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TECHNICAL REPORT R-115 

METHOD FOR APPROXIMATING THE VACUUM MOTIONS OF SPINNING 
SYMMETRICAL BODIES WITH NONCONSTANT SPIN RATES 

By C. WILLI AM MARTZ 

SUMMARY 1t(7'?/ 
A method 107' approximating the vacuum motions 

oj spinning 7'igid symmetrical bodies with varying 
spin rates and inertias has been completed. The 
analysis includes the effects oj time varying thrust 
misalinements, mass unbalance, and jet damping. 
R esults are given in the j Ol'm oj equations jor space­
l'ejerenced Euler angles, flight-path angles, body­
rejerenced att';tude mtes, and earth-rejel'enced 
vehicle-trajectory coordinates. The method consists 
oj dividing the problem into intervals during which 
the time-dependent variables are assumed constant 
at their mean iniel'val value. In ordel' to check this 
pl'ocedure, solutions jor various intel'val sizes al'e 
compared with solutions obtained with numel'ical 
methods. Although the method is somewhat lengthy 
jOl' accumte hand computation in most cases, it is 
readily programed jor machine solutions . Probably 
more important, the general solutions give insight 
into the separate effects oj the variables and, in many 
cases, can be quickly used to determine the app1'oxi­
mate mnges oj the variables 1'egui1'ecl JOT the desired 
olution to a given p1'oblem. In this respect, equa­

tions j or detel'mining maximum wobble have been 
derived jOl' certain input conditions. 

The method has been shown to compa1'e closely 
with the numerical solutions oj two sample problems. 
The sample p1'oblems also illustrated the 7'elatively 
large effect oj pitch and yaw j et clamping on body 
motions. 

INTROD UCTIO 

Vacuum mo tions of rotating bodies are becoming 
more important with the fairly r ecent ability to 
place objects in motion beyond the atmosphere. 
Machine computer programs for calculating these 
type motions have been completed and used 

successfully for some time. However , not every­
one has a computer machine available for Lhis 
work. Also, those with machines are using the 
trial-and-eITor process ill most instances when 
locating the proper range of variables with the 
result that much machine time could be saved if 
some insight were available as to the individual 
effects of the different variables on the motions. 
This insight is best provided by analyLical solu­
tions to the equations of motions. Ther e have 
been many papers published conceming this prob­
lem. (See, for example, r efs. 1, 2, and 3.) How­
ever, one thing common to these papers has been 
the constant spin rate requirement. Other re­
quirements sometimes include constant mass and 
inertia parameters or constant moment inputs. 

olutions are sometimes limited to angular rates 
referred to a body-axis system requiring trans­
formation and nwnerical integration to obtain 
space-referenced attitude angles. 

The present paper presents an approximation 
method for determining the vacuum motion of 
pinning symmetrical rigid bodies with changing 

spin rates and inertias including the effects o[ Lime 
varyjng tbTuSt misalinement, mass unbalance, and 
jet damping. Resul ts are presented in the form 
of equations [or space-referenced Euler angles 
and flight-path angles, and earth-referenced 
vehicle-traj ectory coordinates. An ex,!>ression 
for body-referenced attitude rates is included [or 
convenience. The method consists of dividing 
the problem into intervals dUTing which the time­
dependent variables are assumed constant at their 
mean in tel'val value. J n order to check this 
procedure, solutions [or various interval sizes are 
compared 'with solutions obtained ,vith numerical 
methods. The method was developed under the 
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limitations that body pitch and yaw attitudes are 
r estricted to "sm all angle" oscillations and that 
body moments of inertia about the pitch and yaw 
axes ar e equaL 

a 
A,B, 

A n, B n 
A 4, A s 
B 4, B s, 

Bs, B7 
'I, O2, 

03, 

F 

F,,, On 
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g 
Ix, f}" I z 

Ixy, Ixz 
I = I y= I z 
i = .J 1 
.J 
-:-

J 
]{ 

]{' 

l 

YMBOL 

arbi trary fitting constant 
complex input coefficients deuned in 

equation (13) 
fi tting constants for moment inputs 
constants defined by equations (18) 
constan ts defined by equations (18) 

constants defined by equations (1 

magnitude of total asymmetrical 
force on vehicle 

input coefficients defined in equation 
(13) 

mean value o[ F/(m V) within an 
interval 

constant of gravitational acceleration 
moments or inertia abo ut X-, Y-, 

and Z-axes, respectively 
producLs of inertia due Lo unbalance 

jet damping coefficient, K /I 
mean value of j over the in terval 
pitch and yaw jet damping faclor, 

j -mP 
roll jet damping factor 
distance from body cen ter of grav­

ity Lo motor nozzle exit measured 
along X -an 

m mass of body 
lYlx , 11fy , Nlz asymmeLrical moments <lbouL X-, 

Y-, and Z-axes, l' espectively 
p , q, r 

P 
R1, R2, R3 
T 
T 

t 
1-
X,Y,Z 

x, y, Z 

angular velocity about X-, Y-, and 
Z-axes, respectively 

mean value of p within an interval 
vectors defined in equaLioos (9) 
thrust 
mean value of T / (m V) within the 

interval 
time from beginning of interval 
velocity of body along flight path 
orthogonal body-axis system (origin 

at body center of gravity) 
orthogonal space-axis system (origin 

arbitrary) 

Xc, Y c, Zc 

a 

a s 

(3 

(3. 

:1:- , Y- , and z-axis system ro tated 
about y-axis to make zc-axis ver­
tical 

body angle o[ attack l'efen ed to a 
rolling body-axis system 

body angle of attack r eferred to a 
nonrolling body-axis system 

body angle of sideslip l'eferred to a 
rolling body-axis system 

body angle of sideslip r eferred to a 
nonrolling body-axis system 

~=J+i(p-w) 
'Y~ angle between X- , y-, and z-axis 

'Y='Y&+i'Yt 
'Yo 
'Y", 

A 
7] y,7]z 

system and X e, Y e, and Z e system 
in xz-plane 

fligh t-path angle in pitch plane 
flight-path angle in yaw plane 
vehicle total yav" angle, O+ i1,l-, r adians 
angle beLween body principal X -axis 

and X (body refer ence) a).is 
measmed about Y- and Z-axcv, 
respectively (see figs . 3 and 4) 

¢o= f pdt at to 

1,l-,O,¢ 

¢' 

w 

ubscrip ts: 

yaw, pitch, and roll orien tation 
angles of body X-, Y-, and Z-axes 
with respect to x, y, and z space­
axis system (Euler angles) 

angle between the total asymmetrical 
force vector (always in the YZ­
plane) and the - Z direction (see 
fig. l(b)) 

mean value or pl x/I wi thin the 
interval 

o value of quantity at beginning 0(" 

intel'val 
j value of quantity at end of interval 
max maximum value of quantity 
n integer 1, 2, 3 

A do t over a symbol indicates Lhe first derivaLive 
with respect to Lime; a double do t indicates Lhe 
econd derivative with respect to time. 

