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RESEARCH MEMOIUNDUM 

MACH NLTMBERS 0.66 AND 1.5 TO 2.1 

By John L. Allen 

The performance of a s ide i n l e t  having a f ixed  12O two-dimensional 
compression surface was determined a t  Mach numbers of 0.66 and 1 .5  t o  
2 . 1  f o r  a range of angles of a t tack  and yaw. 
methods of compression-surface boundary-layer removal were investigated 

The e f f ec t s  of several  

as well as a s o l i d  ramp. - ... 
A t  Mach numbers 2.0 and 1 . 7  shock-induced separation of t he  ramp 

boundary l aye r  became progressively unsteady as mass-flow r a t i o  was r e -  
duced and caused a corresponding increase in s ta t ic -pressure  f luctua-  
t i ons  at t h e  diffuser exit .  Compression-surface bleed reduced and sta- 
b i l i zed  the  shock-induced separation and t h u s  extended the  usable range 
of s tab le  mass-flow r a t i o .  Peak pressure recovery occurred j u s t  before 
minimum s t a b l e  flow. 

Of t h e  various types of boundary-layer bleed, external  perforat ions 
gave t h e  grea tes t  gains in  pressure recovery and s t a b i l i t y .  A t  Mach 2 . 0  
peak pressure recovery w a s  increased from 0.802 f o r  the  so l id  ramp t o  
0.89; and s t a b i l i t y  range, from about 0 . 1 0 t o  0.265, in  terms of mass- 
flow r a t i o  from the c r i t i c a l  value. 
r a t ions  were important fac tors .  
s l o t s  w e r e  less e f fec t ive  than perforations.  Although the  s t a b i l i t y  
range w a s  generally smallest f o r  i n t e rna l  bleed, the  l eve l  of pressure 
recoveries within the  s t ab le  region w a s  higher than f o r  ex terna l  bleed. 

Distribution and densi ty  of perfo- 
For t h e  same bleed flow area,  external  

A 5-diameter constant-area sect ion followed by overexpansion and 
contraction between the  d i f fuser  e x i t  and compressor i n l e t  w a s  very ef-  
f ec t ive  i n  reducing la rge  values of total-pressure d i s to r t ion  f o r  a 
to ta l -pressure  recovery loss of less than 4 percent.  
d i s to r t ion  a t  the  d i f fuser  e x i t  w a s  appreciably reduced, and the  long 
duct w a s  l e s s  e f fec t ive .  A f lush-type bypass near t he  compressor face 
tended t o  o f f se t  the  total-pressure loss caused by the  long duct by re-  
noTyri.lg t h e  boundary layer  generated therein.  

With throa t  bleed, 
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Excellent angle-of-attack cha rac t e r i s t i c s  were obtained with both 
the  so l id  and perforated ramps. 

INTRODUCTION 

The performance of a s ide i n l e t  f o r  a proposed twin-engine super- 
sonic interceptor  has been determined i n  the  NACA L e w i s  8- by 6-foot 
supersonic tunnel.  Features of t he  a i r  induction system included: (1) 
a f ixed-angle two-dimensional compression surface, ( 2 )  i n t e rna l  contrac- 
t ion  that exceeded the s t a r t i n g  l i m i t ,  (3) a low-angle, rounded-lip 
cowl, (4)  a long constant-area sect ion followed by overdiffusion and 
rapid contract ion between the d i f fuse r  e x i t  and the compressor i n l e t ,  
(5) a flush-type bypass ahead of the  compressor i n l e t ,  and (6 )  provi- 
sions f o r  ramp boundary-layer bleed. 

Axial-force and pressure-recovery data  were determined f o r  a s o l i d  
ramp, f o r  various pa t te rns  of perforat ions and f lush  s l o t  s izes  on t h e  
external port ion of t h e  compression ramp, and f o r  a l e s s e r  number of 
similar bleed devices in  the region of the  th roa t .  The performance of 
t he  so l id  and most promising perforated ramps was evaluated f o r  Mach 

numbers of 0 .66 and 1 .5  t o  2.1,  angles of a t t ack  from -22 t o  % , and 

angles of yaw from 2A0 windward t o  6' leeward. 

and the change i n  total-pressure d i s t o r t i o n  between t h e  d i f fuse r  e x i t  
and the engine face was determined. The e f f e c t s  of severa l  s i ze s  of t h e  
bypass s l o t  on total-pressure recovery and d i s t o r t i o n  were a l s o  de te r -  
mined; however, it w a s  not possible t o  obtain force  data  f o r  the bypass 
condition. 

lo 10 

The to ta l -pressure  l o s s  2 

SYMBOLS 

A area, sq f t  

i n l e t  capture area,  0.283 sq f t  

A model f r o n t a l  area, 1.138 sq f t  

AC 

A3 

max 

d i f fuser -ex i t  area, s t a t i o n  3, 0.196 sq f t  

A4 compressor-inlet area,  s t a t i o n  4, 0.1873 sq f t  

axial-f  orce coef f ic ien t ,  
9F 

9oAIlX3X 

F engine net  t h rus t  with e j e c t o r  nozzle 
n, e j  
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engine ideal ne t  t h rus t ,  100 percent ram, convergent nozzle 

a x i a l  force  

t o t a l  pressure 

to ta l -press -ne  d i s to r t ion  parameter, numerical difference 
between maximum and minimum rake t o t a l  pr-essiii-ea dlvidec? 
by average t o t a l  pressure, percent 

boundary-layer s p l i t t e r  height, 0.4 in .  

Mach number 

mass-flow ra t io ,  PVA 
POVOAc 

s t a t i c  pressure 

dynamic pressure 

veloci ty  

weight flow, lb/sec 

corrected r a t e  of weight flow of a i r  per u n i t  area,  
(lb/sec)/sq f t  

a x i a l  distance 

angle of a t tack,  deg 

r a t i o  of t o t a l  pressure t o  NACA standard sea-level s t a t i c  
pressure of 2116 lb/sq f t  

fuselage boundary-layer thickness, i n .  

r a t i o  of t o t a l  temperature t o  NACA standard sea-level 
s t a t i c  temperature of 519' R 

mass densi ty  of air  

angle of yaw, deg 
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Sub s c r i p t  s : 

B bypa s s 

b bleed 

R ramp 

t h  th roa t  

0 f r e e  stream 

1 i n l e t  survey s t a t i o n  ahead of ramp 

2 

3 d i f fuse r  e x i t  

4 compressor i n l e t  

Configuration des ignat ions : 

1 i n l e t  survey s t a t ion  near th roa t  12 
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in .  from cowl l i p  

ex terna l  perforat ions 

ex terna l  s l o t s  

i n t e rna l  s l o t s  

i n t e rna l  perforat ions 

various bypass s l o t  s i ze s  

vent i n s t a l l ed  on s ide  of ramp 

MODEL DETAILS, INSTRUMENTATION, AND METHODS OF CALCULATION 

General Description of Model 

Photographs of t he  116-scale model are shown i n  f igu re  1, a sche- 
matic drawing i s  shown in  f igure  2, and the  duct area var ia t ion  i s  given 
in  f igure 3. 

w a s  canted downward 32 from the  horizontal ,  w a s  symmetrical back t o  t h e  

leading edge of the compression ramp; however, only one of t he  twin in- 
l e t s  w a s  included on the  model. The leading edges of t h e  ramp and cowl 

were canted downward 7’io from the  horizontal .  

