ and. /R\ the subserint av refers

Will il il LIl CYLGLLLLLS [S20R 0 RGNNSO, (= L oL Lo

to average values between hub and shroud. In practlce, however, these equations
are used to obtain input values on the prescribed streamline. The result of this

procedure is that the pump may produce g somevhat differcnt head rise or low

rate from that specified. If this is a significant deviation, the prescribed
streamline and its related input can be adjusted after a trial design. This
adjustment can be repeated as often as required.

Inlet Conditions

There are four possible situations that may confront the designer at the
pump inlet: (1) The upstream flow conditions are given, for example, when an
inducer precedes the pump; (2) the upstream geometry is given, for example, a
predetermined inlet pipe; (3) the geometry immediately upstream of the pump is
the responsibility of the pump designer; and (4) there are no restrictions on the
inlet conditions, for example, it is the responsibility of someone else to make
the inlet section it the pump.

For item (2), the upstream section can be analyzed (from essentially the
same equations as those used for the pump design) and the flow conditions are
then known. This situabion is now the same as item (1). For item (3), the in-
let section can be designed by the method of this report (with certain changes
because there are no blades) then the flow is known as in the situation in
item (1). Thus, for inlet conditions required as design input, there are two
different situations, namely, items (1) and (4). In both cases, the relations
of continuity

AQ = (2nr - Mbg)An W cos B (7)
where
To = I
m = CcOs G;l

except in the case of a radial inlet « = 90° where

A]_’].:ZZ-Z:L



and conservation of angular momentum

>

Wsin B == - ar (8)

must be satisfied at each streamline for item (1) and at some mean streamline for
item (4).

Note that equation (7) is written for a station just inside the impeller in-
let rather than just upstream of the inlet and, therefore, includes blade block-
age. Also, note that in equation (8) it is assumed that no work has yet been
done on the fluid at this station. Not all quantities involved in equations (7)
and (8) are actual design input at every streamline. Only the prescribed stream-
line (usually the hub) has a W and r as input. Values of A and H; (which

does not appear in the equations) are required input at every streamline even
when upstream conditions are not prescribed. Values of B, tg, and M across

the inlet are incorporated into the blade input. Angle B 1is the angle of the
flow surface not the blade surface, so that when these angles are not equal
(when the angle of attack is not zero) the blade shape at the inlet must be
specified in such a way as to produce the required value of B.

When equations (7) and (8) are used to relate average conditions, as in
item (4), AQ becomes Q, An becomes (rg - r,)/cos ay, or zg - 7z, and other

quantities are averages from hub to shroud. Values for the prescribed streamline
are estimated from the hub-to-shroud average values. After a design is made, the
inlet should be reexamined at each streamline to be sure that conditions are sat-
isfactory. In particular, the blade angle at each streamline should be such as
to produce the expected angle of attack (usually zero). If the expected angle of
attack 1s not attained, some inlet condition or the blade shape at the inlet must
be changed.

In cases where the upstream flow is known before the pump is dssigned, the
streamlines resulting from the design calculation must match the upstream stream-~
lines at the inlet. If these two sets of streamlines do not match, some input
condition must be changed, and a new design calculation carried out. Thais proc-
ess is repeated until a satisfactory match is achieved.

Hub Shape and Velocity Distribution

After the inlet and outlet conditions are determined, the meridional contour
and velocity distribution of some streamiine must be chosen throughout the pump.
This could be the hub, the shroud, or any other streamline in between. It is
probably best to start with the hub, since streamline spacing is most sensitive
to velocity changes near the hub and undesirable resulting shapes in succeeding
streamlines can be more readily eliminated. Usually the hub radius r and
velocity W are given as functions of z. Both r and W may be prescribed
directly, or, for better control of cavitation, the static head h may be pre-
scribed together with either W or r. These three quantities are related in
equation (B22).

10




If static head and velocity are prescribed, the hub shape is obtained from

r:%d@m-ﬁﬁ+w2+mﬁ

If static head and hub shape are chosen, the velocity is found from

W= VZg(Hi - h) +wfr® - 20\

The velocity distribution on the hub, according to air-compressor experi-
ence, should be accelerating, if possible. At least unnecessary negative velcc-
ity gradients should be aveided. The static-head distribution should be such
that cavitation is avoided or controlled. No useful criterion is known for hub
shape except perhaps ease of fabrication.