ANALYSIS 

The modified Eulerian dynamic equations gov­
erning the ro tational mo tions of a body about i ts 
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principal axes are (see refs. 4 and 5) : 

Al1x= Ixp-rq(fy- Iz) + K'p 

M y= I yq- l'p(Iz- I x) + Kq 

Mz = Izi'-7Jq(ix- I y) + KI' 

Figure 1 illustrates the axis system used. 

-Ze 
-Z 

x y; 

Xe 

(1 ) 

(2) 

(3) 

Horizontal plane . ~~\--- V ."l ' Y 

(0) 

(a) Pi tch and yaw orientation of axes systems. 4> = 0. 

- 4> 

F 

-""""";"-z .. y 

Y 

Z 
(b) Z 

(b) Roll orientation of axes systems. 0= 1/1 = 0. 

FIGURE I.- Axes systems employed in analysL. 

of solution for this equalion is 

A= O+il/l 

OF SP ll.'{NING BODIE 3 

If the body is assumed to have ro tational mass 
YIIl1Uetr)-, Iz will be eq ual to I y and the rolling 

motion ,\'ill not be affected by the pi tching and 
yawing motions. This allows equations (2) and 
(3) to be solved independently of (1) for pre-
elected p llistol'ies. 

By multiplying equation (3) by i and adding 
the resu lt to equ ation (2) wi t h the rotational 
symmetry assumption, t he equation become 

2\I1y + iMz = I (q+ir) +ip(I - I x) (q+i1') 
+ K (q+ir) (4) 

This equation can be r eferred from a roiling 
body-axis system to a space-axis system with the 
transformation equations (ref. 6) 

; ~ q cos q,-"in q, } 

f~Cco~ 0) (q sin <1+' cos q,1 (5) 

4>=p+ l/I sin 0 

Now, for small valu es of 0 wh en cos 0= 1 and 
;p sin O«p (zero reference lor 0 can be changed 
when necessary), equations (5) result in 

~= O+if= (q+iT)e t<p (6) 
wh ere 

4>= i ' pdt + 4>0 

ombining equfttions (4) and (6) yield 

~+ }. ( j_iJ/X)= (NJY+iJlfz) {fl pdl+~o) I I e Jo (7) 

where 
. K j -ml2 

) = 7 =-1-

Equation (7) th en governs the pitching and 
yawing motions of rotationally symmetric bodies 
referred to a space-axis system. The general form 

= et<P05o' [ e - f (j-iP!y) d] [50' (MYjiMz { ei' [HiP (J-~) ] dt } ) dt + 'Aoe-i<Po ] dt+Ao (8) 

J 
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The problem now is Lo find lime functions for 

. (. Ix My+ iMz) . . 
the vanables J,P'I' I wInch noL only 

pennit equation (8) to be evaluated but which also 
adequately approximate the time histories of 
these variables as they would exist in any practi­
cal problem. 

P ECI FI C SOLUTI ONS 

Solution with variables eonstant.- The solution 
. . Ix My d11l[z 

of equatIOn (7) whenJ ,p ' I,],an Tare C011-

slan Ls i 

A= 8+i-f 

= R1+ R2e
iP (!J)t + R3eiPt (9) 

where 

L+ (Ml' + i .lv[z) e t</>o (1 __ 1_) 
ipIx _

j 
1)2(I - I x)-iIpj Ix_i 

I I ~ 

RJ= AO 

R. .Xoe- jt + (lI~y+i1Vlz)<</>o-~t (_1_.) 
- ~pIx . P (I- Ix)-~IpJ Ix J 

- -J - - -
I I ~ 

R -(M1+iMz)et</>0 
3 p2(I - Ix) -if pj 

parts as follows: 

(9a) 

(9b) 

(ge) 

ioJ; 

z 

FIGU UE 2.- Tl'icyclic motion (after re f. 1) . 

This A solution can be thought of as the sum of 
threo voctors: a nonrotating trim vector R), a 

vector Rz rotating at the rate P?"" and a vector 

R3 rotating at the rato p. This type of mo tion is 
referred to as "tricyclic" in referonce 1 and illus­
trated in figure 2. The low-frequency vector is 
called the precossion vectoT, and tho high-Cre­
quency vector is called tho nutation vect,oT. Note 
that jot damping attenuatos only the R2 vector. 
Equation (9) Dlay be more familiar with j = O and 
with tho rcal parts soparated from the imaginary 

+ 
80 . I xt -.in ( Ixt) My cos rf>o-M z sin rf>o [ 

8= 80 Ix S1l11) 1+ I x cos P ]-1 + p2(I - Ix) I - cos pt 
PI 1)7 

+!... ( Ix t -l)J Mz cos rf>o+ M y sin rf>o [ _. t+J... ( . tIx)J (10 ) I , cosp I 2(1- 1 ) smp I Slnp I a ), p X X 

./,_ ./, _~. ( Ixt -1)+ f o . Ixt+l\([y cos rf>o-M z sin rf>o [ _ . t+J... 
'1' - '1'0 I , cos p I I , SlI1P I 2(1- 1 ) SlllP I 

p 2. p 2. P x x 
J I 

(lOb) 

Exact solution with nonconstant spin rates.- Of the many attempts to satisfy equation (8) by 
substitu tion of various time functions for tho variables, the one which permitted an exact solution 
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witb nonconstant spin rates used the substitutions 

Po 1 P= l +at 

j= O J 
Ix =Constant 
I 

(11) 

The assumed straight line dependence of l /p is 
quite practical especially if the problem is divided 
into t ime intervals. Although the constant-inertia­
ratio requirement can be circumvented (by the 
method of the next section), the zero jet damping 
limitation is considered serious except, of course, 
for the case oJ non thrusting vehicles. 

Because a more general solution (presented in 
the ncxt section) was fOlUld for equation (8) and 
in order to roduce confusion, the exact solu tion 
r eferred to in tbe present secLion is presen ted in 
appendL,{ A along with all further diseussion of 
this solution. 