The conical nose of t he  model (30° included angle) ,  which 
lo 
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Main-Duct A i r  Induction System 

A f ixed 12O two-dimensional ramp with r a the r  generous f i l l e t s  fa i r -  
ing into the  cowl l i p  and th roa t  ( f i g .  l ( c ) )  composed t h e  i n l e t  com- 
pression surface.  These f i l l e t s  resembled p a r t i a l  s ide- fa i r ings .  The 
low-angle rounded-lip cowl i n  conjunction with the  ramp and th roa t  f i l -  
l e t s  r e su l t ed  i n  22-percent i n t e rna l  contraction (A /A ) , which l i p  th roa t  
exceeds the stzrti,n,g 1 i m T - k  for t h i s  ramp angle a t  !%ch numbers below 
2.5.  

A s  shown on f igure  3, t he  cross-sectional s h q e  of t.he d i f fuse r  
changed from p rac t i ca l ly  oval a t  t h e  throat  ( s t a t i o n  2 )  t o  c i r c u l a r  at 
t he  d i f fuse r  ex i t  ( s t a t ion  3) .  
turned i n  the  v e r t i c a l  plane f r o m t h e  7O15' downward cant t o  horizontal  
( f i g .  2 ) .  The length of duct between the  d i f fuser -ex i t  and compressor- 

1 face  s t a t i o n s  (3 t o  4 )  was about 7- diameters ( s t a t i o n  3 diameter).  A 3 
pa r t  of t h i s  length w a s  composed of about 5 diameters of constant-area 
sect ion within which the  duct w a s  turned 8'45' downward. A f t  of t h i s  
point  duct f l a r e  resu l ted  i n  overexpansion followed by contract ion i n  
the region of t h e  accessory b u l l e t .  A t  the compressor face  the  duct w a s  
turned from 8'45' downward t o  2O35' upward r e l a t i v e  t o  t h e  hor izonta l  
ax i s .  Tota l  angular turning of the  en t i re  duct i n  the  v e r t i c a l  plane 
amounted t o  27O20'. 
ward of t he  compressor-face survey s t a t i o n  ( f i g .  2, d e t a i l  C ) .  
a i rp lane  t h e  bypass a i r  i s  used as the  secondary-air supply f o r  an 
e jec to r  exhaust nozzle. 

Between s ta t ions 2 and 3 the  duct w a s  

An annular flush-type bypass s l o t  was s l i g h t l y  for -  
I n  the  

Secondary-Air Induction Systems 

Fuselage boundary-layer airscoop and d ive r t e r .  - An open-nose type 
boundary-layer d ive r t e r  separated the compression ramp from the  fuselage 

I 
by about 0.40 inch, which w a s  approximately 1- thicknesses of the  l o c a l  

boundary l aye r  (h/$ = 1.33) a t  zero angle of a t tack .  The leading edges 
of t h i s  d-iverter were about 8.5 boundary-layer thicknesses a f t  of t h e  
ramp leading edge. Although the  surfaces of the  d-iverter were curved, 
the  i n i t i a l  angle of each side w a s  about 30'. A i r  captured by the  d i -  
v e r t e r  airscoop w a s  ducted through the  model and control led by means of 
a plug ( f i g .  2 ) .  

3 

Compression-surface bleed system. - A port ion of t h e  ramp was f i t t e d  
with a removable sect ion f o r  i n s t a l l i ng  various surface bleed devices. 
Detailed drawings of t h e  ex terna l  perforations are shown i n  f igu re  4(a) ,  
and drawings of t h e  ex terna l  or internal  s l o t s  are presented in f igure  
4 (b ) .  Per t inent  areas,  area ra t io s ,  and configuration designations are 
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given i n  t ab le  I .  For configurations A1 t o  A4 t h e  thickness of t h e  

perforated m e t a l  was about 1/32 inch. For A4 the  1/8-inch holes were 

3/8 t o  1/4 inch deep. For A5 t o  A8 t he  metal thickness was 3/32 

inch. 
by a plug. For some configurations addi t iona l  bleed capacity w a s  pro- 
vided by opening t h e  s ide of t h e  ramp bleed chamber and i n s t a l l i n g  a 
wedge-shaped windshield. 
termed a vent (designated by 
f l o w  within the  ducting system was measured. 

The ramp bleed a i r f low was ducted through the  model and control led 

This i s  shown in  f igure  l ( c )  and i s  here inaf te r  
V). For these configurations, only t h a t  

Instrument a t  ion 

Pressure measurements. - I n  order t o  evaluate the  e f f ec t  of t h e  
long duct between s t a t ions  3 and 4, duplicate tests were made f o r  some 
conditions with and without a total-pressure rake a t  s t a t i o n  3. 
removable rake a t  s t a t i o n  3 had six equally spaced r a d i a l  segments com- 
posed of 31 total-pressure tubes and s i x  wall s ta t ic -pressure  o r i f  i ces .  
Twenty-four of t h e  to ta l -pressure  tubes were arranged f o r  area-weighting 
with one tube a t  t h e  duct center .  Each rake segment had one t o t a l -  
pressure tube near t he  duct w a l l  a t  a radius of 0.985 that w a s  used as 
a l i m i t  f o r  computing total-pressure d i s to r t ions .  
had s i x  equally spaced r a d i a l  segments composed of 36 total-pressure 
tubes and s i x  s ta t ic-pressure o r i f i c e s  on both the  outer w a l l  and the  
accessory housing surfaces .  Twenty-four total-pressure tubes w e r e  area- 
weighted with ex t ra  tubes f o r  d i s to r t ion  limits a t  radius r a t i o s  of 0.493 
and 0.975. Hub-tip radius r a t i o  was 0.468. For both rakes the  tubes 
used f o r  d i s to r t ion  limits would be 1/2 inch from the  surface of a f u l l -  
scale duct .  An inlet throa t  t o t a l -  and s ta t ic-pressure survey w a s  made 

15 inches a f t  of t he  cowl leading edge, o r  1/4 inch af t  of the  geometric 

throat.  

2- inches a f t  of t he  l i p  and reduced about 2 percent.  

The 

The rake a t  s t a t ion  4 

1 
1 With t h i s  rake ins ta l led  the  minimum area was moved from 1~ t o  

1 
2 

I n l e t  flow angular i ty  in  both t h e  p i t ch  and y a w  planes was deter- 
mined a t  a s t a t ion  about 2 inches forward of t h e  ramp leading edge by 
means of four  instrumented 12°-included-angle wedges. The wedges were 
located 2 inches on e i t h e r  s ide of the  duct center l ine and 2 .2  and 5.2 
inches from the  fuselage surface.  Flow-deflection angles i n  t h e  plane 
normal t o  the  fuselage did not d i f f e r  appreciably, and hence a l l  four  
wedges were averaged t o  obtain the  def lect ion at the  center l ine .  

Base pressures w e r e  measured by f i v e  s ta t ic-pressure o r i f i c e s  on 
the  rear  bulkhead forward of t h e  windshield t h a t  enclosed the  mss-flow 
plugs and t a i l p i p e  and a l s o  by f i v e  s t a t i c  tubes a t  t h e  s p l i t  of t he  
accessory b u l l e t  a f t  of t he  s t a t i o n  4 rake. 
pressure pickup was connected t o  a f lush  s ta t ic-pressure o r i f i c e  

A strain-gage dynamic- 
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i n s t a l l ed  s l i g h t l y  ahead of s t a t ion  3.  
(d iver te r  and ramp bleeds) had four  w a l l  s ta t ic-pressure o r i f  i ces  and 
three  area-weighted total-pressure tubes i n  a plane of survey t h a t  was 
preceded by about 20 diameters of constant-area length.  