If it is more desirable to have direct control over conditions on the
shroud, this can be done, and the design method can be made to proceed from the
shroud to the hub by changing the sign of An in the equations.

Blade Properties

When the mean flow surface is assumed to follow the mean blade surface, the
blade shape is usually prescribed in two parts: a mean blade surface and a
thickness distribution. In general, the mean blade surface is of the form
8 = 8(r,z). For very high speed wheels, it is often limited to radial elements
and is of the form 6 = 6(z). The blade surface should be prescribed in such a
manner that the angle B can be computed conveniently at any point. One method
would be to prescribe Be/ar and BG/BZ, the blade-curvature components in the
r- and z-directions, respectively. The angle B 1is found from the relation

tan B =1 el sin a + éQ-cos a (9)

or oz

Equation (9) results from the relation

t = 92 =T 08 QE +r 99 QE
anf=rao=rSrm 37 am

which holds along a streamline where 6, r, and 2z are functions of m.

For the case of radial blade elements (06/dr = 0) or axial elements
(06/dz = 0), the following method may be used to determine the mean blade sur-
face. Instead of prescribing the blade angle, either the total head rise
H - H; or the relative tangential velocity along the hub 1is prescribed. Then

B along the hub is found from

W,
B = Sin'l TIG-

11



where

For radial blade elements

08 1 tan B
dz T, cos a

where f and o are known as functions of =z along the hub; therefore, since
d6/dz 1is independent of r, 06/dz is known everywhere as a function of z.
For axial blade elements

06 1 tan B
or ~ 1y, sin o

and 06/0r is known everywhere as a function of r, since B and o are known
along the hub as functions of r.

Although 6 1s not needed in the design procedure, it is usually needed for
fabrication and can be obtained from

Since the flow near the outlet of the pump does not closely follow the
blades, a closer approximation to actual flow can be obtained if a reasonable
value of the slip factor can be estimated. The slip factor fg 1is defined as

the ratio of the absolute tangential velocity of the fluid at the outlet to the
absolute tangential velocity the fluid would have if the flow angle were equal
to the mean blade angle, that is, 1If the fluid were perfectly guided by the
blades. The effect of slip is taken into account in computing the flow angle B.
At the outlet, B 1is computed from the slip factor, the mean blade angle, and
the flow rate. In reference 7, a parabolic variation in sin B 1s assumed to
hold from a point in the pump where the effect of slip begins (and where B is
known from eq. (9)) to the outlet. Angle B is then computed in this region
from the parghbolic variation instead of equation (9). The point where slip is
assumed to become significant can be estimated from experience or can be computed
from an empirical formula such as that given in reference 7.

A similar situation exists at the inlet where the actual mean stream surface
may differ significantly from the mean blade surface in the case of nonzero angle
of attack. The angle of attack, or incidence angle, at some streamline is
defined as the angle between the mean flow direction at the inlet and the mean
blade surface at the blade leading edge. Then the B of equations (7) and (8)
is not the B of the mean blade surface. Tae mean blade surface at the inlet
then has to be specified in such a way that its angle is equal to angle B plus
the angle of attack. The effect of angle of attack extends somewhat into the

12




impeller and could be accounted for in a manner similar to that discussed pre-
viously for slip factor. ©Note that even though the mean blade angle at some mean
streamline satisfies equations (7) and (8) at the inlet, there may still be
nonzerc angle of attack at other streamlines and, if significant, should be taken
care of as done previously. Reference 2 discusses computation of angle of
attack.

The blade thickness may be prescribed in any manner that allows its compu-
tation as a function of =z and r. Normally, t, 1s prescribed, but the thick-

ness in the circumferential direction 1ty 1is required for the design method and

2 2
tg = by ‘/l + r2<%> + r2<—%%> (10)

The initial choice of the number of blades 1s best determined by experience.
The number need not be constant, that is, splitter vanes or partial blades may
be added at various stations throughout the pump impeller. Since the flow is
assumed to be periodic, the number of blades (including splitter vanes) at any
station should be an integral multiple of the number at the previous station.

is given by

The hub shape, velocity along the hub, blade shape, and number of blades may
be changed if the initial values result in undesirable flow conditions (see
NUMERTCAL EXAMPLE AND DISCUSSION).