Mean value solution.- In the application of this 
solution , the problem is fu'st divided into t ime 
intervals. The number and dUTation of tbese 
intervals depends llpon the accUTacy desired and 
will be discussed in the section enti tled "Results 
and Discussion. " Within each of the tim e in ter­
vals, the variables p, pIx/I , and j are appro}"ri­
mated by tbeir mean value over that interval. 

For examplc, consider the damping term in the 

exponentials of equation (8), namely, i 1jdt. 
This integral is approxim ated by 3t where .1 is the 
mean value of j over the interval. By definition, this 
is an exact approximation when the integration ex-

tends over the co mplete interval (i. e., i t! .'leU =Jt!} 
For tim es less than one complete in terval, however , 
the result is approximate. The accUTacy of this 
approximation can be increased to any desired 
level by using shorter tim c intervals. Thus, with 
the substitutions 

p= p } 
I x 

P7=w 

J=J 

(12) 

a straightforward in tegration of the exponentials 

OF SP~G BODIES 5 

of eq uation (8) can be accomplished. 
oncoming the moment inputs of equations 

(7) and (8), NJy and NJz should be approximated 
by fWlctions whieh can adequately describe the 

ariations of Imown time-dependent moment 
asymmetries such as thrust asymmetries, tip-off 
asymmetries, and dynamic wlbalance effects. 
R emem bering inertia must also be allowed to 
vary with time, the followmg U1PU t forms are 
assumed for each in terval : 

My~iNJz=t [(P"+iG,,)U +.I1,,t + B nt2)] 

n =1 = A + Bt+ Ct2 (13) 

When thrust or tip-off asymmetries are con­
sidered, My and NJz are the actual pitching- and 
yawulg-moment asynulletrics applied to the 
vehicle. 

Wh en dynamic w1balance effects are considered, 
the mom ents My and Mz are related to the per ti­
nen t variables as follows (ref. 4 ) : 

NJ y+il'.1f.z= Ixz(r2-p2) + l yy(p+ rq) 

+ i[I xz(p-qr) + Ixy(p2- q2)] (14a) 

which, 1'01' the present purposes, reduces to 

NJy + i l\1lz= p2(- I xz+il xy) ""p2(I - Ix) (7I y+ i7lz) 

(14b) 

ince the products of inertia are related to angular 
deviations of the principal axes as follows: 

and 

2Ixz tan 271Y=---
Ix-I z 

2Ixl' 
tan 271z= I v-Ix 

ow, if a combination of asymmetries and un­
balance exis t durillg the same u1terval, it may be 
easier to fit each asymm etry or unbalance to a 
eparate complex input term. For example, the 

unbalance input p2 (I;-1}7I Y+ i 7lz) may be 

fi t ted to the term (F1+iG1)(l + A,t+B j t2). If the 
input moments have large or rapid changes in 
direction dUTing an interval, however, it is more 
atisractory to combine the real components of 

the various inputs separately from their ilnaginary 
components. Then, the total com plex input is 
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and fitted to a combination 01 two or more input tel'I1lS 
a 

(l\d"y + il\d"z) lolal= (FI + Oi) (1 + Alt+ BltZ) 

. {C· . 1 ( B 2&J] e(/i;; - JJ/-l A= Ao+e'<I>o Aoe- 1 <1>o -= A-= + -=; . . 
(3 (3 (3- ~w- J 

+ (O+iGz) (1+ Azt+ Bzt 2) 

Now, when equations (8), (12), and (13) are 
com bined, equation (8) becomes 

A=ef<l>o i ' { e(-1+ 1:JI [i I (A+ Bt +OtZ)ejl+i<P-;;;)ldt 
where 

ei;Jt- l [ 2(1 (1· 1) ( 2C\] 
+ ip~ A-pz+ p-~ B- ~) 

+ ~~ [ tZO+ t (B- 2g + 2~0)1} 
t p(3 (3 p 

(16b) 

~=J+i(p-w) 

+~oe-I<I>"]} dt + Ao (15) 

By in tcgration, 

~=[ Xo- e;o ( A-~+ ~?)] e(i~-jjl 

+ ei(VI+<!>oJ [( A-: + ~?)+t (B_2~)+tZC] 
(16n) 

Equations (16) predict the approximate rota tional 
motions (s pace referenced) of spinning sym­
metrical bodies with changing spin rates and 
inertias includi.ng the effe cts of time varyil1g 
th.l'ust ]TlisalineI11ents , mass unbalance, and jet 
damping. As in equation (9), the A solution i 
tricyclic wiLl) a nonrotati.ng trilJl vector, a vector 
rotating at the rate Z;, and a vector rotating at 
the mean spin rate p. B:,- separatulg the real 
and imaginary parts of equation (16b), tbesolution 

D1a~- be more readily evaluated in the followin2: [orm: 

(-c3 +0zw)(e-i' cos wt - l)+(OIW+OZJ) (e=i
t 

sin wt)+ (8o- (1a) cos pt- (if;0-04) sin pt +O~ 
8= w2+]2 w2+ f 

+ t { [A4 cos (pt+cPo)+As sin (Pt+ <Po) ][ A nt + BntZ .. 21!...n.7t_ ] -[A4 sin (pt + <po) 
n =1 i+(p-w) 2 

- A cos (- t+ )] [~B,.cp-w) t + 2l!:lt]} 
5 P <Po i +Cp- w)Z P 

(-03+02(;)) (e-
j

, sin wt) (OIW+ OJ) (e - it cos wt - 1) + (80-0
3

) sin pt+(if;o-04) cos Pt + (1. 
if; wZ+i w2+ i 

wbere 

+""" [A cos (-pt+ -" )+A s sm (1?t + <t>0)] +-=- 4 s in p '1-'0 
3 { . _ [ 2BnCP-W)t 2Bnt] +[A . (- t + -" ) 
~ 4 '1-'0 i +(p- w) Z p 

Z ~ nJt ?B "'" ]} -As cos CPt + <t>o) { A"t+ Bllt i +(p- W)2 

A -F"(p-w)+G,,J 
4 -

p[i+(p-w)Z] 

A- F.3+ G" (p- w) 
o p[J2+ (p- W)2J 

3 
G\ = Oo+ :B (- B4B6+ B sB7) 

71=1 

(17tl) 

(17b) 

(18n) 

(I8b) 

(18c) 
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CZ= 1/to+ ~ (- B sBs- B4B7) (1 Sci) 
n=1 

(! = 8 + ~ { -Y7 [ B - 2!!" 2 (p - (;;) 13" J 
3 0 L...J 1) ~ 1,,2 '2+ - ( )" n= \ ' jJJ j! p - W -