Each of t h e  secondary-air ducts 

Force measurements. - Because of t h e  asymmetric nature of t h e  model 
(only one i n l e t )  t he  strain-gage balance was used only f o r  a x i a l  forces .  
That pa r t  of t h e  model not f a l l i n g  within the m i n i m u m  reflected-shock 
pat tern had a canstant-area cross sec t ian  t o  miniiiize the  e f f e c t  on 
axial-force readings. The main-duct t a i lp ipe  within t h e  windshield was 
connected t o  t h e  balance, and no correction was made f o r  t h e  r e l a t i v e l y  
;;LinoT 
ai r  ducts)  on t h e  outer  surface of the  pipe. 
tained with t h e  bypass open. 

sf flow withLi the wLidsh;eld (such 8 5  fieom tiie secolidaIy- 
Force da ta  were not ob- 

Methods of Calculation 

Pressure and mass flow. - A s  s t a t ed  previously, a l l  to ta l -pressure  

as the  maximum minus the  minimum divided by t h e  average t o t a l  pressure.  
All mass-flow r a t i o s  (based on main i n l e t  capture area) w e r e  calculated 
by means of t h e  r a t i o  of average s t a t i c  t o  average t o t a l  pressure a t  t h e  
respective survey planes. With the s ta t ion  3 rake ins ta l led ,  t h e  sta- 
t i o n  4 rake was used only f o r  mass-flow calculations.  

rcc.zycr ics  ;.;ere ~ v ~ - ; . ; ~ j c h + . r d  =----.-. Tnfa -..--- 7 - p r e s s ’ z 2  .+zt.zrCj i.sng T.-s-= “-4. c L;iiipui,c:ii --------A -2 

Axial-force coef f ic ien t .  - The change i n  momentum i n  t h e  a x i a l  d i -  
rect ion between the  free-stream and the  exi t  measuring s t a t ions  of a l l  
the  a i r f low ducted through t h e  model and base pressure forces  were re- 
moved from t h e  strain-gage balance force  measurements. The axial-force 
coeff ic ient  is based on t h e  maximum cross-sectional a r ea  of t he  force  
portion of t h e  model. Main-duct e x i t  momentum w a s  computed by means of 
mss-f low cont inui ty  between s t a t ion  4 and a s ta t ic -pressure  measuring 
c. uvL*vIvII + - 4  4 nn Ivbwvb.u : -a af t  of the  rake and ahcad of  the centerbody s p i t .  7 

the  force on the  rake was accounted for. with t h e  vent m s t a i i e d  on t h e  
ramp, the  mass flow exi t ing  from t h e  vent was not measured, and hence 
the  force due t o  t h i s  a i r  i s  included in the axial-force coef f ic ien t .  

nl, 
I._,-” 

7 .  

rrruo, 

PRESENTATION OF RESULTS 

The da ta  are presented in  four  groups: 

(1) I n l e t  f low-field angular i ty  ( f i g .  5) 

( 2 )  Performance of solid-ramp i n l e t  a t  Mach nurribers of 0.66, 1.5, 

1 . 7 ,  and 2.0 f o r  angles of a t t a c k  of -2;” t o  9- and yaw angles 
lo 
2 
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of -2;' windward t o  6' leeward; e f f e c t s  of constant-area sect ion 

and d i f fe ren t  bypass openings 'included ( f i g s .  6 t o  13) 

(3)  Performance of various ramp bleed methods at zero angle of 
a t t ack  ( f i g s .  1 4  t o  18) 

(4) Detailed performance of a selected ramp bleed configuration at 

Mach numbers 0.66 and 1.5 t o  2 . 1  a t  angles of a t t ack  from -22 
t o  9- and angles of y a w  from -2;' t o  6'; incremental axial-force 

coeff ic ients ,  s t a b i l i t y  limits, e f fec t ive  th rus t  r a t i o  analyses 
included ( f ig s .  19  t o  23) 

10 

10 
2 

DISCUSSION 

I n l e t  Flow-Field Survey 

The in l e t  f low-field angularity,  shown in  f igu re  5, w a s  generally 
independent of flight Mach number except f o r  t he  e f f e c t  of yaw angle a t  
Mach 2 . 0 .  The var ia t ion  of flow angle with angles of a t t ack  or yaw w a s  
nearly l i n e a r .  A t  zero angle of a t tack  the  flow was nearly a l ined  with 

the  horizontal  a x i s  or downward 8- r e l a t i v e  t o  the  i n l e t  cen ter l ine  as 

a resu l t  of t he  7- i n l e t  cant .  

was approximately al ined with the  l o c a l  flow. A t  zero yaw angle t h e  
flow deflect ion in the  horizontal  plane was outboard about lo, and f o r  
6O leeward yaw w a s  outboard about 4O.  

lo 
2 
A t  an angle of a t t ack  of 6.7' t h e  i n l e t  lo 

4 

The wedge survey data  a l so  indicated l o c a l  Mach numbers and t o t a l  
pressures on the order of free-stream values A fuselage boundary- 
layer thickness of about 0.30 inch or  an h/6 of 1.33 a t  zero angle of 
a t tack was established by means of a to ta l -pressure  rake.  

Performance with Sol id  Ramp 

Qual i ta t ive  descr ipt ion.  - The progressive increase of ramp 
boundary-layer separation as mass-flow r a t i o  w a s  reduced i s  shown by 
the  schlieren photographs of f igure  6 and t h e  th roa t  total-pressure 
contours of f igure  7 .  

Although the  schl ieren photograph ( f ig .  6 ( a ) )  near maximum mass- 
flow r a t i o  a t  Mach nurriber 2.0 ( m 4 / w  = 0.773) indicates  a lambda shock, 
no separation i s  evident i n  the  corresponding throa t  total-pressure con- 
tou r  of figure 7 ( a ) .  For subc r i t i ca l  mass-flow r a t i o s ,  separation was 



most severe a t  Mach number 2.0, evident at h c h  1.7,  and ins igni f icant  
a t  Mach 1.5. The reduction i n  pressure recovery accompanying increased 
separation a t  each Mach number is shown by the s u b c r i t i c a l  slope of t h e  
pressure-recovery - mass-flow curves in  figure 8.  

A dist inguishing feature of the  shock-induced separation of t he  
ramp boundary layer  was t h e  i n s t a b i l i t y  or rapid f luc tua t ion  of the re -  
gion of sewr&ted  flow, which seemingly caused a corresponding s t a t i c -  
pressure f iuc tua t ion  a t  the  d i f fuse r  e x i t .  
usual  pulsing, buzz, o r  not iceable  movement of the  normal shock. A t  
Mach number 2.21, far exsiqlc, t h e  stat ic-pressure amplitude (near sta- 
t i o n  3) increased from about 8 percent of free-stream t o t a l  pressure a t  
a mass-flow r a t i o  of 0.64 t o  about 15 percent a t  a mass-flow r a t i o  of 
0.45. 