NUMERICAL PROCEDURE
The numerical solution of equations (1) and (2) is based on the fundamental
assumption that the distance An between adjacent streamlines is small enough

so0 that properties can be assumed to be constant across An.

In equation (2), assume that a and b are constant across a stream tube
from nq to No. If equation (2) is multiplied by the integrating factor

ef'a dn it can be integrated to give

Wy = We® A4 D (1 B A (11)
where An = o - Nq.

Equation (11) is used to compute W, when Wy 1is known. The parameters
a and b are computed along the streamline at n,, and An is computed from
the next equation to be developed.

13




Equation (1) can be solved by applying the mean-value theorem. First, con-
gider the integration with respect to 9:

6+ (n)
Wor d6 = ﬁmr[et(n) - Qd(n)]
84(n)

where 3%1 is evaluated at some ©. Assume that ﬁh is the Wﬁ of the mean
surface S. At any value of n

2nr - Mte

r[@t(n) - Gd(n)] = i

where r and 1ty are functions of n. Now equation (1) can be written as

2
AQ = / Wy(2nr - Mtg)dn (12)
il

Assume that Wy(2nr - Mtg) is constant across An. Then

AQ = Wm<21'[r - Mte)(nz - nl)
Hence

AQ
= W, (2 - Mtg) (13)

An
where VQAEﬁr - Mte) 1s evaluated on the streamline at n;, as are the parameters
a and b of equation (11).

Coordinates of a new streamline are obtained by assuming that o is con-

stant across a stream tube and by integrating equations (B13) and (B12),
respectively, to give

r, = r] +4n cosa (14)

and

Zo = Z7 - An sin « (15)

14




The two normal derivatives that occur in b are computed from streamline-
input data for a linear variation with n assumed at each station:

ad.: (H;) (H;)
dnl = ZAn - (16)
1
- A
%) =-%37“__1- (17)
\"1 =

The numerical method employed to compute derivatives at discrete points
along a streamline is a "spline curve fit" technique taken from the SHARE Program
for IBM 704 users. Briefly, the method requires a set of points and the slopes
at the end points for which a cubic polynomial 1s defined for each interval
(between adjacent points) such that the function represented by the set of cubic
equations has continuous first derivatives within the given range. Since the
end-point derivatives are usually not known, they too must be computed numeri-
cally by a method such as Newton's end-point formulas (ref. 8).

A block diagram for a digital-computer program is shown in figure 5. The
diagram is explained by block number as follows:

(1) Read pump input data:
(a) Number of stations (points along the streamline), J
(b) Number of streamlines, K
(c) Rotative speed, o
(d) Flow rate, Q
(e) Number of blades at each station, M
(f) Prerotation for each streamline, A
(g) Inlet total head for each streamline, Hj
(h) Coordinates of hub for each station, z, r
(1) Relative velocity at each station on hub, W
(j) Tabular blade-shape data as functions of r and 2z, 59/52, BG/Br

(k) Tabular blade thickness as function of r and =z, t,

15
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For the remaining steps, the subscript j refers to stations along a streamline

and is in the range j =1, 2, . « . , J»
(2) Compute (dr/dz)j from spline curve fit, ay from equation (B8), and
m. from
oJ
[ ey
2
by = wy.) + l-l.O + \%—E) dz for 2< 3 J (18)

where my o= 0]

(3) Compute (da/dm)j from curve fit

(4) Obtain blade-shape data, (89/82)3 and (Be/ar)j, by interpolation from
the tables (step (1)(J3))

(5) Compute B from equation (9)
(6) Compute (W’e)j from equation (B18), (W'm)j from equation (B17), and

(dWe/dm)J. from curve fit

(7) Obtain blade-thickness data (tn)j by interpolation from the tables

(step (1)(k)) and compute circumferential thickness (te)j from
equation (10)

(8) Compute By from equation (B16)

(9) Compute static head hy from equation (B22) and total head Hj
from equation (B28)

Steps (10) and (11) are the blade-surface calculations and are optional, since
they are not essential steps in the design procedure.

