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By C. WiLLiam MarTz

SUMMARY

1y 78/

A method for approzimating the vacuwum motions
of spinming rigid symmetrical bodies with varying
spin rates and inertias has been completed. The
analysis includes the effects of time varying thrust
misalinements, mass unbalance, and jet damping.
Results are given in the form of equations for space-
referenced Fuler angles, flight-path angles, body-
referenced  atttude  rates, and  earth-referenced
vehicle-trajectory coordinates. The method consists
of dividing the problem into intervals during which
the time-dependent variables are assumed constant
at their mean interval value. In order to check this
procedure, solutions for wvarious interval sizes are
compared with solutions obtained with numerical
methods. — Although the method is somewhat lengthy
Jor accurate hand computation in most cases, it is
readily programed for machine solutions. Probably
more important, the general solutions give insight
wnto the separate effects of the variables and, in many
cases, can be quickly wsed to determine the approai-
mate ranges of the variables required for the desired
solution to a given problem. In this respect, equa-
tions for determining maximum wobble have been
derived for certain input conditions.

The method has been shown to compare closely
with the numerical solutions of two sample problems.
The sample problems also illustrated the relatively
large effect of pitch and yaw jet damping on body
motions.

INTRODUCTION

Vacuum motions of rotating bodies are becoming
more important with the fairly recent ability to
place objects in motion beyond the atmosphere.
Machine computer programs for calculating these
type motions have been completed and used

successfully for some time. However, not every-
one has a computer machine available for this
work. Also, those with machines are using the
trial-and-error process in most instances when
locating the proper range of variables with the
result that much machine time could be saved if
some insight were available as to the individual
effects of the different variables on the motions.
This insight is best provided by analytical solu-
tions to the equations of motions. There have
been many papers published concerning this prob-
lem. (See, for example, refls. 1, 2, and 3.) How-
ever, one thing common to these papers has been
the constant spin rate requirement. Other re-
quirements sometimes include constant mass and
inertia parameters or constant moment inputs.
Solutions are sometimes limited to angular rates
referred to a body-axis system requiring trans-
formation and numerical integration to obtain
space-referenced attitude angles.

The present paper presents an approximation
method for determining the vacuum motion of
spinning symmetrical rigid bodies with changing
spin rates and inertias including the effects of time
varying thrust misalinement, mass unbalance, and
jet damping. Results are presented in the form
of equations for space-referenced Euler angles
and flight-path angles, and earth-referenced
vehicle-trajectory coordinates. An expression
for body-referenced attitude rates is included for
convenience. The method consists of dividing
the problem into intervals during which the time-
dependent variables are assumed constant at their
mean interval value. In order to check this
procedure, solutions for various interval sizes are
compared with solutions obtained with numerical
methods. The method was developed under the
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limitations that body pitch and yaw attitudes are
restricted to ‘‘small angle’”’ oscillations and that
body moments of inertia about the pitch and yaw
axes are equal.

SYMBOLS

a arbitrary fitting constant

A B,C complex input coefficients defined in
equation (13)

A By fitting constants for moment inputs

Ay A constants defined by equations (18)

B, B;, constants defined by equations (18)

By, B;
G, G, constants defined by equations (18)
(653, (6}

F magnitude of total asymmetrical
force on vehicle

F,, G, input coeflicients defined in equation
(13)

3 mean value of F/(mV) within an
interval

g constant of gravitational acceleration

Iz, Iy, Iz moments of inertia about X-, Y-
and Z-axes, respectively

Iey, Ixz products of inertia due to unbalance

I=Iy=1,

=

] jet damping coefficient, K//

7 mean value of 7 over the interval

K pitch and yaw jet damping factor,
T—mi

K’ roll jet damping factor

l distance from body center of grav-

ity to motor nozzle exit measured
along X-axis
m mass of body
My, My, M, asymmetrical moments about X-,
Y-, and Z-axes, respectively
angular velocity about X-, Y-, and
Z-axes, respectively
P mean value of p within an interval

2)) 97 r

R, R, R; vectors defined in equations (9)

T thrust

T mean value of 7/(mV) within the
interval

t time from beginning of interval

1% velocity of body along flight path

XYz orthogonal body-axis system (origin
at body center of gravity)

2,5 orthogonal space-axis system (origin

arbitrary)

o #-, y-, and z-axis system rotated
about y-axis to make z,-axis ver-
tical

a body angle of attack referred to a
rolling body-axis system

as body angle of attack referred to a
nonrolling body-axis system

8 body angle of sideslip referred to a
rolling body-axis system

Bs body angle of sideslip referred to a

) nonrolling body-axis system
F=j+i(G—a)
Yo angle between z-, -, and z-axis
system and z,, y., and z, system
in @z-plane