Tnis uccui-i-ed ~ i i t h ~ ~ t  t h e  

Peak total-pressure recovery and maximum mass-flow r a t i o .  - Peak 
pressure recoveries were about 0.96, 0.905, and 0.802 at Mach nurribers 
of 1.5, 1 .7 ,  and 2.0, respect ively ( f ig .  a ) ,  f o r  zero angle of a t t ack .  
Theoretical  choked-throat mass-flow r a t i o s  and to ta l -pressure  recover- 
i e s  are indicated on figure 8 f o r  a 12' ramp a t  free-stream conditions 
(oblique- p lus  normal-shock recover ies ) .  The difference between theo- 
re t  i c a l  and experimental peak pressure recoveries var ied from 0 .OO u n i t  
of pressure recovery (8 percent of free-stream t o t a l  pressure)  a t  Mach 
2.0 t o  0.01 u n i t  a t  peak or 0.025 uni t  at c r i t i c a l  a t  Mach 1.5.  (Peak 
and c r i t i c a l  pressure recoveries were about equal a t  Mach nurribers 2.0 
and 1 . 7  where ramp separation occurred subcrit  i c a l l y  . ) 
conditions t h e  var ia t ion  of t h i s  difference (0.08 t o  0.025) with Mach num- 
b e r  i s  pr imari ly  ind ica t ive  of t h e  e f f e c t  of t h roa t  to ta l -pressure  con- 
tou r  (shape f a c t o r )  on d i f fuse r  efficiency, inasmuch as the  th roa t  i s  
choked f o r  each f l i g h t  Mach number. 
r a t i o s  a r e  i n  good agreement with t h e  experimental da t a  i n  s p i t e  of the  
inlet  flow a i igukr i ty ,  vhich hzs a second-order e f f e c t  on ramp angle,  
and other  minor assumptions (e.g., Ho, Mo a t  ramp leading edge).  

A t  c r i t i c a l  flow 

The theore t ica l  maximum mass-flow 

Effec t  of angles of a t t a c k  or yaw. - The peak pressure recovery 
var ied only 0.025 un i t  of pressure recovery between angles of a t t a c k  of 

-2$O t o  % ( f ig .  8 ) .  The lowest peak recovery was cons is ten t ly  obtained 

a t  -22 

t h e s t  from being a l ined  with the i n l e t .  Highest peak recovery, occurring 

between angles of a t t ack  of 5 O  and 3 , agrees qua l i t a t ive ly  with the  
flow-f i e l d  angular i ty ,  which indicated alinement at 6 . 7 O .  The general 
insensi t iveness  t o  angle-of-attack e f fec ts  i s  a t t r i b u t e d  t o  the  stand- 
ing bow shock, generous f i l l e t s ,  and round cowl l i p s .  

lo 
10 angle of a t tack ,  f o r  which the local  flow angle ( f i g .  5)  is  far- 

lo 

Leeward yaw of 6' decreased peak recovery about 0.03 uni t ,  whereas 

increased recover;r by zbout t h e  same amount because lo windward yaw of 2- 2 



of favorable l o c a l  Mach number reductions ( f i g .  9 ) .  The maximum mass- 
f l o w  r a t i o  was a l s o  a f fec ted  by changes of l o c a l  Mach number and t o t a l  
pressure due t o  yaw. 

Effect  of 5-diameter constant-area sect ion followed by overdiffusion 
1 
3 and rapid contraction. - The 7--diameter length of duct between the  d i f -  

fuser e x i t  and the  engine mater ia l ly  reduced total-pressure d i s to r t ion  
( f i g .  8 ) .  
However, p a r t  of t h e  d i s to r t ion  reduction may be f i c t i t i o u s ,  inasmuch as 
the outer  tube a t  s t a t ion  4 should be somewhat c loser  t o  the  w a l l  in  
order t o  follow a streamline from the  outer  tube a t  s t a t i o n  3. The 
total-pressure-recovery loss  was between 0.03 t o  near ly  0 u n i t  of re -  
covery, depending on mass-flow r a t i o  ( f i g .  10). For example, a t  zero 
angle of a t tack  and Mach number 2.0,  f o r  c r i t i c a l  flow (no ramp sepa- 
ra t ion) ,  a s t a t ion  3 d i s to r t ion  of 2 1  percent w a s  reduced t o  about 12.5 
percent a t  s t a t ion  4 f o r  a total-pressure-recovery l o s s  of 0.024. A t  a 
mass-flow r a t i o  of 0.70, a 32-percent d i s to r t ion  was reduced t o  10.7 
percent f o r  a l o s s  of 0.017. Large values of d i s t o r t i o n  were found a t  
s ta t ion  3 when ramp separation w a s  severe, such as shown f o r  Mach nun- 
bers 2.0 and 1 . 7 .  A t  Mach number 1.5, however, where ramp separation 
did not occur t o  any l a rge  extent,  the  d i s to r t ion  a t  s t a t i o n  3 w a s  lower 
and only s l i g h t l y  reduced a t  s t a t ion  4 .  Leaving t h e  s t a t i o n  3 rake in- 
s t a l l ed  apparently decreased the  effect iveness  of the  constant-area sec- 
t i on  because of wakes from the  rake and resu l ted  i n  appreciably higher 
d is tor t ions  at s t a t ion  4, as shown by the so l id  symbols in f igu re  8.  
Comparative total-pressure contours at s t a t ions  3 and 4 a r e  shown i n  
figure 11. The change in  posi t ion of the  low-energy to ta l -pressure  re -  
gion from alinement with the  ramp a t  t h e  th roa t  t o  the  top port ion of 
the  duct a t  s t a t ion  3 suggests the exi-stence of secondary flows due t o  
duct turning. 
between s ta t ions  3 and 4 but spreads somewhat. 
small, and la rge  a rea  changes occur . )  
the flow is very symmetric. 

Most of t h i s  reduction i s  believed t o  be due t o  mixing ac t ions .  

The low-energy region does not change locat ion appreciably 

A t  a subsonic Mach number of 0.66, 
(The net  duct turning is 

Effect  of bypass s l o t  s i ze .  - Each of t he  three  bypass posi t ions,  
which progressively increased bypass flow area, resu l ted  i n  peak pres- 
sure recoveries higher than t h a t  obtained without bypass ( f i g .  1 2 ) .  
This increase, which w a s  as much as 0.02 uni t  of pressure recovery, in- 
dicates removal of t h e  boundary-layer growth t h a t  occurred between sta- 
t ions  3 and 4 and agrees w e l l  with the  pressure-recovery losses  shown 
i n  f igure 10. The l a rges t  s l o t  s ize ,  S4, removed from 30 t o  2 3  percent 

of the flow enter ing the  i n l e t .  The decreases i n  d i s t o r t i o n  a t  peak re- 
covery shown f o r  t he  various bypass se t t i ngs  compared with the  value a t  
c r i t i c a l  flow without bypass are r e l a t ed  t o  the  decrease i n  compressor- 
face  Mach number or corrected weight flow per  u n i t  area,  as discussed i n  
reference 1. When compared a t  the  equal values of corrected weight flow 
i n  the s u b c r i t i c a l  region, l i t t l e  difference is found. I n  general, the  
s ta t ion  4 total -pressure contours shown i n  f igu re  13, together  with 
those of f igure  11 f o r  the  zero-bypass case, ind ica te  gradual removal 



of low-energy regions near the  duct walls and spreading of the  high- 
energy regions as the  amount of bypassed flow is increased. 

P e r f o m n c e  of Ramp Bleed Devices 

The performance obtained with external perforat ions ( f i g .  1 4 )  and 
i n t e rna l  perforat ion and in t e rna l  or external s l o t s  ( f i g .  15) i s  summa- 
r ized  in  t h e  following t a b l e  f o r  Mach number 2.0 irl teiSrilS of i;zak pres- 
sure recovery and s t a b i l i t y  range. Pertinent geometric informat ion i s  
given iri tzble I azd fTgxre 4. 