- ~6 [B5+~II- . ' 0 2B"J oJ} (1Se) 
p p p;-+p(p-W)-

(Y4= 1/tO +:± { -!7 [B5+~1I 2JB" J 
n=l P ]J pj 2+p(p_w)2 

+'!.6[B_2!!1I_ 2BnCfJ - w) J} (lSf) 
p 4 p2 pj 2+ p('P _ W)Z 

B4 = 1 =--_A=nJ + 2BnlJ 2- (p - W)2 ] 
j 2+ Cp- W)2 [j 2_ (p- w)2F+[2,j CjJ-W) F 

CISg) 

B = A II(p-w) _ 4jB,,(p - w) _ 
5 J2+ (7) - W)2 (]z - (7> - wrF+ [2j(jj - w)F 

(1Sft ) 

Bc= J>(As COS <l>o- A4 sin <1>0) ( l Si) 

B7= P(As sin <l>o+A4 cos <1>0) ( l Sj) 

Because body mo tions rci'eTl'ed Lo a body-axis 
sysLem are somcLimes desired, equaLions (16a) 
alld (6) arc combined Lo oblain lor l'ci'el'CIlCC 

, [( ') 1 (A B 2(')J [ ·c - - 71 q-j1J'= fj u+ lI'" -~ - ~+ ~2 (" w - P'- J I 

1 [ ( H 2() ( 2C\ J +~ A-~+~2 +1 8 - (i)+t z
(' ( 19n ) 

0 1' 

q+ir= (tH- i f )p - ;(ii' +<I>,,> ( 191)) 

FLl GHT-PATH ATTIT UDE 

Up Lo Lhis poinL, all cfl'orL has bec11 towa rd 
determining the attitude of the body expressed 
by th e Euler angles 8 and 1/t, Of greatcr im por­
Lance to many inves Ligalions is the knowledge 
of how the external f01'ees and mom ents on the 
body affect its veloc ity vcctor and space location, 
The author's inter es t in an analytical solu Lion 
to this phase of the genoral problem was sLim ulated 
by the analytical results of reference 3, The 
meLhod of reforen ce 3 will now be used Lo ex Lend 
the attitude solution of the present paper to 
expressions defining the velocity vector. 

The force equation normal to the f1igh t path 
658651-63-2 
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in the piLeh plane (fig, 3) i 

In V-r =T si ll a. - my cos (1' +'Y~) o 0 

+ /1' cos a . cos ( f pdt+<I>o+<I>') (20,1) 

and in the yaw plane (fig, 4) is 

mF-ry, =-T sin {3.+F cos (3. sill C.fZ)(lt+<I>o+<I>') 

(20b) 

By restn ctlllg Lhe results Lo angular changcs 
in velocity vector due to external disturban ces 
other than gravity, Lhe weight term of equaLion 
(20a) can be dropped, Multiplying equaLion 
(20b) by i, adding Lh e result Lo equation (20a), 
and considcring only small angles yields Lh e 
following: 

('Yo + i'Y ,)+ ('Yo + 1''Yy,) 1~/=1;V (8+1'1/t) 

\\' l1 r l'e 

-/ 

F i ( r t 
vdl +<I>o +<I>' ) +- , e Jo (21) 

mi 

O= a.+ 'Yo 

' Ze 
x ::,..,uce reference 

aXIs 

F cos (J P dl t <1>0 t<l>') 
rd+ re 

r; 
~_~_~Horlzontct 

reference 

FWURE 3.- Pi Lc h p lane forces a nd angles, "' = 'Y~= O, 

-F sm({~ dl + <1>0 + <1>') 

x 

~v ~ 

y 

FIGURE 4.- Yaw-plane forces and angles, O='Y
8
= O, 

~~) 
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aJld 

t/I=-{3s+'Y", 

Th e form of solUlion for equaLioJl (21) is 

- - dl t {i ]Jdt+4>o+4>' - dt 1/ T ( r [ (11 

) ] ( J' / T )} ) 
'Yo+i'Y",=e 0 "'1' ,{ { 1~7 A+; e 0 e 0 mV dt + Ao 

Again , the mea n value substituti ons wi t hin the intervals lIre used, L et 

T -
mV= T 

F -
m17= F 

,)uhs LituLin g equaLion s (1 G), (23 ), an d (24) into equation (22) and inLegl'n Ling (!ives 

= e- Tl + Te~ { (eI1"_I'-1'I ) [A-~+ 2(1 +_ 2~+(B_ 2 (1+2iC\ (~ _ _ l_)J 
'Y 'Yo iijr§(F+ i p) ~ ~2 (? +i[l)2 ~ ji) Ii 'l'+i ji 

(22) 

(23) 

(24) 

[

, el</>O( B 2(1 ) ] A - - A-- +-2(1 2i(1 2{f 0 - - - 2 T _ _ _ 
+t (B--=-+-=-__ ~)+t2{f} + {3 , ! {3 . [I'-T'I-I + n ' . (e l ",,-JI_ e-1'l) J 

{3 ]I T +1 P 1W- ] 1 - .7 +1w 

+ I' . _ (eipl-e- 1'1) +(1_1'-'1'/) A - . __ .Ii- -=:-+ -::--:: B--=-P ;(</>0+4>') _ _ _ { ('I</> o [ 2{f (i 1) ( 2(')J} 
T + I p OI p{3 ,/ p {3 {3 

(25) 

EqLIIILion (25 ) predic ts th e direc tion of the ve­
locity veclol' for vehides hrwing th e a ngular 
mot ions desC'J'ibecl by equations (16). Note the 
imihl'iLy of these two soluLions (eqs. (16b) a nd 

(25 » . Both cons ist of a fixed vecto r, it vector 
r otaLing aL lIle mean roll Nlte, ,llld a vec tor 1'0-

. I 1 f' 7J/x lilling nt l1 e meill1 va ue 0 j ' 

Ag!l in , it should be remembered lh n! lhese 
olulions ar e 1'01' s mall v!llu es of O,tll ei thal night ­

pn.lh ctiI'va.lure due to gnlVily is clisl'eg}ll'clecl . 
An approxima te eh,tnge in night -pn th nngle du e lo 
gravity i 

f,, ('Yo+i-r.J= -gt ('os 'Y~ - 1'1 
~ F e 

o 

The r esult s of equal ions (16) and (25 ) can b e 
co mbin ed to y ield lim e his lori es of a ngle of ,l, tLa.ck 
nnd a.ngle of s ideslip lIS follows : 