A= iy

Yo flight-path angle in pitch plane

Yy flight-path angle in yaw plane

A vehicle total yaw angle, -1y, radians
Ny, Nz angle between body principal X-axis

and X (body reference) axis
measured about Y- and Z-axes,
respectively (see figs. 3 and 4)

bo= [pdt at ¢,

¥, 0,0 yaw, pitch, and roll orientation

angles of body X-, Y-, and Z-axes

with respect to x, ¥, and 2z space-
axis system (Euler angles)

¢’ angle between the total asymmetrical

force vector (always in the YZ-

plane) and the —Z direction (see

fig. 1(b))

w mean value of ply/l within the
interval

Subseripts:

0 value of quantity at beginning of
interval

f ralue of quantity at end of interval

max maximum value of quantity

n integer 1, 2, 3

A dot over a symbol indicates the first derivative
with respect to time; a double dot indicates the
second derivative with respect to time.

ANALYSIS

The modified Eulerian dynamic equations gov-
erning the rotational motions of a body about its
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principal axes are (see refs. 4 and 5):

My=Ixp—rq(Iy—1I,)+K'p (1)
A‘[)':[Yq-—l'l)(]z—[_y)+Kq (2)
My=Ii—pq(Ix— Iy)+Kr (3)

Figure 1 illustrates the axis system used.

ks
N o,

My

Horizontal plane g

(a)

(a) Pitch and yaw orientation of axes systems. ¢=0.

-¢
4),
N\ F
=
X L
Body v
o
(b) i'

(b) Roll orientation of axes systems. 6=y=0,

F16URE 1.—Axes systems employed in analysis.

of solution for this equation is

A=0-F+y

If the body is assumed to have rotational mass
symmetry, /; will be equal to 7y and the rolling
motion will not be affected by the pitching and
vawing motions. This allows equations (2) and
(3) to be solved independently of (1) for pre-
selected p histories.

By multiplying equation (3) by 7 and adding
the result to equation (2) with the rotational
symmetry assumption, the equation becomes

My—+iMy= I(G+ir) +ip ([ — Ix) (g+ar)
+K(gt+ewr) (4)
This equation can be referred from a rolling

body-axis system to a space-axis system with the
transformation equations (ref. 6)

6=q cos ¢—r sin ¢

xp:(COlS 0) (¢ sin ¢-+r cos ¢) ®)
¢=p-+¢ sin 0

Now, for small values of # when cos =1 and
Y sin 0<p (zero reference for 6 can be changed
when necessary), equations (5) result in

A=0-+iy=(qg+1ir)e* (6)

where

¢>=J; pdt+¢,
Combining equations (4) and (6) yields
¢
. < M i pdt+¢
" (j_jp I;\>:<My+ullz> ([ o) o
Ji 7
where

T—nmie
1

. K
J=7=

Equation (7) then governs the pitching and
yawing motions of rotationally symmetric bodies
referred to a space-axis system. The general form

i [ (-0t)] (e { S (3] m}>dt +Xge_%] S (®)
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The problem now is to find time functions for
My+1iM .

_Y_‘I——J> which not only
permit equation (8) to be evaluated but which also
adequately approximate the time histories of
these variables as they would exist in any practi-
cal problem.

the variables <j, , I—;y

SPECIFIC SOLUTIONS
Solution with variables constant.—The solution
. _ . Iy My M,
of equation (7) when 7,p, S and -] are con-

stants is

A=0+1)
”)( ) Ficure 2.—Tricyclic motion (after ref. 1).
:R1+R)€ '][‘R 6”)[ (9)
where This A solution can be thought of as the sum of
0 . ; three vectors: a mnonrotating trim vector R;, a
O R (My+iMz)e* (. 1 s :
L=t iplx p*(I—Ix)—ilpj Iy 3 vector R, rotating at the rate —jf: and a vector
I J T—_‘_ O pJ 2 3
L R, rotating at the rate p. This type of motion 1s
(9a) referred to as “tricyclic” in reference 1 and illus-
: oy i trated in ficure 2. The low-frequency vector is
—jt 1/ - igo— It t) A Y ?
R,= _)\,}e (/ny[—'_??b)e (7 1\ (9b) called the precession vector, and the high-fre-
%5—17' PRIl =l 73——7 quency vector is called the nutation vector. Note
P that jet damping attenuates only the R, vector.
R _ —(My+iM. ete Equation (9) may be more familiar with 7=0 and
S —Ix)—ilpj (9c) with the real parts separated from the imaginary
parts as follows:
— 6, . It 1/;,, Ixt My cos ¢,—M sin ¢,
0=06,+ e sin p = I ———-1>+ T [l—cos pt

7] Py

M, cos ¢,+
I, (“’“7’“_1>]“ PU—L)

My cos ¢,—

i b l:—sin pt—i—li (sin P tl—f)] (10a)
X

— M, sin ¢,

y=v,— 01 <osp ——1
< XX
»

+ p(I—Ix)

[— n 1)t+I
X

1. Iii:‘> M, cos ¢,+Mysing, [ v oIkt
<:.1np [']—{— P [1 (Ob[)t—}—IX(COsp 7 1)] (10b)

Exact solution with nonconstant spin rates.—Of the many attempts to satisfy equation (8) by
substitution of various time functions for the variables, the one which permitted an exact solution
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with nonconstant spin rates used the substitutions

J=0 (11)

[TX =(Constant J

The assumed straight line dependence of 1/p is
quite practical especially if the problem is divided
into time intervals. Although the constant-inertia-
ratio requirement can be circumvented (by the
method of the next section), the zero jet damping
limitation is considered serious except, of course,
for the case of nonthrusting vehicles.