(10) Compute (Ah)j from equation (C3), (hd)j from equation (C4), and (ht)j

from equation (c5)
(11) Compute (W’d)j from equation (C6) and (W’t)j from equation (C7)

(12) Write out desired streamline data. In working from the hub to the
shroud, the first streamline data will be that associated with the hub.
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Quantities that occur in the calculation procedure of potential inter-
est are:

a) Streamline coordinates

)
b) Resultant and component velocities

c) Meridional streamline curvature

e) Angles o and B

(

(

(

(d) Blade-curvature components
(e)

(f) Static head and total head
(

z) Blade-surface velocities and static head
(h) Circumferential blade thickness

(13) Test whether or not the solution has reached the shroud. (If the shroud
is the starting streamline, the logic is still the same and the design
is finished when the hub is reached; however, if some intermediate
streamline is the initial one, the design has to proceed from this
streamline to both the hub and the shroud, and the logic must be
chanzed slightly.) If the solution has reached the shroud, go to
step (17); if it has not, go to step (14).

aH.
(14) Compute (An)j from equation (13), Eﬁi from equation (18), (%%)
J J

from equation (17), a; from equation (3), and by from equation (4)

(15) Compute next streamline coordinates and velocity: rs from equa-

tion (14), z; from equation (15), and W; from equation (11)

(1¢) Return to step (2)

(17) Stop

NUMERICAL EXAMPLE AND DISCUSSLION
The digital-computer prozram as outlined in the preceding section was
applied to a numerical example for the purpose of illustrating the use of the

method. The following is a list of the conditions prescribed:

(1) Number of stations, 26, approximately equally spaced with distance along
meridional hub contour

18




hia

Radial distance, T,

.uﬁj//

(2) Number of streamlines, 40

(3) Rotative speed, w, 1571 radians/sec

(4) Flow rate, Q, 48 cu ft/sec

(5) Number of blades, M, 4 at each station (no splitter vanes)
(6) Prewhirl, A, 0; inlet total head, H;, 1304 ft

(7) Hub contour, r = r(z), as in figure 6(a)

(8) Hub velocity distribution, W, shown in figure 6(b) as function of m/'m.J

h
. l(

ft/sec

200

Relative velocity, W

/
.2 .4 e 0 .2 4 .6 .8 1.¢
Axinl distance, -, ft Percent of distance along meridional streamline, m/mJ
(2) Hub contour. (p) Hub velocity distribution.
Fizure J. - Hub innut data for numerical example.

(9) Blade-shape data, 96/0z or 06/dr, as functions of z. The quantity
36/3z 1is a linear function of z from 0.000 to 0.400 as shown in the
following table:
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Axial distance Blade-shape
from impeller specification
inlet,
z 06 06
dz or
0. 000 -10.39374 | 0.0
. 050 -9.09453
.150 -6. 49609
. 250 -3.89765
. 350 -1.29922
. 390 -.25984
. 395 -.12992
. 400 0
. 405
.410
. 500
. 600 Y

(10) Constant blade thickness, tp, 0.0075 ft

Figure 7(a) shows some of the computed streamlines from the hub to the

shroud. Figure 7(b) shows the velocity distributions along each of these
- Shroud |
—_— lst trial }
2nd trial . f L
Strearline ”
5 e 30 -+ I.lr - *
. [ 20 1st trial /’#
—— X Jl ;
— O Hub, computed with / !
shroud as inputl Z/ : 5 i
L .5 i - T4 ‘/ — 600 - | — T — —
& /4542 Me~d_ s T \ = ~
g); ’ // P 3 >l \\ — ljlf;f
g L B et I N . ==an
; .4 // ! (: 200 ! " /’/’, J/J
: 7/l N\
: p; S - 1'"'\\ilf/' o —
— ¥ -
3 \\\_ i P /,/ 4/’ ‘ / - /
A it S L = 7] |
g . 1 AR é 400
- | - <
~ ;7/?/'/7?77—" - *
s
2 P - ] w300 -
T
n"/c)/q i [
[¢] " "E T
1 i l ! | 200 j
¢} .1 2 3 .4 .z .6 o] 2 4 6 1.

20

Axial distance, z, ft

(a) Computed streamlines from hub to shroud.

Figure 7.

Percent of distance along meridional streamline

(b) Velocity distributions along computed stream-—
from hut to shroud.

lines

- Meridional streamlines and velocity distributions for numerical example.
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streamlines. TFigure 7 represents the first trial to obtain acceptable shroud
shape and shroud velocity distribution with the conditions prescribed pre-
viously.