I 
Configuration 
and flow area, 

sq i n .  

~~~ 

Bleed mass- 
flow rat i o  
f o r  maximum 

s t a b i l i t y  

Peak 
pressure 
recovery 

Stable  
mas s - f low 

?erc ent increase in  
~~ 

Pressure 
recovery 

Stable  
range 

Sol id  ramp 0 0 0.802 

0.826 
.844 

.852 

-876 

.864 

.868 

.89@ 

.872 

.870 

0.825 
.835 

.852 

0.10 

0.10 
.13 

.13 

.266 

.20 

.198 

278 

.248 

.285 

0.11 
.145 

.170 

External 
perf orat ions : 

A1 0.52 

A2 1.16 

A3 2.29 

A4V 3.82 

A5 2.08 

A6 3.47 

A 4-63 

A8 2.74 

A8V 2.74 

7 

0.003 

.009 

.02 

> .028 

.021 

.021 

> .03 

.024 

> .023 

3.1 

5.2 

6.2 

9.2 

7.7 
8.2 

11 .o 
8.7 

8.5 

0 

30 

30 

16 6 

100 
98 

17 8 

148 

185 

External s l o t s :  
B1 0.64 

B2 1.60 

B3 3.00 

In t e rna l  slots: 

c3 3.00 

c4v 4.59 

In t e rna l  
perf o ra t  ion : 1 D1. 0.52 

0.006 
.015 

.02 

2.9 

4 -1 

6.2 

10 
45 

70 

46 

14 
0.857 

.850 

0.146 

.114 

0.04 

> ,036 

6.9 

6 .O 

0.831 0.154 0.009 54 3.6 
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All of the  types of bleed increased peak pressure recovery and had 

s t a b i l i t y  rmgcs equal t o  or b e t t e r  than the  so l id  ramp. 
increases were obtained w i t h  external  perforat ions having the l a rges t  
flow area and d i s t r ibu t ion  of porosl ty .  
about equal t o  or  l e s s  than those f o r  t he  so l id  ramp. 

The greatest 

Total-pressure d i s to r t ions  were 

External perforat ions.  - Peak pressure recovery occurred j u s t  before 
the point  of minimum s tab le  mass-flow r a t i o  and tended t o  correspond t o  
maximum bleed mass-flow r a t i o  ( f i g .  1 4 ) .  
moved in to  the  perforated region, bleed mass flow increased because of 
the shock pressure r i s e  until the  holes were choked or i n s t a b i l i t y  oc- 
curred. However, t h e  importance of t h e  d i s t r ibu t ion  of flow area i s  
demonstrated by t h e  f a c t  t h a t  increasing flow area did not i n  a l l  
cases of fe r  proportional gains in  recovery or s t a b i l i t y .  For example, 
nearly doubling t h e  flow area without changing d i s t r ibu t ion  of a pat-  
tern on the  rear of t h e  ramp, A2 
only s l i g h t l y  and did not increase s t a b i l i t y  range in s p i t e  of increased 
bleed flow. Increasing porosity forward of that f o r  A3, such as A4V 
(A plus a concentration of l a rge r  s i z e  holes extending about 3/4 i n .  
forward of 

Reverting t o  a uniform d i s t r ibu t ion  of perforat ions,  A5 (extending fo r -  

ward of that f o r  

the forward portion of A5 t o  make A6 (similar t o  the  change from 

t o  A4V) w a s  ineffective; and, since bleed flow increased only s l i gh t ly ,  

the shock pa t te rn  w a s  probably not near enough t o  t h e  enlarged holes t o  
provide a choking pressure r a t i o .  Enlarging the  remainder of t he  holes 
in  t h i s  pa t te rn  t o  form A7V (which had the  l a rges t  flow area) and in- 

s t a l l i ng  t h e  vent t o  ensure suf f ic ien t  bleed-system capacity resu l ted  i n  
the l a rges t  pressure-recovery increase (11 percent)  and a s t a b i l i t y  in- 
crease of 1 7 8  percent.  
than 6 percent of t he  flow t h a t  entered t h e  i n l e t .  

As t h e  l a m b d a  shock pa t te rn  

t o  A3, changed pressure recovery 

3 
A ), offered marked increases in  both recovery and s t a b i l i t y .  3 

A4V), was l e s s  e f fec t ive .  Increasing t h e  hole s i z e  of 

A3 

The required bleed mass flow was somewhat greater  

Inasmuch as extension of the perforated area towards t h e  cowl l i p  
(Az t o  A3) or forward of A4V (such as As) did not r e s u l t  i n  propor- 

t ional  improvements, configuration A V was devised in  order t o  reduce 8 
perforated area and ducted bleed flow. 
t h i s  configuration had the  l a rges t  s t a b i l i t y  range and the  grea tes t  in- 
crease in  peak pressure recovery f o r  t h i s  amount of flow area .  

As shown in the  preceding tab le ,  

External s l o t s .  - The pos i t ion  on the  ramp of t he  related series of 
external s l o t s  (B1, BZ, B3) did not change appreciably with s l o t  s i z e  

and corresponded approximately t o  t h e  pos i t ion  of the  perforated regions 
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f o r  A1 or A2. The increase in  peak pressure recovery with bleed 

s l o t  area was l inea r .  
l i nea r ly .  
by the  performance of B3. 
equal t o  the  perforated area of 

recovery and half  t he  s t a b i l i t y  increases of 

S t a b i l i t y  range increased with s l o t  a rea  but  not 
The importance of f low-area dis t r ibut ion i s  again demonstrated 

This configuration had a s l o t  area about 

but achieved only about 2/3 t h e  As 

As. 
In t e rnz l  s l c t c  ar,d ~ e r f o r z t l o i i s .  - ApplIcativii  of i n i e rna i  bieed i n  

t h e  contracting region ahead of t h e  throat (configurations Cg, C4V, and 

sl) resulted i n  a p p r e z i z ~ y  less s tab i l i ty  and iower peak recoveries com- 

pared with ex terna l  perforat ions ( f ig .  15) .  The performance of C g  and 

Bg, which were of equal s ize ,  was comparable. Configuration C4V, which 

w a s  s l i g h t l y  aft,  la rger ,  and had a different  ramp approach surface 
ahead of t h e  s l o t ,  had about the same performance as 

r a t ion  with in t e rna l  perforat ions (D ) was more e f f ec t ive  with respect t o  1 
s t a b i l i t y  than those with a s imilar  external pa t t e rn  (A ), but  because 

of the  small a rea  did not approach the  performance of those having l a rge r  
flow area. A l l  of t he  internal-bleed configurations had higher pressure 
recoveries within the s t ab le  region than the ex terna l  bleeds,  inasmuch 
as the  normal shock was always ahead of  t h e  s l o t  and bleed flow increased 
rapidly as t h e  shock moved forward. 

C3. The configu- 

1 

I n l e t  i n s t a b i l i t y  with ramp bleed. - A s  previously discussed, 
schl ieren observation indicated a progressive increase in  unstable sep- 
a ra t ion  of t h e  ramp boundary layer  as mass flow was reduced for t h e  so l id  
ramp. In cont ras t ,  t h e  bleed ramps had a reduced but  s tab le  separation 
up t o  the  point  of minimum s tab le  mass flow. Further mass-flow reduc- 
t i c n n  rcsulted b iirrsta3le separat iui l  w i t h  brier periodic excursions into 
w h a t  appeared t o  be separation that completely encompassed the  inlet .  
This w a s  espec ia l ly  t rue  f o r  the  perforated ramps having appreciable 
s t a b i l i t y ,  such as A4V, A7V, and AsV. For these cases high-speed mo- 