Because a more general solution (presented in
the next section) was found for equation (8) and
in order to reduce confusion, the exact solution
referred to in the present section is presented in
appendix A along with all further discussion of
this solution.

Mean value solution.—In the application of this
solution, the problem is first divided into time
intervals. The number and duration of these
intervals depends upon the accuracy desired and
will be discussed in the section entitled “Results
and Discussion.” Within each of the time inter-
vals, the variables p, p/x/I, and 7 are approxi-
mated by their mean value over that interval.

For example, consider the damping term in the

t

exponentials of equation (8), namely, Jdt.
- e -0

This integral is approximated by 7t where 7 is the

mean value of 7 over the interval. By definition, this
is an exact approximation when the integration ex-

5 . e =
tends over the complete interval (1.6., I‘ Jdt E]t,)-

For times less than one complete interval, however,
the result is approximate. The accuracy of this
approximation can be increased to any desired
level by using shorter time intervals. Thus, with
the substitutions

PF=5 (12)

a straightforward integration of the exponentials

of equation (8) can be accomplished.

Concerning the moment inputs of equations
(7) and (8), My and M, should be approximated
by functions which can adequately describe the
variations of known time-dependent moment
asymmetries such as thrust asymmetries, tip-off
asymmetries, and dynamic unbalance -effects.
Remembering inertia must also be allowed to
vary with time, the following input forms are
assumed for each interval:

y ] 3
Wt e 5 [(ui6) (- Ayt Bt
=A+Bt+Ct? (13)

When thrust or tip-off asymmetries are con-
sidered, My and M, are the actual pitching- and
yawing-moment asymmetries applied to the
vehicle.

When dynamic unbalance effects are considered,
the moments My and M, are related to the perti-
nent variables as follows (ref. 4):

iljy"}"]:l‘lz:]‘x'z(f'z—pz) +[Xy (i)+fq)
Fillxz(p—qr) +xyr(P’—¢%)] (14a)
which, for the present purposes, reduces to
My+iMy=p*(—Ixz+ilxy) ~p*(I —Ix) (ny+inz)
(14b)

since the products of inertia are related to angular
deviations of the principal axes as follows:

tan 27]1/:[2[_)(7
X zZ
and
tan 27722121“’;
Vil X

Now, if a combination of asymmetries and un-
balance exist during the same interval, it may be
easier to fit each asymmetry or unbalance to a
separate complex input term. For example, the

unbalance input p? ]Ii—l)(ny—kinz) may be
fitted to the term (F,+1Gy)(1+Ait--Byt?). If the

input moments have large or rapid changes in
direction during an interval, however, it is more
satisfactory to combine the real components of
the various inputs separately from their imaginary
components. Then, the total complex input is
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fitted to a combination of two or more input terms
as

(AIY_{_’L.‘JIZ) total™ (Fl‘FO?.) (1 +4'11t+1>)1t2)
+ (0+1iG) (1+Ast+ Bat?)

Now, when equations (8), (12), and (13) are
combined, equation (8) becomes

t - - AL - =
x:(,i(yﬂf {0(—j+i'w)l[J (4'1+Bf+0t2){’j[+i(p'w”(lt
J O 0

+>\,,p-m]} di+x (15)
By integration,

5\___[}\” e 4’0( 1_]_3_*_2(')] (lw P
()1<pl+¢(,) 2
= [(A—-:—{- C)—i—t(]f——:)—}—t (]

(16a)

and

. 4 o (1H— )1_
)\z)\u—I—{%""v{[)\,,e""”u——L (A—f —+ F)] d .
w—l
il 20,51 (520)]

1pB p B

eI, 20 . 2iC
s z-('+r,<3_—+f —>]} (16b)

1pB

B=J+i(p—a)

where

Equations (16) predict the applo\lmato rotational
motions (space referenced) of spmnmg Sym-
metrical bodies with changing spin rates and
inertias including the effects of time varying
thrust misalinements, mass unbalance, and jet
damping. As in equation (9), the X solution i
tricyclic with a nomotating trim vector, a vector
rotating at the rate », and a vector rotating at
the mean spin rate p. By separating the real
and imaginary parts of equation (16b), thesolution

may be more readily evaluated in the following form:

o— (=( 11+C’2w)(() 7t cos wfi1)+(p]w+(z7)(€ 7t sin wt)+(9 @) cos pt— Wo—Cl) sin Ft-+Ch