In order to improve the shroud velocity distribution, it was decided to
distribute the blade curvature over a greater axigl distance, in particular, to
vary 59/52 linearly with z %o a value of z of 0.500 instead of 0.400. The
new blade data is shown in the following table:

Axial distance Rlade-shape
from impeller specification
inlet,
Z o8 L)
dz or
0. 000 -10. 39374 0.0
. 050 -9. 35437
. 150 -7.27562
. 250 -5.19687
. 350 -3.11812
. 450 -1.03937
. 490 -. 20786
. 495 -. 10394
. 500 0
. 505
.510
. 550
. 600 Y

The second trial shroud shape and shroud velocity distribution are shown by
dashed lines in figures 7(a) and (b), respectively. The number of blades, hub
contour, and hub velocity may also be changed to improve the solution. This
process can then be repeated until an acceptable shroud and shroud velocity dis-
tribution are obtained.

Although it was not done for the numerical example the blade-surface veloc-
ities, in an actual design, also would be computed for each meridional stream-
line, which would enable the designer to exercise a certain amount of indirect
control over these velocities. It is usually not practical to eliminate all
undesirable qualities of the velocities. For example, all blade-surface decel-
eration could not be eliminated. The chief utility of the blade-surface compu-
tations is that they can indicate severe undesirable gradients and the presence
of an eddy on the driving surface. It is usually falrly easy to eliminate the
eddy in later trials by raising the hub velocity, changing the blade shape, or,
more commonly, by adding splitter vanes between blades at the station where the
negative velocity first appears. For numerical examples of blade-surface veloc-
ities computed by two approximate methods (including the one presented in this
report) and their comparison with exact solutions see references 5 and 6. Ref-
erence 6 gives results for a pump with splitter vanes.

[ae]
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Although the approximate blade-surface computations also permit indirect
control over the blade-surface static head or pressure, they are unfortunately
of quite limited value in studying cavitation conditions, as is pointed out in
reference 5. If the time and effort were warranted, however, the method of
reference 5, applied to only one stream tube, might give sufficient information
for cavitation studies. (In ref. 5, angle of attack was not taken into account
in the approximate calculations so that the off-design case shows worse agreement
with the exact solution at the inlet than would be the case if angle of attack
were included, as suggested in this report.)

As mentioned in the Design Inputs section, the method can also proceed from
shroud to hub by making the sign of An in equation (13) negative and by pre-
scribing conditions along the shroud. Adjustment of conditions on the shroud
similar to those done to the hub can produce an acceptable hub and hub velocity
distribution. The shroud contour and velocity distribution computed as the first
trial (figs. 7(a) and (b)) were used as input to the program to illustrate start-
ing on the shroud and the computed hub and hub velocity distribution, as shown
in figures 7(a) and (b), are almost identical with the original prescribed hub
and hub velocities.

In choosing the number of stations for a solution, some care should be
exercised to avoid very small spacings especially in regions of large curvature
in order to prevent numerical difficulties that become increasingly worse as the
solution proceeds toward the shroud. The reason is that the spacing gets smaller
near the shroud and may become of the same order of magnitude as the error in the
numerical procedures, or the spacing may become negative. In elther case, the
solution becomes meaningless in such a region.

A sufiicient numver of stream.ines should be chusen so that the resulting
An  is small enough to make the assumption of constant a and b 1in equa-
tion (2) a valid one. The value of An varies with the size of the impeller
and can usually be determined in one or two trials. It is probably not worth
starting with less than 10 streamlines. ILimited experience indicates that no
difficulties result frow having too many streamlines; however, it is a waste of
time to have more than necessary for the degree of accuracy desired. In the
numerical example presented, the results of the solution from the shroud to the
hub indicate that An was chosen small enough to make the assumption of constant
a and b satisfactory.