t ion p ic tures  qua l i t a t ive ly  indicated that ,  because of t he  unsteady sep- 
a ra t ion ,  the  vortex sheet emanating from the junction of t h e  terminal 
shock and t h e  oblique shock from the  separated flow osc i l l a t ed  within 
limits between t h e  ramp surface and the  cowl l i p  and occasionally in t e r -  
sected the cowl l i p .  This intersect ion of t he  vortex sheet with t h e  cowl 
l i p  was followed by the  complete separa t ion  of t h e  ramp boundary layer  
previously mentioned. These comments are i l l u s t r a t e d  i n  f igu re  16 f o r  
configuration A8V. 

before the  minimum s tab le  point shows t h e  reduced separation (compared 
with t h e  solid-ramp schl ieren f o r  mass- f low r a t i o  0.587 at M = 2 . 0  

Figure 16(a)  f o r  a mass-flow ratio .of 0.536 just 

0 



f rom f i g .  6 ) ,  and t h e  steadiness of t h e  separation is  shown by the  low 
value of 0.01 f o r  the  r a t i o  of dynamic s ta t ic-pressure amplitude t o  free- 
stream t o t a l  pressure Ap3/Ho. 

schlieren photograph of f igure  16(b) and c l i p s  from t h e  high-speed mo- 
t i o n  p ic tures  show some of t h e  extreme posi t ions of t h e  separation f o r  
which the  value of ap3/HO 

A t  a mass-flow r a t i o  of 0.503 t h e  

w a s  in excess of 0.19. 

Some e f f ec t s  of varying bleed flow. - For some of t he  configurations,  
s l ight  gains in  pressure recovery were found f o r  reduced bleed mass-flow 
ra t ios ,  as shown i n  f igu re  1 7 .  The bleed mass-flow r a t i o  p lo t ted  i s  only 
that  ducted through t h e  model, and hence configurations A7V and A8V 

s t i l l  have vent bleed flow a t  %/% = 0. 
proached zero, pressure recovery and s t a b i l i t y  tended t o  rever t  t o  solid- 
ramp values.  Maximm s t a b i l i t y  range w a s  in a l l  cases a t t a ined  with max- 
imum bleed flow, such as shown in  f igure  1 7  f o r  A V and A V with vent 

f low only and with vent plus maximum duct flow, 

A s  bleed mass-flow r a t i o  ap- 

7 8 

Effectiveness of long duct with ramp bleed. - Since th roa t  bleed 
removed and control led ramp separation, t h e  d i s to r t ion  l e v e l  a t  s t a t i o n  
3 was appreciably less than f o r  the  so l id  ramp, as shown i n  f igure  18 
f o r  configuration C4V. 

not s ign i f icant ly  changed, indicat ing t h a t  t he  long duct length w a s  not 
correspondingly e f f ec t ive  when the  init ial  d i s to r t ion  was lower. This i s  
a l s o  shown by t h e  f a c t  that, when the  d i s to r t ion  value d id  become high a t  
s ta t ion  3, such as when ramp bleed was not suf f ic ien t ,  t he  l e v e l  a t  sta- 
t ion 4 did not change correspondingly. 

A t  s t a t i o n  4, however, t he  d i s to r t ion  l e v e l  was 

AaV Performance of Conf igurat  ion 

The performance of configuration A V w a s  determined in some d e t a i l  8 
w i t h  a bypass se t t ing ,  S1, chosen t o  approximate exhaust e j ec to r  pumping 

capacity f o r  best  net  t h rus t  gains. A much l a rge r  bypass se t t ing ,  S5, 

which m i g h t  be used f o r  engine i d l e  or  windmill s i tua t ions ,  was a l so  
tes ted over l imited conditions.  The data  are presented in f igures  19, 
20, and 21. Lines of tu rboje t  corrected weight flow per  un i t  area are 
superimposed on t h e  p l o t s  f o r  an a l t i t u d e  of 35,000 feet, and oi l -cooler  
airflows a r e  included. 

Ef fec ts  of Mach number and angles of a t t ack  or  yaw. - The perforated 
ramp provided s igni f icant  increases i n  pressure recovery and s t a b i l i t y  
range from Mach numbers 1 .5  t o  2.0,  as shown in f igure  1 9 .  Increases 
were obtained even a t  Mach number 1.5 where ramp separation was not a 
problem. A t  Mach numbers 1.5 and 1.7,  s t a b i l i t y  range was l imited by 
available plug t r a v e l  ra ther  than by i n l e t  performance. 



10 For angles of a t t ack  between Oo and % , only minor var ia t ions  i n  

pressure recovery were found a t  Mach number 2.0, and v i r t u a l l y  no varia- 
t i o n  a t  Mach numbers 1 .7  and 1.5. 

d u e , t o  a negative angle of a t tack  of -2;" increased progressively with 

Mach nuniber and, as f o r  the s o l i d  ramp, was the most pronounced reduction 
due t o  angle of a t tack .  
same as that obtained with t h e  s o l i d  ramp with respect t o  pressure re- 
Luvcry  d.Llu I I ~ ~ b - ~ ~ ~ ~  LUIU. A i  subsonic f i i g h t  Eiacn numbers t h e  inlet 

w a s  unaffected by angles of a t t ack  or yaw between Oo and 3 , as shown 
h-l f.cgu?e 21. - 

The reduction i n  pressure recovery 

The e f f ec t  of yaw angle ( f i g .  20)  was about t h e  

_ _  ----- --.a - - - -  ,?-I--- - - - L - .  

10 

The compressor-inlet total-pressure contours shown in  f igu re  22 were 
selected near the  engine matching condition. The pressure d i s t r ibu t ion  
changed gradually f o r  Mach numbers 0.66 t o  2 . 1  and w a s  not markedly al- 
t e r ed  by angles of a t tack  o r  y a w .  
of d i s to r t ion  varied from 7 .O t o  5.5 percent between Mach numbers of 1.5 
and 2.0. 

A t  engine matching conditions t h e  l e v e l  

S m r y  of s t a b i l i t y  limits. - Sufficient s t ab le  mass-flow-ratio 
range was a t ta ined  (shown in  f i g .  2 3  as l i n e s  of min. s t a b l e  weight flow) 
t o  s a t i s f y  engine i d l e  or  windmill requirements a t  Mach numbers 1.5 and 
1 . 7  except f o r  a yaw angle of 6O. A t  Mach numbers 1 . 9  and 2.0, except 
f o r  angles of a t tack  of 2' t o  5O at 

engine ro t a t ive  speeds somewhat greater than i d l e .  Opening the  bypass 
t o  the  l a rges t  se t t ing ,  S5, resu l ted  i n  ample s t ab le  range at an angle 

of a t t ack  of 2' a t  Mach numbers 2 . 1  and 2.0. Similar increases can be 
an t ic ipa ted  a t  other  angles of a t t ack  and yaw. 

% = 1.9,  unstable flow occurred at 

Incremental axial-force coeff ic ients .  - Because of t h e  asymmetric 
...-+..-- -s LL- llar,wt: UL ~rlle iiidel, urily incremental axiai-force coef f ic ien ts  due t o  
normal-shock sp i l l age  are presented. The curves shown in f igu re  24 can 
be used f o r  any configuration when adjusted f o r  changes i n  c r i t i c a l  mass- 
flow r a t i o  caused by ramp bleed. This i s  possible s ince t h e  force  due 
t o  a l l  ducted airf low (bypass configurations excluded) was removed from 
the  force coef f ic ien t .  A s  shown in f igure  24, t he  slopes of t h e  incre- 
mental axial-force curves changed only s l igh t ly  with Mach number. 
though not shown, the  slopes were not s ign i f icant ly  changed by angles 
