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SUMYmRY

An analysis has been made of the geometrical characteristics of lunar orbits

which can be established from typical earth-moon transfer trajectories. An

iterated two-body or patched-conic technique was used to relate the transfer-

trajectory injection conditions to the selenocentric orbital parameters through

set of simultaneous transcendental equations. Solutions to these equations

are presented for typical sets of injection conditions. These solutions suggest

an additional simplification in the analysis which results in a simple physical

understanding of the problem and also in some approximate, simple relationships

between the lunar orbital parameters and the transfer-trajectory characteristics.

In particular, it is shown that (unless changes in the orbital plane are

instituted) there is a minimum-inclination lunar orbit which can be established.

The value of this minimum inclination is given as a function of the injection

conditions and depends primarily on the injection flight-path angle and transfer-

trajectory inclination to the earth-moon plane. In addition, an approximate

equation is given which relates the lunar orbital inclination and nodal position

to the injection conditions; hence, only one of these two lunar orbital param-

eters can be chosen arbitrarily.

INTRODUCTION

Current plans for manned lunar missions include the establishment of a close

lunar orbit as a prerequisite to the lunar landing operation; in particular, the

establishment of a lunar orbit is an integral part of the lunar orbit rendezvous

technique. These plans have stimulated an interest in the types of lunar orbits

which can be established efficiently and which at the same time are consistent

with the overall mission requirements. For example, suppose a lunar orbit is

established prior to landing and that the exploration vehicle lands nearly in

this orbital plane_ then the question of possible landing sites is closely

related to the geometrical characteristics of the permissible _unar orbits.

Of particular interest from the mission-requirement standpoint is the initi-

ation of a satisfactory earth-return trajectory. It is shown in reference i that

the achievement of such a trajectory, if initiated from a lunar orbit, is



strongly dependent on the geometrical characteristics of that lunar orbit. In
fact_ for an arbitrary lunar orbit, there maybe periods during the month when
the return flight cannot be initiated unless costly orbital plane changes are
instituted. Hence, if the lunar orbit rendezvous technique is utilized, the
lunar orbit must be established such that after the proper exploration time the
geometrical characteristics of the orbit are within the allowable band for satis-
factory, efficient return to earth.

An analysis was initiated at the NASALangley Research Center to investigate
the geometrical characteristics of lunar orbits which can be established to be
consistent with typical constraints on the earth-to-moon transfer trajectory. A
"patched-conic" technique was used to relate the lunar orbital parameters to the
transfer-trajectory parameters through a set of transcendental equations. Some
solutions to these equations are presented for typical transfer trajectories.
These solutions motivate a further approximation which leads to a simpler set of
equations and a better physical understanding of the problem.

SYMBOLS

w

D

ex_ ey, ez

i

io

Zl,ml_nl

_2,m2, n2

r0

Rp

Ve

Vm

Vs

vector distance from center of earth to center of moon

unit vectors along X-, Y-_ and Z-axes, respectively

geocentric angular momentum vector

inclination of selenocentric orbital plane to earth-moon plane

inclination of transfer-trajectory plane to earth-moon plane

direction cosines between xm

direction cosines between Ym

and X-, Y-_ and Z-axes, respectively

and X-, Y-, and Z-axesj respectively

geocentric position vector of vehicle at the sphere of influence

geocentric injection radius

selenocentric position vector of vehicle at the sphere of influence

periselenian distance of selenocentric hyperbola

geocentric velocity vector of vehicle

geocentric velocity vector of the moon

selenocentric velocity vector of vehicle at the sphere of influence
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X, y, Z

Xm, Ym

70

0

h

= cos _ sin

ratio of injection velocity to parabolic velocity at the injection

altitude

_e

_m

T

W = COS D cos

no

Subscripts :

X 3 y, Z

n

c

min

geocentric position components

geocentric velocity components

selenocentric position components measured in the selenocentric

orbital plane

nondimensional radius of the sphere of influence, R/D = 0.1498

acute angle between R and _s

injection flight-path angle

isZitude of entry point on sphere of influence

angular position in selenocentric orbital plane

nondimensional velocity, Vs/V m

gravitational constant of the earth

gravitational constant of the moon

approximate flight time from earth injection to periselenian point

components along X-, Y-_ and Z-axes_ respectively

normal impact selenocentric trajectory

center of locus of entry points

minimum

angular position of entry point on the sphere of influence

longitude of node of selenocentric orbital plane

longitude of node of transfer-trajectory plane



ANALYSIS AND DISCUSSION

The characteristics of lunar orbits are directly dependent on the charac-

teristics of the earth-to-moon transfer trajectory from which they are estab-

lished. Hence, constraints imposed on the transfer trajectory by mission require-

ments will limit the types of lunar orbits which can be established efficiently,

that isj established without orbital transfers or plane changes. It would be

convenient to have explicit relationships between the earth-injection parameters

and the lunar orbital elements so that the effects of these limitations might De

investigated; unfortunately, no exact analytical expressions have been found.

Numerical integration of the equations of motion of a vehicle in cislunar space

do not readily yield any general indications of these relationships; however,

these studies show that the lunar orbital characteristics can be changed appre-

ciably by making small changes in the transfer trajectory and thus a wide variety

oflunar orbits can be established from essentially the same earth-to-moon

trajectory.

