Technical Report No. 32-77

Design Parameters for Ballistic Interplanetary Trajectories
Part I. One-way Transfers to Mars and Venus

V. C. Clarke, Jr.
W. E. Bollman
R. Y. Roth
W. J. Scholey

OTS PRICE

XEROX $ 22.25
MICROFILM $ 12.77

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

January 16, 1963
Design Parameters for Ballistic Interplanetary Trajectories
Part I. One-way Transfers to Mars and Venus

V. C. Clarke, Jr.
W. E. Bollman
R. Y. Roth
W. J. Scholey

T. W. Hamilton, Chief
Systems Analysis Section

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

January 16, 1963
CONTENTS

I. Introduction. Analytical Model for Interplanetary Trajectories 1
 A. Heliocentric Motion .. 1
 1. Determination of Planar Orientation 1
 2. In-Plane Relations 2
 3. Lambert's Theorem 2
 B. Launch-Planet Escape Hyperbola 3
 1. Assumptions .. 3
 2. Size and Shape of Escape Hyperbola 3
 C. Calculation of Differential Corrections 4

II. Detailed Equations for Trajectory Computations 7
 A. Heliocentric Phase 7
 1. Determination of Position at Launch and Arrival 7
 2. Application of Lambert's Theorem 8
 3. Calculation of Velocity Vectors for Probe and Planet 11
 4. Calculation of Various Trajectory Parameters 11
 B. The Planetocentric-Conic Trajectories 13
 C. Differential Corrections 16

III. Discussion and Explanation of Results 19
 A. Introduction ... 19
 1. Trajectory Computations 19
 2. Trajectory Analysis 19
 B. Classification of Trajectories 19
 1. Type I and Type II 19
 2. Class I and Class II 21
 3. Minimum-Energy Trajectories 21
 C. Launch Period .. 25
 D. General Characteristics of Trajectories 26
 1. Geocentric Parameters 26
 2. Heliocentric Parameters 45
 3. Planetocentric Parameters 51
 E. Procedures for Utilization of Graphs in Design of Planetary Trajectories 56

IV. Minimum-Energy Graphs for Venus and Mars Transfers 64

V. Venus 1962: Trajectory-Parameter Graphs 79

VI. Venus 1964: Trajectory-Parameter Graphs 107

VII. Venus 1965: Trajectory-Parameter Graphs 129
CONTENTS (Cont'd)

VIII. Venus 1967: Trajectory-Parameter Graphs 160
IX. Venus 1968–1969: Trajectory-Parameter Graphs 192
X. Venus 1970: Trajectory-Parameter Graphs 226
XI. Mars 1962: Trajectory-Parameter Graphs 251
XII. Mars 1964: Trajectory-Parameter Graphs 270
XIII. Mars 1966: Trajectory-Parameter Graphs 289
XIV. Mars 1969: Trajectory-Parameter Graphs 308
XV. Mars 1971: Trajectory-Parameter Graphs 325
XVI. Mars 1973: Trajectory-Parameter Graphs 344
XVII. Mars 1975: Trajectory-Parameter Graphs 383
XVIII. Mars 1977: Trajectory-Parameter Graphs 380
Nomenclature ... 397
References ... 398

TABLES

2–1. Mean planet elements ... 12
3–1. Characteristics of minimum-energy transfer 23
3–2. Venus Type I transfer characteristics 27
3–3. Venus Type II transfer characteristics 28
3–4. Mars Type I transfer characteristics 29

FIGURES

1–1. Heliocentric-transfer geometry .. 2
1–2. In-plane–transfer geometry .. 2
1–3. Determination of hyperbolic-excess velocity vector 3
1–4. Vehicle flight plane .. 5
1–5. Impact parameter ... 6
1–6. The R, S, T target coordinate system 6
<table>
<thead>
<tr>
<th>FIGURES (Cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1. Geometrical configuration of heliocentric conic: (a) Central angle less than 180 deg; (b) Central angle greater than 180 deg</td>
</tr>
<tr>
<td>2-2. Trajectory-plane-launch-site geometry</td>
</tr>
<tr>
<td>2-3. Trajectory-plane geometry</td>
</tr>
<tr>
<td>2-4. Ascent-trajectory geometry</td>
</tr>
<tr>
<td>2-5. Powered trajectory modified by coasting</td>
</tr>
<tr>
<td>2-6. Relation between longitude, right ascension, and time in equatorial plane</td>
</tr>
<tr>
<td>3-1. Venus 1965: Time of flight vs launch date</td>
</tr>
<tr>
<td>3-2. Venus 1965: Minimum injection energy vs launch date</td>
</tr>
<tr>
<td>3-5. Venus 1962: Declination of geocentric asymptote vs launch date</td>
</tr>
<tr>
<td>3-6. Venus 1964: Declination of geocentric asymptote vs launch date</td>
</tr>
<tr>
<td>3-7. Venus 1965: Declination of geocentric asymptote vs launch date, Type I</td>
</tr>
<tr>
<td>3-8. Venus 1965: Declination of geocentric asymptote vs launch date, Type II</td>
</tr>
<tr>
<td>3-9. Geometry of heliocentric injection</td>
</tr>
<tr>
<td>3-10. Venus 1962: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date</td>
</tr>
<tr>
<td>3-11. Venus 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date</td>
</tr>
<tr>
<td>3-12. Geometry for maximum celestial latitude of outgoing asymptote: (a) Rendezvous with Venus; (b) Rendezvous with Mars</td>
</tr>
<tr>
<td>3-13. Venus 1964: Celestial latitude at arrival time vs launch date</td>
</tr>
<tr>
<td>3-14. Demonstration of variation of celestial latitude of outgoing asymptote with celestial latitude of Venus at arrival for Type I trajectories: (a) $\beta_p > 0$, $\gamma_L > 0$; (b) $\beta_p < 0$, $\gamma_L < 0$</td>
</tr>
<tr>
<td>3-15. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I</td>
</tr>
<tr>
<td>3-16. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II</td>
</tr>
<tr>
<td>3-17. Venus 1964: Earth–probe–Sun angle vs flight time for two launch dates</td>
</tr>
<tr>
<td>3-18. Mars 1964: Earth–probe–Sun angle vs flight time for two launch dates</td>
</tr>
</tbody>
</table>
FIGURES (Cont’d)

3–19. Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type I

3–20. Mars 1964: True anomaly in transfer ellipse at launch time vs launch date, Type I

3–21. Venus 1965: True anomaly in transfer ellipse at arrival time vs launch date

3–22. Mars 1964: True anomaly in transfer ellipse at arrival time vs launch date, Type I

3–23. Inclination of heliocentric orbital plane to ecliptic vs heliocentric central angle

3–24. Venus 1964: Asymptotic speed with respect to Venus vs launch date

3–25. Venus 1962: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date

3–26. Venus 1964: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date

3–27. Projection of typical heliocentric-transfer orbits onto ecliptic plane, viewed from above ecliptic plane

3–28. Near-Venus geometry for typical trajectories, viewed from above ecliptic plane: (a) Type I trajectory, encountering Venus before perihelion; (b) Type II trajectory, encountering Venus after perihelion

3–29. Near-Mars geometry for typical trajectories, viewed from above ecliptic plane: (a) Type I trajectory, encountering Mars before aphelion; (b) Type I–II trajectory, encountering Mars after aphelion

3–30. Venus 1964: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date

3–31. Venus 1965: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date

3–32. Mars 1964: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date, Type I

3–33. Crescent orientations for typical trajectories to Venus and Mars as observed from approaching spacecraft

3–34. Steps for construction of arrival-date loci

4–1. Venus 1962: Minimum injection energy vs launch date

4–2. Venus 1964: Minimum injection energy vs launch date

4–3. Venus 1965: Minimum injection energy vs launch date

4–4. Venus 1967: Minimum injection energy vs launch date
FIGURES (Cont’d)

4–6. Venus 1970: Minimum injection energy vs launch date 70
4–7. Mars 1962: Minimum injection energy vs launch date 71
4–8. Mars 1964: Minimum injection energy vs launch date 72
4–9. Mars 1966: Minimum injection energy vs launch date 73
4–10. Mars 1969: Minimum injection energy vs launch date 74
4–11. Mars 1971: Minimum injection energy vs launch date 75
4–12. Mars 1973: Minimum injection energy vs launch date 76

5–1. Venus 1962: Time of flight vs launch date 81
5–2. Venus 1962: Heliocentric central angle vs launch date 82
5–4. Venus 1962: Declination of geocentric asymptote vs launch date 84
5–5. Venus 1962: Right ascension of geocentric asymptote vs launch date, Type I 85
5–6. Venus 1962: Right ascension of geocentric asymptote vs launch date, Type II 86
5–7. Venus 1962: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date 87
5–8. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I 88
5–9. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II 89
5–10. Venus 1962: True anomaly in transfer ellipse at launch time vs launch date, Type I 90
5–11. Venus 1962: True anomaly in transfer ellipse at launch time vs launch date, Type II 91
5–12. Venus 1962: True anomaly in transfer ellipse at arrival time vs launch date, Type I 92
5–13. Venus 1962: True anomaly in transfer ellipse at arrival time vs launch date, Type II 93
5–15. Venus 1962: Aphelion of transfer orbit vs launch date, Type I 95
5–16. Venus 1962: Aphelion of transfer orbit vs launch date, Type II 96
FIGURES (Cont’d)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–17.</td>
<td>Venus 1962: Inclination of heliocentric-transfer plane vs launch date, Type I</td>
<td>97</td>
</tr>
<tr>
<td>5–18.</td>
<td>Venus 1962: Inclination of heliocentric-transfer plane vs launch date, Type II</td>
<td>98</td>
</tr>
<tr>
<td>5–19.</td>
<td>Venus 1962: Celestial latitude at arrival time vs launch date</td>
<td>99</td>
</tr>
<tr>
<td>5–20.</td>
<td>Venus 1962: Asymptotic speed with respect to Venus vs launch date, Type I</td>
<td>100</td>
</tr>
<tr>
<td>5–21.</td>
<td>Venus 1962: Asymptotic speed with respect to Venus vs launch date, Type II</td>
<td>101</td>
</tr>
<tr>
<td>5–22.</td>
<td>Venus 1962: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date</td>
<td>102</td>
</tr>
<tr>
<td>5–23.</td>
<td>Venus 1962: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date</td>
<td>103</td>
</tr>
<tr>
<td>5–24.</td>
<td>Venus 1962: Declination of aphrodiocentric asymptote vs launch date</td>
<td>104</td>
</tr>
<tr>
<td>5–25.</td>
<td>Venus 1962: Right ascension of aphrodiocentric asymptote vs launch date, Type I</td>
<td>105</td>
</tr>
<tr>
<td>5–26.</td>
<td>Venus 1962: Right ascension of aphrodiocentric asymptote vs launch date, Type II</td>
<td>106</td>
</tr>
<tr>
<td>6–1.</td>
<td>Venus 1964: Time of flight vs launch date</td>
<td>108</td>
</tr>
<tr>
<td>6–2.</td>
<td>Venus 1964: Heliocentric central angle vs launch date</td>
<td>109</td>
</tr>
<tr>
<td>6–3.</td>
<td>Venus 1964: Earth–Venus communication distance vs launch date</td>
<td>110</td>
</tr>
<tr>
<td>6–4.</td>
<td>Venus 1964: Declination of geocentric asymptote vs launch date</td>
<td>111</td>
</tr>
<tr>
<td>6–5.</td>
<td>Venus 1964: Right ascension of geocentric asymptote vs launch date</td>
<td>112</td>
</tr>
<tr>
<td>6–6.</td>
<td>Venus 1964: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date</td>
<td>113</td>
</tr>
<tr>
<td>6–7.</td>
<td>Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I</td>
<td>114</td>
</tr>
<tr>
<td>6–8.</td>
<td>Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II</td>
<td>115</td>
</tr>
<tr>
<td>6–9.</td>
<td>Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type I</td>
<td>116</td>
</tr>
<tr>
<td>6–10.</td>
<td>Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type II</td>
<td>117</td>
</tr>
<tr>
<td>6–11.</td>
<td>Venus 1964: True anomaly in transfer ellipse at arrival time vs launch date</td>
<td>118</td>
</tr>
</tbody>
</table>
FIGURES (Cont’d)

6-12. Venus 1964: Perihelion of transfer orbit vs launch date 119
6-13. Venus 1964: Aphelion of transfer orbit vs launch date, Type I. 120
6-14. Venus 1964: Aphelion of transfer orbit vs launch date, Type II. 121
6-15. Venus 1964: inclination of heliocentric-transfer plane vs launch date 122
6-16. Venus 1964: Celestial latitude at arrival time vs launch date 123
6-17. Venus 1964: Asymptotic speed with respect to Venus vs launch date 124
6-18. Venus 1964: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date 125
6-19. Venus 1964: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date 126
6-20. Venus 1964: Declination of aphrodiocentric asymptote vs launch date 127
6-21. Venus 1964: Right ascension of aphrodiocentric asymptote vs launch date 128

7-1. Venus 1965: Time of flight vs launch date 131
7-2. Venus 1965: Heliocentric central angle vs launch date 132
7-3. Venus 1965: Earth–Venus communication distance vs launch date 133
7-4. Venus 1965: Declination of geocentric asymptote vs launch date, Type I 134
7-5. Venus 1965: Declination of geocentric asymptote vs launch date, Type II 135
7-6. Venus 1965: Right ascension of geocentric asymptote vs launch date, Type I 136
7-7. Venus 1965: Right ascension of geocentric asymptote vs launch date, Type II 137
7-8. Venus 1965: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type I 138
7-9. Venus 1965: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type II 139
7-10. Venus 1965: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I 140
7-11. Venus 1965: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II 141
7-12. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type I 142
FIGURES (Cont'd)

7-13. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type II 143
7-14. Venus 1965: True anomaly in transfer ellipse at arrival time vs launch date ... 144
7-15. Venus 1965: Perihelion of transfer orbit vs launch date ... 145
7-16. Venus 1965: Aphelion of transfer orbit vs launch date, Type I ... 146
7-17. Venus 1965: Aphelion of transfer orbit vs launch date, Type II ... 147
7-18. Venus 1965: Inclination of heliocentric-transfer plane vs launch date, Type I ... 148
7-19. Venus 1965: Inclination of heliocentric-transfer plane vs launch date, Type II ... 149
7-20. Venus 1965: Celestial latitude at arrival time vs launch date ... 150
7-21. Venus 1965: Asymptotic speed with respect to Venus vs launch date, Type I ... 151
7-22. Venus 1965: Asymptotic speed with respect to Venus vs launch date, Type II ... 152
7-23. Venus 1965: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type I ... 153
7-24. Venus 1965: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type II ... 154
7-25. Venus 1965: Angle between Venus-Sun vector and incoming aphrodiocentric asymptote vs launch date ... 155
7-26. Venus 1965: Declination of aphrodiocentric asymptote vs launch date, Type I ... 156
7-27. Venus 1965: Declination of aphrodiocentric asymptote vs launch date, Type II ... 157
7-28. Venus 1965: Right ascension of aphrodiocentric asymptote vs launch date, Type I ... 158
7-29. Venus 1965: Right ascension of aphrodiocentric asymptote vs launch date, Type II ... 159
8-1. Venus 1967: Time of flight vs launch date ... 162
8-2. Venus 1967: Heliocentric central angle vs launch date ... 163
8-3. Venus 1967: Earth-Venus communication distance vs launch date ... 164
8-4. Venus 1967: Declination of geocentric asymptote vs launch date, Type I ... 165
8-5. Venus 1967: Declination of geocentric asymptote vs launch date, Type II ... 166
FIGURES (Cont’d)

8–6. Venus 1967: Right ascension of geocentric asymptote vs launch date, Type I 167

8–7. Venus 1967: Right ascension of geocentric asymptote vs launch date, Type II 168

8–8. Venus 1967: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type I 169

8–9. Venus 1967: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type II 170

8–10. Venus 1967: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I 171

8–11. Venus 1967: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II 172

8–12. Venus 1967: True anomaly in transfer ellipse at launch time vs launch date, Type I 173

8–13. Venus 1967: True anomaly in transfer ellipse at launch time vs launch date, Type II 174

8–14. Venus 1967: True anomaly in transfer ellipse at arrival time vs launch date 175

8–15. Venus 1967: Perihelion of transfer orbit vs launch date, Type I 176

8–16. Venus 1967: Perihelion of transfer orbit vs launch date, Type II 177

8–17. Venus 1967: Aphelion of transfer orbit vs launch date, Type I 178

8–18. Venus 1967: Aphelion of transfer orbit vs launch date, Type II 179

8–19. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type I 180

8–20. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type II 181

8–21. Venus 1967: Celestial latitude at arrival time vs launch date 182

8–22. Venus 1967: Asymptotic speed with respect to Venus vs launch date, Type I 183

8–23. Venus 1967: Asymptotic speed with respect to Venus vs launch date, Type II 184

8–24. Venus 1967: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date, Type I 185

8–25. Venus 1967: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date, Type II 186

FIGURES (Cont'd)

8–27. Venus 1967: Declination of aphrodiocentric asymptote vs launch date, Type I .. 188
8–28. Venus 1967: Declination of aphrodiocentric asymptote vs launch date, Type II ... 189
8–29. Venus 1967: Right ascension of aphrodiocentric asymptote vs launch date, Type I .. 190
8–30. Venus 1967: Right ascension of aphrodiocentric asymptote vs launch date, Type II 191

9-4. Venus 1968–1969: Declination of geocentric asymptote vs launch date, Type I ... 197
9-5. Venus 1968–1969: Declination of geocentric asymptote vs launch date, Type II ... 198
9-6. Venus 1968–1969: Right ascension of geocentric asymptote vs launch date, Type I ... 199
9-7. Venus 1968–1969: Right ascension of geocentric asymptote vs launch date, Type II ... 200
9-8. Venus 1968–1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type I ... 201
9-10. Venus 1968–1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I ... 203
9-11. Venus 1968–1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II ... 204
9-12. Venus 1968–1969: True anomaly in transfer ellipse at launch time vs launch date, Type I ... 205
9-13. Venus 1968–1969: True anomaly in transfer ellipse at launch time vs launch date, Type II ... 206
FIGURES (Cont'd)

9-20. Venus 1968–1969: Inclination of heliocentric-transfer plane vs launch date, Type II 213
9-23. Venus 1968–1969: Asymptotic speed with respect to Venus vs launch date, Type I 216
9-29. Venus 1968–1969: Declination of aphrodiocentric asymptote vs launch date, Type I 222
9-30. Venus 1968–1969: Declination of aphrodiocentric asymptote vs launch date, Type II 223
9-32. Venus 1968–1969: Right ascension of aphrodiocentric asymptote vs launch date, Type II 225

10-1. Venus 1970: Time of flight vs launch date 228
10-2. Venus 1970: Heliocentric central angle vs launch date 229
FIGURES (Cont'd)

10-4. Venus 1970: Declination of geocentric asymptote vs launch date .. 231
10-5. Venus 1970: Right ascension of geocentric asymptote vs launch date ... 232
10-6. Venus 1970: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date .. 233
10-7. Venus 1970: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I .. 234
10-8. Venus 1970: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II .. 235
10-9. Venus 1970: True anomaly in transfer ellipse at launch time vs launch date, Type I .. 236
10-10. Venus 1970: True anomaly in transfer ellipse at launch time vs launch date, Type II 237
10-11. Venus 1970: True anomaly in transfer ellipse at arrival time vs launch date .. 238
10-12. Venus 1970: Perihelion of transfer orbit vs launch date .. 239
10-13. Venus 1970: Aphelion of transfer orbit vs launch date, Type I .. 240
10-14. Venus 1970: Aphelion of transfer orbit vs launch date, Type II .. 241
10-15. Venus 1970: Inclination of heliocentric-transfer plane vs launch date, Type I .. 242
10-16. Venus 1970: Inclination of heliocentric-transfer plane vs launch date, Type II .. 243
10-17. Venus 1970: Celestial latitude at arrival time vs launch date .. 244
10-18. Venus 1970: Asymptotic speed with respect to Venus vs launch date .. 245
10-19. Venus 1970: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date .. 246
10-20. Venus 1970: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date .. 247
10-21. Venus 1970: Declination of aphrodiocentric asymptote vs launch date .. 248
10-22. Venus 1970: Right ascension of aphrodiocentric asymptote vs launch date, Type I .. 249
10-23. Venus 1970: Right ascension of aphrodiocentric asymptote vs launch date, Type II .. 250

11-1. Mars 1962: Time of flight vs launch date .. 252
11-2. Mars 1962: Heliocentric central angle vs launch date .. 253
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-3</td>
<td>Mars 1962: Earth–Mars communication distance vs launch date</td>
<td>254</td>
</tr>
<tr>
<td>11-4</td>
<td>Mars 1962: Declination of geocentric asymptote vs launch date</td>
<td>255</td>
</tr>
<tr>
<td>11-5</td>
<td>Mars 1962: Right ascension of geocentric asymptote vs launch date</td>
<td>256</td>
</tr>
<tr>
<td>11-6</td>
<td>Mars 1962: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date</td>
<td>257</td>
</tr>
<tr>
<td>11-7</td>
<td>Mars 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date</td>
<td>258</td>
</tr>
<tr>
<td>11-8</td>
<td>Mars 1962: True anomaly in transfer ellipse at launch time vs launch date</td>
<td>259</td>
</tr>
<tr>
<td>11-9</td>
<td>Mars 1962: True anomaly in transfer ellipse at arrival time vs launch date</td>
<td>260</td>
</tr>
<tr>
<td>11-10</td>
<td>Mars 1962: Perihelion of transfer orbit vs launch date</td>
<td>261</td>
</tr>
<tr>
<td>11-11</td>
<td>Mars 1962: Aphelion of transfer orbit vs launch date</td>
<td>262</td>
</tr>
<tr>
<td>11-12</td>
<td>Mars 1962: Inclination of heliocentric-transfer plane vs launch date</td>
<td>263</td>
</tr>
<tr>
<td>11-13</td>
<td>Mars 1962: Celestial latitude at arrival time vs launch date</td>
<td>264</td>
</tr>
<tr>
<td>11-14</td>
<td>Mars 1962: Asymptotic speed with respect to Mars vs launch date</td>
<td>265</td>
</tr>
<tr>
<td>11-15</td>
<td>Mars 1962: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date</td>
<td>266</td>
</tr>
<tr>
<td>11-16</td>
<td>Mars 1962: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date</td>
<td>267</td>
</tr>
<tr>
<td>11-17</td>
<td>Mars 1962: Declination of aerocentric asymptote vs launch date</td>
<td>268</td>
</tr>
<tr>
<td>11-18</td>
<td>Mars 1962: Right ascension of aerocentric asymptote vs launch date</td>
<td>269</td>
</tr>
<tr>
<td>12-1</td>
<td>Mars 1964: Time of flight vs launch date</td>
<td>271</td>
</tr>
<tr>
<td>12-2</td>
<td>Mars 1964: Heliocentric central angle vs launch date</td>
<td>272</td>
</tr>
<tr>
<td>12-3</td>
<td>Mars 1964: Earth–Mars communication distance vs launch date</td>
<td>273</td>
</tr>
<tr>
<td>12-4</td>
<td>Mars 1964: Declination of geocentric asymptote vs launch date</td>
<td>274</td>
</tr>
<tr>
<td>12-5</td>
<td>Mars 1964: Right ascension of geocentric asymptote vs launch date</td>
<td>275</td>
</tr>
<tr>
<td>12-6</td>
<td>Mars 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date</td>
<td>276</td>
</tr>
<tr>
<td>12-7</td>
<td>Mars 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date</td>
<td>277</td>
</tr>
<tr>
<td>12-8</td>
<td>Mars 1964: True anomaly in transfer ellipse at launch time vs launch date</td>
<td>278</td>
</tr>
</tbody>
</table>
FIGURES (Cont'd)

12–9. Mars 1964: True anomaly in transfer ellipse at arrival time vs launch date .. 279
12–10. Mars 1964: Perihelion of transfer orbit vs launch date .. 280
12–11. Mars 1964: Aphelion of transfer orbit vs launch date .. 281
12–12. Mars 1964: Inclination of heliocentric-transfer plane vs launch date .. 282
12–13. Mars 1964: Celestial latitude at arrival time vs launch date .. 283
12–14. Mars 1964: Asymptotic speed with respect to Mars vs launch date .. 284
12–15. Mars 1964: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date .. 285
12–16. Mars 1964: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date .. 286
12–17. Mars 1964: Declination of aerocentric asymptote vs launch date .. 287
12–18. Mars 1964: Right ascension of aerocentric asymptote vs launch date .. 288

13–1. Mars 1966: Time of flight vs launch date .. 290
13–3. Mars 1966: Earth–Mars communication distance vs launch date .. 292
13–4. Mars 1966: Declination of geocentric asymptote vs launch date .. 293
13–5. Mars 1966: Right ascension of geocentric asymptote vs launch date .. 294
13–6. Mars 1966: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date .. 295
13–8. Mars 1966: True anomaly in transfer ellipse at launch time vs launch date .. 297
13–9. Mars 1966: True anomaly in transfer ellipse at arrival time vs launch date .. 298
13–10. Mars 1966: Perihelion of transfer orbit vs launch date .. 299
13–11. Mars 1966: Aphelion of transfer orbit vs launch date .. 300
13–12. Mars 1966: Inclination of heliocentric-transfer plane vs launch date .. 301
13–13. Mars 1966: Celestial latitude at arrival time vs launch date .. 302
13–14. Mars 1966: Asymptotic speed with respect to Mars vs launch date .. 303
FIGURES (Cont'd)