@+ W'+

3 =
+334 (4, cos (Bt+)+A; sin <pt+¢o>1[A,Lt+Bm »M—]—m sin (Bt+,)
n=1 +(1)_w)2
2B,(p ‘,B t
—A; cos (I’t+¢0)|[z—+(_—_; ]} (172)
CF-Cia) (e 1= 4 O (e cos Tt—
y— = ,]—{—ng_)(p It gin wt) (C*lw—}—Cz])_(e 1(08 wt 1)+(00_03) i A0 cos Bt -6,
ot W'+
+3° {14, cos (Bt+9.)+ 4 sin (ﬁt+¢a)][2b)"(p _)’+3’f—""]+m4 sin (Bt-+60)
n=1 2+(7)_w)2 P
2B ]t
— A, cos (pt+e,) ]| At+ B,t*— 1 ]}
! P+ o)
where

Pl + (p—w)’]
— ﬁv713;+ Gn (?)_a)
PP+ (p—w)?)

(18a)

(18b)

X 3
01:00'*'2_\1 (—ByBs+B;By) (18¢)
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. 3
(,2:¢0+Z (—B;sBs— B.B;) (18d)
]37[ ;fl g(ﬁfa)]}n*]
75 p0—a)
1;6[3 ol _ 2BJ ]} {8

4 P pp+p(p—0a
])’7[ A, 27B, :|
L 1)72+1)(1)—w)

=043

3
n4:¢o+n2=l

_}_éﬁ l:[ 4_2!311 ‘)Bn(l) ]} (1(\
» I TR +1)(1)—w)
_ Ag 2B,[j*— (p—a)?
B,=1—— — = —
(G2 [P—@—a)P+2](7—a) P
(18g)
TPt 4111(]) ; ) 4[[3,,(/)——(,0) -
- +(1)—w) 7= (—a) P+ 2T ()
(18h)
By=7p(A; cos ¢p,— Ay sin ¢,) (18i)
137:}-)(145 Sin ¢,,+4‘/14 cOos (i),,) (18j)

Because body motions referred to a body-axis
system are sometimes desired, equations (16a)
and (6) are combined to obtain for reference

g=f H—[((/u Hire)— <1#B 2 )] li(a—m =7t
= [( 1*' l>+f(1f—» +12 (:I (19a)

gtir=(@+ip)e 1P Te0) (19b)

FLIGHT-PATH ATTITUDE

or

Up to this point, all effort has been toward
determining the attitude of the body expressed
by the Euler angles § and y.  Of greater impor-
tance to many investigations is the knowledge
of how the external forces and moments on the
body affect its velocity vector and space location.
The author’s interest in an analytical solution
to this phase of the general problem was stimulated
by the analytical results of reference 3. The
method of reference 3 will now be used to extend
the attitude solution of the present paper to
expressions defining the velocity vector.

The force equation normal to the flight path

658651—63—2

in the pitch plane (fig. 3) is
me)?ozT SIN a,—mg cos (yo—}—y,ﬁ)

t
+F cos a, cos (fpdt—l—(p,,—}—qs’) (20a)
JO
and in the yaw plane (fig. 4) is

mV’y‘&:»T sin B+ F' cos B, sin <f’1311t+¢0+¢’>
JO
(20Db)

By restricting the results to angular changes
in velocity vector due to external disturbances
other than gravity, the weight term of equation
(20a) can be dropped. Multiplying equation
(20b) by 4, adding the result to equation (20a),
and considering only small angles yields the
following:

(T, F- Gt ty)

1

T "
= mV (0-+1)

],v(’ (J 11(1/14,‘,14;) (21)

m !

n‘

where

0:(1/.\.“*—‘)’0

Principal X“O)(\S/

x spuce reference
axis

Horizontel
reference

Fraure 3.—Pitch plane forces and angles.

== sin<f0’p ar+ ¢, +¢;'>

Principal
X-axis-~_

W

Ficure 4.—Yaw-plane forces and angles. 6=1,=0.
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and
lP:—ﬁs‘*‘Y,;

The form of solution for equation (21) is

. —dt (f pdl+¢,,+¢ ( J po >
vﬁﬂn:”'wn Jn{ M ™ dt 4, @2)
Acain, the mean value substitutions within the intervals are used. Let
L= )

T
=1 23
m) (23)

14' o
i 24
mV (24)