Lewis Research Canter
National Aeronautics and Space Administration
Cleveland, Ohio, September 19, 1962
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APPENDIX A

SYMBOLS
stream tube normal to through flow

ic parameter, eq. (3)

ic parameter, eq. (4)
ctor
ation due to gravity

e total head, h + V¢/2g

se across pump

relative total head, h + WZ/Zg

static
static
hg - hyg
number
number
number
distanc
distanc
normal
volume
volume
radial

radius

head

head on surface S

of stations

of streamlines

of blades

e along meridional streamline

e along normal to meridional streamline

distance between adjacent meridional streamlines
flow rate through pump

flow rate through annular stream tube

distance from axis of rotation

of curvature of meridional streamline
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S stream-surface function and surface itself

t time

t blade thickness normal to mean blade surface
tg blade thickness in circumferential direction

v absolute fluid velocity

W fluid velocity relative to rotating impeller

A axlal distance from impeller inlet

a angle meridional streamline makes with impeller axis, tan~1 dr/dz

B angle between streamline of surface S and its meridional projection,

tan™l r d0/dm
i\ hydraulic efficiency
e angular distance from radial line rotating with impeller, radians
N Oy - 6
A prewhirl, ri(V@)i
w rotative speed of impeller
Subscripts:

av average between hub and shroud

ol driving surface of blade

h hub

i impeller inlet

J index for stations along meridional streamline
m meridional component

r radial component

s shroud

T trailing surface of blade
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Z axial component
e circumferential component
1 known streamline

2 adjacent unknown streamline
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APPENDIX B

DERTIVATION OF VELOCITY EQUATION

The objective in this appendix is to derive a simplified relation between
the known relative velocity on some known streamline and the unknown relative
veloclity on an adjacent streamline. Other quantities involved in the relation
are certain properties of the known streamline and the impeller blade geometry.

The starting point is the equations of motion governing the steady relative
three-dimensional incompressible nonviscous flow at any point in a turbomachine
(ref. 4):

dWr-(We +(DI')2~W 5Wr+EBWr+W BWI. (WQ +{DI')2_‘— oh (Bl)
dt T = "r Or r 08 z 9z T =837 a
arv, aw, W..W, oW, W, OW, oW, W.W,
1 6 0 o 9 g CWg ) r"o g oh
T T/ T W =W gty Wt t R = - 25
(B1b)
aw,, OW, Wy OW, oW, Sh
® ME tTa tey mEy (Blc)

where Vg = Wg + awr, h 1is static head in feet of fluid and r, 6, and =z are
cylindrical coordinates relative to the rotating impeller (see sketch).

Impeller axis

The problem can be reduced from three dimensions to two dimensions by first
considering a relative stream surface 8 (fig. 2) that extends from hub to shroud
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about midway between blades. (This is a surface of the second kind in the ter-
minology of ref. 4.) For steady relative flow, such a surface is a three-
dimensional surface that rotates with the impeller and is given by a relation
among the coordinates of the form

8(r,06,z) =0
or solving for 6
0 = 6(r,z) (B2)

This equation is used to relate the static head h of the three-dimensional
fiow field with the static head h¥* on the surface S. In general,

h = h(r,6,z) (B3)
but on the surface 8
h* = hlr,6(r,z),z] = h*(r,z) (B4)
since 6 on the surface is not an independent variable. The relation between

partial derivatives of the static head in the three-dimensional field with those
on the surface S 1is given by

oh* odh dh 36

3r ~3r T d8dr

(B5)
e _dn , 9n 6
dz 3z 06 Oz
Substitution of equations (B5) in equations (Bl) yields
aw. (Wp + ax)?
r ¥ _ g op* .00 10n (B6a)
dt T = 83r TE ST S0
dxV, dw, W..W
1 “Vg  SWg  MrWe _ _goh
TT® C® Tr YW =-15p (B6D)
dw, dp* 3
z h 6 1 oh
= - —_— B6
dt . oz T er 3z T 36 (B6c)

Equations (B6) are seen to be the same as Lorenz's equations for axially
symmetric flow (ref. 9, p. 991) with a blade force (appendix B of ref. 1).
Instead of assuming axial symmetry, however, the equations are written for flow
on a stream surface 8. And instead of introducing the concept of blade force
and having blade-force components in the equations, the circumferential pressure

gradient % %% appears in all three equations.
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Equation (B6b) can be used to eliminate the circumferential pressure gra-
dient from equations (B6a) and (B6c) giving