of a t t ack  or yaw. With the vent i n s t a l l ed  and without removing the  mo- 
mentum change of t h e  vent a i r  (s ince the  mass flow w a s  not known), t he  
var ia t ions  of axial-force coef f ic ien t  were within fo.005 of t h e  no-vent 
values a t  Mach number 2.0.  

Al- 

In  order t o  in te rpre t  the  magnitude of the  slopes of t h e  force-  
coef f ic ien t  curves, slopes f o r  both normal- (open-nose i n l e t )  and 
oblique-shock sp i l lage  f o r  a sharp-lip in l e t  are included i n  f igu re  24. 



. 
The slopes of the  two additive-drag curves have been drawn through the  
point of zero incremental experimental drag f o r  comparison. (For t h i s  
in le t  excessive in te rna l  contraction r e s u l t s  i n  a c r i t i c a l  mass-flow 
r a t i o  l e s s  than that f o r  oblique-shock sp i l l age  only.) The sp i l l age  
drag comparison indicates  t h a t  t h e  experimental values are approximately 
equivalent t o  those f o r  an open-nose i n l e t .  The possible  reductions in 
spi l lage drag a t t a inab le  by bypassing air  i n  excess of engine require- 
ments a r e  indicated f o r  Mach number 2.0.  

Effec t ive- thrus t - ra t io  comparison. - Airflow and thrust character-  
i s t i c s  f o r  a conventional tu rboje t  engine with af terburner  were used f o r  
computing the  r a t i o  of ne t  thrust minus sp i l l age  drag t o  idea l  t h r u s t  
with convergent nozzle ( re fer red  t o  here inaf te r  as the  e f f e c t i v e  t h r u s t  
r a t i o ) .  For bypass s e t t i n g  S1, which approximates a p a r t i c u l a r  e j ec to r  

pumping capacity f o r  optimum net  thrust gains, a net  thrust increase of 
8 percent was assumed a t  Mach number 2.0. 

The combined e f f e c t  of increased t h r u s t  due t o  t h e  e j ec to r  and de- 
creased sp i l lage  drag amounts t o  10 percent of the  idea l  convergent- 
nomle th rus t ,  as shown in f igu re  25 f o r  bypass s e t t i n g  . Further  

reductions i n  sp i l l age  drag a r e  possible  by increasing bypass mass-flow 
ra t io .  However, since the  e j ec to r  i s  probably not capable of pumping 
t h i s  increased amount of flow at  optimum net - thrus t  gain, a separate  
bypass e x i t  f o r  exhausting d i r e c t l y  t o  the  ex terna l  stream, the d i f f e r -  
ence between S and S5 (bypass mass-flow r a t i o  of 0.155), could be 

used f o r  t h e  peak th rus t  condition. 

then be used together f o r  reduced engine speed.) For an exi t - type by- 
pass, a spil lage-drag reduction on t h e  order of 80 percent i s  possible 
(ref. 2 ) .  
with 0.70 f o r  

ideal convergent-nozzle t h r u s t  o r  an increase of 14.2 percent over the  
S1 value. 

s1 

1 
(S5 

and the exi t - type bypass could 

This would give an e f f ec t ive  t h r u s t  r a t i o  of 0.80 compared 
S1, which amounts t o  an improvement of 10 percent of 

SUMMARY OF RESULTS 

A side i n l e t  having a f ixed  1 2 O  two-dimensional compression surface 
was t e s t ed  at Mach numbers of 0.66 and 1.5 t o  2.1, angles of a t t ack  be- 

10 tween -2L0 and % , and angles of yaw from windward t o  6' leeward. 
2 1 0  

The conical nose of t he  fuselage was canted downward 3- r e l a t i v e  t o  t h e  

horizontal  axis and the inlet w a s  canted downward 77 . Other f ea tu res  10 
4 

of the a i r  induction system included in te rna l  contract ion in excess 
s t a r t i ng  limits, a low-angle rounded-lip cowl, a long constant-area 

of 



sect ion followed by overexpansion and contraction between the  d i f fuse r  
e x i t  and the compressor i n l e t ,  and a f lush-slot  annuLar bypass. 
what systematic invest igat ion was made of perforat ions and s l o t s  f o r  
compression-surface bleed. 

A some- 

The following r e s u l t s  were obtained: 

1. A t  Mach numbers of 2.0 and 1 . 7 ,  shock-induced separation of t h e  
ramp boundary l aye r  was unsteady and resulted i n  a l a rge  s ta t ic -pressure  
f luc tua t ion  at t h e  d i f fuse r  exit without the usual  normal-shock type of 
i n l e t  buzz. This l imited the usable s table  mass-flow-ratio range (from 
c r i t i c a l )  t o  0.10 and 0.12 and peak total-pressure recovery t o  0.802 and 
0.91 a t  Mach.numbers 2.0 and 1 .7 ,  respectively.  
separation w a s  not evident, the peak recovery w a s  0.96, and t h e  s t ab le  
mass-flow range w a s  0.33. 

t i a l l y  reduced and s t ab i l i zed  the shock-induced separation. Increased 
peak pressure recoveries and equal or be t t e r  s t a b i l i t y  ranges were ob- 
ta ined f o r  a l l  configurations. Generally, peak recovery occurred j u s t  
before minimum s t ab le  flow conditions; and, hence, the  configuration 
having the  grea tes t  s t a b i l i t y  tended t o  have t h e  highest peak recovery. 
A t  Mach number 1.5, where separation was not s ign i f icant ,  ramp or  th roa t  
bleed a l so  increased peak recovery and stable range. 

A t  Mach number 1.5, 

2.  Externa l  (ramp) or in t e rna l  ( throat)  perforat ions or s l o t s  par- 

3. External perforat ions i n  the  region of the  shock lambda gave the  
grea tes t  increases i n  s t ab le  range and peak recovery. A t  Mach number 2.0 
the  perforated ramp having the l a rges t  hole flow area and d i s t r ibu t ion  
(7.7 percent of ramp surface area or  11.5 percent of capture a rea )  gave 
the  highest peak recovery of 0.89 and a s table  mass-flow range of 0.278. 
Maximum bleed flow a t  peak recovery was somewhat in excess of 6 percent 
of the  flow t h a t  entered t h e  inlet. 

4 .  The d i s t r ibu t ion  and densi ty  of the bleed flow area were impor- 
tant f a c t o r s .  For example: another configuration having t h e  same s ize  
el' hcles ::ut only 60 percent of t he  flow area of t h a t  above (4.5 percent 
of ramp surface area or 6.7 percent of capture a r e a )  gave a peak pres- 
sure recovery of 0.87 and a s t a b i l i t y  range of 0.285. The l a r g e s t  ex- 
t e r n a l  s l o t  in the  same general region of the ramp (4.9 percent of ramp 
surface a rea  or  7.3 percent of capture area) had a peak recovery of 0.85 
and a s t ab le  range of 0 .17 .  

5. Although in t e rna l  s l o t s  i n  the region of t he  th roa t  resu l ted  in 
a l e s s  s t ab le  range than ex terna l  bleed, the envelope of pressure re- 
coveries between c r i t i c a l  and minimum stable flow was higher.  This oc- 
curred because of grea te r  bleed mass flow, s ince the  terminal shock was 
always ahead of t he  bleed s l o t .  

6.  The long duct section between the d i f f u s e r  e x i t  and the  compres- 
sor i n l e t  w a s  very e f f ec t ive  i n  reducing large values of d i s to r t ion .  