"'\ as= O-'Yo I 

{3s= - t/I + 'Y", J (26) 

and b ec;w se of the I'el,llionship 

{3 -H a= ({3,+ia,)p -;</> 

a=-{3., s in (pt + cf>J+ as ('os ( jit + cf>o) i 
{3 = {3 .. cos (pt + cf>o) + a .. s in (pt+ cf>o) J (27) 

Now, going on 1,0 Lite spnce-posiLion solution, iI, 
ea.n be show n from figure 1 th!lL 

ze=-17 s in ('Yo+'Y~) } 

~e= 1: ros ('Yo+'Y~) c.os 'Y", (28) 

Ye=1 cos ('Yo + 'Yo) sm 'Y", 

Th e fOI ce equation alon g the fli gh t p a,Lh for sma]l 
dis turbitnces is 

T cos a ('os {3 - mg sin ('Yo+ 'Y~)=mV (29) 

B y considering small a ngles for a and {3 and re­
moving gmvity eft'ects equ aLioD (29) b ecom e 

T =11 
m17 17 

(30) 
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Integrating this equati on and combinin g witli 
eq uation (23 ) results in 

17= V .eT I (3 1 ) 

Now, th is velocity ex pression CtW be subs tituLed 
inLo equ ations (28 ) wiLll Lhe assumption thaL 1'0 

ilnd 1'", ar e small angles, all d Lhe equa tion s ('all be 
expanded. Sillce eqUlLt iolls (2g ) a nd (3 1) were 
obt~.in ed by neglc<;Lillg the force of gTa vity, the 
term gt is added to the equation for Zc Lo geL the 
earLh-referenced veloci Ly eq un,tions with gra vi Ly 
effecLs included. 

~e=-~le Ti (I'O ~os I'~ ~Si l,ll'~) + gt } 
Xc- V oe (cos 1'0-1'0 S1l1 1'0) 

• T T Tl ( , ") y.= v oe 1'", cos 1'0-1'0 sm 1'0 

(32) 

Equations (32 ) are integrable and yield th e 
space location equations with gravi ty effects in­
cluded. The result is given here as functions or 
1'0 an el 1'", which are available rrom equation (25 ). 

z.= Zo. 0 

17
0 sin I' ~ (e TI - 1) 

T 

- 110 cos I'~ f I'o e Tlrlt+~ g[2 

(:33) 

. _ +17
0 cos I' ~ ( Tl _ 1) xc-x •. o T e 

- 170 sin I'~ f I'oeTtdt 

y,~y".+ V . co, , ; J "'T'd'., T' J 
- V o Sllll' ofl' ol'",e clt 

RESULTS AND DISCUSSIO 

The results or this paper a re primarily the 
aLti t ude soluLions expr essed by equations (1 G), 
Lhe flight-path direcLion expressed by equation 
(25 ), and the space-location solutio n of equation 
(33). All these solu tions are complicated by th e 
hU'ge n umber of variables which affect t he end 
results. In order to show some of the more im­
portant interrelaLionships o( these varil1bles, 
others must be h eld constan t. 

ATTITUDE SOLUTION 

With Lhe aLLiLude solu tion of equations (Hi ), 
the sep<U'ale illotion effects of Lhe iniLial aLLiL ude 

Au and Lhe initial altiLud e r ale ~ o ('an readily be 
delllons lraLed b)T Illaking A = B = 0 = 0 and J = 0 
wi Lh Lite resul L thaL 

A -
A= Ao+ .:!.. (eiw1- l ) 

iW 

This solu Lion is shown in fig u re 5 (a) to be Lhe s um 
or a fixed veclor ,til t! 11 ro Laling vecLor. Unlil 
Au alld j.. o nre sp ec ified, however, it is nol possible 
10 say wheLher a higher 01' lower spil1l'ate or inerLi ,. 
ratio will increase or decrease Arnax, the common 
peri'01'lllanCe standard of spin stabilization . 

Now, if the model is tJU'UStillg but with 110 

distUl'bance moments, jet damping normally 
attenuates the motion <ll1el the plot of e against if; 
t Ul'OS io to a logal'i t hmic spiral as shown in fi2:w'e 
5(b) . 

~oe-ll 
iw-l 

(0) 

(b) 

9 

- AO- ~o/iw 

~o 
AO- Iw -7 

"i iojr 

e 

"l i t 

(a) j = O (no j et clamping) . 
(b) 3>0 (wi t h jeL clamping). 

FW URE 5.- Sample aLLiLude solulion wiLh 110 1ll0lllC il t 

inputs (F ,.+ iG ,,= O). 

---~~ 
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l _ _ 

Moment asymmetrie s.- For t hc effec ts of mo-
11ICili aSY llllllctri es th c solulion for A llI ay be 
simplified by IlSS Ulllill g' 110 rcsiciu}d JlloLioll ( Ao 
= ~o= o ) a nd ('o ll sbwL illpuls (13 - ('= 0). '1'l le 1l 
1'01' cjJ .= O, Lhe solul i01l beco me" 

A l l1 d · i l l1z [ eiv1- l + ii ~ - ('U;;=;)~J 
ii p[j+ iCp- w) J J iw- j 

Express ions for maximulll wobble CIUI be obtained 
rrom Lllis equ llLioll under Lile rollowing cOlldilioll 
V{h ell w<i), or, lllOre accuraLcly, when 

LIJCn 

p _ [1 +e~w:+ ;:,(l~;:,)J >2 
, w2+ i 

_ [2 w 2 I 2 ~
-.A1y2+1\!1~ 

(w2+i)[P+05- w)2] [ ~ ( p) + (p) 
Amaz- - - 1-- -

-2+ " 2 =-J .. +~ ] + ' w _ .1 + e ;:' ;:'(p - ;:' ) 
p 

al I, for normally slllall j values (i.e., 3/]5« 1 and 
3/;";«1), 

A _ 2, j11/+111z2 
max- 1w(p- w) 

When w> p, or, more precisely, when 

then 

fJ _ [1+e- <1IP)tan-1<it'wlJ< 2 
.\ (;j2+F 

I - 2 -: 2 ~ 
lIJ y2+ lr!lz2 

Amux= --- - ~- l l (w2+p) [p+( jJ- w)2 ] [,/(p ) +(p) 

+ V W J + e-< f/vl tan-1(i/wl -2+ -:2 ] 
}J 

und, for 110l'llHtl ly Sll I lLli j valuC8, 

A _ 2/JJJ I'2 +l11z2 
IIIllL- 1p(w-Ji) 