13–15. Mars 1966: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date 304
13–16. Mars 1966: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date ... 305
13–17. Mars 1966: Declination of aerocentric asymptote vs launch date ... 306
13–18. Mars 1966: Right ascension of aerocentric asymptote vs launch date .. 307
14–1. Mars 1969: Time of flight vs launch date .. 309
14–3. Mars 1969: Earth–Mars communication distance vs launch date .. 311
14–4. Mars 1969: Declination of geocentric asymptote vs launch date ... 312
14–5. Mars 1969: Right ascension of geocentric asymptote vs launch date .. 313
14–6. Mars 1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date 314
14–7. Mars 1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date 315
14–8. Mars 1969: True anomaly in transfer ellipse at launch time vs launch date .. 316
14–9. Mars 1969: True anomaly in transfer ellipse at arrival time vs launch date ... 317
14–10. Mars 1969: Perihelion of transfer orbit vs launch date ... 318
14–11. Mars 1969: Aphelion of transfer orbit vs launch date .. 319
14–12. Mars 1969: Inclination of heliocentric-transfer plane vs launch date ... 320
14–14. Mars 1969: Asymptotic speed with respect to Mars vs launch date ... 322
14–15. Mars 1969: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date 323
14–16. Mars 1969: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date 324
15–1. Mars 1971: Time of flight vs launch date ... 326
15–2. Mars 1971: Heliocentric central angle vs launch date ... 327
15–3. Mars 1971: Earth–Mars communication distance vs launch date .. 328
15–4. Mars 1971: Declination of geocentric asymptote vs launch date ... 329
FIGURES (Cont'd)

15-5. Mars 1971: Right ascension of geocentric asymptote vs launch date .. 330
15-6. Mars 1971: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date ... 331
15-7. Mars 1971: Angle between Sun-Earth vector and outgoing geocentric asymptote vs launch date .. 332
15-8. Mars 1971: True anomaly in transfer ellipse at launch time vs launch date .. 333
15-9. Mars 1971: True anomaly in transfer ellipse at arrival time vs launch date .. 334
15-10. Mars 1971: Perihelion of transfer orbit vs launch date .. 335
15-11. Mars 1971: Aphelion of transfer orbit vs launch date .. 336
15-12. Mars 1971: Inclination of heliocentric-transfer plane vs launch date .. 337
15-13. Mars 1971: Celestial latitude at arrival time vs launch date .. 338
15-16. Mars 1971: Angle between Mars-Sun vector and incoming aerocentric asymptote vs launch date .. 341
15-17. Mars 1971: Declination of aerocentric asymptote vs launch date .. 342
15-18. Mars 1971: Right ascension of aerocentric asymptote vs launch date .. 343

16-1. Mars 1973: Time of flight vs launch date .. 345
16-2. Mars 1973: Heliocentric central angle vs launch date .. 346
16-3. Mars 1973: Earth-Mars communication distance vs launch date .. 347
16-4. Mars 1973: Declination of geocentric asymptote vs launch date .. 348
16-5. Mars 1973: Right ascension of geocentric asymptote vs launch date .. 349
16-6. Mars 1973: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date .. 350
16-7. Mars 1973: Angle between Sun-Earth vector and outgoing geocentric asymptote vs launch date .. 351
16-8. Mars 1973: True anomaly in transfer ellipse at launch time vs launch date .. 352
16-9. Mars 1973: True anomaly in transfer ellipse at arrival time vs launch date .. 353
FIGURES (Cont’d)

16-10. Mars 1973: Perihelion of transfer orbit vs launch date ... 354
16-11. Mars 1973: Aphelion of transfer orbit vs launch date ... 355
16-12. Mars 1973: Inclination of heliocentric-transfer plane vs launch date ... 356
16-13. Mars 1973: Celestial latitude at arrival time vs launch date ... 357
16-14. Mars 1973: Asymptotic speed with respect to Mars vs launch date ... 358
16-15. Mars 1973: Angle between incoming aerocentric asymptote and arrival planet’s orbital plane vs launch date ... 359
16-16. Mars 1973: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date ... 360
16-17. Mars 1973: Declination of aerocentric asymptote vs launch date ... 361
16-18. Mars 1973: Right ascension of aerocentric asymptote vs launch date ... 362

17-1. Mars 1975: Time of flight vs launch date ... 364
17-2. Mars 1975: Heliocentric central angle vs launch date ... 365
17-3. Mars 1975: Earth–Mars communication distance vs launch date ... 366
17-4. Mars 1975: Declination of geocentric asymptote vs launch date ... 367
17-5. Mars 1975: Right ascension of geocentric asymptote vs launch date ... 368
17-6. Mars 1975: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date ... 369
17-7. Mars 1975: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date ... 370
17-8. Mars 1975: True anomaly in transfer ellipse at launch time vs launch date ... 371
17-9. Mars 1975: True anomaly in transfer ellipse at arrival time vs launch date ... 372
17-10. Mars 1975: Perihelion of transfer orbit vs launch date ... 373
17-11. Mars 1975: Aphelion of transfer orbit vs launch date ... 374
17-12. Mars 1975: Inclination of heliocentric-transfer plane vs launch date ... 375
17-13. Mars 1975: Celestial latitude at arrival time vs launch date ... 376
17-14. Mars 1975: Asymptotic speed with respect to Mars vs launch date ... 377
17-15. Mars 1975: Angle between incoming aerocentric asymptote and arrival planet’s orbital plane vs launch date ... 378
17-16. Mars 1975: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date ... 379
FIGURES (Cont'd)

18–1. Mars 1977: Time of flight vs launch date 381
18–2. Mars 1977: Heliocentric central angle vs launch date 382
18–3. Mars 1977: Earth–Mars communication distance vs launch date 383
18–4. Mars 1977: Declination of geocentric asymptote vs launch date 384
18–5. Mars 1977: Right ascension of geocentric asymptote vs launch date 385
18–6. Mars 1977: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date 386
18–7. Mars 1977: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date 387
18–8. Mars 1977: True anomaly in transfer ellipse at launch time vs launch date 388
18–9. Mars 1977: True anomaly in transfer ellipse at arrival time vs launch date 389
18–10. Mars 1977: Perihelion of transfer orbit vs launch date 390
18–11. Mars 1977: Aphelion of transfer orbit vs launch date 391
18–12. Mars 1977: Inclination of heliocentric-transfer plane vs launch date 392
18–13. Mars 1977: Celestial latitude at arrival time vs launch date 393
18–14. Mars 1977: Asymptotic speed with respect to Mars vs launch date 394
18–15. Mars 1977: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date 395
18–16. Mars 1977: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date 396
FOREWORD

This Report presents, in graphical form, the extensive results of studies of the characteristics of ballistic interplanetary trajectories to Venus (1962–1970) and Mars (1962–1977). Also included are a description of the physical model, development of the equations of the model, and a discussion of the properties of the trajectories.

Companion volumes (Refs. 1 and 2) present the same results in numerical form. This Report is intended to provide data in volume to trajectory and guidance analysts, so that they may perform preliminary design studies and conduct investigations of the properties of ballistic interplanetary trajectories.
ABSTRACT

The general characteristics of ballistic interplanetary trajectories are discussed, and detailed equations are developed for the analytical model. Extensive data are presented in graphical form for trajectories to Venus (1962–1970) and Mars (1962–1977). These 313 graphs include: (1) curves of vis viva geocentric energy vs launch date for minimum-energy trajectories, and (2) curves of 18 different trajectory parameters vs launch date for various vis viva geocentric energies. The trajectories were computed on the IBM 7090 digital computer by numerical evaluation of the analytical model, after which specific parameters of interest were automatically plotted, carefully checked, and analyzed. Procedures are outlined for use of these data by the trajectory engineer in the design and analysis of interplanetary trajectories.

I. INTRODUCTION. ANALYTICAL MODEL FOR INTERPLANETARY TRAJECTORIES

The analytical model used in the generation of Venus and Mars trajectory parameters consists of three distinct phases of two-body motion: (1) an escape hyperbola near the launch planet, (2) elliptical motion under the attraction of the Sun, and (3) terminal hyperbolic motion near the target planet.

A. Heliocentric Motion

Solution of the heliocentric elliptic motion is obtained first under the following assumptions:

(1) The launch and target planets move in orbits about the Sun as given in the national ephemerides. Their velocity components are obtained by using two-body conic formulas, mean orbital elements, and their tabular positions, as listed in the ephemerides.

(2) The launch and target planets are massless. Thus, the only force acting on the probe is that of the Sun.

(3) The position of the probe at launch into the heliocentric orbit is the center of the massless launch planet. Its position at arrival on the heliocentric orbit is the center of the massless target planet.

Thus, for solution of the heliocentric phase of motion, the attractions of the launch and target planets are temporarily disregarded. The primary result to be obtained from the solution of the heliocentric-transfer problem is determination of the hyperbolic-excess velocity vector relative to the launch planet.

1. Determination of Planar Orientation

Since the launch and arrival positions of the probe are assumed to be the centers of the launch and target planets, they can immediately be determined, given the launch and arrival times, by consulting the ephemeris. Further, the orientation of the heliocentric transfer plane can immediately be found. Let \(\mathbf{R}_L \) be the Sun-launch-planet position vector at launch time \(T_L \), and let \(\mathbf{R}_p \) be the Sun-target-planet position vector at arrival time \(T_a \) (Fig. 1–1). Planar orientation is then found from the unit normal \(\mathbf{W} \) to the plane, as follows:

\[
\mathbf{W} = \frac{\mathbf{R}_L \times \mathbf{R}_p}{R_L R_p \sin \psi} \tag{1-1}
\]

where the angle \(\psi \) is defined below. The inclination \(i \) to

\[^1\]Hyperbolic heliocentric motion is not considered herein.

\[^2\]Or, for convenience, the launch date and flight time can be specified.
the ecliptic plane can be found by
\[\cos i = \mathbf{W} \cdot \mathbf{K}' \] (1-2)

where \(\mathbf{K}' \) is a unit vector pointing in the direction of the ecliptic north pole.

2. In-Plane Relations

The heliocentric central angle \(\psi \) (Fig. 1-1) is also readily determined by utilizing the positions of the launch and target planets. This angle may be obtained from
\[
\cos \psi = \frac{\mathbf{R}_L \cdot \mathbf{R}_p}{|\mathbf{R}_L| \cdot |\mathbf{R}_p|} \quad (1-3)
\sin \psi = \text{sgn} \left[(\mathbf{R}_L \times \mathbf{R}_p) \cdot \mathbf{K}' \right] (1 - \cos^2 \psi) \quad (1-4)

The velocity vector \(\mathbf{V} \) of the spacecraft anywhere along its path may be obtained from
\[
\mathbf{V} = \frac{V}{R} \left[(\mathbf{W} \times \mathbf{R}) \cos \Gamma + \mathbf{R} \sin \Gamma \right] \quad (1-5)
\]
Here, \(\mathbf{R} \) is the heliocentric position vector, \(R = |\mathbf{R}| \), and \(V \) is the heliocentric speed, obtained from
\[
V = \sqrt{\left(GM_\odot \left(\frac{2}{R} - \frac{1}{a} \right) \right)} \quad (1-6)
\]
and the path angle \(\Gamma \) is found from
\[
\sin \Gamma = \left[\sqrt{\frac{R}{(1-e^2)(2a-R)}} \right] e \sin \nu \quad (1-7)
\]

In Eqs. 1-6 and 1-7, \(GM_\odot \) is the universal gravitational constant times the mass of the Sun \((= 2.959122083 \times 10^{-3} \text{ au}^3\text{/day}^2)\); \(a \) and \(e \) are the semimajor axis and eccentricity of the transfer ellipse, respectively; and \(\nu \) is the true anomaly of the probe, given by
\[
\cos \nu = \frac{a(1-e^2)-R}{eR} \quad (1-8)
\]

3. Lambert's Theorem

Now, there are two unknowns in Eqs. 1-5 to 1-8 which prevent their immediate evaluation: the semimajor axis \(a \) and the eccentricity \(e \). The determination of these quantities is the main problem. Battin (Ref. 3) has shown that the eccentricity is actually a function of the semimajor axis. Thus, it is first necessary to determine \(a \). The semimajor axis is related to the time of flight \(T_f \) by Lambert's Theorem, which states: The transfer time between any two points on an ellipse is a function of the sum of the distances of each point from the focus, the distance between the points, and the semimajor axis of the ellipse. Functionally, the theorem is stated as
\[
T_f = T_f (R + R, C, a) \quad (1-9)
\]
where the distance \(C \) between the launch planet at launch time and the target planet at arrival time, as shown in Fig. 1-2, is obtained from
\[
C = |R_p - R_L| \quad (1-10)
\]
Since the time of flight \(T_f \) and the launch and arrival positions \(R_L \) and \(R_p \) are known, only the semimajor axis remains to be found by iterative solution of Eq. 1-9. After the semimajor axis \(a \) is obtained, the heliocentric velocities of the probe at launch and arrival times \(V_L \),

![Fig. 1-1. Heliocentric-transfer geometry](image1)

![Fig. 1-2. In-plane-transfer geometry](image2)

*In this Report, the interest is only in transfers which have the same rotational motion about the Sun as do the planets: thus, \(0 \leq i \leq \pi/2 \).
and V_p may be evaluated from Eq. 1–5 under the conditions $R = R_L$ and $R = R_p$. The path angles Γ_L, Γ_p and true anomalies v_L, v_p at launch and arrival times4 may also be evaluated from Eqs. 1–7 and 1–8 under the same conditions.

Finally, the desired end result, the hyperbolic-excess velocity V_{hL} relative to the launch planet, may be found (Fig. 1–3) by

$$V_{hL} = V_L - V_1$$

(1–11)

where V_1 is the velocity of the launch planet at launch time.

B. Launch-Planet Escape Hyperbola

The key result from the solution of heliocentric transfer is the hyperbolic-excess velocity vector V_{hL} at launch. The reason for the importance of this vector is that it tells the direction in which the probe must be traveling relative to the launch planet when on the point of leaving the planet's gravitational influence. There are an infinite number of escape trajectories (all hyperbolas) which can have the same hyperbolic-excess velocity vector. However, only a portion of these are practical for use when related to existing launch sites and boost-vehicle constraints. For example, it would be ridiculously costly in payload—and impractical—to shoot a vehicle straight up. Criteria for selection of a family of feasible escape trajectories are given below.

1. **Assumptions**

 The solution of the escape phase of motion is obtained under the following assumptions: (1) The probe is acted on only by the gravitational force of the launch planet, and (2) the oblateness effects of the launch planet are neglected.

 The details of quadrant choice for these angles are found in Ref. 3.

The direction of the asymptote of the escape hyperbola is found by normalizing the hyperbolic-excess vector V_{hL}. The injection energy C_3 of the escape hyperbola2 is found by squaring the hyperbolic-excess speed, or

$$C_3 = V_{hL}^2$$

(1–12)

Thus, in contrast to the heliocentric problem, the launch planet is now "massy," whereas the influence of the Sun is neglected. However, the hyperbolic-excess velocity vectors found by solving the heliocentric problem are used as a starting point to solve the escape problem.

2. **Size and Shape of Escape Hyperbola**

 As previously stated, only some of the infinite number of escape trajectories are practical. Two of the practical aspects of a set of trajectories are the sizes and shapes of the hyperbolas.

 Size is basically determined by the energy C_3, which, in turn, is a function of boost-vehicle capability. For boost vehicles in use at this writing (or shortly to be available), values of energy less than or equal to 25 km2/sec2 are considered reasonable. The larger the value of energy that the booster is required to deliver, the smaller the payload and launch period over which the vehicle may be fired.

 The shape of the hyperbola is determined by its eccentricity, which is a function of both the energy and the perifocal distance, according to

 $$e = 1 + \frac{R_p C_3}{GM}$$

(1–13)

where R_p is the perifocal distance and GM is the universal gravitational constant times the mass of the launch planet. From Eq. 1–13, it can be seen that, for a fixed perifocal distance, the eccentricity increases linearly with the energy. The value of perifocal distance is not arbitrary, but depends strongly on the boost-vehicle trajectory. It has been shown (Ref. 4) that, in the great majority of cases, it is necessary and desirable to use a circular parking orbit as part of the preinjection phase of the escape trajectory. It is, further, an interesting fact that the altitude of the parking orbit determines the perifocal distance. If h is the parking-orbit altitude and R_o is the launch planet's radius, then, to an extremely close degree of approximation,

$$R_p = R_o + h$$

(1–14)

C_3 is actually twice the total energy per unit mass; i.e., the *vis viva* integral.
or the perifocal distance is equal to the launch-planet-centered radius of the parking orbit. In Ref. 4, it also has been shown that the lowest possible parking orbit (80–100 nm) allows greatest payload capability. Thus, using 100 nm for the parking-orbit altitude, a practical value of perifocal distance is 6560 km. The perifocal distance will vary only slightly about this value for other parking-orbit altitudes, or even for direct-ascent-type preinjection trajectories. Therefore, both the size and shape are essentially determined by the energy alone, which is found from Eq. 1-12.

Given the size and shape of the escape hyperbola, its planar orientation must be determined. This can be done by considering two vectors: (1) the direction of the hyperbolic-excess vector, denoted by a unit vector S, and (2) a unit vector R directed from the center of the launch planet to the launch site. The vehicle’s flight plane will essentially be determined by these two vectors, as shown in Fig. 1-4. A unit normal W to the launch-planet-centered flight plane is determined by

\[W = \frac{R \times S}{|R \times S|} \]

(1-15)

with the constraint that the Z component of W is always positive.

Since R is a function of time, according to the rotation rate of the launch planet, the planar orientation must continually change. In effect, this says that the launch azimuth is a continuous function of launch time.

A detailed description of the geometrical aspects of the launch-planet ascent trajectory is not given here, but may be found in Ref. 4.

C. Calculation of Differential Corrections

The calculation of differential corrections for interplanetary trajectories may be accomplished in several ways and depends on the choice of independent and dependent variables. In this Report, a numerical differentiating scheme is used. Basically, the independent variables—

the injection energy C, declination \(\Phi_s \), and right ascension \(\Theta_s \) of the outgoing asymptote S of the escape hyperbola—are varied, one at a time, to produce variations in the dependent variables—the components of the impact parameter \(\mathbf{B} \) and the time-of-flight \(T_r \).

The impact parameter \(\mathbf{B} \) is defined as a vector originating at the center of the target planet and directed perpendicular to the incoming asymptote of the target-centered approach hyperbola (Fig. 1-5). The impact parameter \(\mathbf{B} \) is resolved into two components which lie in a plane normal to the incoming asymptote \(\mathbf{S} \). The orientations of the reference axes in this plane are arbitrary, but one is usually selected to lie in a fixed plane. Thus, define a unit vector \(\mathbf{T} \), lying in the ecliptic plane, according to

\[\mathbf{T} = \frac{\mathbf{S} \times \mathbf{K'}}{|\mathbf{S} \times \mathbf{K'}|} \]

(1-16)

where \(\mathbf{K'} \) is a unit vector normal to the ecliptic plane. The remaining axis is then given by a unit vector \(\mathbf{R} \), defined by

\[\mathbf{R} = \mathbf{S} \times \mathbf{T} \]

(1-17)

Figure 1-6 illustrates the orientation of the \(\mathbf{R, S, T} \) target coordinates.

The impact parameter \(\mathbf{B} \) lies in the \(\mathbf{R-T} \) plane and has miss components \(\mathbf{B} \cdot \mathbf{T} \) and \(\mathbf{B} \cdot \mathbf{R} \). The condition \(\mathbf{B} \cdot \mathbf{T} = \mathbf{B} \cdot \mathbf{R} = 0 \) denotes vertical impact on the target. Thus, \(\mathbf{B} \cdot \mathbf{T} \), \(\mathbf{B} \cdot \mathbf{R} \), and \(T_r \) are the three target dependent variables. If \(Q_i \) represents a set of generalized independent variables, such as injection position and velocity or other convenient variables, then the partial derivatives \(\partial \mathbf{B} \cdot \mathbf{T} / \partial Q_i \), \(\partial \mathbf{B} \cdot \mathbf{R} / \partial Q_i \), \(\partial T_r / \partial Q_i \) are first-order differential corrections or error coefficients relating miss at the target and flight-time errors to the independent variables.

A convenient set of independent variables for interplanetary trajectories is the \(\textit{in vivo} \) injection energy \(C \), the declination \(\Phi_s \), and the right ascension \(\Theta_s \) of the asymptote of the escape hyperbola. These variables essentially describe the launch hyperbolic-excess velocity vector \(\mathbf{V}_{hl} \).
Fig. 1-4. Vehicle flight plane
Fig. 1–5. Impact parameter

Fig. 1–6. The R, S, T target coordinate system
II. DETAILED EQUATIONS FOR TRAJECTORY COMPUTATIONS

In Section I, a summary was given of the physical model used to generate the parameters of Venus and Mars trajectories. The purpose of this Section is to present, in full detail, the equations of the Jet Propulsion Laboratory's Heliocentric Conic Trajectory Program\(^6\), including the equations of Lambert's Theorem\(^7\), which were developed for this investigation. The equations were coded for the Laboratory's IBM 7090 digital computer.

This program has proved very useful over the past few years in studying and analyzing interplanetary trajectories. Some of the results of these studies are presented graphically in Sections III to XVIII of this Report. The program has been devised for calculation of trajectories from any planet in the solar system to any other planet. In addition, by adding the appropriate orbital elements, trajectories to comets or to any body of known motion may be computed.

The Heliocentric Conic Trajectory Program is divided into four major sections:

1. **Determination of Position at Launch and Arrival**

 For any given time, the positions of the planets can be obtained from the ephemerides, referenced to a given coordinate system and epoch. For the present purposes, the heliocentric ephemerides of the planets, referenced to the mean equator and equinox of 1950.0, were selected. From these ephemerides, one may find the position vector \(\mathbf{R}_L \) of the launch planet at launch time \(T_L \), the position vector \(\mathbf{R}_T \) of the target planet at arrival time \(T_a \), and the position vector \(\mathbf{R}_a \) of the launch planet at arrival time. For practical and computational purposes, it is convenient to transform these coordinates to a heliocentric ecliptic, mean-of-launch-date system. Thus, two rotation matrices must be computed. First, a rotation is made from heliocentric equatorial coordinates, mean of 1950.0, to heliocentric ecliptic, mean of launch date. This is accomplished by means of the matrix \(A \), whose elements are given below (as obtained from Ref. 5):

 \[
 \begin{align*}
 a_{11} &= 1 - 0.00029697T^2 - 0.00000013T^3 \\
 a_{12} &= -a_{21} = -0.00029697T^2 - 0.00000013T^3 \\
 a_{13} &= -a_{31} = -0.00971711T + 0.00000207T^2 + 0.00000096T^3 \\
 a_{14} &= -a_{41} = -0.00010859T \sin T + 0.000000031T^3 \\
 a_{21} &= 1 - 0.00024976T^2 - 0.00000015T^3 \\
 a_{22} &= 1 - 0.00024976T^2 - 0.00000015T^3 \\
 a_{23} &= a_{32} = -0.00010859T^2 - 0.00000003T^3 \\
 a_{24} &= a_{34} = 1 - 0.00004721T^2 + 0.00000002T^3 \\
 a_{31} &= -0.00010859T \sin T + 0.000000031T^3 \\
 a_{32} &= 1 - 0.00024976T^2 - 0.00000015T^3 \\
 a_{33} &= 1 - 0.00024976T^2 - 0.00000015T^3 \\
 a_{34} &= a_{43} = 1 - 0.00004721T^2 + 0.00000002T^3 \\
 a_{41} &= a_{43} = 1 - 0.00004721T^2 + 0.00000002T^3 \\
 a_{42} &= a_{44} = 1 - 0.00004721T^2 + 0.00000002T^3 \\
 a_{43} &= a_{44} = 1 - 0.00004721T^2 + 0.00000002T^3 \\
 a_{44} &= 1 - 0.00004721T^2 + 0.00000002T^3 \\n \end{align*}
\]

where \(T \) is the number of Julian Centuries of 36,525 days past the epoch 1950.0.

The second rotation transforms the coordinates from heliocentric equatorial, mean of launch date, to heliocentric ecliptic, mean of launch date. This is accomplished by means of the matrix \(E \):

\[
E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \epsilon & \sin \epsilon \\ 0 & -\sin \epsilon & \cos \epsilon \end{bmatrix}
\]

(2-2)
where ϵ is the mean obliquity of the ecliptic on the launch date and $\sin \epsilon$ and $\cos \epsilon$ are approximated by the following equations from Ref. 6:

$$\begin{align*}
\sin \epsilon &= \sin \epsilon_0 + P(T) \cos \epsilon_0 - \frac{1}{2} P^2(T) \sin \epsilon_0 \\
\cos \epsilon &= \cos \epsilon_0 - P(T) \sin \epsilon_0 - \frac{1}{2} P^2(T) \cos \epsilon_0
\end{align*} \tag{2-3}$$

where

$$P(T) = -0.00022711 T - 0.0000000286 T^2 + 0.00000000878 T^3 \tag{2-4}$$

and ϵ_0 is the mean obliquity of the ecliptic for 1950.0.

Now, in general, the components of the position vectors R_L, R_{LA}, and R_p are found in mean-equinox, ecliptic-of-launch-date coordinates by

$$
\begin{pmatrix}
R_L \\
R_{LA} \\
R_p
\end{pmatrix} = EA
\begin{pmatrix}
R'_L \\
R'_{LA} \\
R'_p
\end{pmatrix} \tag{2-5}
$$

The unit vectors R'_L, R'_p may then be found:

$$
\begin{align*}
R'_L &= \frac{R_L}{R_L} \\
R'_p &= \frac{R_p}{R_p}
\end{align*} \tag{2-6}
$$

where $R_L = |R_L|$ and $R_p = |R_p| \tag{2-7}$

The heliocentric central angle Ψ, i.e., the angle between R_L and R_p, is computed from

$$
\begin{align*}
\cos \Psi &= \frac{R_L \cdot R_p}{R_L R_p} \\
\sin \Psi &= \text{sgn} \left[(R_L \times R_p) \cdot K' \right] (1 - \cos^2 \Psi)^{\frac{1}{2}}
\end{align*} \tag{2-8}
$$

where K' is the unit vector normal to the ecliptic plane in the direction of the ecliptic north pole.