Substituting equations (16), (23), and (24) into equation (22) and integrating gives

o -7 ](J'Gbn = /1711 —II [ _(' 20 e OL( ) o
e ipB(T+ip) i ) (1 +71))2+< © B o P </) 7 +11)>:|
x_("""(A_@ 20)
C,2iC__20 © B B B, = T 7
+ (B-— = + >+f‘l( } — 1 T piwl—jt __ Tt ]
B P 1+/1) 2 Tw—) ‘ ] + —/+15 (e )

e e oS5G5
e )I[ll ¢ 1_ ,*II )\ —_— , —-;,+ = B—— —
+ T+ip d Iy 2 iPB P o\p B

Equation (25) predicts the direction of the ve-
locity vector for vehicles having the angular
motions described by equations (16). Note the
similarity of these two solutions (eqs. (16b) and
(25)). Both consist of a fixed vector, a vector
rotating at the mean roll rate, and a vector ro-

o plx
tating at the mean value of ]—[ :

Again, it should be remembered that these
solutions are for small values of 6 and that flight-
path curvature due to gravity is disregarded.
An approximate change in flight-path angle due to
gravity is

; Gt cos 7,
Alyytiv)=—F

The results of equations (16) and (25) can be
combined to yield time histories of angle of attack

and angle of sideslip as follows:

a,=0—7, \I

} (26)
B.x': _\l/"F')/‘ﬁ

and because of the relationship
B+ia= (B, +ia)e
— B, sin (Bt+9,) e, cos (Ft4é,) )
B=B, cos (pt+¢,) +a, sin (Pt+¢,)

(27)

Now, going on to the space-position solution, it
can be shown from figure 1 that

éle:-‘y sin (70+7::)
&, =V cos (v,17,) cos v, (28)
.=V cos (v, 1,) sin Yy

The foice equation along the flight path for small
disturbances is

T cos a cos B—mg sin (y,+v,)=mV (29)

By considering small angles for « and B and re-
moving gravity effects equation (29) becomes

T _V

el 7 (80)
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Integrating this equation and combining with
equation (23) results in

V="V,T (31)

Now, this velocity expression can be substituted
into equations (28) with the assumption that v,
and v, are small angles, and the equations can be
expanded. Since equations (28) and (31) were
obtained by neglecting the force of gravity, the
term ¢t is added to the equation for Z, to get the
earth-referenced velocity equations with gravity
effects included.

te=—V,e" (v, cos v,+sin v,)+gt
&,=V,eT (cos Yo~y 8i0 75) (32)
?JFVUP’_”W (cos v,—7, sin v,)
Equations (32) are integrable and yield the
space location equations with gravity effects in-

cluded. The result is given here as functions of
v, and v, which are available from equation (25).

_V,siny, (eT'—1) R

.0 ’T
y , = 1S
—V, cos 7')f7067’(“+5 gt

(8]
I
[

23

T, =7, ,,+‘w” (70184 (1)

. L (33)
—V,sinv, J voeTidt

Ye=Ye, 0+L7,, cOs 7;jy¢67’([t

—V, sin v, f vov,£Tdt
P

RESULTS AND DISCUSSION

The results of this paper are primarily the
attitude solutions expressed by equations (16),
the flight-path direction expressed by equation
(25), and the space-location solution ol equations
(33).  All these solutions are complicated by the
large number of variables which affect the end
results. In order to show some ol the more im-
portant interrelationships of these variables,
others must be held constant.

ATTITUDE SOLUTION

With the attitude solution of equations (16),
the separate motion effects of the initial attitude

SPINNING BODIES 9

N, and the initial attitude rate A, can readily be
demonstrated by making A=B=C=0 and j=0
with the result that

X(; i
A=At (5 —1)

This solution is shown in figure 5(a) to be the sum
ol a fixed vector and a rotating vector. Until
A, and A, are specified, however, it is not possible
to say whether a higher or lower spin rate or inertia
ratio will increase or decrease N\, the common
performance standard of spin stabilization.

Now, if the model is thrusting but with no
disturbance moments, jet damping normally
attenuates the motion and the plot of # against ¢
turns into a logarithmic spiral as shown in figure

5(b).

8
Ao
N
S\om )'\0//&;
A
(a)
Ko /! g
/'LIJ—/_
@
Ao
° ja-j
4
(b)

(a) j=0 (no jet damping).
(b) 70 (with jet damping).

Frcure 5.—Sample attitude solution with no moment
inputs (/,4:G,=0).
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Moment asymmetries.—For the effects of mo-
ment asymmetries the solution for X may be
simplified by assuming no residual motion (X,
—X,—0) and constant inputs (B=C=0). Then
for ¢,—0, the solution becomes

7,(:(,; jrl
II)/ l | [1) ,] .(_ = ,jl
w—J

Expressions for maximum wobble can be obtained
[rom this equation under the following conditions:
When o<Cp, or, more accurately, when

7 =
,?{}_; |:1 +‘(f w w(p—w) \/~2

My+iM,

7l +i (7))

Vet
then
- My MPE
G
M=\ T T TE S = o (1—* +< >
(@ 4+ + P—d)? P
e, R
+\w +1_+(, w T k])—w)i]
4
ar 1, for normally small j values (i.e., J/p<1 and
7/w<k1),
N VM y? —Izllz
HI[II 1(.0 (1)_ (.U)