Nole L1 H1L both All/ax expressions s how Lh,lL max­
imum \\'obble due Lo aSYlllmeLrical moments i 
proporLional Lo Lhe size of Lhe momenL and, for 

normally sl11fLll ; vn,lues, is effectively inversely 
proporlional Lo Lhe producL of Lhe mean roll in­
erlill and the sqlHll'e of lhe Ill efl il spin r aLe ove r 
Lhe in Lerval. LL fo llows, Lhere[ore, Lh}lL spin-rale 
II11lgn iLudes in creasing wiLh lime (11S well as larger 
s pin raLes) \\' iJl reduce wobble because or the 1'e-
ulLing larger value of mean spin raLe over Lhe 

i II LerVfLl. 
Lastly, for p ~ w, a ll expression fol' JHClximullI 

wobble can b e ob ta ined under Lhe l'e~lson,l,ble 

conditions that eJ /p)«l and Lhat Cp- w)t is a 
"small angle." This expression is 

A =~ /(M 2+ 111 2) (1 -e-i t )2+ [e- j t (w- j))tJ2 
max Jp -V I' Z )2 + (15-(;))2 

This solu t ion indicates the divergent nature of 
Amax for p~w at small 'it valu es . The divergence 
is more apparent for J= O with th e result 

Amaz= jt_./1\([y2 + lU i 
P 

AlLhough Lhe quanLi ty Cp- w) is n ever exactly 
equfLI to zero in a pmctical problem, th e t heo­
ret ie}l,l possibili Ly of I = l x also r esults in the s im­
ple divergen ce equcltion jusL given (for norm ally 

smllIl v}11ues of 2) . These divergen ce solution 
reveal LIHl,t wobble buildup is pl'opor tionaJ to Lhe 
input momenL disturbances and to the time r e­
quired for pass ing Lhrough the r esonant condition 
(p ~w) and inversely proportion al to pitch or yaw 
inertia and moan sp in rate. 

Unbalance.- It is difficult to show clearly Lile 
efl' ec ts of unbalance on the motion of a body hav­
ing a nonconstant spin rate because the input 
mOJ1lenLs (eq. (14b)) ar c variable. Thus, th e 
Cju a nLiLios Band 0 or A n and B n musL take 'on 
values other than zero which precludes a simpli­
fi ed version or Lhe general solu tion. However , by 

considering fi.xed p and ~' val u es temporarily, 

equaLions (9) fwd (14b) ca n b e combined (still r e­
Laining the conditions Ao= \ 0= 0, B = U= O, and. 

<1>0= 0) wiLh Lhe r esulL 

A- 171,+ i 1)z [ . I l -e (i/:-i)t] 
- --'-1 -- e'P - l +ip - ----

i J . -1 . I x . 
p(I - I.,) ~PI-7 

I 

\ 

.. 1 
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I x _ 
When I < 1, " max-

I 7)},2 + TJi ( -h" ) 'll -1J Ij \ 211/ 1 ,,\2 _ li\2l J+e
Pl x 

ct nti , ror norm ~Llly small vlLlucs of j , 

J \, 
\V!JOIl 1 >1 

, 21 r 2 --1 "2 
I\m".r:~ I- \ TJ y T TJ z 

x 

"max= 2 I j 2 ~ 
7)}, 2+ 7) z2 

1 + [ p(I ~Ix)J 
a,nd , lor normally small values of .i, 

I x 1 When 7= , 
" max ~ 2 ·.JTJ y2+ TJz2 

" IIIUX= O 

These results are for constant values or p and ~'( 
witll 110 r esidual motions. Noto that wobble due 
to unbalance is independent or spin rfl te except 
through th e jet clamping terms which normally 
have only a very small effect. TILUs, wobble clue 
to unbalanee cannot be con lrolled by spinning flS 
can, [01' example, the wobble resulting from initial 
attitude rates or t hrus t misalin emen t. 

APPLI C ATION 

The analytical expressions ['or A and 'Y given jn 

the presen t paper havc b een programed for use 
with an IBM 7090 electronic data processin g 
Jllfl.c hin e. Sample problems were c.omposed and 
this program used to generate lheir solutions. 
The l1wnel'ieal solutions to these problems were 
also ob tain ed with the nWl1crical integration 
mcthod reported in l'c/'ercnee 3 1'01' thc purpose of 
comparison with approximatc solutions . 
I~shouldJ>e mentioned that the valucs for P, 

w, T, and Fused jll Lh c approximcttc solu tions 
wcrc based on assumed exponen tial histories of 

the v'U',ablc, with,,, the intm'val ( i,e" 1M ."mplc, 

p=7JI - ]10) . A [thoug h 
100' PI 

rot P o 

this assumption or expon ell-

lia l dcpcn dcn ce or thc varin,bles is inherently mol' 
acc umtc, al illos t id entical results (no t shown ) 
wcre obt ~tin ed with the appro xinutte method by 
Hss uilling lin eal' histories or the variables within 

eHch interval (. c., p=P/~i)- I 

The firsL ~lppli c aLioll was to simuht te the motion s 
01' It rocket model which lVas the 111st stage 01' a 
multis tage rocket system. The model can be 
lhought or as a cylinder abou t l}~ feet in di ameter 
an d 3% fee t in length having a ratio of fuel weight 
to total weight of 1/2. An angular thrust asym­
metry of 0.001 r adian in both the pitch and yaw 
plan es provided aeon tinuous disturbftnce to the 
motion. A separate spin motor was assumed to 
in crease model spin r ate during the problem from 
5 to 9 radians per second . The approximate 
solution was computed with two intervals and 
with ten intervals, eaeh with fl nd without jet 
clamping. Problem constan ts a nd initial condi­
tions are listed ill append ix B . R esults are shown 
in figm es 6 Lo 8. 

Figure G(a) shows (he appl'oximate e and f 
his tories obtained with the Lwo-i n tcrval solution 
(no jet cla~npiDg) and Lheir c omp~\ri son with t he 
numerieal solution. In general, thi s comparison 
indic ~ttes a good approximatioll or t he numerical 
solution except for the first n egative peaks of 
eacb CUl've where t he approximate solution under­
estima tes the actual values. Thc phase difference 
between the apprOA-1mate and numerieal soJu tions 
is t,o be expected and is usually of liLtle importance. 
In this respeet, both ends 0(' all in lervals arc 
exactly in phase, th e greatest d ifference occurring 
h all'way throug h each in terval. The two-in terval 
solu Lion for fligh t-path direetion is sh own in figure 
6 (a) along with the numerical solulion . H ere, 
thc comparison appears no t quite so good as the 
attitude solu tion, but sa tisfactory [01' most 
purposes. 