The unit vector W normal to the probe's orbit plane, is found from the vector equation

$$W = \frac{R_L \times R_p}{R_L R_p \sin \Psi} \tag{2-9}$$

Subsequently, the inclination of the orbit to the ecliptic plane i may be found from

$$\cos i = W \cdot K' \tag{2-10}$$

where $0 \leq i \leq \pi/2$ are the only cases of interest to this program.

Essentially, calculation of the W vector determines the planar orientation of the transfer conic.

2. Application of Lambert's Theorem

As shown in Section I, the semimajor axis a may be found, given the flight time T_F, R_L, and R_p. One uses Lambert's Theorem, which states:

The transfer time between any two points on an ellipse is a function of the sum of the distances of each point from the focus, the distance between the points, and the semimajor axis of the ellipse.

Or, functionally,

$$T_F = T_F (R_L + R_p, C, a) \tag{2-11}$$

where C is the chord distance from R_L to R_p, or

$$C = |R_p - R_L| \tag{2-12}$$

Now, since $T_F, R_L, R_p,$ and C are known, Lambert's Theorem can be used to solve for a by an iterative process described below.

First, the transfer time T_m of the minimum-energy trajectory is computed from Eqs. 2-13 to 2-22.

The minimum semimajor axis a_m for an ellipse can be found from

$$a_m = (R_L + R_p + C)/4 \tag{2-13}$$

and e_m, the eccentricity of the orbit with a minimum semimajor axis, is expressed by

$$e_m = \sqrt{1 - \frac{p_m}{a_m}} \tag{2-14}$$

where p_m is the semilatus rectum obtained by

$$p_m = \frac{2(2a_m - R_L) (2a_m - R_p)}{C} \tag{2-15}$$

The true anomaly at launch ν_{Lm} is found from Eqs. 2-16 and 2-17. First, compute the angle ϕ:

$$\cos \phi = \frac{R_L - a_m (1 - e_m^2)}{e_m R_L} \tag{2-16}$$

where ϕ is an angle from the aphelion to R_L.

It can then be shown from the geometry of the minimum-energy ellipse (Fig. 2-1) that

$$\begin{align*}
\nu_{Lm} &= \pi - \phi \quad 0 < \phi < \pi \\
\nu_{Lm} &= \pi + \phi \quad \pi < \phi < 2\pi
\end{align*} \tag{2-17}$$
The true anomaly at arrival on the minimum-energy ellipse \(\nu_{pm} \) can be found from

\[
\nu_{pm} = \nu_{Lm} + \Psi
\]

(2-18)

Now, the mean anomaly \(M_{Lm} \) at launch in the ellipse can be found from

\[
M_{Lm} = E_{Lm} - e_m \sin E_{Lm}
\]

(2-19)

where \(E_{Lm} \), the eccentric anomaly, is given by the equations

\[
\begin{align*}
\cos E_{Lm} &= \frac{e_m + \cos \nu_{Lm}}{1 + e_m \cos \nu_{Lm}} \\
\sin E_{Lm} &= \frac{\sqrt{1 - e_m^2} \sin \nu_{Lm}}{1 + e_m \cos \nu_{Lm}}
\end{align*}
\]

(2-20)

The mean anomaly at arrival \(M_{pm} \) can be obtained in a similar manner. Then, the mean-anomaly difference is

\[
\Delta M_m = M_{pm} - M_{Lm}
\]

(2-21)

By use of this difference, \(T_m \), the time for a minimum-energy trajectory from launch to target, can be found from the equation

\[
T_m = \frac{a_m^{3/2} \Delta M_m}{2\pi}
\]

(2-22)

where the units are years and astronomical units (au).

Next, the semimajor axis \(a \), corresponding to the given flight time \(T_F \), is obtained. At this point, there can be two types of trajectories, \(T_F > T_m \) or \(T_F < T_m \).

For \(T_F > T_m \), let \(a_{i+1} = (i + 1)a_m \), until \(T_F(a_{i+1}) > T_F \).

For \(T_F < T_m \), let \(a_{i+1} = (i + 1)a_m \), until \(T_F(a_{i+1}) < T_F \).

where \(i = 1, 2 \ldots n \), and \(a_1 = a_m \). Note that \(T_F(a_i) \) is the time of flight corresponding to \(a_i \), and is calculated from Eqs. 2-24 to 2-29 and 2-19 to 2-22; here, however, the subscript \(i \) is used in place of \(m \). When \(T(a_i) < T_F < T(a_{i+1}) \), then \(a_i < a < a_{i+1} \) and a slope-intercept method is used to obtain an approximation on \(a \). Using \(a_{i+1} \), for a first estimate on \(a_i \), and using

\[
a_j = a_{j-1} - \Delta a \left[\frac{T_F - T(a_{j-1})}{T(a_i) - T_F} \right]
\]

(2-23)

for subsequent estimates, the value of \(a_j \) is used for \(a \) to calculate \(\alpha \) and \(\beta \).

\[
\beta = \cos^{-1} \left[\frac{C^2 + R_L^2 - R_p^2 - 4a (R_p - R_L)}{2C(2a - R_L)} \right] \quad 0 < \beta < \pi
\]

\[
\alpha = \cos^{-1} \left[\frac{R_L - R_p \cos \Psi}{C} \right] \quad 0 < \alpha < \pi
\]

(2-24)

Now, the linear eccentricity \(X \) can be found from
\[X^2 = 4a^2 - 2R_L (2a - R_L) \left[1 + \cos (|a - \beta|) \right] \quad (2-25a) \]
\[X^2 = 4a^2 - 2R_L (2a - R_L) \left[1 + \cos (|a + \beta|) \right] \quad (2-25b) \]

Equation 2-25a is used if \(T_f > T_m \) and \(\Psi > \pi \); or if \(T_f < T_m \) and \(\Psi < \pi \). However, Eq. 2-25b applies if \(T_f > T_m \) and \(\Psi < \pi \); or if \(T_f < T_m \) and \(\Psi > \pi \).

Then, the true anomaly at launch is found from

\[\nu_L = \]

\[T_f < T_m \quad \Psi > \pi \quad \Psi < \pi \quad T_f > T_m \quad \pi - \gamma \]

\[\pi - \gamma \quad a_m < a < a_p \]

\[\pi + \gamma \quad a_p < a \]

\[a_A < a \]

\[R_P > R_L \]

\[R_P < R_L \]

\[\pi - \gamma \quad a_m < a < a_A \]

\[\pi + \gamma \quad a_p < a \]

\[a_A < a \]

\[R_P > R_L \]

\[R_P < R_L \]

\[\pi - \gamma \quad a_m < a < a_A \]

\[\pi + \gamma \quad R_P > R_L \]

\[(2-26) \]

and \(\gamma \) is found from

\[\cos \gamma = \frac{X^2 + 4a R_L - 4a^2}{2 X R_L} \quad (2-27) \]

Also, \(a_A \) and \(a_p \), the semimajor-axis limits, are found from

\[a_A = \left(\frac{\frac{R_p}{R_p - R_L} - \frac{R_L}{R_L - R_p \cos \Psi}}{1 + \frac{R_p - R_L}{R_L - R_p \cos \Psi}} \right) \quad R_P > R_L \quad (2-28) \]

\[a_p = \left(\frac{\frac{R_L}{R_L - R_p} - \frac{R_p}{R_p - R_L \cos \Psi}}{1 + \frac{R_p - R_L}{R_L - R_p \cos \Psi}} \right) \quad R_P > R_L \]
If \(R_L > R_p \), \(a_L \) and \(a_p \) are interchanged. The true anomaly at arrival \(v_p \) is found from
\[
v_p = v_L + \psi \\
0 < v_p < 2\pi
\]
and the eccentricity \(e \) is found from
\[
e = \frac{X}{2a} \quad (2-29)
\]
Then, \(T(a_j) \) is recalculated using Eqs. 2-19 to 2-22.

When \(\left| T_r - T(a_j) \right| < \epsilon \), a predetermined convergence criterion, the conic is considered to be the one desired, and \(a(=a_n), e, v_L, v_p \) are the parameters of the heliocentric transfer orbit.

At this point, the transfer orbit is completely determined. Other key quantities are calculated as shown in the following paragraphs.

3. Calculation of Velocity Vectors for Probe and Planet

The heliocentric velocity of the probe \(V \) (with the subscript \(L \) for launch time or \(p \) for arrival time), can be calculated by using the equation
\[
V = \frac{V}{R} \left[(W \times R) \cos \Gamma + R \sin \Gamma \right] \quad (2-30)
\]
where
\[
V = \sqrt{(GM_S) \left(\frac{2}{R} - \frac{1}{a} \right)} \quad (2-31)
\]
The path angle \(\Gamma \) can be found by the expression
\[
\sin \Gamma = \frac{R}{\sqrt{(1 - e^2)(2a - R)}} e \sin \nu \quad (2-32)
\]
where
\[
0 \leq \Gamma \leq \frac{\pi}{2} \text{ if } 0 \leq \nu \leq \pi
\]
\[-\frac{\pi}{2} \leq \Gamma \leq 0 \text{ if } \pi \leq \nu \leq 2\pi
\]
The velocity vectors \(V_1 \) and \(V_2 \) of the launch and target planets, respectively, are found in a similar manner. In this calculation, however, the semimajor axis \(a \), the path angle \(\Gamma \), and the eccentricity of the orbit \(e \) all refer to the respective planet's orbit around the Sun. The true anomaly \(\nu \) of the planet in its orbit at any time can be found from Eqs. 2-33 to 2-36.

The unit vector \(W \) normal to the planet's orbit plane is given by
\[
W = \sin \Omega \sin i, \cos \Omega \sin i, \cos i \quad (2-33)
\]
where \(i \) is the inclination of the planet's orbital plane to the ecliptic and \(\Omega \) is the longitude of the planet's ascending node.

The unit vector \(P \) directed toward the perihelion is expressed by
\[
P_x = \cos \omega \cos \Omega - \sin \omega \sin \Omega \cos i \] \[
P_y = \cos \omega \sin \Omega + \sin \omega \cos \Omega \cos i \] \[
P_z = \sin \omega \sin i \quad (2-34)
\]
where \(\omega \) is the argument of perihelion of the planet.

The unit vector \(Q \) right-handed to \(P \) and \(W \), is obtained from
\[
Q = W \times P \quad (2-35)
\]

where, again, \(R^1 \) is the Sun–planet unit vector.

Numerical values for the planet elements \(a, e, i, \Omega, \) and \(\omega \) (from Ref. 7) are presented in Table 2-1.

Finally, the hyperbolic-excess velocity vector at launch or arrival \(V_h \) can be found from
\[
V_h = V - V_{\text{planet}} \quad (2-36)
\]

4. Calculation of Various Trajectory Parameters

To assist the trajectory engineer in selecting and designing interplanetary trajectories, various key trajectory parameters are computed. The formulas for these are given below.

The angle \(\gamma \) between the hyperbolic-excess velocity vector and the planet's orbital plane can be found at launch and arrival by
\[
\sin \gamma = \frac{W \cdot V_h}{V_h} \quad -\frac{\pi}{2} \leq \gamma \leq \frac{\pi}{2} \quad (2-37)
\]

The right ascension \(\Theta \) and the declination \(\Phi \) of the asymptote (launch or arrival) can be found by use of the expressions
\[
\sin \Phi = S_x \quad -\frac{\pi}{2} \leq \Phi \leq \frac{\pi}{2} \quad (2-38)
\]
Table 2-1. Mean planet elements

<table>
<thead>
<tr>
<th>Planet</th>
<th>Semimajor axis a, au</th>
<th>Eccentricity e</th>
<th>Inclination to ecliptic i, deg</th>
<th>Longitude of ascending node Ω, deg</th>
<th>Argument of perihelion ω, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.387098</td>
<td>0.205625 + 0.000207*</td>
<td>7.003819 + 0.001757</td>
<td>47.737778 + 1.185007</td>
<td>28.927778 + 0.369447</td>
</tr>
<tr>
<td>Venus</td>
<td>0.723331</td>
<td>0.006793 - 0.000050F</td>
<td>3.394264 + 0.001257</td>
<td>76.236389 + 0.905567</td>
<td>54.619305 + 0.50139T</td>
</tr>
<tr>
<td>Earth</td>
<td>1.000000</td>
<td>0.016729 - 0.000042F</td>
<td>0</td>
<td>102.078056 + 1.71667T</td>
<td>102.078056 + 1.71667T</td>
</tr>
<tr>
<td>Mars</td>
<td>1.523679</td>
<td>0.093357 + 0.000094F</td>
<td>1.849986 - 0.000639F</td>
<td>49.173611 + 0.77389T</td>
<td>285.965000 + 1.06667T</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.2027</td>
<td>0.048417 + 0.000164F</td>
<td>1.305875 - 0.005694F</td>
<td>99.948611 + 1.01056T</td>
<td>273.577222 + 0.59944T</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.546</td>
<td>0.055720 - 0.000345F</td>
<td>2.490583 - 0.003889F</td>
<td>113.226806 + 0.87306T</td>
<td>338.850694 + 1.08528T</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.20</td>
<td>0.0471 + 0.00027F</td>
<td>0.772792 + 0.000639F</td>
<td>73.726528 + 0.49861T</td>
<td>96.129028 + 1.11250T</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.09</td>
<td>0.00872 + 0.000047F</td>
<td>1.774486 - 0.009537F</td>
<td>131.230833 + 1.09889T</td>
<td>272.935934 - 0.43222T</td>
</tr>
<tr>
<td>Pluto</td>
<td>39.5</td>
<td>0.247</td>
<td>17.140000 - 0.005567F</td>
<td>109.63750 + 1.35806T</td>
<td>113.860694 + 0.03083T</td>
</tr>
</tbody>
</table>

*Measured in Julian Centuries from 1950.0

and

$$
\cos \Theta = \frac{S_x}{\sqrt{S_x^2 + S_y^2}} \quad \sin \Theta = \frac{S_y}{\sqrt{S_x^2 + S_y^2}} \quad 0 \leq \Theta \leq 2\pi \quad (2-39)
$$

where

$$
S = \frac{V_h}{E^2} = (S_x, S_y, S_z) \quad (2-40)
$$

Here, E is the rotation matrix given by Eq. 2-2; S is a unit vector in the direction of the outgoing asymptote when V_h is calculated at launch, and in the direction of the incoming asymptote when V_h is calculated at the target.

Other quantities which are of interest for the heliocentric phase are given in Eqs. 2-41 to 2-48, below:

The communication distance at arrival R_c is expressed by

$$
R_c = |R_c| = R_p - R_{LA} \quad (2-41)
$$

The arrival (or departure) angle α is obtained from

$$
\cos \alpha = \frac{V_{planet} \cdot V_h}{V_{planet} V_h} \quad 0 \leq \alpha \leq \pi \quad (2-42)
$$

The angle ζ_L between the launch hyperbolic-excess velocity and the Sun-launch-planet line at launch is defined by

$$
\cos \zeta_L = \frac{V_{hL} \cdot R_i}{V_{hL}} \quad 0 \leq \zeta_L \leq \pi \quad (2-43)
$$

There are six other angles: ξ_p, the Sun–probe–target angle; ξ_{ti}, the Sun–target–Earth angle; ξ_o, the probe–target–Canopus angle; η_{ti}, the supplement of the angle between the projection of the target–Sun vector on the R–T plane and the T direction; η_{to}, the supplement of the angle between the projection of the target–Earth vector on the R–T plane and the T direction; η_c, the supplement of the angle between the projection of the target–Canopus vector on the R–T plane and the T direction. Here, T is a unit vector lying in the ecliptic plane, given by

$$
T = \frac{S_p \times K'}{|S_p \times K'|} \quad (2-44)
$$

and

$$
\cos \xi_p = -S_p \cdot R_i \quad \cos \xi_{ti} = -S_t \cdot R_{ti} \quad \cos \xi_o = S_o \cdot C \quad (2-45)
$$
where \(\mathbf{C} \) is a unit vector to the star Canopus, and \(\mathbf{R}_c \) is obtained by normalizing \(\mathbf{R}_c \) from Eq. 2--41.

\[
\begin{align*}
\sin \eta_e &= \frac{\mathbf{R} \cdot \mathbf{R}_c}{\sin \xi_p} \\
\cos \eta_e &= \frac{\mathbf{T} \cdot \mathbf{R}_c}{\sin \xi_p} \\
\sin \eta_c &= \frac{\mathbf{R} \cdot \mathbf{C}}{\sin \xi_c} \\
\cos \eta_c &= \frac{\mathbf{T} \cdot \mathbf{C}}{\sin \xi_c}
\end{align*}
\]

where \(0 \leq \eta \leq 2\pi \) (2--46)

The angle \(\sigma_p \) between the projection of the incoming asymptote on the target planet's orbital plane and the target-planet-Sun line at arrival time is defined by

\[
\begin{align*}
\cos \sigma_p &= -\mathbf{R}_c \cdot \mathbf{S}_{pr} \\
\sin \sigma_p &= -\mathbf{S}_{pr} \cdot (\mathbf{W}_z \times \mathbf{R}_c)
\end{align*}
\]

where \(\mathbf{S}_{pr} \), the projection of \(\mathbf{S}_p \) on the target planet's orbital plane, can be found by

\[
\mathbf{S}_{pr} = \frac{\mathbf{S}_p - \mathbf{W}_z (\mathbf{S}_p \cdot \mathbf{W}_z)}{[\mathbf{S}_p - \mathbf{W}_z (\mathbf{S}_p \cdot \mathbf{W}_z)]}
\]

(2-48)

Here, \(\mathbf{W}_z \) is a unit vector normal to the target planet's orbital plane.

B. The Planetocentric-Conic Trajectories

The trajectory near the launch planet is found by application of several conditions:

1. The injection energy \(C_s \) and the direction \(S \) of the outgoing asymptote of the escape hyperbola are obtained from the solution of the heliocentric-transfer problem as given in Section II-A above.

2. The vehicle is launched from a given launch site, specified by its latitude and longitude, into a low-altitude circular parking orbit.

3. After coasting in the parking orbit for a time \(t_o \), as determined below, the final stage ignites and propels the spacecraft to the final injection energy.

4. The parking-orbit altitude plus the launch planet's radius is equal to the perifocal distance of the escape hyperbola. This is a good practical approximation, since it is most efficient to inject the spacecraft into the escape hyperbola near the perifocus.

5. The launch planet is assumed to be spherical in shape.

Given these conditions, the following formulae are used to compute the parameters of the near-launch-planet trajectory.

The eccentricity \(e \) of the launch-planet conic can be computed from

\[
e = 1 + \frac{R_p C_s}{G M_L} \quad (2-49)
\]

where \(R_p \) is the perifocal distance of the near-launch-planet conic, and \(C_s \) is the vis viva energy, defined as

\[
C_s = V^2_{kL} \quad (2-50)
\]

and \(G M_L \) is the universal gravitational constant times the mass of the launch planet. The radius to injection \(R \) is found from

\[
R = \frac{p}{1 + e \cos v} \quad (2-51)
\]

where \(v \) is the true anomaly of injection on the launch-planet escape hyperbola, and \(p \) is the semilatus rectum given by

\[
p = \frac{-G M_L (1 - e^2)}{C_s} \quad (2-52)
\]

The path angle at injection \(\Gamma \) is found from

\[
\cos \Gamma = \frac{\sqrt{p G M_L}}{V R} \quad 0 \leq \Gamma \leq \frac{\pi}{2}, \text{if} \; 0 \leq v \leq \pi
\]

\[
-\frac{\pi}{2} \leq \Gamma \leq 0, \text{if} \; \pi \leq v \leq 2\pi \quad (2-53)
\]

where \(V \), the injection speed, is given by

\[
V = \sqrt{C_s + \frac{2G M_L}{R}} \quad (2-54)
\]

The vector \(\mathbf{W} \), perpendicular to the plane of the conic, can be found by the solution of the two vector equations

\[
\begin{align*}
\mathbf{W} \cdot \mathbf{S} &= 0 \quad \Rightarrow \quad W_x S_x + W_y S_y + W_z S_z = 0 \\
\mathbf{W} \cdot \mathbf{W} &= 1 \quad \Rightarrow \quad W_x^2 + W_y^2 + W_z^2 = 1
\end{align*}
\]

(2-55)
where
\[
W_x = \frac{-(W_y S_x + W_z S_z)}{S_x} \tag{2-56}
\]
and
\[
W_y = \frac{-W_x S_y S_z}{S_x^2 + S_y^2} = \frac{S_x}{S_x^2 + S_z^2} \sqrt{1 - S_z^2 - W_y^2} \tag{2-57}
\]

It should be recalled that \(S \) is a unit vector in the direction of the outgoing asymptote of the escape hyperbola. Thus, a condition is set on \(W_z \):
\[
W_z^2 \leq 1 - S_z^2 \tag{2-58}
\]

From the geometry (Fig. 2-2) of the launch azimuth \(\Sigma_L \) and the launch latitude \(\phi_L \), it can be shown that
\[
W_z = \cos \phi_L \sin \Sigma_L \tag{2-59}
\]

From Eqs. 2-58 and 2-59, the \(W_z^2 \) restrictions can be calculated as a restriction on \(\Sigma_L \), since \(\phi_L \) and \(S \) are fixed:
\[
\sin^2 \Sigma_L \leq \frac{1 - S_z^2}{\cos^2 \phi_L} \tag{2-60}
\]

A vector \(B \), orthogonal to \(S \) and \(W \), is calculated:
\[
B = S \times W \tag{2-61}
\]

Now, let \(P \) be a unit vector in the direction of the perifocus as shown in Fig. 2-3:
\[
P = S \cos \psi + B \sin \psi \tag{2-62}
\]

Then \(Q \) is the unit vector at right angles to \(P \):
\[
Q = S \sin \psi - B \cos \psi \tag{2-63}
\]

The true anomaly \(\psi \) of the outgoing asymptote \(S \) is given by
\[
\cos \psi = -\frac{1}{e} \quad 0 \leq \psi \leq \pi \tag{2-64}
\]

The right ascension \(\Theta_L \) of the launcher can be found from
\[
\cos \Theta_L = \frac{W_x \sin \phi_L \sin \Sigma_L + W_y \cos \Sigma_L}{W_z - 1} \quad 0 \leq \Theta_L \leq 2\pi
\]
\[
\sin \Theta_L = \frac{W_y \sin \phi_L \sin \Sigma_L - W_x \cos \Sigma_L}{W_z - 1} \tag{2-65}
\]

where \(\phi_L \) is the latitude of the launcher. A unit vector \(R_0 \) in the direction of the launcher can be calculated in the vernal-equinox equatorial system by
\[
R_0 = \cos \phi_L \cos \Theta_L \sin \phi_L - \sin \phi_L \sin \phi_L \tag{2-66}
\]

The angle \(\phi \) between the launcher and the perifocus of the conic is given by
\[
\begin{align*}
\cos \phi &= R_0 \cdot P \\
\sin \phi &= R_0 \cdot Q
\end{align*} \quad 0 \leq \phi \leq 2\pi \tag{2-67}
\]

The angle between launch and injection \(\phi_i \) is defined by
\[
\phi_i = 2\pi - \phi + \nu \tag{2-68}
\]

where, again, \(\nu \) is the true anomaly at injection into the escape hyperbola.
A unit vector R^i toward injection is seen in Fig. 2–4 to be

$$R^i = P \cos v + Q \sin v = (R_x, R_y, R_z) \quad (2-69)$$

The injection latitude ϕ is given by

$$\sin \phi = R_z \quad -\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2} \quad (2-70)$$

The right ascension of injection Ω can be found from

$$\cos \Omega = \frac{R_x}{\sqrt{R_x^2 + R_y^2}} \quad 0 \leq \Omega \leq 2\pi \quad (2-71)$$

$$\sin \Omega = \frac{R_y}{\sqrt{R_x^2 + R_y^2}} \quad$$

The longitude of injection θ can be calculated from

$$\theta = \Omega - \Theta_L - \omega t_b + \theta_L \quad 0 \leq \theta \leq 2\pi \quad (2-72)$$

where

- θ_L is the longitude of the launcher
- ω is the rotational rate of the earth
- t_b is the time from launch to injection

Here,

$$t_b = t_1 + t_2 + [\Phi_f - (\Phi_1 + \Phi_2)] k_\phi \quad (2-73)$$

The unit vector to final-stage ignition R^f can be found in a manner similar to that used for R:

$$R^f = P \cos (v - \Phi_2) + Q \sin (v - \Phi_2) \quad (2-77)$$

where

- t_1 is the time of first burn (into the parking orbit)
- t_2 is the time of second burn (into the escape hyperbola)
- Φ_1 is the angle of first burn
- Φ_2 is the angle of final burn
- k_ϕ is the inverse parking-orbit rate = 14.689 sec/deg for a 100-nm Earth parking orbit

The time of coast t_c is given by

$$t_c = [\Phi_f - (\Phi_1 + \Phi_2)] k_\phi \quad (2-74)$$

The relations stated above are illustrated in Fig. 2–5.
The latitude \(\phi_2 \) of final-stage ignition is computed from

\[
\sin \phi_2 = R_{x_2} \quad -\frac{\pi}{2} \leq \phi_2 \leq \frac{\pi}{2}
\]

(2-78)

The right ascension \(\xi_2 \) of final-stage ignition is given by

\[
\begin{align*}
\cos \xi_2 &= \frac{R_{x_2}}{\sqrt{R_{x_2}^2 + R_{y_2}^2}} \\
\sin \xi_2 &= \frac{R_{y_2}}{\sqrt{R_{x_2}^2 + R_{y_2}^2}} \quad 0 \leq \xi_2 \leq 2\pi
\end{align*}
\]

(2-79)

and the longitude \(\theta_e \) of final stage ignition is defined by

\[
\theta_e = \theta + \Theta + \omega \theta_e
\]

(2-80)

The angle \(\Delta \psi \) between injection and the outgoing asymptote is expressed as

\[
\Delta \psi = \psi_i - \psi
\]

The launch time \(T_L \) can be found by

\[
T_L = \frac{\Theta_L - \theta_L - \text{GHA}}{\omega} \quad 0 \leq (\Theta_L - \theta_L - \text{GHA}) \leq 2\pi
\]

(2-81)

where \(\text{GHA} \) is the Greenwich Hour Angle at 0h UT of the launch day as shown in Fig. 2-6, and is obtained from

\[
\begin{align*}
\text{GHA} &= 100°7554260 \\
&\quad + \omega \sin 56°473460 T_d \quad 0 \leq \text{GHA} \leq 2\pi
\end{align*}
\]

(2-82)

Here, \(T_d = \) days past 0h January 1, 1950.