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With t he  s o l i d  ramp a d i s to r t ion  of 32 percent w a s  reduced t o  10.5. 
loss i n  total-pressure recvvery w a s  4 percent or l e s s ,  depending on mass- 
flow r a t i o .  
diffuser  e x i t  and only s l i g h t l y  reduced by the  long duc t .  

The 

With throa t  bleed, d i s t o r t i o n  w a s  considerably l e s s  a t  the  

7 .  A flush-type bypass near the  compressor i n l e t  tended t o  o f f s e t  
the total-pressure lo s s  due t o  the  long duct sect ion by bleeding off 
the boundary layer  generated there in .  

8. Both the  so l id  and perforated ramp i n l e t s  had excel lent  angle- 
of-attack cha rac t e r i s t i c s  , which may be a t t r i b u t e d  t o  the  standing bow 
wave due t o  excessive contraction, rounded cowl l i p s ,  generous f i l l e t s ,  
and t h e  canting of the nose and i n l e t .  
pressure recovery a t  c r i t i c a l  flow varied only 3 percent of free-stream 

t o t a l  pressure f o r  angles of a t t ack  from 0' t o  % . 
of pressure recovery occurred near 5O angle of a t t ack  when t h e  body flow 
f i e l d  was near ly  a l ined  with the  i n l e t  axis. 

A t  Mach number 2.0 the  t o t a l -  

10 The highest  l e v e l  

Lewis Fl ight  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, October 8, 1956 

1. Sterbentz, W i l l i a m  H.: Factors Controll ing Air - In le t  Flow Distor t ions.  
NACA RM E56A30, 1956. 

2 .  Allen, J. L., and Beke, Andrew: P e r f o m n c e  Comparison a t  Supersonic 
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TABLE I. - RAMP BLEED CONFIGURATIONS 

Conf igu ra t ion  

Ex te rna l  p e r f o r a t i o n s :  
A; 

A 2 :  Same as AI wi th  i n c r e a s e d  
h o l e  s i z e  

A3: Same as A2 p l u s  d u p l i c a t e  

p a t t e r n  a f t  t o  cowl l i p  

Aq: Same as A3 p l u s  5 rows of 

1/8" holes forward 

A5: S i m i l a r  t o  A,, a l l  1/16'' 
h o l e s  - 

A,: Same p a t t e r n  as As, f r o n t  12 0 rows 3/32" h o l e s  

A : Same p a t t e r n  as A a l l  3/32" 
7holes 5' 

As: D i f f e r e n t  p a t t e r n ,  a l l  3/32" 
h o l e s  

: x t e r n a l  s l o t s  : 
0 . i C "  Slot.  

B2: 0.25" S l o t  

3 7 .  , ,. 
- i  - 

B3: 0.50" S l o t  

n t e r n a l  s l o t s  : 
C 3 :  0.50" S l o t  

C q :  0.72" Sl.ot, changed ramp 
con tour  

n t e r n a l  p e r f o r a t i o n :  
D1: Same as A but 1" i n s i d e  

1' cowl 

Flow 
area, 

sq i n .  
A b  , 

n.52 

1.16 

2.29 

3.82 

2.08 

3.47 

4.69 

2 . 7 4  

0.64 

1.60 

3.00 

3.00 

4.59 

0.52 

c! . C09f 

.019 

.038 

.063 

.034 

.057 

.077 

.045 

3.075 

.026 

.049 

1.134 

.205 

A A 7 7  u . u13 
.028 

.056 

.093 

.051 

.085 

,115 

.067 

1.039 

.11 

1.013 
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(a) Three-quarter front view. 

Figure 1. - Photographs of model with AeV ramp. 
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(b) Side view. 

(c) Closeup view of inlet. 
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Figure 1. - Concluded. Photographs of model with AaV ramp. 

••• • • • . .. 
•• • • • •• • • • • •• 

••• • • • • 
: ••• 21 



- I  
W I  

0 
- 4  
d 

- 0  
0 
rl 

- 0  
0) 

- 0  
a) 

- 0  
t- 

- 0  
W 

- 0  
Lo 

- 0  
d 

- 0  m 

- O N  

- 0  
d 

- 0  

%-I 
0 





......................... * *  . . .  . 

A1, 798 0.029" Holes 
A2, 798 0.043" Holes 

NACA RM E56J01 

680 0.0625" 

353 0.0937'' 
327 0.0625" 

Holes 
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Hole6 
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1.8@ J 

(a) External perforations. 

Figure 4.  - Detaile Of ramp bleed configurations (dimensions i n  inches). 
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Typical external 

Hcmiacintal 

B1 

0.25 COW1 l i p  

B2 
LBleed chamber 

B3 C 3  

Cowl l i p  r y 2  
I 

"V 

( b )  Bleed slots. 

Figure 4 .  - Concluded. D e t a i l s  of ramp b leed  configurat ions (dimensions i n  i n c h e s ) .  
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Angle of attack, a, deg 

Figure 5. - Flow f i e ld  approaching in le t .  
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m4 m4 
0.587 - 0.482 0.297 

mO mO mO 

(a) MO = 2 . 0. (b ) MO = 1.7· (c) MO = 1.5. 

Figure 6. - Schlieren photographs of solid-ramp inlet . Zero angle of attack. 
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(a) Mo = 0.66. 

Figure  8. - Concluded. E f f e c t  of ang le  of a t t a c k  on i n l e t  performance. 
S o l i d  ramp. 
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Figure 10. - LOSS i n  total-pressure recovery between s t a t ions  3 and 4. 
Solid ramp. 
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(c )  Mo = 2.0. 

Figure 1 4 .  - Concluded. Effect of external ramp perforations on i n l e t  performance a t  zero 
angle of attack. 
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S o l i d  ramp ( f i g .  8 )  
I n s t a b i l i t y  _ _ _ _ _  

4 .5 . G  . 7  
Mass-flow r a t i o ,  m4/mg 

( a )  Mg = 1.5. ( b )  Mg = 1.i. 

Figure  15. - E f f e c t  of e x t e r n a l  s l o t s  and i n t e r n a l  s l o t s  and p e r f o r a t i o n s  on i n k t  performance a t  
ze ro  ann le  of a t t a c k .  
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Mass-flow ra t io ,  m4/% 

( c )  Mo = 2.0.  

Figure 15. - Conciudd. Effect of external s l o t s  and in t e rna l  s l o t s  and perforations on 
i n l e t  performance a t  zero angle of attack. 



(a) m4/mO 0.536; 6piHo 0 . 01. 

(b) m4/mO = 0.503; 6p~HO = 0.19. 

Figure 16. - Schlieren and high-speed motion photographs of inlet ASV. 
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(a) S t a t i o n  3. 

--- S o l i d  ramp ( f i g .  8) 

0 C4V wi th  s t a t i o n  3 
c4v 

r ake  i n  

20 

10 

l l ! l l l l  
.4 .5 .6  .7 .5 - 6  . I  .e  

Mass-flow ratio, m4/% 

( b )  S t a t i o n  4.  

F igu re  18. - Effec t  of ramp b leed  on t o t a l - p r e s s u r e  d i s t o r t i o n  a t  s t a t i o n s  3 - 
and 4 for conf igura t ion  C4V. Zero angle  of  a t t a c k .  
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F igu re  20.  - Concluded. E f f e c t  of angle  of yaw on i n l e t  per-  
formance wi th  A8V ramp and bypass s e t t i n g  SI. 
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Figure 23. - Summary Of stability limits; A8V ramp. 
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Figure  25. - Effec t  of  bypass and e j e c t o r  on e f f e c t i v e  t h r u s t  r a t i o  a t  
engine  matching cond i t ions .  F l i g h t  Mach number, 2 .0 .  

N A C A  - Laneley Field, Va. 