J 11 order 1,0 illusLntLe the accuracy obLalllCd 
with many intervals, the ten-int.erval solution of 
figurc 6(b) was comput-,ed. Note the improve­
men t in t he A and 'Y solut.ioll s as compared wi lh 
U IC Lwo-il l ter v,d resul ts. 

J 
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Thus far, problem cases have becn rcstrictcd to 
zero jct damping bccause the program used to 
obt ain thc llumcrical solutio ns docs 110 t in cl ud e 
jet -dalllplllg (, n'ctls, H owe ' -N, jct-damping d­
rccts C[UI bc quitc large' 11S lliust rat(' cl in figurc 7. 
This fig url' prcsc nts the tell-in ter val solution witll 
and with out jc t da mping . Note th e' large a tt Cllu­
a l ion <'frce( of jcl clampi.ng on the low- frequen cy 
(precession) mode a nd the neal' abse ncc of thi 
cffect on thc high-rreq ucncy m od e. This largc 
clamping d rect is not unus ual and can even bc 
caUcel t:" plcal. j ls prcsc ncc is rorluna.te sin cc 
no othcr fo rccs are n a turall.,' availablc to damp 
thc motion. 

JL is well d oculll en te cl tha t bod ies Ilfw ing Ix= 
I},= i z callilot be spin s tltbilized. Howe ver , t he 
moti ons or ax isymm ct ric bodies pass ing Lhroug h 
this conditi on arc no t well kn o wn . For thi 
l'el\SOn , lhe second ty pe of problem 1'01' s imulation 
was sclc('(cd to reve,tlth e en'cc ls or passing t hroug h 

in cl'til\l resonan ce (i\'"=l)- This prohlcm as­

sUllled a Y,lriltble l x , a constan t 1, 11 nd n o roll 
inp u ls, Only t he A solu t ion was computed 1'01' 
purposes or simplici ty. Th e problem \\'as COIll­
puted wilh on e inte rvltI, t wo intervals, I,nd thrce 
in lervals, ill all Cl1 SCS wit\t no jet damping. The 
nccessary CO tl s tlmts alld ini ei,ll conditions 11re 
presented ill appendi x B . R esults are presentcd 
ill figUl'e ~ which also shows the numeric,tl solut ion 
1'01' compari son purposcs. Figure 8 illus LI'I1Les th e 
one-intcrvnl solution of thi s problem to be inad c­
quate. Th c t wo-in ter val solu t ion is much im­
proved and revellls t he trends of th e numeri c" l 
olution . Howeve r, Jor Iln accum te 'll11pli t ucl e 

comparison, t he three-in ter val solu tion is 
indicated . 

Intervals ,- Solutions h avc bcc n prcviousl~- dc­
scribcd as onc intcrval, t \,-O interval , and so forth , 
with no cxpl an a tion of why or how thc number o[ 
in ter vals was sclected. As prcviousl.\, Jrl.cntion.cd , 
a two-int erval soluLion (for cxamplc) mcans that 
thc pro blcm is computed in two in tervals, usually 
so as to rcsult in about the sam c pcr cc n tage change 
or thc variables within cach in tcrval. Then, 
cl osed solutions for thc firs t in ter val are obtained 
with equations (1 6) a nel (25) along with the initial 
conditions of the problem . I n ordcr to compute 
the solutions at an)' time of the second in terval , 

however , th e final values of inter val on e must be 
calculated and used as ini t ial cond itions for the 
ccond in t N yal. 

"\Yhilc Lhe llUlllb(' r or co mp ut a ti ons IncrCc1S('S 
with the nUlllbcr of intervals used , thc accuracy o[ 
the rcs ulLs in creases Lhereb.\". The op tim um 
Ilwnbel' of int er vals, then, depends upon thc 
computing facilit ies available, lhe degree of 
accuracy desired , and the t otal pcrcc n tage ch ang 
of variables throughout the problem . In Lh i 
rcspect , Lite au t hor has ten tatively sc t tled 0 11 

using inte rvals in which thc values o[ p 01' p~x 
do no t va ry more tha n about 15 perccnt for 
"accura te" resul ts or mo rc tha n a bou t 30 percen L 
1'01' approximate r esulLs. Th ese percentages arc 
based on a limi ted a moun L of expericnce. P er­
ccn tages fo r the sample problems arc give n in 
appendix B , 

Computing time.- CompuLin g tim es 1'01' sample 
problem number one or appendix B wer e obtain ed 
1'01' both the approximate and Lh e numerical or 
tep-by-step solu tions. These solu tion s wer e gen­

erated by a n JBM 7090 elec tronic clc, lc"l processin g 
11111chin e a nd r equired cer tain compatibili ty 
changes sin ce both progl'fun s were originally se t 
up 1'01' th e IBM 704 elec tronic da ta process in g' 
machin c. 

Bolh progmm s r equircd about 26 scconds 1'C'ad ­
in tim e. E xcludin g r ead-in tim e, the c"l.pproximatc 
method ( I O-interval solution) hac! I, ratio of m<,­
c/tine tilll e Lo problem t im e of about 0.93 iwd lh c 
llum erical method a ratio or n,bouL 4.8 . R educing 
the number of inLervI"l.ls used in the I, pproximate 
solu tion would dC('1'CI1Se its J'll. t.io only a slll all 
/lmoun t . 

Other fac tors in volvcd in a compu ting t im e 
comparison m'e itS rollows : Firs t , th e num eriCI,l 
method is programed (0 y ield output qua n tiLic 
no t included in the ou tput of t he approximate 
m ethod . It is es tima ted tha t the elimin a Lion or 
Lhis p ar t of the program would amolm t to about 
~ r educ tion in computing time for the numerical 
method , Second, t he above r atios m'e 1'01' defin ing 
the output ever y 0.1 second and could be r educed 
propor tionally for the approximate m ethod b y 
using fewer ou tput times. The nWl1 el'ical m ethod 
would no t b en efit in this r espect. 
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CONCLUDING REMARKS 

A method for appro~1mating the vacuum mo­
tions of symmetrical rigid bodies with nonconstant 
spin rates and inertias has been developed. The 
analysis includes the effects of time varying thrust 
misalinements, mass unbalance, and jet damping. 
The method was derived for bodies having equal 
moments of inertia about their pitch and yaw axe 
and is based on body pitch and yaw attitudes being 
limited 1,0 "small angle" oscillations. 