The injection time \(T \) is calculated from

\[
T = T_L + t_b
\]

(2-83)

C. Differential Corrections

As outlined in Section I-C, the calculation of differential corrections, or partial derivatives relating variations in the impact parameter B and flight time \(T_f \) to variations in the hyperbolic-excess velocity vector \(V_{hL} \) at launch, are performed by a numerical differencing technique.*

The basic idea in this technique is to compute a varied or perturbed trajectory and then difference it with the reference case. A small variation \(\Delta V_{hL} \) in the hyperbolic-excess velocity vector is equivalent to a small variation \(\Delta V_L \) in the launch heliocentric-velocity vector. Letting primed quantities denote variables on the perturbed trajectory, the launch heliocentric velocity on this trajectory is, then,

\[
V'_L = V_L + \Delta V_{hL}
\]

(2-84)

where

\[
\begin{align*}
\Delta V_{hL} &= (C_3)^{\frac{1}{2}} \Delta \Phi_r \left[-\sin \phi_s \cos \Theta_s - \sin \phi_s \sin \Theta_s \cos \phi_s \right], \\
&\quad \frac{1}{2} \left[-\phi_s \sin \Theta_s \cos \phi_s \cos \Theta_s, 0 \right], \\
&\quad \frac{1}{2} \left[\cos \phi_s \cos \Theta_s, \cos \phi_s \sin \Theta_s, \sin \phi_s \right],
\end{align*}
\]

(2-85)

where \(\Delta \Phi_r, \Delta \Theta_s \) are small angular variations (0.2 deg), and the energy variation is \(\Delta C_3 = 0.005 C_3 \).

The semimajor axis \(a' \) is obtained from

\[
a' = \frac{R_L}{2 - \frac{V_L^2}{GM_s}}
\]

(2-86)

The radial rate \(R'_L \) is given by

\[
R'_L = \frac{V_L \times R_L}{R_L}
\]

(2-87)

The semilatus rectum \(p' \) and eccentricity \(e' \) are computed from

\[
\begin{align*}
p' &= R_L^2 \left(V_L^2 - \frac{R'_L^2}{GM_s} \right) \\
e' &= \left(1 - \frac{p'}{a'} \right)^{\frac{1}{2}}
\end{align*}
\]

(2-88)

*This method was developed by William Kizner, Research Specialist, Systems Analysis Section, Jet Propulsion Laboratory.
The eccentric anomaly at launch \(E'_L \) is expressed by

\[
\sin E'_L = \frac{R_L \hat{R}'_L}{\varepsilon' (a^2 GM_s)^{1/6}}
\]
\[
\cos E'_L = \frac{1}{\varepsilon'} \left(1 - \frac{R_L}{a'} \right)
\]

(2-89)

The mean anomaly at launch \(M'_L \) is obtained from

\[
M'_L = E'_L - \varepsilon' \sin E'_L
\]

(2-90)

The mean orbital rate \(n' \) is given by

\[
n' = \frac{(GM_s)^{1/6}}{a^{3/2}}
\]

(2-91)

The mean anomaly at the target \(M'_p \) is stated as

\[
M'_p = n' T_p + M'_L
\]

(2-92)

The eccentric anomaly at the target \(E'_p \) is obtained from the expansion

\[
E'_p = E_p + \left(\frac{1}{1 - \varepsilon' \cos E_p} \right) \Delta M
\]

\[
- \frac{1}{2} \left[\frac{\varepsilon' \sin E_p}{(1 - \varepsilon' \cos E_p)^3} \right] \Delta M^2
\]

\[
+ \frac{1}{6} \left[\frac{(3 \varepsilon' \sin E_p)^2 - (1 - \varepsilon' \cos E_p)(\varepsilon' \cos E_p)}{(1 - \varepsilon' \cos E_p)^5} \right] \Delta M^3
\]

if

\[
\cos E_p \geq 0
\]

However,

\[
E'_p = E_p
\]

\[
+ \varepsilon \cos E_p - 1 + \sqrt{(\varepsilon \cos E_p - 1)^2 + (2 \varepsilon \sin E_p) \Delta M}
\]

\[
\frac{e \sin E_p}{e' \sin E_p}
\]

if

\[
\cos E_p < 0
\]

(2-93)

where

\[
\Delta M = M'_p - (E_p - \varepsilon' \sin E_p)
\]

The true anomalies at launch and at the target, \(v'_L \) and \(v'_p \), are found from

\[
\cos v'_L = \frac{\nu' - R_L}{\varepsilon' R_L}
\]

(2-95)

\[
0 < v'_L < \pi \quad \text{if } \dot{R}'_L \text{ is positive}
\]

\[
\pi < v'_L < 2\pi \quad \text{if } \dot{R}'_L \text{ is negative}
\]

\[
\cos v'_p = \frac{\cos E'_p - \varepsilon'}{1 - \varepsilon' \cos E'_p}
\]

\[
\sin v'_p = \frac{(1 - \varepsilon'^2) \sin E'_p}{1 - \varepsilon' \cos E'_p}
\]

(2-96)

The heliocentric central angle \(\psi' \) is given by

\[
\psi' = v'_p - v'_L
\]

(2-97)

The angular momentum \(h' \) is expressed as

\[
h' = R_L \times V'_L
\]

(2-98)

The heliocentric position vector at the target is given by

\[
R'_p = R'_L \cos \psi' + \frac{h'}{h'_L} R_L \sin \psi'
\]

(2-99)

where

\[
R'_p = \alpha' (1 - \varepsilon' \cos E'_p)
\]

(2-100)

A vector in the direction of perihelion with magnitude \(\varepsilon' \) is computed from

\[
\varepsilon' = \frac{V'_L \times h'}{GM_s} - \frac{R_L}{R'_L}
\]

(2-101)

The heliocentric velocity at the target is defined by

\[
V'_p = \frac{h'}{p'} \times \left(\frac{R'_p}{R'_p} + \varepsilon' \right)
\]

(2-102)

The hyperbolic-excess velocity at the target is expressed by

\[
V'_{hp} = V'_p - V_s
\]

(2-103)

The difference between the heliocentric position vectors on the perturbed and reference trajectories is given by

\[
\Delta R'_p = R'_p - R_p
\]

(2-104)

The impact parameter \(B \) is computed from

\[
B = - \frac{(\Delta R'_p \cdot V'_{hp}) V'_{hp}}{V'_{hp}^2} + \Delta R'_p
\]

(2-105)

The flight-time error is stated as

\[
\Delta T_f = \frac{\Delta R'_p \cdot V'_{hp}}{V'_{hp}^2}
\]

(2-106)

The partial derivatives are formed by dividing \(\Delta \Theta_s, \Delta \phi_s, \) and \(\Delta C_s \) into the miss components \(B \cdot T, B \cdot R, \) and flight-time error \(\Delta T_f \). In addition to the component partials, the quantity \(\partial B / \partial Q_i \) is defined by

\[
\frac{\partial B}{\partial Q_i} = \left[\left(\frac{\partial B}{\partial Q_i} \right)^2 + \left(\frac{\partial B}{\partial Q_i} \right)^2 \right]^{1/2}
\]

(2-106)
The three partials, $\partial B/\partial \Theta_b$, $\partial B/\partial \phi_b$, $\partial B/\partial C_3$, are important measures of the error sensitivity of a trajectory.

The effect of uncertainty in the knowledge of the astronomical-unit-to-kilometer conversion factor on target miss and flight time may be determined by the following formulae:

$$\frac{\partial B \cdot T}{\partial au} = \frac{-2C_3}{au} \frac{\partial B \cdot T}{\partial C_3}$$

$$\frac{\partial B \cdot R}{\partial au} = \frac{-2C_3}{au} \frac{\partial B \cdot R}{\partial C_3}$$

(2-107)

whence

$$\frac{\partial B}{\partial au} = \frac{2C_3}{au} \frac{\partial B}{\partial C_3}$$

(2-108)

and

$$\frac{\partial T_f}{\partial au} = \frac{-2C_3}{au} \frac{\partial T_f}{\partial C_3}$$

(2-109)

where au is the astronomical-unit-to-kilometer conversion factor

The effect of solar-radiation pressure acting on the probe may also be evaluated as follows: In Eq. 2-84, let $\Delta V_{sr} = 0$, but in Eqs. 2-85, 2-87, 2-89, 2-91, and 2-101, vary GM_0 by adding an increment ΔGM_0. This procedure gives rise to a varied trajectory from which the impact parameter B and flight-time error ΔT_f may be obtained. The partials $\partial B/\partial GM_0$ and $\partial T_f/\partial GM_0$ may then be calculated. Since the acceleration caused by solar-radiation pressure acts in a direction opposite to the gravitational attraction of the Sun, radiation pressure has the effect of decreasing the Sun's gravitational attraction or decreasing GM_0. A decrease, $\Delta GM_0 = -2.4 \times 10^6$ km3/sec2, corresponds to the solar-radiation pressure acting on a 300-kg spacecraft having a perfectly reflecting area of 3.6 m2. Thus the miss, always being a positive number, is obtained by $\Delta B_{sp} = 2.4 \times 10^6 \partial B/\partial GM_0$, and the corresponding flight-time error is $\Delta T_{rs} = -2.4 \times 10^6 \partial T_f/\partial GM_0$, which is sign-sensitive.
III. DISCUSSION AND EXPLANATION OF RESULTS

A. Introduction

1. Trajectory Computations

Trajectories from Earth to Venus for the period 1962--1970 and from Earth to Mars for the period 1962--1977 were computed on the 7090 digital computer by numerically evaluating the analytical model explained in Sections I and II. Specific trajectory parameters of interest were then automatically plotted and carefully checked and analyzed. Subsequently, 313 graphs were made for 18 different trajectory parameters for each of 12 launch intervals. These graphs comprised:

1. Curves of C_1 (vis viva geocentric energy) vs launch date for minimum-energy trajectories.

2. Curves of 18 key trajectory parameters vs launch date for various vis viva geocentric energies.

2. Trajectory Analysis

Careful analysis of the results shows that as many as four ballistic flight paths to the target planet exist per launch date for a given vis viva geocentric energy, assuming trips of less than one revolution around the Sun; a more extensive analysis might reveal more than four flight paths. In reality, feasible launchings can occur only for small time intervals (1-3 months), when the relative positions of the Earth and target planet are such that the velocity requirements for ballistic transfers can be reasonably achieved by modern boost vehicles. These intervals occur once during each synodic period of the planet. A synodic period is the time interval required for the Earth and target planet to attain successive identical angular relationships in heliocentric longitude.

Thus, favorable launch opportunities occur approximately every 19.2 months for Venus and every 25.6 months for Mars. No trajectory computations were made past 1970 for Venus, or past 1977 for Mars, because of the cyclic behavior in trajectory characteristics. Approximately the same space-fixed geometry of Earth and Venus reoccurs every 8 years, or after 5 Cytherean synodic periods (1.5987 years). A similar cyclic behavior occurs for Mars about every 15 years or after 7 Martian synodic periods (2.1353 years). Thus, the Venus trajectory parameters for 1970 are virtually the same as those for 1962, whereas the parameters for 1977 Mars trajectories are essentially the same as those for 1962. The agreement here, however, is not as good as in the Venus case.

B. Classification of Trajectories

1. Type I and Type II

In observing the variation of any trajectory parameter vs launch date for fixed geocentric energies, it is noted that two separate groups of closed contours, rather than one, are described (see Fig. 3-1). These two sets of energy contours are designated as Type I and Type II trajectories, where Type I trajectories are defined as having heliocentric-transfer angles less than 180 deg, and Type II are those having heliocentric-transfer angles greater than 180 deg. A Type I trajectory traverses less than half-way around the Sun from launch to planet encounter, whereas a Type II trajectory would traverse more than half-way, but less than one full revolution, around the Sun. For a given launch day and energy, then, Type II trajectories require greater flight times than do Type I. The existence of these two sets of energy contours can be attributed to the fact that the orbits of Earth and the destination planet are not coplanar.

If the Earth and planet had coplanar orbits, only a single group of energy contours would exist. Within this single group of energy contours would be the well-known Hohmann's transfer orbit, if the orbits of Earth and the destination planet were circular as well as coplanar. The Hohmann minimum-energy trajectory would remain constant for each synodic period, retaining the same flight time and the same vis viva geocentric energy. However, even though the orbital planes of Venus and Mars are inclined to the ecliptic by only 3.39 and 1.85 deg, respectively, the three-dimensional aspect of their relationship with Earth strongly affects the free-flight trajectory and causes the single group of trajectory contours to split into two distinct parts, thus necessitating the designation of Type I and Type II trajectories.

In Fig. 3-1, note the small group of closed contours within the Type I group at the time interval around December 10. This small group has been designated as Type I-A and, again, can be attributed only to the non-coplanar relationship between the orbits of Venus and Earth. Trajectory parameters for Mars Type II transfers were not plotted for this Report; it was believed when this task began that Type II trajectories to Mars would not be used in ballistic transfers because of the long flight times and large Earth-to-probe distances at encounter. For low-energy transfers, the Mars Type II trajectories have flight times and Earth-probe distances
Fig. 3-1. Venus 1965: Time of flight vs launch date
at encounter far in excess of the corresponding Type I parameters.

2. Class I and Class II

For each of the two types of trajectories or energy contours, trajectories can be further divided into two classes, Class I and Class II. Inspecting a single trajectory contour, one notes that the curve is double-valued. Thus, for a given launch date, two possible trajectories exist for a given geocentric energy within each Type. These two trajectories are designated as Class I and Class II. The Class I trajectory has the lesser heliocentric central angle and, thus, the shorter flight time than that for the Class II trajectory. For a given launch date and geocentric energy, the Type I-Class I trajectory has the shortest flight time and the Type II-Class II trajectory has the longest flight time.

3. Minimum-Energy Trajectories

a. Minimum-energy loci. From the previous discussion, it is seen that a trajectory can be classified as Class I-Type I, Class II-Type I, Class I-Type II, or Class II-Type II. A further distinction must be made, however. Within each Type exist minimum-energy trajectories for each and every launch date. This is the trajectory for each Type requiring the minimum geocentric energy to encounter the planet for a given launch date. The minimum-energy locus can be found for each mission by connecting the points of intersection of vertical tangents with the energy contours of a given parameter, such as flight time. Should one do this for Fig. 3-1, he would obtain curves identical with those of Fig. 3-2, which is thus a graph of minimum vis viva geocentric energy vs launch date to Venus in 1965 for both Type I and Type II trajectories. Note that, for the Type I loci, two minimum points exist on the curve. One occurs on November 12 and has an energy of 0.13153 × 10^6 m^2/sec^2. The other, occurring on December 10, has an energy of 0.14756 × 10^6 m^2/sec^2. The single minimum point on the Type II loci occurs on November 10 and has an energy of 0.07292 × 10^6 m^2/sec^2. For clarity, these trajectories corresponding to the minimum points for each mission are called absolute minimum-energy trajectories. All three minimum points are reflected in Fig. 3-1. Perhaps the next question one would ask is why there are two minimum points for Type I trajectories. As previously mentioned, the only explanation that can be given is that the phenomenon is attributed to the noncoplanar relationship between the orbits of Earth and Venus. It is noted that Venus is very nearly in the ecliptic plane at arrival time for the December 10 trajectory. Similar behavior of trajectories is noted in the minimum-energy curves for Mars 1962, 1969, and 1977 for the Type I loci and Venus 1968 and 1969 for the Type II loci.

b. Absolute minimum-energy trajectories. The existence of absolute minimum-energy trajectories provides useful information concerning the lower bounds on energy requirements and gives a first approximation of launch dates, flight times, and communication distances at encounter, which are tabulated in Table 3-1. Inspection of the Table reveals several interesting characteristics. First, one notes the cyclic recurrence of trajectory characteristics for both planets, as mentioned earlier. The minimum-energy trajectories for Venus in 1962 are very similar to those for Venus in 1970, whereas Mars 1962 trajectories are similar to those for Mars 1977. Note that, for some launch intervals, the Type I minimum energy is less than that for Type II, but for others the reverse is true. The absolute minimum-energy trajectory to Venus (Fig. 3-3) is a Type II trajectory having an energy of 0.059 × 10^6 m^2/sec^2 and a launch date of May 30, 1967; the same trajectory to Mars is of Type I and has an energy of 0.079 × 10^6 m^2/sec^2 and a launch date of May 24, 1971. Note that the minimum energy for Type I transfers to Mars steadily decreases from 1964 to 1971, then abruptly increases in 1973, as shown in Fig. 3-4. The reverse is true for Venus, with the energy steadily increasing to 1965, then dropping abruptly in 1967. Also, the energy required to reach Venus in 1964–1965 for Type I transfers is greater than that required for Mars in the period 1964–1971. This result may seem surprising, but can be explained by observation of two major quantities: the celestial latitude of the target planet at arrival and the Sun–target-planet distance at arrival. Although Venus’ orbit is fairly circular (eccentricity = 0.0068) compared with that of Mars (eccentricity = 0.0934), it is more inclined to the ecliptic (5.39 deg) than that of Mars (1.85 deg). In 1965, for example, the probe encounters Venus when it is quite far out of the ecliptic, causing the energy requirement to rise. In 1967, however, the probe encounters Venus when it is very nearly in the ecliptic, resulting in a near-Hohmann transfer and low energy requirements. Thus, for Venus, energy requirements are closely correlated with the celestial latitude of the planet at encounter, the small variation of Sun–planet distances having little effect. For Mars, the effect of Sun–planet distance is more pronounced. In Table 3-1, note that, as Sun–planet distance decreases, the energy stays almost constant in the interval 1964–1969, as the celestial latitude increases. This increase in latitude tends to offset any reduction in energy requirements which would be caused from the decreasing Sun–planet distance at encounter. In 1971, however, both celestial
Fig. 3-2. Venus 1965: Minimum injection energy vs launch date
Table 3-1. Characteristics of minimum-energy transfer

<table>
<thead>
<tr>
<th>Planet</th>
<th>Trajectory type</th>
<th>Launch date</th>
<th>Flight time, days</th>
<th>Geocentric injection energy, (\text{m}^2/\text{sec}^2 \times 10^8)</th>
<th>Heliocentric central angle, (^\circ)</th>
<th>Sun-planet distance at arrival, 10(^6) km</th>
<th>Earth-planet distance at arrival, 10(^6) km</th>
<th>Celestial latitude of planet at arrival, (^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus</td>
<td>I</td>
<td>8-23-62</td>
<td>114</td>
<td>0.087</td>
<td>132.4</td>
<td>107.5</td>
<td>58</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>9-19-62</td>
<td>166</td>
<td>0.104</td>
<td>230.4</td>
<td>108.2</td>
<td>145</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>3-30-64</td>
<td>112</td>
<td>0.123</td>
<td>126.8</td>
<td>107.8</td>
<td>61</td>
<td>-2.93</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4-9-64</td>
<td>170</td>
<td>0.081</td>
<td>225.4</td>
<td>107.6</td>
<td>137</td>
<td>-0.698</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>11-12-65</td>
<td>108</td>
<td>0.132</td>
<td>129.5</td>
<td>107.6</td>
<td>60</td>
<td>3.31</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>12-10-65</td>
<td>128</td>
<td>0.148</td>
<td>178.2</td>
<td>108.6</td>
<td>114</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>11-10-65</td>
<td>156</td>
<td>0.072</td>
<td>205.3</td>
<td>108.5</td>
<td>112</td>
<td>0.218</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>6-11-67</td>
<td>142</td>
<td>0.065</td>
<td>175.6</td>
<td>107.7</td>
<td>92</td>
<td>-0.082</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>5-30-67</td>
<td>156</td>
<td>0.059</td>
<td>190.4</td>
<td>107.7</td>
<td>94</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>1-13-69</td>
<td>126</td>
<td>0.077</td>
<td>150.5</td>
<td>108.6</td>
<td>70</td>
<td>-0.393</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2-12-69</td>
<td>174</td>
<td>0.125</td>
<td>243.7</td>
<td>108.3</td>
<td>161</td>
<td>-2.59</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>8-19-70</td>
<td>116</td>
<td>0.085</td>
<td>134.5</td>
<td>107.5</td>
<td>58</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>9-16-70</td>
<td>166</td>
<td>0.106</td>
<td>233.6</td>
<td>108.2</td>
<td>145</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Mars	I	10-30-62	232	0.151	158.2	243.5	246	1.06
	IA	11-13-62	290	0.161	178.8	232.1	312	0.010
	II	10-19-62	321	0.099	206.4	231.1	315	-0.070
	I	11-19-64	244	0.090	174.1	231.2	222	-0.047
	II	11-12-64	304	0.088	209.9	220.8	268	-0.911
	I	1-5-67	202	0.091	152.2	221.9	160	-0.833
	II	1-21-67	332	0.085	224.4	206.8	277	-1.672
	I	3-2-69	178	0.088	139.3	209.7	177	-1.75
	IA	5-11-69	284	0.128	178.5	219.9	288	-0.022
	II	4-1-69	294	0.080	200.6	214.8	257	-0.562
	I	5-24-71	210	0.079	156	216.6	164	-0.352
	II	5-10-71	244	0.096	181.1	220.4	189	0.012
	I	7-20-73	192	0.146	141.4	234.2	179	1.16
	II	8-28-73	407	0.160	223.7	242.6	391	0.956
	I	9-15-75	206	0.187	144.7	247.6	221	1.85
	II	9-19-75	379	0.133	220.2	237.0	376	0.440
	I	10-19-77	224	0.170	152.9	247.1	244	1.44
	IA	11-13-77	308	0.226	179.5	232.0	340	-0.001
	II	10-9-77	338	0.108	211.4	232.9	337	0.080

* Actually, twice the total energy per unit mass, or vis viva integral.

** The heliocentric central angle subtended at the Sun between the Sun-Earth line at launch time and the Sun-planet line at arrival time.
Fig. 3-3. Absolute minimum energy for Venus 1962-1977.
Fig. 3-4. Absolute minimum energy for Mars 1962–1977

latitude and Sun–planet distance are nearly minimum at encounter, resulting in low energy requirements. From 1973 on, both quantities increase, with a subsequent steep rise in energy.

C. Launch Period

The curve of minimum geocentric energy vs launch date can be most helpful in determining the maximum allowable launch period for a given geocentric energy. By treating the energy as the independent variable, one finds two extreme launch dates corresponding to a chosen energy (above the minimum energy, of course). The difference between the two launch dates is the permissible launch period for the chosen energy. If a launch period is arbitrarily selected, one can find the required injection energy from the graphs. These energy values
are given in Tables 3–2 to 3–4 for launch periods of 15, 30, 45, and 60 days for Types I and II trajectories to Venus and Mars. In addition, trajectory parameters such as flight time, communication distance at encounter, asymptotic speed relative to the target planet, and geocentric asymptotic declinations are tabulated for each launch interval. For these parameters, the maximum values are given for Class I and Class II trajectories separately. Careful interpretation of these maxima and minima is necessary. They correspond to the largest and smallest values of these parameters under the conditions that the vehicle would be launched within the prescribed launch interval and would have an injection energy lying between the minimum value and the one corresponding to the launch interval. For example, according to Table 3–2 (Venus Type I trajectories), if a probe is launched in the 15-day interval, August 13–28, 1962, and has an injection energy between 0.087×10^8 m2/sec2 (the minimum possible) and 0.09×10^8 m2/sec2 (the energy necessary for a 15-day launch interval) it can have, for Class I transfers, maximum and minimum flight times of 122 and 108 days, maximum and minimum communication distances of 59 and 54 million km, maximum and minimum hyperbolic approach speeds to Venus of 5.92 and 5.40 km/sec, and maximum and minimum geocentric asymptotic declinations of -0.6 and -7.8 deg. Similar boundary values of these parameters for Class II transfers are also given.

The geocentric asymptotic declination is included in Tables 3–2 to 3–4 because it is an important parameter in determining the injection location (Ref. 4) over the Earth's surface. Acceptable values for this parameter are estimated to lie between -54 and $+54$ deg. Values outside this range result in severe restrictions for Cape Canaveral launchings.

D. General Characteristics of Trajectories

After review of the previous paragraphs, there are, no doubt, many questions concerning the characteristics of planetary trajectories that remain unanswered in the reader's mind. A majority of the questions can be answered only by probing deeply into the graphs in Sections IV to XVIII of this Report. In the following discussion, an attempt is made to reveal specific trajectory characteristics of paramount importance, in the hope of answering pertinent questions that might be confronting the reader. These characteristics or properties may be divided into three categories: geocentric, heliocentric, and planetocentric.