When @ >7, or, more precisely, when

D
J_ [1+C—(1/m tan™ 1(}/(1})]/2

\ w2+} b
then
My*+M7* —}—A[/’
_— S VEY+EY
(M+ﬁH/%Qhﬂ 1) >+ Iz

- | - =
+1/f"7_t./7_+_(4~(7/11)Iun_l(J/w)
P

and, for normally small j values,

VM +M
h&w—p)

AIINI[

Note that both \,.. expressions show that max-
imum wobble due to asymmetrical moments is
proportional to the size of the moment and, for

R—115—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

normally small 7 values, is effectively inversely
proportional to the product of the mean roll in-
ertia and the square of the mean spin rate over
the interval. It follows, therefore, that spin-rate
magnitudes increasing with time (as well as larger
spin rates) will reduce wobble because of the re-
sulting larger value of mean spin rate over the
interval.
Lastly, fo
wobble can

r p~, an expression for maximum

be obtained under the reasonable
(7/P)<1 and that (P—w)t is a
This expression is

conditions that
“small angle.”

o (=)' +e 7 @—p)tf
7+ (p—a)?
This solution indicates the divergent nature of

Amaz fOr P~ at small 7t values. The divergence
is more apparent for 7=0 with the result

)‘mux ’V/("IY?_‘_ 1122)

)\mur J[) _‘}_ ‘//

]_.
Although the quantity (p—) is never exactly
equal to zero in a practical problem, the theo-
retical possibility of 7=/ also results in the sim-
ple divergence equation just given (for normally
small values of 7). These divergence solutions
reveal that wobble buildup is proportional to the
input moment disturbances and to the time re-
quired for passing through the resonant condition
(p~) and inversely proportional to pitch or yaw
inertia and mean spin rate.

Unbalance. It is difficult to show clearly the
effects of unbalance on the motion of a body hav-
ing a nonconstant spin rate because the input
moments (eq. (14b)) are variable. Thus, the
quantities B and € or A, and B, must take ‘on
values other than zero which precludes a simpli-
fied version of the general solution. However, by
considering fixed p and IJ—\ ralues temporarily,

equations (9) and (14b) can be combined (still re-
taining the conditions \,=\,=0, B=(C=0, and
¢,—0) with the result

77) _{_[‘11544 ,iDt P
j] e 142p

'1)(1 ]\)

)\::
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and, for normally small values of 7,
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When lf}l
o [__mr'tnt
1+|:])([ 1\'

and, for normally small values of 7,
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These results are for constant values of » and 7\

with no residual motions. Note that wobble due
to unbalance is independent of spin rate except
through the jet damping terms which normally
have only a very small effect. Thus, wobble due
to unbalance cannot be controlled by spinning as
can, for example, the wobble resulting from initial
attitude rates or thrust misalinement.

APPLICATION

The analytical expressions for \ and vy given n
the present paper have been programed for use
with an IBM 7090 electronic data processing
machine. Sample problems were composed and
this program used to generate their solutions.
The numerical solutions to these problems were
also obtained with the numerical integration
method reported in reference 3 for the purpose of
comparison with approximate solutions.

It should be mentioned that the values for 7,
w, T, and F' used in the approximate solutions
were based on assumed exponential histories of

the variables within the interval { i.e., for example,

SPINNING BODIES il

7)—:/)’_1)" - Although this assumption of exponen-
log, 27
e P
tial dependence of the variables is inherently more
accurate, almost identical results (not shown)
were obtained with the approximate method by
assuming linear histories of the variables within
each interval <1 e., p= l)/+])“) |

The first application was to simulate the motions
ol a rocket model which was the last stage ol a
multistage rocket system. The model can be
tllought of as a cylinder about 1% feet in diameter
and 3% feet in length having a ratio of fuel weight
to total weight of 1/2. An angular thrust asym-
metry of 0.001 radian in both the pitch and yaw
planes provided a continuous disturbance to the
motion. A separate spin motor was assumed to
increase model spin rate during the problem from
5 to 9 radians per second. The approximate
solution was computed with two intervals and
with ten intervals, each with and without jet
damping. Problem constants and initial condi-
tions are listed in appendix B. Results are shown
in figures 6 to 8.

Figure 6(a) shows the approximate 6 and ¢
histories obtained with the two-interval solution
(no jet damping) and their comparison with the
numerical solution. In general, this comparison
indicates a good approximation of the numerical
solution except for the first negative peaks of
each curve where the approximate solution under-
estimates the actual values. The phase difference
between the approximate and numerical solutions
is to be expected and is usually of little importance.
In this respect, both ends of all intervals are
exactly in phase, the greatest difference occurring
halfway through each interval. The two-interval
solution for flight-path direction is shown in figure
6(a) along with the numerical solution. Here,
the comparison appears not quite so good as the
attitude solution, but satisfactory flor most
purposes.