2
Wy Ve omx  def1 IVe (B72)
at " r - 83w dr\r “at &
aw, ) drv,
z h* 001 Ve
® =EF T a—z(‘r‘ 7&“) (70)

The remaining two equations involve known geometry, flow properties on the
surface 8, and their derivatives in the r- and z-directions only. The mathe-
matical significance here is that the problem can be considered in the r-, z-
or meridional plane. If attention is further limited to a streamline of the
surface and its projection in the meridional plane, then r and 2z are related,
and equations (B7) can be reduced to one equation. The projection of a stream-
line of S onto the meridional plane is called the meridional streamline
(fig. 4) and the velocity in the direction of this streamline is called the
meridional or through-flow velocity Wy. The velocity components W, and W,

are related to each other and to W, by the angle «, which is the angle between
the pump exis and a tangent to the meridional streamline (fig. 3). Along the

streamline, r = r(z), and « is obtained from

o = tan~1 % (B8)

The velocity components W, and W, can be expressed in terms of W, and
o to yield (fig. 3)

WI' = Wm sin o
Wé = Wﬁ cos o

Differentiation yields

de da dWﬁ .
—djc--:mcosor,a-t-+—d—£—-81na

(B9)
aw. dwW.
EEE = Wy sin o %% +'3%E cos a

The quantity do/dt can be eliminated from equations (B9) by making use of
the curvature of the meridional streamline

da
1-d a1 4
To dm - “dm ~ W, dt
at
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Making use of this relation and combining equations (B7) and (B9) yields

2 2
' S U N i
T cosa+gr flna - T =83 - TSr T (Bloa)
W2 dw, drv,
m o, m oh* 36 1 6
--I—.—C-81na+&—cosa=—gaz—-r6-z-x-.—a-t—- (BlOb)

The next step is to combine oh*/Or and Oh*/dz and reduce equations (B10)
to one equation. To this end, take the directional derivative of h¥ in the
direction normal to the meridional streamline, that is, in the direction
o + 90°, and call the distance in this direction n. Then

dh* oh* dr ah* dz

=3r @ ‘3 @ (B11)
But from figure 3
dz o) .
= = cos(a + 90°) = -sin a (B12)
dr . fe)
i sin(a + 90°) = cos a (B13)
and equation (Bll) can be written
dh¥* oh* oh*
8 =83 OS5 @ - 83— sin o (B14)

Multiply equation (Bl0a) by cos o and (BlOb) by sin o and combine them to
obtain

2 2
an V6 cos o ) Eé i drVe (515)
& I T r, at
where, for convenlence, B 1is defined as
B=r %% sin a - 1'%% cos a (B16)

and where h has been written for h¥ since there is no longer any need to dis-
tinguish between them. Equation (BlS) is usually called the force equation.

The dimensions of its terms are those of acceleration or force per unit mass.

The left side is the total force on a particle in the direction normal to the
meridional streamline. The first term on the right is the normal component of
the centrifugal force due to rotation about the axis of the impeller, the second
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term 1s centrifugal force due to curvature of the meridional streamline, and the
third term is the normal component of the force due to the circumferential pres-
sure gradient. At first, 1t may appear that there should be no component of
circumferential pressure gradient in the meridional plane since the circumfer-
ential direction is normal to the meridional plane. It must be remembered,
however, that the meridional plane is not a physical plane in which the flow
takes place but is a computational tool that permits visualization of the through
flow. The normal component of the circumferential pressure gradient is the com-
ponent along a line in the flow surface & of which the normal is the meridional
projection. In general, in moving along a line in the flow surface, 6 will
change so that there can be a component of the circumferential pressure gradient
along such a line. (For straight blades, i.e., for 96/3z and 06/dr both
zero, there is no component of the circumferential pressure gradient in the
meridional plane. )

The velocity components Wy and W, are related to each other and to the

resultant velocity W through an angle B (fig. 4). This angle is often called
the flow angle and is also the blade angle when the stream surface is parallel
to the mean blade surface. It is the angle between a streamline of the surface
8 and its meridional projection. When the flow surface is a mean blade surface,
B 1s known.

From figure 4, it can be seen that

W, = W cos B (B17)
and
Wy = Wsin B (B18)

Making use of relations (B16), (Bl7), and (B18) (and certain derivatives
and identities), equation (B15) can be written in a more useful form:

dh -W coség . (W sin B + ar)?

g — =
dn ra r

CcCOs &

+ BW cos Blg— = + 2w sin « (B19)

(éwé + W sin B sin a
Since an equation in W only and not h 1is desired, another relation
between h and W is needed. BSuch a relation can be obtained from a different
manipulation of the equations of motion, which is equivalent to writing an energy

equation along a streamline.