1. **Geocentric Parameters**

To describe the probe's outgoing asymptotic direction as it leaves the influence of the Earth, four parameters are plotted as functions of launch date for various energies: (1) declination and (2) right ascension of the outgoing asymptote; (3) celestial latitude of the outgoing asymptote; and (4) the angle between the outgoing asymptote and the Sun–Earth vector.

a. Declination and celestial latitude of outgoing asymptote

As mentioned earlier, perhaps the most important parameter in determining the preinjection trajectory is the declination of the outgoing asymptote. This parameter is equivalent to the declination of the probe measured at the Earth's center (positive if above the Earth's equator) from a few hours to several days past launch. Injection locations over the surface of the Earth and permissible firing windows for a given range of launch azimuths are highly dependent on the asymptotic declinations. From mission to mission, the range in asymptotic declinations varies for a given energy. Notice in Figs. 3–5 to 3–8, for instance, that the ranges in the asymptotic declination for an energy of 0.15×10^8 m2/sec2 are -24 to $+27$ deg, -20 to $+8$ deg, and -28 to $+23$ deg for Venus 1962, 1964, 1965 Type I trajectories, whereas, for Type II trajectories, the ranges are -18 to -64 deg, -5 to $+60$ deg, and -58 to $+20$ deg. In observing all asymptotic-declination curves, one finds that the parameter takes on values as high as ± 80 deg for the energies considered. Both the declination and the right ascension of the outgoing asymptote can be expressed as functions of the celestial latitude γ_L and longitude λ_L of the outgoing asymptote. Now, for a given launch date and flight time to planet encounter, the three parameters C_3, γ_L, and λ_L can be made essentially functions of the path angle of the probe's heliocentric velocity at launch Γ_L, the magnitude of the probe's heliocentric velocity at launch V_L, and, finally, the inclination i of the heliocentric-transfer orbital plane to the ecliptic. The ellipticity of the Earth's heliocentric orbit should also be included, but is a secondary effect (see Fig. 3–9).

The hyperbolic-excess velocity vector V_{hL} is expressed by

$$V_{hL} = R^1 V_L \sin \Gamma_L + (K' \times R^1)(V_L \cos \Gamma_L \cos i - V_E) + K' V_L \cos \Gamma_L \sin i$$

(3-1)

and, since the geocentric injection energy is given by

$$C_3 = V_{hL}^2$$

(3-2)

then

$$C_3 = V_L^2 + V_E^2 - 2V_L V_E \cos \Gamma_L \cos i$$

(3-3)
Table 3-2. Venus Type I transfer characteristics

<table>
<thead>
<tr>
<th>Launch dates</th>
<th>Launch period, days</th>
<th>Geocentric injection energy, $m^2/\text{sec}^2 \times 10^6$</th>
<th>Flight time, days</th>
<th>Communication distance, 10^6 km</th>
<th>Planetarycentric asymptotic speed, km/sec</th>
<th>Declination of geocentric asymptote, deg</th>
<th>Flight time, days</th>
<th>Communication distance, 10^6 km</th>
<th>Planetarycentric asymptotic speed, km/sec</th>
<th>Declination of geocentric asymptote, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 13-Aug 28, 1962</td>
<td>15</td>
<td>0.09</td>
<td>108</td>
<td>122</td>
<td>54</td>
<td>59</td>
<td>5.40</td>
<td>5.92</td>
<td>-7.8</td>
<td>-0.6</td>
</tr>
<tr>
<td>Aug 4-Sept 3, 1962</td>
<td>30</td>
<td>0.0085</td>
<td>101</td>
<td>127</td>
<td>50</td>
<td>60</td>
<td>5.23</td>
<td>6.49</td>
<td>-13.5</td>
<td>0.08</td>
</tr>
<tr>
<td>July 26-Sept 9, 1962</td>
<td>45</td>
<td>0.112</td>
<td>94</td>
<td>135</td>
<td>47</td>
<td>61</td>
<td>5.13</td>
<td>7.18</td>
<td>-18.0</td>
<td>1.6</td>
</tr>
<tr>
<td>July 15-Sept 13, 1962</td>
<td>60</td>
<td>0.1295</td>
<td>88</td>
<td>143</td>
<td>45</td>
<td>62</td>
<td>5.04</td>
<td>7.91</td>
<td>-21.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Mar 22-Apr 6, 1964</td>
<td>15</td>
<td>0.128</td>
<td>104</td>
<td>115</td>
<td>55</td>
<td>61</td>
<td>5.78</td>
<td>6.82</td>
<td>-6.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Mar 14-Apr 13, 1964</td>
<td>30</td>
<td>0.142</td>
<td>96</td>
<td>122</td>
<td>51</td>
<td>63</td>
<td>5.55</td>
<td>7.74</td>
<td>-6.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Mar 5-Apr 19, 1964</td>
<td>45</td>
<td>0.1645</td>
<td>88</td>
<td>128</td>
<td>48</td>
<td>65</td>
<td>5.32</td>
<td>8.71</td>
<td>-6.0</td>
<td>9.8</td>
</tr>
<tr>
<td>Feb 24-Apr 24, 1964</td>
<td>60</td>
<td>0.19475</td>
<td>81</td>
<td>135</td>
<td>46</td>
<td>67</td>
<td>5.13</td>
<td>9.72</td>
<td>-6.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Nov 5-Nov 20, 1965</td>
<td>15</td>
<td>0.1370</td>
<td>99</td>
<td>112</td>
<td>54</td>
<td>64</td>
<td>4.30</td>
<td>5.75</td>
<td>9.2</td>
<td>16.5</td>
</tr>
<tr>
<td>Oct 27-Nov 26, 1965</td>
<td>30</td>
<td>0.1537</td>
<td>91</td>
<td>117</td>
<td>48</td>
<td>75</td>
<td>3.50</td>
<td>6.94</td>
<td>4.9</td>
<td>17.2</td>
</tr>
<tr>
<td>Oct 19-Dec 3, 1965</td>
<td>45</td>
<td>0.1750</td>
<td>84</td>
<td>129</td>
<td>45</td>
<td>94</td>
<td>2.99</td>
<td>7.92</td>
<td>2.0</td>
<td>17.2</td>
</tr>
<tr>
<td>Oct 16-Dec 15, 1965</td>
<td>60</td>
<td>0.183</td>
<td>82</td>
<td>124</td>
<td>44</td>
<td>114</td>
<td>2.91</td>
<td>8.23</td>
<td>-23.5</td>
<td>17.2</td>
</tr>
<tr>
<td>June 8-June 23, 1967</td>
<td>15</td>
<td>0.0842</td>
<td>128</td>
<td>144</td>
<td>81</td>
<td>91</td>
<td>2.81</td>
<td>3.95</td>
<td>-18.5</td>
<td>15.0</td>
</tr>
<tr>
<td>May 30-June 29, 1967</td>
<td>30</td>
<td>0.1065</td>
<td>110</td>
<td>144</td>
<td>60</td>
<td>93</td>
<td>3.31</td>
<td>5.15</td>
<td>-23.7</td>
<td>19.0</td>
</tr>
<tr>
<td>May 21-July 5, 1967</td>
<td>45</td>
<td>0.1344</td>
<td>96</td>
<td>144</td>
<td>51</td>
<td>96</td>
<td>3.45</td>
<td>6.96</td>
<td>-27.4</td>
<td>22.0</td>
</tr>
<tr>
<td>May 12-July 11, 1967</td>
<td>60</td>
<td>0.1700</td>
<td>86</td>
<td>144</td>
<td>47</td>
<td>99</td>
<td>3.62</td>
<td>8.48</td>
<td>-29.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Jan 4 1969—Jan 19 1969</td>
<td>15</td>
<td>0.0805</td>
<td>119</td>
<td>132</td>
<td>66</td>
<td>71</td>
<td>4.53</td>
<td>4.73</td>
<td>-2.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Dec 27 1968—Jan 26 1969</td>
<td>30</td>
<td>0.0894</td>
<td>111</td>
<td>140</td>
<td>61</td>
<td>72</td>
<td>4.45</td>
<td>5.22</td>
<td>-4.0</td>
<td>15.4</td>
</tr>
<tr>
<td>Dec 17 1968—Jan 31 1969</td>
<td>45</td>
<td>0.1035</td>
<td>103</td>
<td>148</td>
<td>56</td>
<td>73</td>
<td>4.26</td>
<td>5.92</td>
<td>-4.4</td>
<td>20.3</td>
</tr>
<tr>
<td>Dec 9 1968—Feb 7 1969</td>
<td>60</td>
<td>0.1315</td>
<td>93</td>
<td>156</td>
<td>51</td>
<td>74</td>
<td>3.63</td>
<td>7.12</td>
<td>-6.8</td>
<td>26.2</td>
</tr>
<tr>
<td>Aug 9 1970—Aug 24 1970</td>
<td>15</td>
<td>0.088</td>
<td>109</td>
<td>122</td>
<td>54</td>
<td>58</td>
<td>5.31</td>
<td>5.80</td>
<td>-8.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>Aug 1-Aug 31 1970</td>
<td>30</td>
<td>0.0965</td>
<td>102</td>
<td>129</td>
<td>51</td>
<td>60</td>
<td>5.15</td>
<td>6.40</td>
<td>-13.6</td>
<td>0</td>
</tr>
<tr>
<td>July 23—Sept 6 1970</td>
<td>45</td>
<td>0.1105</td>
<td>95</td>
<td>137</td>
<td>48</td>
<td>61</td>
<td>5.00</td>
<td>7.13</td>
<td>-18.3</td>
<td>0.7</td>
</tr>
<tr>
<td>July 12—Sept 10 1970</td>
<td>60</td>
<td>0.1272</td>
<td>89</td>
<td>144</td>
<td>45</td>
<td>62</td>
<td>4.88</td>
<td>7.81</td>
<td>-21.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 3-3. Venus Type II transfer characteristics

<table>
<thead>
<tr>
<th>Launch dates</th>
<th>Launch period, days</th>
<th>Geo-centric injection energy, $\mathrm{m^2 \cdot s^2 / km^2 \times 10^3}$</th>
<th>Class I trajectories</th>
<th>Class II trajectories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flight time, Communication distance, Planetocentric asymptotic speed, Declination of</td>
<td>Flight time, Communication distance, Planetocentric asymptotic speed, Declination of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>days, 10^8 km, km/sec</td>
<td>asymptote, deg</td>
<td>days, 10^8 km, km/sec</td>
</tr>
<tr>
<td>Sept 10–Sept 25 1962</td>
<td>15</td>
<td>0.106</td>
<td>162 168 138 149</td>
<td>6.02 6.52</td>
</tr>
<tr>
<td>Sept 2–Oct 2 1962</td>
<td>30</td>
<td>0.1103</td>
<td>159 172 132 153</td>
<td>5.78 6.75</td>
</tr>
<tr>
<td>Aug 24–Oct 8 1962</td>
<td>45</td>
<td>0.118</td>
<td>155 173 125 159</td>
<td>5.48 7.0</td>
</tr>
<tr>
<td>Aug 15–Oct 14 1962</td>
<td>60</td>
<td>0.1275</td>
<td>152 176 118 164</td>
<td>5.17 7.23</td>
</tr>
<tr>
<td>Mar 31–Apr 15 1964</td>
<td>15</td>
<td>0.0835</td>
<td>165 174 130 141</td>
<td>5.20 5.55</td>
</tr>
<tr>
<td>Mar 23–Apr 22 1964</td>
<td>30</td>
<td>0.090</td>
<td>160 177 124 146</td>
<td>5.06 5.70</td>
</tr>
<tr>
<td>Mar 15–Apr 29 1964</td>
<td>45</td>
<td>0.1007</td>
<td>155 181 119 152</td>
<td>4.92 5.98</td>
</tr>
<tr>
<td>Mar 7–May 6 1964</td>
<td>60</td>
<td>0.114</td>
<td>151 185 113 158</td>
<td>4.78 6.30</td>
</tr>
<tr>
<td>Nov 3–Nov 18 1965</td>
<td>15</td>
<td>0.0761</td>
<td>150 161 108 114</td>
<td>4.18 4.43</td>
</tr>
<tr>
<td>Oct 25–Nov 24 1965</td>
<td>30</td>
<td>0.0850</td>
<td>144 167 103 116</td>
<td>4.18 4.76</td>
</tr>
<tr>
<td>Oct 16–Nov 30 1965</td>
<td>45</td>
<td>0.0993</td>
<td>138 173 99 117</td>
<td>4.18 5.19</td>
</tr>
<tr>
<td>Oct 6–Dec 5 1965</td>
<td>60</td>
<td>0.1197</td>
<td>133 178 93 118</td>
<td>4.0 5.68</td>
</tr>
<tr>
<td>May 23–June 7 1967</td>
<td>15</td>
<td>0.0614</td>
<td>147 160 92 93</td>
<td>3.56 4.02</td>
</tr>
<tr>
<td>May 9–June 1 1967</td>
<td>30</td>
<td>0.078</td>
<td>147 171 87 96</td>
<td>3.56 4.88</td>
</tr>
<tr>
<td>Apr 28–June 12 1967</td>
<td>45</td>
<td>0.0978</td>
<td>147 181 83 113</td>
<td>2.98 5.49</td>
</tr>
<tr>
<td>Apr 21–June 20 1967</td>
<td>60</td>
<td>0.1123</td>
<td>147 187 81 130</td>
<td>2.98 5.88</td>
</tr>
<tr>
<td>Feb 6–Feb 21 1969</td>
<td>15</td>
<td>0.126</td>
<td>170 174 154 168</td>
<td>6.00 6.88</td>
</tr>
<tr>
<td>Jan 28–Feb 7 1969</td>
<td>30</td>
<td>0.1292</td>
<td>167 176 145 172</td>
<td>5.47 7.27</td>
</tr>
<tr>
<td>Jan 19–Mar 5 1969</td>
<td>45</td>
<td>0.1332</td>
<td>165 178 136 177</td>
<td>4.91 7.52</td>
</tr>
<tr>
<td>Jan 9–Mar 10 1969</td>
<td>60</td>
<td>0.138</td>
<td>163 178 124 181</td>
<td>4.25 7.80</td>
</tr>
<tr>
<td>Sept 8–Sept 23 1970</td>
<td>15</td>
<td>0.1075</td>
<td>162 168 138 149</td>
<td>6.04 6.58</td>
</tr>
<tr>
<td>Aug 31–Sept 30 1970</td>
<td>30</td>
<td>0.1115</td>
<td>159 172 132 154</td>
<td>5.80 6.80</td>
</tr>
<tr>
<td>Aug 22–Oct 6 1970</td>
<td>45</td>
<td>0.1190</td>
<td>156 175 125 161</td>
<td>5.48 7.08</td>
</tr>
<tr>
<td>Aug 13–Oct 12 1970</td>
<td>60</td>
<td>0.1276</td>
<td>153 178 119 166</td>
<td>5.17 7.30</td>
</tr>
<tr>
<td>Launch dates</td>
<td>Launch period, days</td>
<td>Geo-centric injection energy, m/s²</td>
<td>Flight time, days</td>
<td>Communication distance, 10⁶ km</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Oct 23–Nov 7 1962</td>
<td>15</td>
<td>0.1612</td>
<td>206</td>
<td>241</td>
</tr>
<tr>
<td>Oct 18–Nov 17 1962</td>
<td>30</td>
<td>0.1821</td>
<td>188</td>
<td>288</td>
</tr>
<tr>
<td>Oct 11–Nov 25 1962</td>
<td>45</td>
<td>0.232</td>
<td>163</td>
<td>290</td>
</tr>
<tr>
<td>Oct 4–Dec 3 1962</td>
<td>60</td>
<td>0.3004</td>
<td>144</td>
<td>290</td>
</tr>
<tr>
<td>Nov 12–Nov 27 1964</td>
<td>15</td>
<td>0.094</td>
<td>233</td>
<td>246</td>
</tr>
<tr>
<td>Nov 10–Dec 10 1964</td>
<td>30</td>
<td>0.1257</td>
<td>196</td>
<td>246</td>
</tr>
<tr>
<td>Nov 5–Dec 20 1964</td>
<td>45</td>
<td>0.1759</td>
<td>167</td>
<td>246</td>
</tr>
<tr>
<td>Oct 31–Dec 30 1964</td>
<td>60</td>
<td>0.24350</td>
<td>146</td>
<td>246</td>
</tr>
<tr>
<td>Dec 28 1966–Jan 12 1967</td>
<td>15</td>
<td>0.0962</td>
<td>189</td>
<td>204</td>
</tr>
<tr>
<td>Dec 13 1966–Jan 27 1967</td>
<td>45</td>
<td>0.1397</td>
<td>158</td>
<td>207</td>
</tr>
<tr>
<td>Dec 6 1966–Feb 4 1967</td>
<td>60</td>
<td>0.178</td>
<td>143</td>
<td>207</td>
</tr>
<tr>
<td>Feb 24–Mar 11 1969</td>
<td>15</td>
<td>0.092</td>
<td>165</td>
<td>178</td>
</tr>
<tr>
<td>Feb 16–Mar 18 1969</td>
<td>30</td>
<td>0.1049</td>
<td>151</td>
<td>181</td>
</tr>
<tr>
<td>Feb 9–Mar 26 1969</td>
<td>45</td>
<td>0.1235</td>
<td>140</td>
<td>193</td>
</tr>
<tr>
<td>Feb 3–Apr 4 1969</td>
<td>60</td>
<td>0.1433</td>
<td>131</td>
<td>201</td>
</tr>
<tr>
<td>May 16–May 31 1971</td>
<td>15</td>
<td>0.0815</td>
<td>186</td>
<td>212</td>
</tr>
<tr>
<td>May 8–June 7 1971</td>
<td>30</td>
<td>0.0896</td>
<td>164</td>
<td>216</td>
</tr>
<tr>
<td>May 1–June 15 1971</td>
<td>45</td>
<td>0.1033</td>
<td>147</td>
<td>222</td>
</tr>
<tr>
<td>Apr 24–June 23 1971</td>
<td>60</td>
<td>0.1222</td>
<td>132</td>
<td>228</td>
</tr>
<tr>
<td>July 21–Aug 5 1973</td>
<td>15</td>
<td>0.1507</td>
<td>176</td>
<td>195</td>
</tr>
<tr>
<td>July 13–Aug 12 1973</td>
<td>30</td>
<td>0.166</td>
<td>159</td>
<td>196</td>
</tr>
<tr>
<td>July 5–Aug 19 1973</td>
<td>45</td>
<td>0.1903</td>
<td>143</td>
<td>197</td>
</tr>
<tr>
<td>June 26–Aug 25 1973</td>
<td>60</td>
<td>0.2228</td>
<td>130</td>
<td>197</td>
</tr>
<tr>
<td>Sept 7–Sept 22 1975</td>
<td>15</td>
<td>0.1964</td>
<td>186</td>
<td>209</td>
</tr>
<tr>
<td>Aug 31–Sept 30 1975</td>
<td>30</td>
<td>0.2237</td>
<td>165</td>
<td>210</td>
</tr>
<tr>
<td>Aug 23–Oct 7 1975</td>
<td>45</td>
<td>0.2683</td>
<td>147</td>
<td>210</td>
</tr>
<tr>
<td>Aug 15–Oct 14 1976</td>
<td>60</td>
<td>0.3263</td>
<td>132</td>
<td>211</td>
</tr>
<tr>
<td>Oct 11–Oct 26 1977</td>
<td>15</td>
<td>0.1806</td>
<td>198</td>
<td>225</td>
</tr>
<tr>
<td>Oct 4–Nov 3 1977</td>
<td>30</td>
<td>0.2122</td>
<td>176</td>
<td>238</td>
</tr>
<tr>
<td>Sept 30–Nov 4 1977</td>
<td>45</td>
<td>0.2376</td>
<td>164</td>
<td>306</td>
</tr>
<tr>
<td>Sept 23–Nov 22 1977</td>
<td>60</td>
<td>0.301</td>
<td>145</td>
<td>306</td>
</tr>
</tbody>
</table>

Table 3-4. Mars Type I transfer characteristics
Fig. 3-7. Venus 1965: Declination of geocentric asymptote vs launch date, Type I.
Fig. 3-8. Venus 1965: Declination of geocentric asymptote vs launch date, Type II
The celestial latitude γ_L of V_{hL} is obtained by

$$\sin \gamma_L = \frac{K' \cdot V_{hL}}{V_{hL}} = \frac{V_L \cos \Gamma_L \sin i}{V_{hL}} - \frac{\pi}{2} \leq \gamma_L \leq \frac{\pi}{2}$$

(3-4)

The celestial longitude λ_s of V_{hL} is given by

$$\begin{align*}
\cos \lambda_s &= \frac{I' \cdot (V_L \sin \Gamma_L + (K' \times R^1) (V_L \cos \Gamma_L \cos i - V_E))}{V_{hL} \cos \gamma_L} \\
\cos \lambda_s &= \frac{V_L \cos \lambda_E \sin \Gamma_L - \sin \lambda_E (V_L \cos \Gamma_L \cos i - V_E)}{V_{hL} \cos \gamma_L} \\
\sin \lambda_s &= \frac{V_L \sin \lambda_E \sin \Gamma_L + \cos \lambda_E (V_L \cos \Gamma_L \cos i - V_E)}{V_{hL} \cos \gamma_L}
\end{align*}$$

(3-5)

where λ_E is the celestial longitude of the Earth at launch time, I' is a unit vector in the direction of the vernal equinox, K' is a unit vector along the ecliptic north pole, R^1 is a unit vector from Sun to Earth at launch, and V_E is the speed of the Earth. It is apparent, from Fig. 3–9 and these Equations, that even though the inclination i of the heliocentric orbital plane to the ecliptic may be only a few degrees, the celestial latitude of the outgoing asymptote γ_L may take on values quite large. Taking a simple
example, where $\Gamma_L = 0$ deg, $i = 3$ deg, $V_E = 30$ km/sec, and $V_L = 27$ km/sec, one finds C_1 to be 11.22 km2/sec2 and γ_L to be 24.9 deg. Although, for this particular case, the elliptical orbit of the probe with respect to the Sun is inclined only 3 deg to the ecliptic, the outgoing asymptote V_{hL} along which the probe must leave the Earth in order to encounter the planet, is inclined to the ecliptic by 24.1 deg, a considerable difference. From Eq. 3-4, it is noted that the quantity $V_L \cos \Gamma_L/V_{hL}$ acts as a magnification factor (equal to about 8 in the cited example); i.e., for small angles, $\gamma_L \approx (V_L/V_{hL}) i$.

Since the Earth's equatorial plane is inclined to the ecliptic by 23.5 deg, the declination of the outgoing geocentric asymptote may differ from the celestial latitude by as much as ± 23.5 deg, depending on the required celestial longitude of the outgoing asymptote. Figures 3-10 and 3-11 show curves of the celestial latitude of the outgoing asymptotea for Venus 1962 and 1964 trajectories. Note the similarity of these graphs to the curves presented in Figs. 3-5 and 3-6.

The maximum value of γ_L is $\sin V_L/V_E$ for Venus trajectories, assuming that $\Gamma_L = 0$. Upon maximizing V_L/V_E, maximum γ_L will be attained (see Fig. 3-12). On the other hand, γ_L may take on values as high as ± 90 deg for a Mars encounter. Observing the curves of celestial latitude of the outgoing geocentric asymptote for Venus and Mars transfers in Sections V to XVIII, one finds that, for the injection energies considered (up to 23 km2/sec2), γ_L takes on values up to ± 55 deg and ± 70 deg for Cytherian and Martian trajectories, respectively.

b. Variation of celestial latitude of geocentric asymptote with celestial latitude of planet at encounter. Upon observing the curves of celestial latitude of the outgoing asymptote vs launch date for various injection energies, such as those in Figs. 3-10 and 3-11, one may at first become confused at the manner in which the parameter varies. These few remarks may help, however. The celestial latitude of the outgoing asymptote γ_L is equal to zero only if the planet at arrival is passing through the ecliptic plane.

For Type I trajectories, the celestial latitude of the outgoing asymptote (measured from Earth) is negative when the celestial latitude of the planet at arrival (measured from the Sun) is negative, and positive when the celestial latitude at arrival is positive (see Fig. 3-13). For Type II trajectories, however, the celestial latitude of the outgoing asymptote is positive when the celestial latitude of the planet at arrival is negative, and negative when the celestial latitude of the planet at arrival is positive. These statements may be verified by comparing Fig. 3-11 with Fig. 3-13. The geometrical configurations are illustrated in Fig. 3-14.