In order to illustrate the accuracy obtained
with many intervals, the ten-interval solution of
figure 6(b) was computed. Note the improve-
ment in the X\ and v solutions as compared with
the two-interval results.
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Frcure 6.—Approximate and numerical solutions of first sample problem. 3:0.




VACUUM MOTIONS OF SPINNING BODIES

8 IREEEENEN

== - ’\W— — ———
\ la'
SR A <

B

| SE
o2
=

e

Tl -

|

[
\/-T/
A

(T
a

‘ |

|

=
—=
=4
3

~Q

\ " ,
8 U~ \Va
Y \y Y
\ -
s Ten interval ———
Numerical ————
\\
e e
<
[ — \
] == —‘
TN e
(b)
(0] 2 4 6 8 10 12 14 16 18 20
Time, sec

(b) Ten-interval approximation.

Ficure 6.—Concluded.




14 TECHNICAL REPORT R—115—NATIONAL

Thus far, problem cases have been restricted to
zero jet damping because the program used to
obtain the numerical solutions does not include
jet-damping effects. However, jet-damping ef-
fects can be quite large as illustrated in figure 7.
This figure presents the ten-interval solution with
and without jet damping. Note the large attenu-
ation effect of jet damping on the low-frequency
(precession) mode and the near absence of this
effect on the high-frequency mode. This large
damping effect is not unusual and can even be
called typical. TIts presence is fortunate since
no other forces are naturally available to damp
the motion.

It is well documented that bodies having /=
Iy=1, cannot be spin stabilized. However, the
motions of axisymmetric bodies passing through
this condition are not well known. For this
reason, the second type of problem for simulation
was selected to reveal the effects of passing through
inertial resonance (;":]) This problem as-
sumed a variable 7y, a constant /, and no roll
inputs. Only the X solution was computed for
purposes ol simplicity. The problem was com-
puted with one interval, two intervals, and three
intervals, in all cases with no jet damping. The
necessary constants and initial conditions are
presented in appendix B. Results are presented
in figure 8 which also shows the numerical solution
for comparison purposes. Figure 8 illustrates the
one-interval solution ol this problem to be inade-
quate. The two-interval solution is much im-
proved and reveals the trends of the numerical
solution. However, for an accurate amplitude
comparison, the three-interval solution is
indicated.

Intervals.—Solutions have been previously de-
sceribed as one interval, two interval, and so forth,
with no explanation of why or how the number of
intervals was selected. As previously mentioned,
a two-interval solution (for example) means that
the problem is computed in two intervals, usually
s0 as to result in about the same percentage changes
of the wvariables within each interval. Then,
closed solutions for the first interval are obtained
with equations (16) and (25) along with the initial
conditions of the problem. In order to compute
the solutions at any time of the second interval,
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however, the final values of interval one must be
calculated and used as initial conditions for the
second interval.

While the number of computations increases
with the number of intervals used, the accuracy of
the results increases thereby. The optimum
number of intervals, then, depends upon the
computing facilities available, the degree of
accuracy desired, and the total percentage change
of wvariables throughout the problem. In this
respect, the author has tentatively settled on
using intervals in which the values of p or 1;;“'
do not vary more than about 15 percent for
“accurate’ results or more than about 30 percent
for approximate results. These percentages are
based on a limited amount of experience. Per-
centages for the sample problems are given in
appendix B.

Computing time.—Computing times for sample
problem number one of appendix B were obtained
for both the approximate and the numerical or
step-by-step solutions. These solutions were gen-
erated by an IBM 7090 electronic data processing
machine and required certain compatibility
changes since both programs were originally set
up for the IBM 704 electronic data processing
machine.

Both programs required about 26 seconds read-
in time.  Excluding read-in time, the approximate
method (10-interval solution) had a ratio of ma-
chine time to problem time ol about 0.93 and the
numerical method a ratio of about 4.8. Reducing
the number of intervals used in the approximate
solution would decrease its ratio only a small
amount.

Other [actors involved in a computing time
comparison are as [ollows: First, the numerical
method is programed to yield output quantities
not included in the output of the approximate
method. Tt is estimated that the elimination of
this part of the program would amount to about
% reduction in computing time for the numerical
method. Second, the above ratios are for defining
the output every 0.1 second and could be reduced
proportionally for the approximate method by
using fewer output times. The numerical method
would not benefit in this respect.
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CONCLUDING REMARKS

A method for approximating the vacuum mo-
tions of symmetrical rigid bodies with nonconstant
spin rates and inertias has been developed. The
analysis includes the effects of time varying thrust
misalinements, mass unbalance, and jet damping.
The method was derived for bodies having equal
moments of inertia about their pitch and yaw axes
and is based on body pitch and yaw attitudes being
limited to ‘“‘small angle” oscillations.