Results have been presented in the form of equa­
tions for space-referenced Euler angles, flight-path 
angles, and earth-referenced vehicle-trajectory 
coordinates. Equations for determining maxi­
mum wobble have been developed for certain input 
conditions. Also, equations for body-referenced 

attitude rates, angle of attack, and angle of sideslip 
are included for convenience. 

The general solutions give insight into the incli­
vidual effects o[ the variables and, in many cases, 
offer a quick means [or obtaining approximate 
solutions. Although the method is somewhat 
lengthy for accmate hand computation in most 
cases, it is r eadily programed for automatic com­
puter solutions. 

The method has been shown to compare closely 
with numerical solu tions of two sample problems. 
The sample problems also illustrated the relatively 
large effect or pitch and yaw jet damping on body 
motions. 

LANGLEY RESEA R CH CEWl'ER, 

NATIONAL AERONAU 'l'I CS AND SPACE ADMINISTRATION, 

LANGLE Y STATI ON, HAMPTON, VA., Ap1'il 24, 1961. 

APPENDIX A 

EXACT SOLUTION WITH NONCONSTANT SPIN RATES 

Combining equations (8), (ll), and (13) results 
in the solution 

{ 

.Po (Ix) 
A= Ao+et</>o A'(l + at) e'-; I Jog, (l+at) 

-A' - B'-O' - D' + [B'(l+at)2 

+0' (l+at)3+D' (l + at )4Je i~ JOg. (1+at) } 

where 

A' 

ABO 
-a-a;+a3 Xoe-i</>o 

- J. -x 
a+ipo j [l+i ~ (I_I;)J (a+iPo 1;) 

B 20 C' 
QJ-Q! aft 

2+i (~)(I-J;) 3+i(~) (1-Ij) 

B' 

0' 

D' 

AB O - - - +-a a2 a3 

[1 +i (P;) (l-
l
i')J (2a+ipo) 

B 20 
a2-Q! 

[2+i e:) (1_1;) J (3a+ipo) 

a3 

[3 +i (~)(I-"';)J (4a+ipo) 

This result displays the spiral natme of the 
8, if; motion for nonconstant spin rates. Spin rates 
decreasing with time result in spiral motions of 
increasing magnitude and spin rates increasing 
with time act to reduce the magnitude of the 
8, if; motion. 
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APPENDIX B 
SAMPLE PROBLEM INFORMATIO 

PROBLEM 1 

Problem lengt h , sec____________________________ 20 

Mass, slugs ___ ______________________ _ 20-~+ 1 , ~00t2 
Thrust, lb __ _____________________________ 5, 000 - 501 

Pitch and yaw inertia, slug-ft2 ____ ______ ___ 25.6 - 0. 531 
Roll inert ia, slug-fL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3. 93 - O. 09651 
Roll input moment, ft-lb ___________ ________ ____ 0.572 
Pitch inpu t moment, ft-lb_ 0.001 (5, 000 - 501)(2+ 0. 0251) 
Yaw input moment, ft-lb __ 0.001 (5, 000 -501)(2+ 0.0251) 
Thrust arm, ft_ _ ___ _ _ _ _ _ _ _ __ __ _ __ __ _ _ __ _ _ _ 2 + 0. 0251 
Init ial flight-path velocity, ft/sec ________________ 5, 000 
Initial roll angle, radians_______________________ 0 
Initial pitch angle, radians______________________ 0.05 
I nitia l yaw angle, radia ns______ _____ ____________ 0. 04 
Initial roll rate, radians/sec _ ___ ___ _ _ __ _ __ _ _ __ _ _ _ 5 
Initial pitch rate, radians/sec _____ ____ ________ ___ 0. 015 
Initial yaw rate, radians/sec ____ _____ ___________ 0.02 
Initial flight-path angle in vertical plane, radians_ _ O. 02 
Ini tial flight-p ath angle in horizontal plane, radians_ O. 01 
Two-interval solu tion : 

I ntervals ____________________ 0;; 1;; 12, 12 ;; 1;; 20 

Maximum change of p within the interval, 
percent______________ _____ _______ _______ 41 

Maximum change of p I; within the in te rval, 

percent_ ______ ________________________ 33 

T en-interval soluLion: 
Intervals ________ ______ 2-sec inte rvals success ively 

from 0 to 20 sec 
M ax imum change of p within the interval, per-

cent_ ______________________________ ____ 6 

Maximum change of p ~x within the inten 'al, 

percent_____________ __________ __________ 4.6 

PROBLEM 2 

Problem length, sec ___ __ __ _ _ _ __ ____ _ _ __ _ __ _ _ _ _ _ 20 
Pitch and yaw inerLia, slug-ft2___________________ 25 
Roll inertia, slug-ft2 __ ________________ _ 31. 25 - 0. 6973t 
Roll moment input, ft-lb _______________________ 0 

Pitch moment input, fL-lb ___________ ___ _______ _ 

Yaw moment inpu t, ft-lb ______________________ _ 
Initial roll angle, radians _____ __ _______________ _ 
Ini tial pitch angle, radians _____________________ _ 
Ini t ial yaw angle, radi ans ________________ ___ ___ _ 
Initial roll rate, rad ia ns/sec ____________________ _ 
Initial pitch rate, r adiansjsec ___________________ _ 
Initial yaw rate, radians/sec ____ ___________ ___ _ _ 
Ini tia l flight-path angle, vertical plane __________ _ 
Initial flight-paLh angle, horizontal pl ane ________ _ 
One-interval solu tion: 

Maximum change of p wit hin t he in te rval , 
percent _______________________ _________ _ 

Maximum change of p ~'( withiIl the interval, 

1 
-2 

o 
o 
o 
o 
5 
o 
o 
o 
o 

o 

percent_____________ _____ _______________ 36 
Two-interval solution: 

Intervals ____ _____ ___ ___ ______ 0;; 1;; 12,12 ;;1;; 20 

Maximum cha nge of p within the interval, 
perce nt ____________ _________ ____________ 0 

Maximum change of p ~x \\"it hin t he interval, 

percen L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 20 

Three-interval solu tion: 
Intervals ____ ___ 0;;t;; 6.7, 6.7 ;;t;; 13.3, 13.3;;t;;20 
Maximum change of p within the interval, 

percent___ _ _ _ _ _ _ _ _ _ _ ___ _ _ __ _ _ __ _ _ __ _ __ 0 

Maximum change of p IIY within the interval , 

percent ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ 14 
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