This property is easily seen, since the hyperbolic-excess velocity must be directed above the ecliptic so that the resultant heliocentric velocity of the probe at launch will also be directed above the ecliptic. This allows the probe to encounter Venus above the ecliptic for heliocentric-transfer angles less than 180 deg (Type I trajectories) and below the ecliptic for heliocentric-transfer angles greater than 180 deg but less than 360 deg (Type II trajectories), as illustrated.

c. Angle between outgoing geocentric asymptote and Sun–Earth vector. The angle between the outgoing asymptote and the Sun–Earth vector ξ_L (Fig. 3-9) is equivalent to the Earth–probe–Sun angle a few days after launch. One may note from the curves that, for both Type I and Type II trajectories to Venus, this parameter increases in general as launch date is delayed. For Mars trajectories, however, the parameter decreases with launch-date delay. For Type I trajectories, the range of values does not change appreciably for the range of injection energies plotted on a given launch date. In observing this parameter on two Venus launch dates, March 12 and April 13, 1964, note in Figs. 3-15 and 3-16 that on March 12 the parameter ranges from 64 to 80 deg for Type I trajectories and from 43 to 80 deg for Type II trajectories, whereas on April 13 the variation of the parameter ξ_L over the range of energies considered is only about 15 and 55 deg for Type I and Type II, respectively. In observing the Mars 1964 plots for ξ_L, one finds that the maximum range of this parameter for the energies plotted on a given launch date is only about 35 deg. This implies that, for any feasible Type I trajectory to Venus for a given launch date, the Earth–probe–Sun angle will remain essentially the same at a few days after launch; the same statement applies to Martian trajectories. Another interesting characteristic of this parameter is indicated in Figs. 3-17 and 3-18. These graphs show the Earth–probe–Sun angle vs time from launch for two trajectories to Venus and two to Mars in 1964. The Venus trajectories are computed for launching on March 15 with a 122-day flight time, and for an April 10

aNote that, in these Figures, the title "angle between outgoing geocentric asymptote and launch planet's orbital plane" is used, rather than "celestial latitude of outgoing asymptote." These two titles are synonymous.
Fig. 3-10. Venus 1962: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 3-11. Venus 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date.
(a)

$V_E \approx 30 \text{ km/sec}$

$V_L \approx 27.5 \text{ km/sec}$

$C_3 = V_{HL}^2 \approx 144 \text{ km}^2/\text{sec}^2$

$\text{MAX } \gamma_L \approx \pm 66.4 \text{ deg}$

$i \approx 23.6 \text{ deg}$

(b)

$V_E \approx 30 \text{ km/sec}$

$V_L \approx 33 \text{ km/sec}$

$C_3 \approx 189 \text{ km}^2/\text{sec}^2$

$\text{MAX } \gamma_L = \pm 90 \text{ deg}$

$i \approx 24.6 \text{ deg}$

NOTE: PLANE OF PAPER IS PERPENDICULAR TO SUN–EARTH LINE

K’ IS UNIT VECTOR ALONG ECLIPTIC NORTH POLE

Fig. 3–12. Geometry for maximum celestial latitude of outgoing asymptote:

(a) Rendezvous with Venus; (b) Rendezvous with Mars
Fig. 3-14. Demonstration of variation of celestial latitude of outgoing asymptote with celestial latitude of Venus at arrival for Type I trajectories: (a) $\beta_p > 0$, $\gamma_L > 0$; (b) $\beta_p < 0$, $\gamma_L < 0$
Fig. 3-15. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
Fig. 3.17. Venus 1964: Earth-probe-Sun angle vs flight time for two launch dates.
launch with a 96-day flight time. The Mars trajectories correspond to November 13 and December 4 launchings, with 242- and 221-day flight times, respectively. Inspection of the \(\xi_L \) curves in Figs. 3-15 and 3-16, corresponding to the Venus trajectories, shows the angles to be 76 and 111 deg. Corresponding values for the Mars trajectories are 100 and 65 deg. In Figs. 3-17 and 3-18, notice that these four values correspond roughly to the Earth–probe–Sun angle at a few days after launch, and roughly to the part of the curve where the slope is zero. If \(\xi_L \) is less than 90 deg for Venus trajectories, it is essentially the minimum Earth–probe–Sun angle during flight to the planet, occurring a few days after launch. If \(\xi_L \) is greater than 90 deg, the value still corresponds to the Earth–probe–Sun angle at a few days after launch, but is not necessarily the minimum value during flight. For Mars trajectories, if the parameter \(\xi_L \) is roughly greater than 45 deg, it is essentially the maximum Earth–probe–Sun angle during flight to the planet, occurring a few days after launch. If \(\xi_L \) is less than 45 deg, the parameter still corresponds to the Earth–probe–Sun angle at a few days after launch, but is not necessarily the maximum Earth–probe–Sun angle during flight.

2. Heliocentric Parameters

To visualize the heliocentric path of the probe from Earth to the target planet, nine key parameters were plotted as functions of launch date and injection energy: flight time, Earth–probe communication distance at encounter, heliocentric central angle, true anomaly of launch and true anomaly of encounter in the heliocentric-transfer orbit, perihelion and aphelion distances\(^3\), inclination of the heliocentric orbital plane to the ecliptic, and celestial latitude of the planet at encounter (with respect to the Sun).

a. True anomaly at launch. As previously mentioned, \(\xi_L \) does not vary appreciably over the range of injection energies plotted for a given launch date for Type I trajectories. This implies that the true anomaly at launch in the heliocentric-transfer orbit does not change appreciably for a given launch date. In the curves of true anomaly at launch vs launch date for Venus and Mars 1964 Type I trajectories (Figs. 3-19 and 3-20), it is observed that the variation in true anomaly for a given launch date is less than 10 deg for Venus and less than 20 deg for Mars. In general, for Venus trajectories, if \(\xi_L \) is less than 90 deg, the true anomaly at launch in the transfer orbit is less than 180 deg, and heliocentric injections will take place before aphelion of the transfer orbit. However, if \(\xi_L \) is greater than 90 deg, the true anomaly at launch will be greater than 180 deg, and heliocentric injection will take place after aphelion of the transfer orbit. For those Venus trajectories having heliocentric injection before aphelion, the maximum Sun–probe distance (aphelion distance) during flight can be found from the curves of aphelion distance vs launch date. For the Venus trajectories having heliocentric injection after aphelion, the maximum Sun–probe distance during flight occurs essentially at launch. From the Venus and Mars 1964 true-anomaly curves, one notes that the true anomaly at launch increases with launch-date delay from the second quadrant to the third, and from the fourth quadrant to the first, respectively. Thus, toward the beginning of the firing period, heliocentric injection takes place before aphelion for Venus trajectories and, toward the end of the firing period, it occurs after aphelion. In general, this statement holds for all feasible Type I and Type II trajectories to Venus for each synodic period. A similar conclusion can be drawn for Mars trajectories. Toward the beginning of the firing period, heliocentric injection takes place before perihelion for Mars trajectories, and after perihelion toward the end of the firing period. For the Mars trajectories having heliocentric injection before perihelion, the minimum Sun–probe distance (perihelion distance) during flight can be found from the curves of perihelion vs launch date (see Fig. 3-27).

b. True anomaly at arrival. Another parameter of interest is the true anomaly at arrival in the heliocentric-transfer orbit. In observing the graphs, one finds that, for most Type I trajectories to Venus, the true anomaly at arrival is in the fourth quadrant. Thus, planet encounter takes place before perihelion of the transfer orbit, whereas, for most Type II trajectories, encounter occurs after perihelion of the transfer orbit. However, for Venus 1965, one finds that the true anomaly at encounter falls in the fourth and first quadrants for Type I trajectories (see Fig. 3-21). Thus, in this case, encounter occurs before and after perihelion of the transfer orbit for Type I trajectories. Upon observing the Type I trajectories to Mars (Fig. 3-22), one finds that the true anomaly at arrival in the transfer orbit lies in the second and third quadrants. Thus, encounter of Mars occurs before and after aphelion for Type I trajectories.

c. Inclination of heliocentric-transfer orbit. The inclination \(i \) of the heliocentric-transfer orbit to the ecliptic

\(^3\)These quantities are plotted, even though the probe may not transit perihelion or aphelion. Inspection of the launch and encounter true anomalies will reveal whether they are transversed.
Fig. 3-21. Venus 1965: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 3-22. Mars 1964: True anomaly in transfer ellipse at arrival time vs launch date, Type I

NOTE: C_3 is twice the total energy/unit mass with units $m^2/\text{sec}^2 \times 10^8$.
plane is essentially a function of two parameters, (1) the heliocentric central angle \(\psi \), and (2) the celestial latitude \(\beta_p \) of the planet at arrival, since

\[
\sin i = \frac{\sin \beta_p}{\sin \psi} \quad (3-6)
\]

If the heliocentric central angle is fixed, and the absolute magnitude of the celestial latitude at arrival is increased, the inclination also increases. If the celestial latitude of the planet at arrival is zero, the inclination is equal to zero, no matter what the heliocentric central angle may be (with the exception of a central angle of 180 deg). However, as shown in Fig. 3-23, if the celestial latitude \(\beta_p \) of the planet at encounter is fixed at an absolute value greater than zero, and the central angle is varied, the inclination will reach its minimum value (equal to \(\beta_p \)) at central angles of 90 and 270 deg, or its maximum value of 90 deg at the central angles equal to \(\beta_p, 180 - \beta_p, 180 + \beta_p, \) and \(360 - \beta_p \). It is because of the fact that the inclination increases near the central angles of \(180 \pm \beta_p \) that Type I-Class II and Type II-Class I trajectories come into existence. The increasing heliocentric inclination eventually results in a sharp increase in energy \(C_3 \) as the central angle approaches 180 deg \(\pm \beta_p \), thereby bringing the two groups of energy contours into existence. It may now become apparent that the inclination of the heliocentric orbital plane may take on values greater than the celestial latitude of the planet at arrival because of the varying helio-

Fig. 3-23. Inclination of heliocentric orbital plane to ecliptic vs heliocentric central angle

NOTE:

\(\beta_p \) is celestial latitude of probe at planet encounter measured from ecliptic.
centric central angle. In fact, upon observing curves of
the inclination vs launch date, one finds the value as high
as 8 deg for the range of energies considered here. By
definition, the inclination parameter is positive whether
the planet at encounter is above or below the ecliptic
plane.

3. Planetocentric Parameters

The magnitude and direction of the hyperbolic-excess
velocity with respect to the planet are most important
in designing and analyzing trajectories near the planet.
The planetocentric parameters presented graphically in
this Report are: the hyperbolic-excess speed \(V_{hp} \), the
right ascension \(\Theta_{hp} \) and declination \(\Phi_{hp} \) of the incoming
asymptote of the approach hyperbola; the angle between
the incoming asymptote and the planet-Sun vector \(\zeta_p \),
and the angle between the incoming asymptote and the
planet's orbital plane \(\gamma_p \). All these parameters are shown
as functions of launch date for various energies.

a. Asymptotic approach speeds. In examining the curves
of asymptotic approach velocity \(V_{hp} \) (hyperbolic-excess
velocity) with respect to the arrival planet, it is quickly
found that the range in speed is about the same for a
given mission for both Type I and Type II trajectories.
For instance, note in the curve of Venus 1964 asymptotic
approach speed (Fig. 3-24) that, for a maximum energy of
23 km/sec, the range in \(V_{hp} \) is roughly 3.75 to
10.7 km/sec for both Type I and Type II transfers.
Note that the absolute minimum-energy trajectories of
both types have different asymptotic speeds: 6.1 km/sec
for Type I and 5.4 km/sec for Type II. Also, the Type I
trajectory which has the minimum hyperbolic-excess
speed at the planet is a Class II-Type I trajectory. For
the range of energies considered in the Venus 1964
diagram, the trajectory for minimum asymptotic approach
speed would have a launch date of April 27 and a flight
time of 108 days. If larger energies had been plotted,
this minimum-asymptotic-approach-speed trajectory
would probably still remain a Class II trajectory; however,
the launch date and flight time would be different.
In general, one finds that, for both Venus and Mars tra-
jectories, the minimum-asymptotic-approach-speed tra-
cjectory is of Type I, Class II, or of Type II, Class I, and
varies from mission to mission.

b. Angle between approach asymptote and planet's
orbital plane. A second parameter of interest is \(\gamma_p \), the
angle between the approach asymptote and the planet's
orbital plane. This parameter varies between \(-70\) and

+70 deg for the curves given herein. At first, this var-
ation may appear to be unrealistically high, but one
must remember that the approach velocity is taken with
respect to the arrival planet and not with respect to the
Sun. For an observer on the Sun, the probe at planet
encounter appears to be traveling in a direction inclined
by only a few degrees to the planet's orbital plane (for
low-energy trajectories). When the planet's heliocentric
velocity is subtracted from the probe's heliocentric velocity
at encounter, the resultant vector (which is, of course,
the hyperbolic-excess velocity with respect to the planet)
may be greatly inclined to the orbital plane of the arrival
planet. The angle between the approach asymptote and
the planet's orbital plane is zero only if the probe's helio-
centric orbital plane and the arrival planet's orbital plane
are exactly coplanar. For Type I trajectories to Venus in
1962, this parameter takes on negative values (approach-
ing from above the planet's orbital plane) from \(-16\)
to \(-62\) deg, whereas for 1964 the angle will have the
positive range of 8 to 57 deg (approaching from below
the planet's orbital plane) as seen from Figs. 3-25 and
3-26. The range of values for the parameter varies from
mission to mission. In conclusion, one may add that the
parameters \(V_{hp} \), \(\gamma_p \), and \(\zeta_p \) (discussed in the following
paragraphs) are all essentially functions of the magni-
tudes of the heliocentric velocities of the probe and
planet at encounter, the path angles of the two velocities,
and the inclination of the probe's heliocentric velocity
to the arrival planet's orbital plane.

c. Angle between approach asymptote and planet-Sun
vector. A third parameter to be analyzed is \(\zeta_p \), the angle
between the approach asymptote and the planet-Sun
vector at arrival. This parameter is equivalent to the
Sun-probe-planet angle at a few days before encounter.
For the Venus trajectories studied, the heliocentric speed
of the probe at encounter is greater than that of Venus;
thus, the probe essentially "catches up" with Venus in its
orbit around the Sun, approaching Venus along its trail-
ing edge (see Figs. 3-27 and 3-28). For the Mars trajec-
tories, the exact opposite is true. The heliocentric speed
of Mars at encounter is greater than that of the probe;
thus, Mars "catches up" with the probe in its heliocentric
orbit. An observer on Mars sees the probe in its helio-
centric orbit, approaching from the leading edge of Mars
(see Figs. 3-27 and 3-29). For most 1964 Type I tra-
jectories to Venus, \(\zeta_p \) is an acute angle, whereas, for most
of Type II, the angle is obtuse (see Fig. 3-30). However,
for the Venus 1965 curve, notice that the angle is obtuse,
as well as acute, for Type I trajectories (Fig. 3-31). For
most Type I trajectories to Mars, the parameter is an
Fig. 3–24. Venus 1964: Asymptotic speed with respect to Venus vs launch date
Fig. 3-25. Venus 1962: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date.
VENUS 1964
ANGLE BETWEEN INCOMING APHRODIOCENRIC ASYMPTOTE
AND ARRIVAL PLANET'S ORBITAL PLANE vs LAUNCH DATE

NOTE: C_3 IS TWICE THE TOTAL
ENERGY/UNIT MASS WITH
UNITS m2/sec$^2 \times 10^8$

Fig. 3-26. Venus 1964: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date
Fig. 3-27. Projection of typical heliocentric-transfer orbits onto ecliptic plane, viewed from above ecliptic plane.
Fig. 3–28. Near-Venus geometry for typical trajectories, viewed from above ecliptic plane: (a) Type I trajectory, encountering Venus before perihelion; (b) Type II trajectory, encountering Venus after perihelion.

obtuse angle; however, for some, the angle is acute. Figure 3–32 shows ζ_p for 1964 Mars trajectories. Typical crescent orientations of the illuminated planet, as viewed along the incoming asymptote, are presented in Fig. 3–33.

d. Declination and right ascension of approach asymptote. Two other parameters are plotted which also give the direction of the incoming asymptote: the declination and the right ascension of the incoming asymptote with respect to the arrival planet. The coordinate system is a vernal-equinox equatorial (Earth’s) system centered at the planet.

E. Procedures for Utilization of Graphs in Design of Planetary Trajectories

For a trajectory design, a source of information must be available which can be quickly scanned to determine the range of feasible trajectories for a mission. The graphs presented in Sections IV to XVIII of this Report constitute such a source. The order and procedure for actual use of these graphs by the trajectory engineer in the design and analysis of trajectories are now reviewed.

1. Both Type I and Type II transfers should be scanned. Those trajectories should be selected for which the declination of the outgoing geocentric asymptote lies roughly between -34 and $+34$ deg. These are the feasible trajectories for launchings from AMR. The algebraic value of the declination reveals vital information concerning the preinjection trajectory (see Ref. 4).

2. For the trajectories of paragraph (1), the energy requirements (C_3) for various firing periods should be observed. If it is found that booster payload capability and the desired payload weight
match the required injection energy for a given firing period (for example, 30 days) and also satisfy paragraph (1) for Type I and Type II trajectories, a decision must then be made to utilize either Type I or Type II trajectories or, perhaps, both.

(3) In making the decision to utilize either the Type I or the Type II trajectory, or both, the curves of flight time and Earth-probe communication distance vs launch date are most helpful. In general, Type II trajectories have longer flight times and Earth-probe distances at encounter than do Type I. The actual differences in magnitude depend on the mission and range of injection energy. In general, the longer the flight time, the greater is the sensitivity of the trajectory to injection errors.

(4) Next, the parameter ξ_L, the angle between the outgoing asymptote and the Sun–Earth vector at heliocentric injection, should be studied. It will be recalled that this is equivalent to the Earth-probe–Sun angle at a few days after launch. Since there are usually many limitations on a spacecraft which is stabilized and controlled in attitude by optical references (such as the Earth and Sun), the Earth-probe–Sun angle may be restricted near the Earth and, perhaps, throughout the flight. The parameter ξ_L is most helpful in trajectory design for determining the constraint near the Earth.

(5) If the value of ξ_L is less than 90 deg for Venus trajectories, the probe is usually being injected into the heliocentric-transfer orbit before aphelion and will travel outside the Earth's orbit before
Fig. 3–30. Venus 1964: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date
Fig. 3-31. Venus 1965: Angle between Venus-Sun vector and incoming aphrodisocentric asymptote vs launch date.
Fig. 3-32. Mars 1964: Angle between Mars-Sun vector and incoming aerocentric asymptote vs launch date, Type I

NOTE: C_3 is twice the total energy/unit mass with units of $r^{-1} m^2 s^{-2} x 10^8$

ANGLE BETWEEN MARS-SUN VECTOR AND INCOMING AEROCENTRIC ASYMPTOTE θ_p
(a) VENUS TYPE I TRAJECTORY ($\gamma_p > 0$ deg)
ENCOUNTER BEFORE PERIHELION

(b) VENUS TYPE I TRAJECTORY ($\gamma_p < 0$ deg)
ENCOUNTER BEFORE PERIHELION

(c) VENUS TYPE II TRAJECTORY ($\gamma_p > 0$ deg)
ENCOUNTER AFTER PERIHELION

(d) VENUS TYPE II TRAJECTORY ($\gamma_p < 0$ deg)
ENCOUNTER AFTER PERIHELION

(e) MARS TYPE I TRAJECTORY ($\gamma_p > 0$ deg)
ENCOUNTER BEFORE APHELION

(f) MARS TYPE I TRAJECTORY ($\gamma_p < 0$ deg)
ENCOUNTER BEFORE APHELION

(g) MARS TYPE I TRAJECTORY ($\gamma_p > 0$ deg)
ENCOUNTER AFTER APHELION

(h) MARS TYPE I TRAJECTORY ($\gamma_p < 0$ deg)
ENCOUNTER AFTER APHELION

Fig. 3-33. Crescent orientations for typical trajectories to Venus and Mars as observed from approaching spacecraft
"falling" in toward Venus. To be precise, one can observe the curves of true anomaly at launch. Because of temperature-control problems, there may be a restriction on the maximum Sun–probe distance during flight. To determine this maximum distance during flight, one simply finds the aphelion distance of the probe from the graphs. If \(\zeta_L \) is greater than 90 deg, then the maximum distance during flight to Venus is essentially the Sun–probe distance at launch.

(6) If the value of \(\zeta_L \) is greater than 90 deg for Mars trajectories, the probe is usually being injected into the heliocentric-transfer orbit before perihielion and will "fall" inside the Earth's orbit before traversing out to Mars. Temperature-control considerations may restrict the minimum Sun–probe distance during flight. To determine the minimum distance, simply find the perihelion of the probe's transfer orbit for the desired trajectory or range of trajectories. If \(\zeta_L \) is less than 90 deg, the minimum Sun–probe distance during flight to Mars is the distance at launch.

(7) For a spacecraft stabilized and controlled in attitude by Sun and Earth optical references, a constraint may exist which will restrict the Earth–probe–Sun angle to a value greater than 0 deg by a few degrees or less than 180 deg by a few degrees. This immediately implies that a trajectory must be chosen that has an inclination of the heliocentric orbital plane to the ecliptic which is greater than 0 deg. To satisfy the above constraint, the inclination may have to be 0.25, 0.50, or even 1.0 deg, depending on the restriction and on the trajectory itself. The values of the orbital inclinations for specific trajectories can be found from the graphs in Sections V to XVIII.

(8) For essentially all feasible Type II trajectories to Venus and a few of Type I, Venus encounter for some missions will take place after perihielion of the transfer orbit. This means that the probe will pass closest to the Sun several days or, perhaps, several weeks before encounter, depending on the trajectory. Because of temperature-control requirements, there may be a restriction on the minimum Sun–probe distance during flight. To determine the value of this parameter, one finds the perihelion distance of the probe for the desired trajectory from the graphs. This parameter is the minimum Sun–probe distance during flight to Venus if the true anomaly of arrival is in the first or second quadrant.

(9) For Type I trajectories to Mars, encounter usually takes place before aphelion of the transfer orbit. For those trajectories having true anomalies at arrival in the third or fourth quadrant, however, encounter will take place after aphelion. This means that the maximum Sun–probe distance during flight occurs before encounter. Temperature-control considerations may restrict the maximum Sun–probe distance during flight. To determine this maximum for the necessary trajectories, find the value of the aphelion distance from the graphs in Sections XII to XVIII.

(10) For planetary missions such as landers or orbiters, it will probably become necessary to utilize trajectories for which the hyperbolic-excess speed at the planet is nearly minimum. In fact, in order to maximize the scientific-payload weight, a "trade-off" must be made in minimizing the geocentric energy or planetocentric energy. Such trajectories will allow the heaviest payloads to be landed on the planet or injected in a desired elliptical orbit around the planet with the use of retro-maneuvers. The trajectory designer can find the values of the hyperbolic-excess speeds at the planet for various trajectories from the graphs in Sections V to XVIII, and can determine the feasibility of the trajectories from the procedures in paragraphs (1) to (9).

(11) For a spacecraft which is stabilized and controlled in attitude by optical references, there may be certain restrictions on the Sun–probe–planet angle as the probe approaches the planet. Such restrictions may be necessary because of approach-guidance considerations. The parameter \(\xi_p \), the angle between the approach asymptote and the target-planet-Sun vector, is equivalent to the Sun–probe–planet angle a few days before encounter. The parameter can be most helpful in analyzing permissible trajectories near the planet.

(12) Regarding the design of trajectories near the planet, it is needless to say that, by altering the parameters in the preinjection trajectory near Earth by small increments, the probe can be made to pass on any side of the planet. However, the inclinations of the planetocentric hyperbolic orbit (or elliptical orbit, assuming that the required retro-maneuver is made in the orbital plane of the hyperbola) to the planet's orbital plane depends...
on the aiming point at the planet, as well as on the parameter γ_p, the angle between the approach asymptote and the planet's orbital plane. The minimum inclination which can be attained is equal to γ_p. If γ_p is zero, the inclination of the orbit to the planet's orbital plane will range from 0 to 180 deg, depending on the aiming point. Inclinations of 0 to 90 deg imply direct motion (in the direction of the planet's orbital rotation), whereas inclinations from 90 to 180 deg imply retrograde motion (opposite to the planet's orbital rotation). If $\gamma_p = \pm 45$ deg, the inclination may range from 45 to 135 deg for all aiming points. If $\gamma_p = \pm 90$ deg, the inclination will equal 90 deg for any aiming point which is chosen at the planet. For $\gamma_p > 0$ deg, the probe will approach the planet from a path below the planet's orbital plane; for $\gamma_p < 0$ deg, the approach will be from above. In many cases, it may be desirable to design the near-planet trajectory with a prescribed inclination in mind such that the probe will pass the target body in the planet's orbital or, perhaps, equatorial plane. It is thus apparent that the parameter γ_p may or may not permit the selected pass. To find the value of γ_p for a given trajectory, observe the curve of γ_p vs launch date for the desired mission.

To comprehend fully the significance of each parameter and its variation with launch date and arrival date, it may be advantageous to construct the loci of constant arrival dates on each pertinent graph in Sections V to XVIII. This may be done in three steps, as shown in Fig. 3–34:

(a) Construct the loci of desired arrival dates on the curves of flight time vs launch date.

(b) Mark the launch dates and geocentric energies for which intersection of the arrival loci and the various energy contours occur.

(c) Take the intersection points of (b) and construct the arrival-date loci on the graph of interest.