Multiply equation (Bla) by Wy = %%, equation (Blb) by Wy = T'%%: and
dz

equation (Ble) by W, = ¢ @and add and combine terms to obtain

- o2 = -
= I @CTWy = -8 % (B20)
Integrate equation (B20) along a strcamline between the pump inlet and any
station to obtain
1o - w2y = 88 2 L g2
E(Wﬁ‘wi)’? r —ri)=—g(h—hi) (B21)
VB
Since W = V2 - 2Vguwr + oPr? and H=nh +-§E where H = total head, equa-
tion (B21) can be written
22
hom -, e o) (B22)

2g 2g g
where instead of ri(Ve)., A has been written, which is commonly called pre-
i

whirl. The prewhirl is a function of the upstream conditions and is usually
specified for the pump designer.

Take the directional derivative of h in the direction of n, that is, the
direction normal to the meridional streamline to obtain

™W~F "gan' g & gan (B23)

Equation (B23) can be used to eliminate dh/dn from equation (B19) with
the result that

Q .
- - 2w sin B cos «
dn r r r

aw W(%oszﬁ _ sinZB cos o B cos B sin B sin
c

dw, dH;
- B cos B(Til—ng+2wsina>+%-(m—l-%g—;\- (B24)
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For convenience, define the gquantities a and b so that

coszﬁ _ sinZB cos o B cos B sin B sin «

&= T - T (B25)
and
aw, am.
. 0 . g i w dA
b = 2w sin B cos a + B cos Blo— + 2w sin ;> S YW@ (B286)
Put these into equation (B24) to obtain the velocity equation
aw
= aW-b (B27)

This equation together with a suitable form of the continuity equation
enables the designer to compute the coordinates of any streamline of the surface
S and its velocity distribution provided that the stream surface is known or
prescribed and some streamline of the surface together with its velocity dis-
tribution is known or prescribed (boundary condition). Furthermore, the static
head on the surface can be computed from equation (B22). The total head H can

be found by putting h =H - %é in equation (B22) which gives, after some manip-
ulation,

w
i g g~ i g g & (B28)
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APFENDIX C

EQUATION FOR BLADE SURFACE VELOCITY AND HEAD RISE

With further simplifying assumptions, the approximate velocity and head on
the blade surfaces can be computed. The static-head derivative in the circum-
Terential direction, that is, from blade to blade, is given by equation (Blb):

1 drVg AW, W.W oWy Wy oWy Wy W,.Wy
T A Ta tTr TN =Wegm gy v W3 T 20y = -

g
T

S

Making use of relations among velocity components and angles, the previous
equation becomes

5
&

dw,
W cos B(%EQ + %hsin B sin o + 2w sin ;> = =& oh (c1)

If a linear variation in static head from blade to blade in the circumfer-
ential direction (i.e., along a path of constant =z and r) is assumed,

where
-Mh = hy - hy
and
anr - Mty
r A0 = r(y - 63) = ——

M

where te is the blade thickness in the circumferential direction.

Combine equations (Cl) and (C2) and solve for Ah to obtain

2nr - Mt dw,
1 ?) ] w . . .
Ah =-§(T——-ﬁ———{)w cos B(T—- + 2 sin B sin a + 20 sin a) (¢c3)

If the static head h (eg. (B22)) evaluated on the surface S is assumed
to be the average between blades,

hy + h
d t M Ah
h = __—E——_ = hd - 7? — ht +.7?
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which gives

(c4)
and

h
ht = h - %% (c5)

The relative velocity on the blade surface can be computed by making use of
the relative total head, Hyo7:

2
W
Hrel=h+2—g'

Put this relation in equation (B22) to obtain

2.2
a°r WA
Hyel = Hy +._EE_ - =

If H; and A are not functions of 8, at constant r, H is constant

rel
and
2
h +-EE h +-Eé h +—E§

2g - d T2g T Tt T 2g
so that

Wd = WZ - g /M (06)
and

Wy = Wo + g Ah (c7)

In equation (CG), it We - g Ah is negative, Wy 1s imaginary; however,
Wy 1is interpreted as being negative, which indicates an eddy on the driving

surface of the blade. In reference 6, results obtained by this method were com-
pared with an exact blade-to-blade solution of a case with an eddy. The present
method (which interprets the imaginary Wy as negative) did indicate the eddy,

but it somewhat exaggerated the magnitude of the negative velocities.
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