Results have been presented in the form of equa-
tions for space-referenced Euler angles, flight-path
angles, and earth-referenced vehicle-trajectory
coordinates. Equations for determining maxi-
mum wobble have been developed for certain input

conditions. Also, equations for body-referenced
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attitude rates, angle of attack, and angle of sideslip
are included for convenience.

The general solutions give insight into the indi-
vidual effects of the variables and, in many cases,
offer a quick means for obtaining approximate
solutions. Although the method is somewhat
lengthy for accurate hand computation in most
cases, it is readily programed for automatic com-
puter solutions.

The method has been shown to compare closely
with numerical solutions of two sample problems.
The sample problems also illustrated the relatively
large effect of pitch and yaw jet damping on body
motions.

LaNGLEY RESEARCH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LanGLEY StAaTION, HAMPTON, VA., April 24, 1961.

APPENDIX A

EXACT SOLUTION WITH NONCONSTANT SPIN RATES

Combining equations (8), (11), and (13) results

in the solution

(14-at)

. i&<g>]0g-
A=A tei#e A’(1+at)e o \1/)"*

—B’—(C'—D’+[B’(1+at)?

+0, 1+at) +D (1 +at>4] loge (1+nt)}

where

\ _{‘3511

A= L e :
- X - _2.

a+1p, i [1—&—1 p (1

B 2(’
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A B
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B 20

’

0r— a
i ()=

C

eI

This result displays the spiral nature of the
6, ¢ motion for nonconstant spin rates. Spin rates
decreasing with time result in spiral motions of
increasing magnitude and spin rates increasing
with time act to reduce the magnitude of the
6, ¥ motion.
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APPENDIX B
SAMPLE PROBLEM INFORMATION

PROBLEM 1
Problem length, seec_ - _________________________ 20
5t 5
I — iy I
IMass felngs et D A AR 20 5 t1, 800l
Ehrust b e S 5, 000— 50t
Pitch and yaw inertia, slug-ft2_____________ 25. 6—0. 53¢
Roll inertia,slug-fto 2o 0 o i o o 3. 93—0. 0965¢
Roll input moment, ft-1b_ _ _____________________ 0. 572

Pitch input moment, ft-lb_ 0. 001 (5, 000— 50¢) (2 0. 025¢)
Yaw input moment, ft-Ib__ 0. 001(5, 000—50¢) (2+0. 025¢)

‘Ehrustiarmi S it S e 24-0. 025¢
Initial flight-path velocity, ft/see_ - ___________ 5, 000
Initialiroll'angle,Sradiang- == S us s 0 L 0
Intial piteh angle) radians: -~~~ -~~~ 0. 05
Initial yaw angle, radians_______________________ 0. 04
Initial roll rate, radians/see_ - _______________ 5
Initial piteh rate, radians/see____________________ 0.015
Initial yaw rate, radians/see_ - _________________ 0. 02
Initial flight-path angle in vertical plane, radians__ 0. 02

Initial flight-path angle in horizontal plane, radians_ 0. 01
Two-interval solution:

Intenyals s S S 0=i{=12, 12=1=20
Maximum change of p within the interval,

D OrCen T e 41
Maximum change of p IIX within the interval,

P e e R e 33

Ten-interval solution:
[ntervalseis ni i ey 2-sec intervals successively
from 0 to 20 sec

Maximum change of p within the interval, per-

(o 6
Maximum change of p ITX within the interval,
BT T e 4.6

PROBLEM 2

[} S

Problem length, see____________________________ 2

Pitch and yaw inertia, slug-ft2___________________ 2
Rolllinertia,islug=ft2 st e s e 31.25—0. 6973
Rolllmomentiinput  fi-lbSsSe s S g

&~

Pigcht¥momentrinput,ift=1b =SS Sy e L e n e =

Yaw moment input, ft-lb_______________________
Initial roll angle, radians_ _ _____________________
Initial pitchiangle, radians..—.o - o . o =
Initial yaw angle; radians——_-______ - _~° "8 &=
Initial roll rate, radians/sec_ .. __________________
Initial pitch rate, radians/sec.___________________
Initial yaw rate, radians/see_ . _ _________________
Initial flight-path angle, vertical plane___________
Initial flight-path angle, horizontal plane_________
One-interval solution:
Maximum change of p within the interval,
PErcent - Sr s m oS e e TR R e 0

COO0OOCULMIO OO O N-=O

T
Maximum change of p 7‘\5 within the interval,

Percent e R L L T L 36
Two-interval solution:
Intervalstt s cone sae e o 0=1=12, 12=1=20
Maximum change of p within the interval,
DETCET) TS S B 0
Ix
~
pereentes e Sl i s SR T O 20
Three-interval solution:
Intervals_______ 0=1=06.7, 6.7=1=133,13.83=7=20
Maximum change of p within the interval,
PETCen A S 0

Maximum change of p within the interval,

. TN :
Maximum change of p —I‘\- within the interval,

Pereente-— - == i e T 14
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