Experience has shown that trajectory parameters tend to exhibit an invariance if the arrival date is held fixed while the launch date is varied. This fact has proved very useful in trajectory design.
IV. MINIMUM-ENERGY GRAPHS FOR VENUS AND MARS TRANSFERS

Figure
4-1. Venus 1962: Minimum injection energy vs launch date
4-2. Venus 1964: Minimum injection energy vs launch date
4-3. Venus 1965: Minimum injection energy vs launch date
4-4. Venus 1967: Minimum injection energy vs launch date
4-5. Venus 1968–1969: Minimum injection energy vs launch date
4-6. Venus 1970: Minimum injection energy vs launch date
4-7. Mars 1962: Minimum injection energy vs launch date
4-8. Mars 1964: Minimum injection energy vs launch date
4-9. Mars 1966: Minimum injection energy vs launch date
4-10. Mars 1969: Minimum injection energy vs launch date
4-11. Mars 1971: Minimum injection energy vs launch date
4-12. Mars 1973: Minimum injection energy vs launch date
4-13. Mars 1975: Minimum injection energy vs launch date
4-14. Mars 1977: Minimum injection energy vs launch date
Fig. 4-1. Venus 1962: Minimum injection energy vs launch date
Fig. 4-2. Venus 1964: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$
Fig. 4-3. Venus 1965: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units m^2/sec^2 x 10^8
Fig. 4-4. Venus 1967: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $\text{m}^2/\text{sec}^2 \times 10^8$
Fig. 4-5. Venus 1968-1969: Minimum injection energy vs launch date
Fig. 4-6. Venus 1970: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^6$
Fig. 4-7. Mars 1962: Minimum injection energy vs launch date

NOTE: \(c_3 \) is twice the total energy/unit mass with units m²/sec² \(\times 10^8 \)
Fig. 4-8. Mars 1964: Minimum injection energy vs launch date

Note: C_3 is twice the total energy/unit mass with units $\text{m}^2/\text{sec}^2 \times 10^8$.
Fig. 4-9. Mars 1966: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units m²/sec² x 10⁶.
Fig. 4–10. Mars 1969: Minimum injection energy vs launch date
Fig. 4-11. Mars 1971: Minimum injection energy vs launch date

C^3 is twice the total energy/unit mass with units \(m^3/sec^2 \times 10^8 \).
Fig. 4-12. Mars 1973: Minimum injection energy vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$
Fig. 4-13. Mars 1975: Minimum injection energy vs launch date

NOTE: C_3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS $m^2/sec^2 \times 10^8$
Fig. 4-14. Mars 1977: Minimum injection energy vs launch date

Note: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^5$.
V. VENUS 1962: TRAJECTORY-PARAMETER GRAPHS

Figure

5-1. Venus 1962: Time of flight vs launch date
5-2. Venus 1962: Heliocentric central angle vs launch date
5-3. Venus 1962: Earth–Venus communication distance vs launch date
5-4. Venus 1962: Declination of geocentric asymptote vs launch date
5-5. Venus 1962: Right ascension of geocentric asymptote vs launch date, Type I
5-6. Venus 1962: Right ascension of geocentric asymptote vs launch date, Type II
5-7. Venus 1962: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date
5-8. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
5-9. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
5-10. Venus 1962: True anomaly in transfer ellipse at launch time vs launch date, Type I
5-11. Venus 1962: True anomaly in transfer ellipse at launch time vs launch date, Type II
5-12. Venus 1962: True anomaly in transfer ellipse at arrival time vs launch date, Type I
5-13. Venus 1962: True anomaly in transfer ellipse at arrival time vs launch date, Type II
5-14. Venus 1962: Perihelion of transfer orbit vs launch date
5-15. Venus 1962: Aphelion of transfer orbit vs launch date, Type I
5-16. Venus 1962: Aphelion of transfer orbit vs launch date, Type II
5-17. Venus 1962: Inclination of heliocentric-transfer plane vs launch date, Type I
5-18. Venus 1962: Inclination of heliocentric-transfer plane vs launch date, Type II
5-19. Venus 1962: Celestial latitude at arrival time vs launch date
5-20. Venus 1962: Asymptotic speed with respect to Venus vs launch date, Type I
5-21. Venus 1962: Asymptotic speed with respect to Venus vs launch date, Type II
5-22. Venus 1962: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date
5-23. Venus 1962: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date
V. VENUS 1962: TRAJECTORY-PARAMETER GRAPHS (Cont'd)

Figure
5–24. Venus 1962:Declination of aphrodiocentric asymptote vs launch date
5–25. Venus 1962: Right ascension of aphrodiocentric asymptote vs launch date,
 Type I
5–26. Venus 1962: Right ascension of aphrodiocentric asymptote vs launch date,
 Type II
Fig. 5-2. Venus 1962: Heliocentric central angle vs launch date
Fig. 5-3. Venus 1962. Earth-Venus communication distance vs launch date.

NOTE: C_s is twice the total energy unit mass with units of $m \cdot \text{sec}^{-2}$. km.
Fig. 5-4. Venus 1962: Declination of geocentric asymptote vs launch date
Fig. 5–6. Venus 1962: Right ascension of geocentric asymptote vs launch date, Type II

NOTE: C_3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS OF $m^2/\text{sec}^2 \times 10^8$
Fig. 5-7. Venus 1962: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 5–8. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I.
Fig. 5-9. Venus 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(m^2/\text{sec}^2 \times 10^8 \)
Fig. 5-10. Venus 1962: True anomaly in transfer ellipse at launch time vs launch date, Type I
Fig. 5-13. Venus 1962. True anomaly in transfer ellipse at arrival time vs launch date, Type II.
Fig. 5–14. Venus 1962: Perihelion of transfer orbit vs launch date
Fig. 5-18. Venus 1962: Inclination of heliocentric-transfer plane vs launch date, Type II
Fig. 5-21. Venus 1962: Asymptotic speed with respect to Venus vs launch date, Type II

NOTE: C_3 is twice the total energy/unit mass with units of $m^2/sec^2 \times 10^8$.
Fig. 5-22. Venus 1962. Angle between incoming aphrodisocentric asymptote and arrival planet's orbital plane vs launch date.
Fig. 5-23. Venus 1962: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date
Fig. 5–24. Venus 1962: Declination of aphrodiocentric asymptote vs launch date
Fig. 5-26. Venus 1962: Right ascension of aphrodisiometric asymptote vs launch date, Type II.
VI. VENUS 1964: TRAJECTORY-PARAMETER GRAPHS

Figure

6-1. Venus 1964: Time of flight vs launch date
6-2. Venus 1964: Heliocentric central angle vs launch date
6-3. Venus 1964: Earth–Venus communication distance vs launch date
6-4. Venus 1964: Declination of geocentric asymptote vs launch date
6-5. Venus 1964: Right ascension of geocentric asymptote vs launch date
6-6. Venus 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
6-7. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
6-8. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
6-9. Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type I
6-10. Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type II
6-11. Venus 1964: True anomaly in transfer ellipse at arrival time vs launch date
6-12. Venus 1964: Perihelion of transfer orbit vs launch date
6-13. Venus 1964: Aphelion of transfer orbit vs launch date, Type I
6-14. Venus 1964: Aphelion of transfer orbit vs launch date, Type II
6-15. Venus 1964: Inclination of heliocentric-transfer plane vs launch date
6-16. Venus 1964: Celestial latitude at arrival time vs launch date
6-17. Venus 1964: Asymptotic speed with respect to Venus vs launch date
6-18. Venus 1964: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date
6-19. Venus 1964: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date
6-20. Venus 1964: Declination of aphrodiocentric asymptote vs launch date
6-21. Venus 1964: Right ascension of aphrodiocentric asymptote vs launch date
Fig. 6-2. Venus 1964: Heliocentric central angle vs launch date

- CLASS I
- CLASS II

NOTE: \(C_3 \) IS TWICE THE TOTAL ENERGY/UNIT MASS

UNITS \(r^2 \text{sec}^2 \times 10^8 \)

Heliocentric central angle vs launch date
Fig. 6-3. Venus 1964: Earth–Venus communication distance vs launch date
Fig. 6–6. Venus 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date.
Fig. 6–7. Venus 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote launch date, Type I
Fig. 6-8. Venus 1964: Angle between Sun-Earth vector and outgoing geocentric asymptote vs launch date, Type II

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$
Fig. 6–9. Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type I
Fig. 6-10. Venus 1964: True anomaly in transfer ellipse at launch time vs launch date, Type II

NOTE: C_3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS $m^2/\text{sr}^2 \times 10^8$.
Fig. 6–11. Venus 1964: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 6-12. Venus 1964: Perihelion of transfer orbit vs launch date.
Fig. 6-13. Venus 1964: Aphelion of transfer orbit vs launch date, Type I

Note: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$.
Fig. 6-16. Venus 1964: Celestial latitude at arrival time vs launch date

NOTE: C_3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS $m^2/sec^2 \times 10^6$
Fig. 6-17. Venus 1964: Asymptotic speed with respect to Venus vs launch date.
Fig. 6-18. Venus 1964: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date.
Fig. 6-19. Venus 1964: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date.
Fig. 6-20. Venus 1964: Declination of aphrodiocentric asymptote vs launch date
VII. VENUS 1965: TRAJECTORY-PARAMETER GRAPHS

Figure
7–1. Venus 1965: Time of flight vs launch date
7–2. Venus 1965: Heliocentric central angle vs launch date
7–3. Venus 1965: Earth–Venus communication distance vs launch date
7–4. Venus 1965: Declination of geocentric asymptote vs launch date, Type I
7–5. Venus 1965: Declination of geocentric asymptote vs launch date, Type II
7–6. Venus 1965: Right ascension of geocentric asymptote vs launch date, Type I
7–7. Venus 1965: Right ascension of geocentric asymptote vs launch date, Type II
7–8. Venus 1965: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type I
7–9. Venus 1965: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type II
7–10. Venus 1965: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
7–11. Venus 1965: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
7–12. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type I
7–13. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type II
7–14. Venus 1965: True anomaly in transfer ellipse at arrival time vs launch date
7–15. Venus 1965: Perihelion of transfer orbit vs launch date
7–16. Venus 1965: Aphelion of transfer orbit vs launch date, Type I
7–17. Venus 1965: Aphelion of transfer orbit vs launch date, Type II
7–18. Venus 1965: Inclination of heliocentric-transfer plane vs launch date, Type I
7–19. Venus 1965: Inclination of heliocentric-transfer plane vs launch date, Type II
7–20. Venus 1965: Celestial latitude at arrival time vs launch date
7–21. Venus 1965: Asymptotic speed with respect to Venus vs launch date, Type I
7–22. Venus 1965: Asymptotic speed with respect to Venus vs launch date, Type II
7–23. Venus 1965: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type I
7–24. Venus 1965: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type II
VII. VENUS 1965: TRAJECTORY-PARAMETER GRAPHS (Cont’d)

Figure

7-25. Venus 1965: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date

7-26. Venus 1965: Declination of aphrodiocentric asymptote vs launch date, Type I

7-27. Venus 1965: Declination of aphrodiocentric asymptote vs launch date, Type II

7-28. Venus 1965: Right ascension of aphrodiocentric asymptote vs launch date, Type I

7-29. Venus 1965: Right ascension of aphrodiocentric asymptote vs launch date, Type II
Fig. 7.1. Venus 1965: Time of flight vs launch date
Fig. 7–3. Venus 1965: Earth–Venus communication distance vs launch date
Fig. 7-4. Venus 1965: Declination of geocentric asymptote vs launch date, Type I
Fig. 7-6. Venus 1965: Right ascension of geocentric asymptote vs launch date, Type I.
Fig. 7–8. Venus 1965: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type I
Fig. 7-9. Venus 1965: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type II

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(m^2/\text{sec}^2 \times 10^8 \)
Fig. 7-10. Venus 1965: Angle between Sun-Earth vector and outgoing geocentric asymptote vs launch date, Type I
Fig. 7-11. Venus 1965: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
Fig. 7-12. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type I
Fig. 7-13. Venus 1965: True anomaly in transfer ellipse at launch time vs launch date, Type II
Fig. 7-14. Venus 1965: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 7-15. Venus 1965: Perihelion of transfer orbit vs launch date.
Fig. 7-17. Venus 1965: Aphelion of transfer orbit vs launch date, Type II
Fig. 7-18. Venus 1965: Inclination of heliocentric-transfer plane vs launch date, Type I
Fig. 7-23. Venus 1965: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type I
Fig. 7-24. Venus 1965; Angle between incoming aphrodiscentric asymptote and arrival planet's orbital plane vs launch date, Type II.

CLOSE I
CLOSE II

NOTE: C₂ is twice the total energy/Unit mass, with units m²/sec² x 10⁻⁶.
Fig. 7–26. Venus 1965: Declination of aphrodiocentric asymptote vs launch date, Type I
Fig. 7-28. Venus 1965: Right ascension of aphrodioecic asymptote vs launch date, Type 1.
VIII. VENUS 1967: TRAJECTORY-PARAMETER GRAPHS

Figure

8–1. Venus 1967: Time of flight vs launch date
8–2. Venus 1967: Heliocentric central angle vs launch date
8–3. Venus 1967: Earth–Venus communication distance vs launch date
8–4. Venus 1967: Declination of geocentric asymptote vs launch date, Type I
8–5. Venus 1967: Declination of geocentric asymptote vs launch date, Type II
8–6. Venus 1967: Right ascension of geocentric asymptote vs launch date, Type I
8–7. Venus 1967: Right ascension of geocentric asymptote vs launch date, Type II
8–8. Venus 1967: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type I
8–9. Venus 1967: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type II
8–10. Venus 1967: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
8–11. Venus 1967: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
8–12. Venus 1967: True anomaly in transfer ellipse at launch time vs launch date, Type I
8–13. Venus 1967: True anomaly in transfer ellipse at launch time vs launch date, Type II
8–14. Venus 1967: True anomaly in transfer ellipse at arrival time vs launch date
8–15. Venus 1967: Perihelion of transfer orbit vs launch date, Type I
8–16. Venus 1967: Perihelion of transfer orbit vs launch date, Type II
8–17. Venus 1967: Aphelion of transfer orbit vs launch date, Type I
8–18. Venus 1967: Aphelion of transfer orbit vs launch date, Type II
8–19. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type I
8–20. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type II
8–21. Venus 1967: Celestial latitude at arrival time vs launch date
8–22. Venus 1967: Asymptotic speed with respect to Venus vs launch date, Type I
8–23. Venus 1967: Asymptotic speed with respect to Venus vs launch date, Type II
8–24. Venus 1967: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date, Type I
8–25. Venus 1967: Angle between incoming aphrodiocentric asymptote and arrival planet’s orbital plane vs launch date, Type II
VIII. VENUS 1967: TRAJECTORY-PARAMETER GRAPHS (Cont'd)

Figure

8–26. Venus 1967: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date

8–27. Venus 1967: Declination of aphrodiocentric asymptote vs launch date, Type I

8–28. Venus 1967: Declination of aphrodiocentric asymptote vs launch date, Type II

8–29. Venus 1967: Right ascension of aphrodiocentric asymptote vs launch date, Type I

8–30. Venus 1967: Right ascension of aphrodiocentric asymptote vs launch date, Type II
Fig. 8-2. Venus 1967: Heliocentric central angle vs launch date
Fig. 8-3. Venus 1967: Earth–Venus communication distance vs launch date
Fig. 8-7. Venus 1967: Right ascension of geocentric asymptote vs launch date, Type II
Fig. 8-8: Venus 1987: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type I

Angle between outgoing geocentric asymptote and launch planet's orbital plane, deg
Fig. 8-11. Venus 1967: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
Fig. 8-13. Venus 1967: True anomaly in transfer ellipse at launch time vs launch date, Type II
Fig. 8–14. Venus 1967: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 8.15. Venus 1967: Perihelion of transfer orbit vs launch date, Type I
Fig. 8-16. Venus 1967: Perihelion of transfer orbit vs launch date, Type II
Fig. 8–17. Venus 1967: Aphelion of transfer orbit vs launch date, Type I
Fig. 8-18. Venus 1967: Aphelion of transfer orbit vs launch date, Type II
Fig. 8–19. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type I
Fig. 8–20. Venus 1967: Inclination of heliocentric-transfer plane vs launch date, Type II
Fig. 8-21. Venus 1967: Celestial latitude at arrival time vs launch date
Fig. 8.22. Venus 1967. Asymptotic speed with respect to Venus vs launch date, Type I

Note: C_s is twice the total energy/unit mass with units $m_0^2/km^2\times 10^8$.
Fig. 8–23. Venus 1967: Asymptotic speed with respect to Venus vs launch date, Type II
Fig. 8.24. Venus 1967: Angle between incoming aphrodisiac asymptote and arrival planet's orbital plane vs launch date, Type I.
Fig. 8-27. Venus 1967: Declination of aphrodiocentric asymptote vs launch date, Type I.
Fig. 8-29. Venus 1967: Right ascension of aphrodiocentric asymptote vs launch date, Type I
Fig. 8-30. Venus 1967: Right ascension of aphrodisocentric asymptote vs launch date, Type II

Right ascension of aphrodisocentric asymptote ϕ deg

$C_3 = 0.05889$

$C_3 = 0.07$

$C_3 = 0.09$

$C_3 = 0.11$

$C_3 = 0.15$

$C_3 = 0.17$

$C_3 = 0.19$

NOTE: C_3 is twice the total energy/unit mass with units $\text{m}^2/\text{sec}^2 \times 10^6$.

LAUNCH DATE

JUNE

JULY

AUGUST

MAY

APRIL

250

235

220

205

190

175

160

145

130

115

100
IX. VENUS 1968–1969: TRAJECTORY-PARAMETER GRAPHS

Figure
9-4. Venus 1968–1969: Declination of geocentric asymptote vs launch date, Type I
9-5. Venus 1968–1969: Declination of geocentric asymptote vs launch date, Type II
9-6. Venus 1968–1969: Right ascension of geocentric asymptote vs launch date, Type I
9-7. Venus 1968–1969: Right ascension of geocentric asymptote vs launch date, Type II
9-8. Venus 1968–1969: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type I
9-9. Venus 1968–1969: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date, Type II
9-11. Venus 1968–1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
9-12. Venus 1968–1969: True anomaly in transfer ellipse at launch time vs launch date, Type I
9-13. Venus 1968–1969: True anomaly in transfer ellipse at launch time vs launch date, Type II
9-16. Venus 1968–1969: Perihelion of transfer orbit vs launch date, Type II
9-17. Venus 1968–1969: Aphelion of transfer orbit vs launch date, Type I
9-20. Venus 1968–1969: Inclination of heliocentric-transfer plane vs launch date, Type II
IX. VENUS 1968-1969: TRAJECTORY-PARAMETER GRAPHS (Cont'd)

Figure
9–22. Venus 1968–1969: Celestial latitude at arrival time vs launch date, Type II
9–23. Venus 1968–1969: Asymptotic speed with respect to Venus vs launch date, Type I
9–24. Venus 1968–1969: Asymptotic speed with respect to Venus vs launch date, Type II
9–26. Venus 1968–1969: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type II
9–30. Venus 1968–1969: Declination of aphrodiocentric asymptote vs launch date, Type II
9–32. Venus 1968–1969: Right ascension of aphrodiocentric asymptote vs launch date, Type II
Fig. 9-1. Venus 1968-1969: Time of flight vs launch date
Fig. 9-2. Venus 1968-1969: Heliocentric central angle vs launch date.
Fig. 9–3. Venus 1968–1969: Earth–Venus communication distance vs launch date.
Fig. 9.4. Venus 1968-1969: Declination of geocentric asymptote vs launch date, Type I.
Fig. 9–7. Venus 1968–1969: Right ascension of geocentric asymptote vs launch date, Type II
Fig. 9–8. Venus 1968–1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type I
Fig. 9–9. Venus 1968–1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date, Type II
Fig. 9-10. Venus 1968–1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
Fig. 9-12. Venus 1968–1969: True anomaly in transfer ellipse at launch time vs launch date, Type I.
Fig. 9-13. Venus 1968-1969: True anomaly in transfer ellipse at launch vs launch date, Type II

NOTE: E is twice the total energy/unit mass with units $m_0^2/c^2 \times 0.9$
Fig. 9-14. Venus 1968–1969: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 9.15. Venus 1968-1969; Perihelion of transfer orbit vs launch date, Type I
Fig. 9-17. Venus 1968–1969: Aphelion of transfer orbit vs launch date, Type I
Fig. 9-18. Venus 1968-1969: Aphelion of transfer orbit vs launch date, Type II
Fig. 9-19. Venus 1968-1969: Inclination of heliocentric-transfer plane vs launch date, Type I
Fig. 9–20. Venus 1968–1969: Inclination of heliocentric-transfer plane vs launch date, Type II
Fig. 9-21. Venus 1968-1969: Celestial latitude at arrival time vs. launch date, Type I.

Class I: C3 is twice the total energy/unit mass with units m^2/sec^2 x 10^8.

Class II: C3 = 0.04760.
Fig. 9-23. Venus 1968–1969: Asymptotic speed with respect to Venus vs launch date, Type I
Fig. 9-25. Venus 1968-1969: Angle between incoming aphrodisiac asymptote and arrival planet’s orbital plane vs launch date, Type I

NOTE: C is mass of the total energy/unity mass with units $m^2c_2^{-1}x 10^8$.
Fig. 9-26. Venus 1968-1969: Angle between incoming aphrodiocentric asymptote and arrival planet's orbital plane vs launch date, Type II
Fig. 9-28. Venus 1968-1969: Angle between Venus–Sun vector and incoming aphrodiocentric asymptote vs launch date, Type II
Fig. 9-29: Venus 1968-1969: Declination of aphrodictic asymptote vs launch date, Type I
Fig. 9–31. Venus 1968–1969: Right ascension of aphrodiocentric asymptote vs launch date, Type I
Fig. 9–32. Venus 1968–1969: Right ascension of aphrodiocentric asymptote vs launch date, Type II
X. VENUS 1970: TRAJECTORY-PARAMETER GRAPHS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>Venus 1970: Time of flight vs launch date</td>
</tr>
<tr>
<td>10-2</td>
<td>Venus 1970: Heliocentric central angle vs launch date</td>
</tr>
<tr>
<td>10-3</td>
<td>Venus 1970: Earth–Venus communication distance vs launch date</td>
</tr>
<tr>
<td>10-4</td>
<td>Venus 1970: Declination of geocentric asymptote vs launch date</td>
</tr>
<tr>
<td>10-5</td>
<td>Venus 1970: Right ascension of geocentric asymptote vs launch date</td>
</tr>
<tr>
<td>10-6</td>
<td>Venus 1970: Angle between outgoing geocentric asymptote and launch</td>
</tr>
<tr>
<td></td>
<td>planet's orbital plane vs launch date</td>
</tr>
<tr>
<td>10-7</td>
<td>Venus 1970: Angle between Sun–Earth vector and outgoing geocentric</td>
</tr>
<tr>
<td></td>
<td>asymptote vs launch date, Type I</td>
</tr>
<tr>
<td>10-8</td>
<td>Venus 1970: Angle between Sun–Earth vector and outgoing geocentric</td>
</tr>
<tr>
<td></td>
<td>asymptote vs launch date, Type II</td>
</tr>
<tr>
<td>10-9</td>
<td>Venus 1970: True anomaly in transfer ellipse at launch time vs launch</td>
</tr>
<tr>
<td></td>
<td>date, Type I</td>
</tr>
<tr>
<td>10-10</td>
<td>Venus 1970: True anomaly in transfer ellipse at launch time vs launch</td>
</tr>
<tr>
<td></td>
<td>date, Type II</td>
</tr>
<tr>
<td>10-11</td>
<td>Venus 1970: True anomaly in transfer ellipse at arrival time vs launch date</td>
</tr>
<tr>
<td>10-12</td>
<td>Venus 1970: Perihelion of transfer orbit vs launch date</td>
</tr>
<tr>
<td>10-13</td>
<td>Venus 1970: Aphelion of transfer orbit vs launch date, Type I</td>
</tr>
<tr>
<td>10-14</td>
<td>Venus 1970: Aphelion of transfer orbit vs launch date, Type II</td>
</tr>
<tr>
<td>10-15</td>
<td>Venus 1970: Inclination of heliocentric-transfer plane vs launch date,</td>
</tr>
<tr>
<td></td>
<td>Type I</td>
</tr>
<tr>
<td>10-16</td>
<td>Venus 1970: Inclination of heliocentric-transfer plane vs launch date,</td>
</tr>
<tr>
<td></td>
<td>Type II</td>
</tr>
<tr>
<td>10-17</td>
<td>Venus 1970: Celestial latitude at arrival time vs launch date</td>
</tr>
<tr>
<td>10-18</td>
<td>Venus 1970: Asymptotic speed with respect to Venus vs launch date</td>
</tr>
<tr>
<td>10-19</td>
<td>Venus 1970: Angle between incoming aphrodiocentric asymptote and</td>
</tr>
<tr>
<td></td>
<td>arrival planet's orbital plane vs launch date</td>
</tr>
<tr>
<td>10-20</td>
<td>Venus 1970: Angle between Venus–Sun vector and incoming</td>
</tr>
<tr>
<td></td>
<td>aphrodiocentric asymptote vs launch date</td>
</tr>
</tbody>
</table>
Figure

10–21. Venus 1970: Declination of aphrodiocentric asymptote vs launch date

10–22. Venus 1970: Right ascension of aphrodiocentric asymptote vs launch date, Type I

10–23. Venus 1970: Right ascension of aphrodiocentric asymptote vs launch date, Type II
Fig. 10.4: Venus 1970; Declination of geocentric asymptote vs. launch date.
Fig. 10-5. Venus 1970: Right ascension of geocentric asymptote vs launch date
Fig. 10-6. Venus 1970: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date.
Fig. 10–7. Venus 1970: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type I
Fig. 10–8. Venus 1970: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date, Type II
Fig. 10-10. Venus 1970. True anomaly in transfer ellipse vs launch date, Type II.

NOTE: C_3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS m^2/sec^2 x 10^8

CLASS I

CLASS II

TYPE II

LAUNCH DATE

TRUE ANOMALY IN TRANSFER ELLIPSE AT LAUNCH TIME, μ deg
Fig. 10-11. Venus 1970: True anomaly in transfer ellipse at arrival time vs launch date

NOTE: c_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$.
Fig. 10.12. Venus 1970: Perihelion of transfer orbit vs launch date

Perihelion of transfer orbit a_p, millions of km
Fig. 10-14. Venus 1970: Aphelion of transfer orbit vs launch date, Type II
Fig. 10-15. Venus 1970: Inclination of heliocentric-transfer plane vs launch date, Type I

Inclination of heliocentric-transfer plane, θ, deg

NOTE: C3 is twice the total energy/unit mass with units m^2/sec^2 x 10^6
Fig. 10-17. Venus 1970: Celestial latitude at arrival time vs launch date.
Fig. 10-19. Venus 1970: Angle between incoming aphrodisiocentric asymptote and arrival planet's orbital plane vs launch date.
Fig. 10.20. Venus 1970: Angle between Venus-Sun vector and incoming aphrodictocentric asymptote vs launch date.
Fig. 10–21. Venus 1970: Declination of aphrodiocentric asymptote vs launch date
Fig. 10.23: Venus 1970: Right ascension of apoheliocentric asymptote vs launch date, Type II

RIGHT ASCENSION OF APHOHELIOCENTRIC ASYMPTOTE θ_{ph}
XI. MARS 1962: TRAJECTORY-PARAMETER GRAPHS

Figure
11-1. Mars 1962: Time of flight vs launch date
11-3. Mars 1962: Earth–Mars communication distance vs launch date
11-4. Mars 1962: Declination of geocentric asymptote vs launch date
11-5. Mars 1962: Right ascension of geocentric asymptote vs launch date
11-6. Mars 1962: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
11-7. Mars 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
11-8. Mars 1962: True anomaly in transfer ellipse at launch time vs launch date
11-9. Mars 1962: True anomaly in transfer ellipse at arrival time vs launch date
11-10. Mars 1962: Perihelion of transfer orbit vs launch date
11-11. Mars 1962: Aphelion of transfer orbit vs launch date
11-12. Mars 1962: Inclination of heliocentric-transfer plane vs launch date
11-13. Mars 1962: Celestial latitude at arrival time vs launch date
11-14. Mars 1962: Asymptotic speed with respect to Mars vs launch date
11-15. Mars 1962: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
11-16. Mars 1962: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
11-17. Mars 1962: Declination of aerocentric asymptote vs launch date
11-18. Mars 1962: Right ascension of aerocentric asymptote vs launch date
Fig. 11-1. Mars 1962: Time of flight vs launch date.

NOTE: C_3 is twice the total energy/unit mass with units W^2/kg^2. Time of flight T_f days.
Fig. 11-2. Mars 1962: Heliocentric central angle vs launch date.

Note: C_3 is twice the total energy unit mass with units $m_0 ^2 \cdot k \cdot e \cdot x \cdot 0.8$.

- CLASS I
- CLASS II

$C_3 = 0.018$, $C_3 = 0.017$, $C_3 = 0.016$, $C_3 = 0.001$, $C_3 = 0.24$.
Fig. 11-3. Mars 1962: Earth–Mars communication distance vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$.

CLASS I

CLASS II

TYPE I
Fig. 11-4. Mars 1962: Declination of geocentric asymptote vs launch date.
Fig. 11–7. Mars 1962: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
Fig. 11-8. Mars 1962: True anomaly in transfer ellipse at launch time vs launch date.
Fig. 11-9. Mars 1962: True anomaly in transfer ellipse at arrival time vs launch date

NOTE: C_3 is twice the total energy/unit mass with units m^2/sec^2 x 10^8

CLASS I
CLASS II

TRUE ANOMALY IN TRANSFER ELLIPSE AT ARRIVAL TIME
Fig. 11-11. Mars 1962: Aphelion of transfer orbit vs launch date.
Fig. 11–13. Mars 1962: Celestial latitude at arrival time vs launch date
Fig. 11-14. Mars 1962: Asymptotic speed with respect to Mars vs launch date

NOTE: C₃ IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS m^2/s² x 10^4

ASYMPTOTIC SPEED WITH RESPECT TO MARS Vₜ, KM/SEC

CLASS I
CLASS II

C₃ = 0.24
C₃ = 0.21
C₃ = 0.18
C₃ = 0.17
C₃ = 0.16
C₃ = 0.1598
C₃ = 0.15979
Fig. 11-15. Mars 1962: Angle between incoming aero-centric asymptote and arrival planet's orbital plane vs launch date.
Fig. 11-18. Mars 1962: Right ascension of aerocentric asymptote vs launch date

NOTE: C3 is twice the total energy/unit mass with units of m^2/asec^2 x 10^6

Right ascension of aerocentric asymptote θ, deg.
XII. MARS 1964: TRAJECTORY-PARAMETER GRAPHS

Figure

12-1. Mars 1964: Time of flight vs launch date
12-2. Mars 1964: Heliocentric central angle vs launch date
12-3. Mars 1964: Earth–Mars communication distance vs launch date
12-4. Mars 1964: Declination of geocentric asymptote vs launch date
12-5. Mars 1964: Right ascension of geocentric asymptote vs launch date
12-6. Mars 1964: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date
12-7. Mars 1964: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
12-8. Mars 1964: True anomaly in transfer ellipse at launch time vs launch date
12-9. Mars 1964: True anomaly in transfer ellipse at arrival time vs launch date
12-10. Mars 1964: Perihelion of transfer orbit vs launch date
12-11. Mars 1964: Aphelion of transfer orbit vs launch date
12-12. Mars 1964: Inclination of heliocentric-transfer plane vs launch date
12-13. Mars 1964: Celestial latitude at arrival time vs launch date
12-14. Mars 1964: Asymptotic speed with respect to Mars vs launch date
12-15. Mars 1964: Angle between incoming aerocentric asymptote and arrival planet’s orbital plane vs launch date
12-16. Mars 1964: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
12-17. Mars 1964: Declination of aerocentric asymptote vs launch date
12-18. Mars 1964: Right ascension of aerocentric asymptote vs launch date
Fig. 12-1. Mars 1964: Time of flight vs launch date
Fig. 12.2. Mars 1964: Heliocentric central angle vs launch date

Class I

Class II

NOTE: C_3 is twice the total energy/unit mass with units m^2/s^2 x 10³

C_3 = 0.01
C_3 = 0.10
C_3 = 0.12
C_3 = 0.18
C_3 = 0.21
C_3 = 0.24
Fig. 12–4. Mars 1964: Declination of geocentric asymptote vs launch date

- CLASS I
- CLASS II

NOTE: \(c_3 \) is twice the total energy/unit mass with units \(\text{m}^2/\text{sec}^2 \times 10^8 \)
Fig. 12.5. Mars 1964. Right ascension of geocentric asymptote vs launch date

Right ascension of geocentric asymptote
Fig. 12-6. Mars 1964: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 12–8. Mars 1964: True anomaly in transfer ellipse at launch time vs launch date
Fig. 12-9. Mars 1964: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 12-10. Mars 1964: Perihelion of transfer orbit vs launch date.

Note: C_0 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^4$.
Fig. 12-11. Mars 1964: Aphelion of transfer orbit vs launch date.
Fig. 12-12. Mars 1964: Inclination of heliocentric-transfer plane vs launch date

Inclination of Heliocentric Transfer Plane /°

Launch Date

OCTOBER 30

NOVEMBER 9

DECEMBER 9

JANUARY 3

LAUNCH DATE

TYPE I

CLASS I

CLASS II

C_i is twice the total energy/unit mass with units m²/sec² x 10⁸

NOTE: C_i
Fig. 12-14. Mars 1964: Asymptotic speed with respect to Mars vs launch date

Asymptotic speed with respect to Mars V/A, km/sec
Fig. 12-15. Mars 1964: Angle between incoming aero-centric asymptote and arrival planet's orbital plane vs launch date
Fig. 12-16. Mars 1964: Angle between Mars-Sun vector and incoming aerocentric asymptote vs launch date.
Fig. 12-18. Mars 1964: Right ascension of aerocentric asymptote vs launch date
XIII. MARS 1966: TRAJECTORY-PARAMETER GRAPHS

Figure
13–1. Mars 1966: Time of flight vs launch date
13–2. Mars 1966: Heliocentric central angle vs launch date
13–3. Mars 1966: Earth–Mars communication distance vs launch date
13–4. Mars 1966: Declination of geocentric asymptote vs launch date
13–5. Mars 1966: Right ascension of geocentric asymptote vs launch date
13–6. Mars 1966: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
13–7. Mars 1966: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
13–8. Mars 1966: True anomaly in transfer ellipse at launch time vs launch date
13–9. Mars 1966: True anomaly in transfer ellipse at arrival time vs launch date
13–10. Mars 1966: Perihelion of transfer orbit vs launch date
13–11. Mars 1966: Aphelion of transfer orbit vs launch date
13–12. Mars 1966: Inclination of heliocentric-transfer plane vs launch date
13–13. Mars 1966: Celestial latitude at arrival time vs launch date
13–14. Mars 1966: Asymptotic speed with respect to Mars vs launch date
13–15. Mars 1966: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
13–16. Mars 1966: Angle between Mars-Sun vector and incoming aerocentric asymptote vs launch date
13–17. Mars 1966: Declination of aerocentric asymptote vs launch date
13–18. Mars 1966: Right ascension of aerocentric asymptote vs launch date
Fig. 13-1. Mars 1966: Time of flight vs launch date
Fig. 13-2. Mars 1966: Heliocentric central angle vs launch date

NOTE: C₃ is twice the total energy/unit mass with units m²/s² x 10⁸.
Fig. 13-3. Mars 1966: Earth–Mars communication distance vs launch date
Fig. 13.5. Mars 1966: Right ascension of geocentric asymptote vs launch date
Fig. 13–6. Mars 1966: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 13.7: Mars 1966: Angle between Sun-Earth vector and going geocentric asymptote vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/s^2 \times 10^4$
Fig. 13-8. Mars 1966: True anomaly in transfer ellipse at launch time vs launch date.
Fig. 13-9. Mars 1966s: True anomaly in transfer ellipse at arrival time vs launch date.
Fig. 13-10. Mars 1966: Perihelion of transfer orbit vs launch date.
Fig. 13-11. Mars 1966: Aphelion of transfer orbit vs launch date
Fig. 13-12. Mars 1966: Inclination of heliocentric-transfer plane vs launch date.

CLASS I

CLASS II

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(m^2/s^2 \) \(\times 10^8 \)

TYPE I

\(\theta \), deg.

Inclination of heliocentric-transfer plane
Fig. 13-17. Mars 1966: Declination of aerocentric asymptote vs launch date
Fig. 13-18. Mars 1966: Right ascension of aerocentric asymptote vs launch date.
XIV. MARS 1969: TRAJECTORY-PARAMETER GRAPHS

Figure

14-1. Mars 1969: Time of flight vs launch date
14-3. Mars 1969: Earth–Mars communication distance vs launch date
14-4. Mars 1969: Declination of geocentric asymptote vs launch date
14-5. Mars 1969: Right ascension of geocentric asymptote vs launch date
14-6. Mars 1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
14-7. Mars 1969: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
14-8. Mars 1969: True anomaly in transfer ellipse at launch time vs launch date
14-9. Mars 1969: True anomaly in transfer ellipse at arrival time vs launch date
14-10. Mars 1969: Perihelion of transfer orbit vs launch date
14-11. Mars 1969: Aphelion of transfer orbit vs launch date
14-12. Mars 1969: Inclination of heliocentric-transfer plane vs launch date
14-13. Mars 1969: Celestial latitude at arrival time vs launch date
14-14. Mars 1969: Asymptotic speed with respect to Mars vs launch date
14-15. Mars 1969: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
14-16. Mars 1969: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
Fig. 14.1. Mars 1969: Time of flight vs launch date
Fig. 14-5. Mars 1969: Right ascension of geocentric asymptote vs launch date
Fig. 14-6. Mars 1969: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 14-8. Mars 1969: True anomaly in transfer ellipse at launch time vs launch date
Fig. 14-9. Mars 1969: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 14-11. Mars 1969: Aphelion of transfer orbit vs launch date
Fig. 14-12. Mars 1969: Inclination of heliocentric transfer plane vs launch date

Inclination of Heliocentric Transfer Plane, deg

CLASS I
CLASS II
NOTE: C3 = TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS m²/sec² x 10^8

- C3 = 0.24
- C3 = 0.21
- C3 = 0.18
- C3 = 0.16
- C3 = 0.15
- C3 = 0.12
- C3 = 0.10
- C3 = 0.08864

LAUNCH DATE
MARCH 24
APRIL 16
MAY 25
JUNE 4
FEBRUARY 14
JANUARY 25
DECEMBER 14
NOVEMBER 25
OCTOBER 15
SEPTEMBER 25
AUGUST 15
JULY 25
MAY 15
APRIL 25
MARCH 15
FEBRUARY 25
JANUARY 15

Fig. 14-14. Mars 1969: Asymptotic speed with respect to Mars vs launch date
Fig. 14–15. Mars 1969: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date.

Note: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$.

Class I

Class II
XV. MARS 1971: TRAJECTORY-PARAMETER GRAPHS

Figure
15-1. Mars 1971: Time of flight vs launch date
15-3. Mars 1971: Earth–Mars communication distance vs launch date
15-4. Mars 1971: Declination of geocentric asymptote vs launch date
15-5. Mars 1971: Right ascension of geocentric asymptote vs launch date
15-6. Mars 1971: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
15-7. Mars 1971: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
15-8. Mars 1971: True anomaly in transfer ellipse at launch time vs launch date
15-9. Mars 1971: True anomaly in transfer ellipse at arrival time vs launch date
15-10. Mars 1971: Perihelion of transfer orbit vs launch date
15-11. Mars 1971: Aphelion of transfer orbit vs launch date
15-12. Mars 1971: Inclination of heliocentric-transfer plane vs launch date
15-13. Mars 1971: Celestial latitude at arrival time vs launch date
15-14. Mars 1971: Asymptotic speed with respect to Mars vs launch date
15-15. Mars 1971: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
15-16. Mars 1971: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
15-17. Mars 1971: Declination of aerocentric asymptote vs launch date
15-18. Mars 1971: Right ascension of aerocentric asymptote vs launch date
Fig. 15-1. Mars 1971: Time of flight vs launch date
Fig. 15-4. Mars 1971: Declination of geocentric asymptote vs launch date
Fig. 15-5. Mars 1971: Right ascension of geocentric asymptote vs launch date
Fig. 15-6. Mars 1971: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
Fig. 15-9. Mars 1971: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 15–12. Mars 1971: Inclination of heliocentric-transfer plane vs launch date
Fig. 15-14. Mars 1971: Asymptotic speed with respect to Mars vs launch date

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$
Fig. 15-18. Mars 1971: Right ascension of aero-centric asymptote vs launch date

RIGHT ASCENSION OF AERO-CENTRIC ASYMPTOTE (°)

CLASS I
CLASS II

NOTE: C3 IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS m^2/s^2 x 10^9.
XVI. MARS 1973: TRAJECTORY-PARAMETER GRAPHS

Figure
16-1. Mars 1973: Time of flight vs launch date
16-2. Mars 1973: Heliocentric central angle vs launch date
16-3. Mars 1973: Earth–Mars communication distance vs launch date
16-4. Mars 1973: Declination of geocentric asymptote vs launch date
16-5. Mars 1973: Right ascension of geocentric asymptote vs launch date
16-6. Mars 1973: Angle between outgoing geocentric asymptote and launch planet’s orbital plane vs launch date
16-7. Mars 1973: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
16-8. Mars 1973: True anomaly in transfer ellipse at launch time vs launch date
16-9. Mars 1973: True anomaly in transfer ellipse at arrival time vs launch date
16-10. Mars 1973: Perihelion of transfer orbit vs launch date
16-11. Mars 1973: Aphelion of transfer orbit vs launch date
16-12. Mars 1973: Inclination of heliocentric-transfer plane vs launch date
16-13. Mars 1973: Celestial latitude at arrival time vs launch date
16-14. Mars 1973: Asymptotic speed with respect to Mars vs launch date
16-15. Mars 1973: Angle between incoming aerocentric asymptote and arrival planet’s orbital plane vs launch date
16-16. Mars 1973: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
16-17. Mars 1973: Declination of aerocentric asymptote vs launch date
16-18. Mars 1973: Right ascension of aerocentric asymptote vs launch date
Fig. 16-2. Mars 1973: Heliocentric central angle vs. launch date.

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(m^2/sec^2 \times 10^{-8} \).

CLASS I
- \(C_3 = 0.18 \)
- \(C_3 = 0.21 \)
- \(C_3 = 0.24 \)

CLASS II
- \(C_3 = 0.14557 \)

LAUNCH DATE
- 19 SEPTEMBER
- 21 AUGUST
- 28 JULY
- 4 AUGUST
- 11 AUGUST
- 17 JULY
- 25 JUNE

HELIOCENTRIC CENTRAL ANGLE (\(\lambda \) deg)
Fig. 16-3. Mars 1973: Earth-Mars communication distance vs launch date.

Note: C_k is twice the total energy/unit mass with units $m^2/s^2 \times 10^8$.
Fig. 16-5. Mars 1973: Right ascension of geocentric asymptote vs launch date
Fig. 16-6. Mars 1973: Angle between outgoing geocentric asymptote and launch plane's orbital plane vs launch date.

NOTE: C_3 is the total energy/unit mass with units of $m^2/asec^2 \times 10^8$.
Fig. 16-7: Mars 1973: Angle between Sun-Earth vector and outgoing geocentric asymptote vs launch date

Angle between Sun-Earth vector and outgoing geocentric asymptote φ day
Fig. 16-8. Mars 1973: True anomaly in transfer ellipse at launch time vs launch date

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(\text{m}^2/\text{sec}^2 \times 10^8 \)
Fig. 16-9. Mars 1973: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 16–12. Mars 1973: Inclination of heliocentric-transfer plane vs launch date
Fig. 16.13. Mars 1973: Celestial longitude at arrival time vs launch date

Celestial longitude at arrival time ϕ_1, deg

Launch Date

- $C_3 = 0.1457$
- $C_3 = 0.16$
- $C_3 = 0.18$
- $C_3 = 0.21$
- $C_3 = 0.24$

Note: C_3 is the total energy/unit mass with units m^2/s^2. $x \times 10^8$
Fig. 16-14. Mars 1973: Asymptotic speed with respect to Mars vs launch date.

NOTE: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^6$.

Asymptotic speed with respect to Mars V_p, km/sec.
Fig. 16–18. Mars 1973: Right ascension of aero-centric asymptote vs launch date
XVII. MARS 1975: TRAJECTORY-PARAMETER GRAPHS

Figure

17-1. Mars 1975: Time of flight vs launch date
17-2. Mars 1975: Heliocentric central angle vs launch date
17-3. Mars 1975: Earth–Mars communication distance vs launch date
17-4. Mars 1975: Declination of geocentric asymptote vs launch date
17-5. Mars 1975: Right ascension of geocentric asymptote vs launch date
17-6. Mars 1975: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
17-7. Mars 1975: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
17-8. Mars 1975: True anomaly in transfer ellipse at launch time vs launch date
17-9. Mars 1975: True anomaly in transfer ellipse at arrival time vs launch date
17-10. Mars 1975: Perihelion of transfer orbit vs launch date
17-11. Mars 1975: Aphelion of transfer orbit vs launch date
17-12. Mars 1975: Inclination of heliocentric-transfer plane vs launch date
17-13. Mars 1975: Celestial latitude at arrival time vs launch date
17-14. Mars 1975: Asymptotic speed with respect to Mars vs launch date
17-15. Mars 1975: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
17-16. Mars 1975: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
Fig. 17-2. Mars 1975: Heliocentric central angle vs launch date

C₃ = 0.18724
C₃ = 0.20
C₃ = 0.22
C₃ = 0.24
C₃ = 0.27
C₃ = 0.30
C₃ = 0.35

TYPE I

CLASS I

CLASS II

NOTE: C₃ IS TWICE THE TOTAL ENERGY/UNIT MASS WITH UNITS m²/sec² X 10⁸
Fig. 17-3. Mars 1975: Earth-Mars communication distance vs launch date

NOTE: C3 is twice the total energy/unit mass with units m^2/kg x 10^6.
Fig. 17-4. Mars 1975: Declination of geocentric asymptote vs launch date
Fig. 17-5. Mars 1975: Right ascension of geocentric asymptote vs launch date
Fig. 17-6. Mars 1975: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date

NOTE: \(C_3 \) is twice the total energy/unit mass with units \(\text{m}^2/\text{sec}^2 \times 10^8 \).
Fig. 17-7. Mars 1975: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
Fig. 17-8. Mars 1975: True anomaly in transfer ellipse at launch time vs launch date.
Fig. 17-9. Mars 1975: True anomaly in transfer ellipse at arrival time vs launch date
Fig. 17-10. Mars 1975: Perihelion of transfer orbit vs launch date

Perihelion of transfer orbit, a_p/millions of km

Notes:
- Type I
- Class I
- Class II
- $C_3 = 0.18724$
- $C_3 = 0.20$
- $C_3 = 0.22$
- $C_3 = 0.24$
- $C_3 = 0.27$
- $C_3 = 0.30$
- $C_3 = 0.35$

Energy/unit mass with units $m^2=1.862\times10^{-8}$
Fig. 17-11. Mars 1975: Aphelion of transfer orbit vs launch date
Fig. 17-13. Mars 1975: Celestial latitude at arrival time vs launch date
Fig. 17-14. Mars 1975: Asymptotic speed with respect to Mars vs launch date.
Fig. 17–15. Mars 1975: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
Fig. 17-16. Mars 1975: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date

Note: C_3 is twice the total energy/unit mass with units $m^2/sec^2 \times 10^8$.

Classes:
- **CLASS I**
- **CLASS II**
XVIII. MARS 1977: TRAJECTORY-PARAMETER GRAPHS

Figure
18-1. Mars 1977: Time of flight vs launch date
18-3. Mars 1977: Earth–Mars communication distance vs launch date
18-4. Mars 1977: Declination of geocentric asymptote vs launch date
18-5. Mars 1977: Right ascension of geocentric asymptote vs launch date
18-6. Mars 1977: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date
18-7. Mars 1977: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
18-8. Mars 1977: True anomaly in transfer ellipse at launch time vs launch date
18-9. Mars 1977: True anomaly in transfer ellipse at arrival time vs launch date
18-10. Mars 1977: Perihelion of transfer orbit vs launch date
18-11. Mars 1977: Aphelion of transfer orbit vs launch date
18-12. Mars 1977: Inclination of heliocentric-transfer plane vs launch date
18-13. Mars 1977: Celestial latitude at arrival time vs launch date
18-14. Mars 1977: Asymptotic speed with respect to Mars vs launch date
18-15. Mars 1977: Angle between incoming aerocentric asymptote and arrival planet's orbital plane vs launch date
18-16. Mars 1977: Angle between Mars–Sun vector and incoming aerocentric asymptote vs launch date
Fig. 18.6. Mars 1977: Angle between outgoing geocentric asymptote and launch planet's orbital plane vs launch date

Note: C_3 is twice the total energy/unit mass with units n^2m^2/l^2. $C_3=0.36$.
Fig. 18-7. Mars 1977: Angle between Sun–Earth vector and outgoing geocentric asymptote vs launch date
Fig. 18-8. Mars 1977: True anomaly in transfer ellipse at launch time vs launch date

TRUE ANOMALY IN TRANSFER ELLIPSE AT LAUNCH TIME ψ_{la}
Fig. 18-9. Mars 1977: True anomaly in transfer ellipse at arrival time vs launch date.
Fig. 18-10. Mars 1977: Perihelion of transfer orbit vs launch date

CLASS I
CLASS II

NOTE: C3 s twice the total energy/unit mass with units m^2/sec^2 x 10^8

LAUNCH DATE
OCTOBER
SEPTEMBER
NOVEMBER

9
14
24
29

20
30

C - 0.0856
C - 0.08
C - 0.24
C - 0.27
C - 0.30

TYPE I

PERHELION OF TRANSFER ORBIT A, Millions of km
Fig. 18-11. Mars 1977: Aphelion of transfer orbit vs launch date
Fig. 18–14. Mars 1977: Asymptotic speed with respect to Mars vs launch date
Fig. 18-15: Mars 1977: Angle between incoming aero-centric asymptote and arrival planet's orbital plane vs launch date.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_3</td>
<td>vis viva energy (injection energy of escape hyperbola)</td>
</tr>
<tr>
<td>i</td>
<td>inclination of heliocentric transfer orbit, deg</td>
</tr>
<tr>
<td>R_a</td>
<td>aphelion of transfer orbit, millions of km</td>
</tr>
<tr>
<td>R_C</td>
<td>Earth-Venus (or -Mars) communication distance, millions of km</td>
</tr>
<tr>
<td>R_p</td>
<td>perihelion of transfer orbit, millions of km</td>
</tr>
<tr>
<td>T_r</td>
<td>time of flight, days</td>
</tr>
<tr>
<td>v_L</td>
<td>true anomaly in transfer ellipse at launch time, deg</td>
</tr>
<tr>
<td>v_P</td>
<td>true anomaly in transfer ellipse at arrival time, deg</td>
</tr>
<tr>
<td>V_{sh}</td>
<td>asymptotic speed (or hyperbolic-excess speed) with respect to Venus (or Mars), km/sec</td>
</tr>
<tr>
<td>β_P</td>
<td>celestial latitude of Venus (or Mars) at arrival time, deg</td>
</tr>
<tr>
<td>γ_L</td>
<td>angle between outgoing geocentric asymptote and launch planet's orbital plane, deg (also defined as celestial latitude of outgoing asymptote)</td>
</tr>
<tr>
<td>γ_P</td>
<td>angle between incoming aphrodiocentric or aerocentric asymptote and arrival planet's orbital plane, deg</td>
</tr>
<tr>
<td>ζ_L</td>
<td>angle between Sun-Earth vector and outgoing geocentric asymptote, deg (also defined as Earth-probe-Sun angle)</td>
</tr>
<tr>
<td>ζ_P</td>
<td>angle between Venus-Sun (or Mars-Sun) vector and incoming aphrodiocentric (or aerocentric) asymptote, deg (also defined as Sun-probe-target angle)</td>
</tr>
<tr>
<td>Θ_P</td>
<td>right ascension of aphrodiocentric (or aerocentric) asymptote, deg</td>
</tr>
<tr>
<td>Θ_g</td>
<td>right ascension of geocentric asymptote, deg</td>
</tr>
<tr>
<td>Φ_P</td>
<td>declination of aphrodiocentric (or aerocentric) asymptote, deg</td>
</tr>
<tr>
<td>Φ_g</td>
<td>declination of geocentric asymptote, deg</td>
</tr>
<tr>
<td>Ψ</td>
<td>heliocentric central angle, deg</td>
</tr>
</tbody>
</table>

This table of Nomenclature presents only the notation used in the graphs of Sections IV to XVIII. All other terms are defined at point of first mention in Sections I to III.

Aphrodiocentric refers to Venus.

Aerocentric refers to Mars.
REFERENCES

ACKNOWLEDGEMENTS

The authors wish to acknowledge the valuable assistance of Mrs. Nancy Evans, who edited and prepared the graphs for the illustrators, and Miss Joan Benson, who carried out the production of the computations and automatic plotting of the graphs.