Some approximations are required in order to obtain general analytical

information about the relations between the transfer-trajectory characteristics

and the lunar orbital characteristics. In this study, the earth and moon are

assumed to move in circular orbits at the mean distance of 238,857 miles and in

addition a patched-conic technique is utilized with a lunar sphere of influence

as defined in reference 2. While the vehicle is inside the imaginary selenocen-

tric sphere_ the earth's gravitational effects on the vehicle are neglected and

when the vehicle is outside the sphere the moon's gravity is neglected. As illus-

trated in figure i_ the motion is represented by two conic sections_ the first

Sphere of

influenoe-_

Selenocentric

hyperbola

point

Figure i.- Illustration of patched-conic technique.

geocentric and the second selenocentric_ which are "patched" at the sphere of

influence to make the trajectory continuous. The utility of the above assump-

tions is that they reduce the problem from one defined by a system of differ-

ential equations to one defined by a set of transcendental equations. The solu-

tions to the latter equations are readily obtained by an iterative technique.



The patched-conic technique relates the characteristics of the transfer
trajectory to the characteristics of the selenocentric approach hyperbola; how-
ever, for the most efficient establishment of a lunar orbit_ the lunar orbital
plane should coincide with the plane of the selenocentric hyperbola_ and as indi-
cated in reference _ the orbit should be established whenthe vehicle is near
periselenian and such that the periselenian point of the resulting lunar orbit
nearly coincides with the periselenian point of the approach hyperbola. Under
these conditions_ the geometrical characteristics (inclination, nodal position_
and altitude at periselenian) of the lunar orbit are the sameas the character-
istics of the selenocentric hyperbola from which the orbit is established; there-
fore_ a study of the geometry of the approach hyperbola is equivalent to studying
the geometry of the resulting lunar orbit.

General Equations and Solution

In a patched-conic technique the geocentric (_, _e) and sel enocentric
!
[_ Vs) position and velocity vectors at the sphere of influence are expressed
in terms of the respective orbital parameters. Then to insure that the trajec-
tory is continuous across th_ sphere of _nflu_nce,_the position and velocity
vectors are related by _ = R + D and Ve = Vs + Vm. These equations give the
required numberof relationships so that the selenocentric orbital elements can
be determined from the geocentric orbital elements. By utilizing these equa-
tions_ the position of the entry point (i.e._ the point where the vehicle passes
through the sphere of influence) relative to the earth can be given in terms of
the position relative to the moonby

x = RZI + D_

Y Rm1

z RnI

(i)

where, as indicated in figure 2_ the coordinate system is chosen with the origin

at the earth's center_ the X-axis points in the direction of the moon at the

time the vehicle passes through the sphere of influence, and the Z-axis is normal

to the earth-moon plane.

The velocity components at the entry point are related by

i = Vs(Z 2 sin _ - tl cos _)

- cos +V

{ = V s(n 2 sin _ - nI cos _)

(2)

where _ is the acute angle between _ and _s and where the direction cosines

are expressed in terms of the angles illustrated in figure 2



Lunar orbit

I°iane _--7 Entry point

ym

R

Line of nodes

Figure 2.- Illustration of coordinate system and angular parameters.

Earth

ZI = cos @ cos _ - sin @ sin _ cos i

Z2 = -sin @ cos _ - cos @ sin _ cos i

mI = cos 8 sin Z + sin 8 cos _ cos i

m2 = -sin e sin _ + cos 8 cos _ cos i

nI = sin 8 sin i

n2 = cos 8 sin i

The geocentric velocity and position vectors of the vehicle at the sphere
of influence are related to the transfer-trajectory injection conditions through

the laws of conservation of energy and angular momentum; namely_

21_elfV_j2-roLkVp/o 1] = (_2 + _2 + _2) _ 214e(X2 + y2 + z2) -1/2

hx = h sin io sin _o = Y£ - z_ (3)

hy =-h sin io cos _o = z£ - x{

hz = h cos io = x_ - y_
J
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where the total geocentric angular momentum is given by

o

The inclination i o and the nodal position _o of the transfer-trajectory plane

are measured relative to the coordinate system in figure 2 and in a manner

directly analogous to i and _ for the lunar orbital plane. Substituting

equations (i) and (2) into the right-hand side of equations (3) gives the seleno-

centric orbital parameters (Vs, 0, _, i, _) on the right in te_s of the

transfer-trajectory parameters 7o, ro, ' lo'

explicitly_

2_e _ = Vs 2 + Vm 2 _ 2VsVm(m I cos _ - m 2 sin _)
r o

o

h sin i o sin _o = (Rvs sin _ sin _ - RV m sin 6)sin i

h sin i O cos _o = _Vs sin _ cos _ - DVs sin(e - _)_ sin i

h cos io = -DVs_os(e- _)sin_ + sin(_- _)cos_ cos_ + RVs sin _ cos i

+ DVm + RVm_os 8 cos _ - sin 8 sin _ cos i_

For manned lunar missions it is generally required that the selenocentric

hyperbola have a specified periselenian distance_ Rp. This condition provides

a relationship between Vs and _ obtained from the conservation of energy and

angular momentum relative to the moon; namely_

sin _ = i + _ -

RpV s2

(4)



Hence, by assuming that Rp is fixed, equations (_) and (4) are sufficient to

solve for the five selenocentric orbital par_eters in terms of the transfer-

trajectory parameters. However_ it is not convenient to solve the equations in

this form because, in general, solutions exist for only a limited range of _o-

For example, if io is 90o there are obviously values of _o such that the

transfer-trajectory plane would not intersect the sphere of influence. To over-

come this type of difficulty _o is eliminated from the equations by squaring

and adding the second and third of equations (3) to give a new set of three

equations.

r° o

- 2_er o coS27o sin2±o = 0 (5)
o

2_ r V) cos Yo cos io = 0- - 2  e O(Vpo J

After a solution is found to these equations_ the corresponding value of _o

can be determined from equations (3) by substituting the solution on the right

and solving for sin _o and cos _o. The resulting value defines the injection

time so that the vehicle will enter the sphere of influence at the desired point.

If the transfer-trajectory characteristics ((_p) " ol
, mo_ Yo, r and the

o

periselenian distance Rp are specified, equations (4) and (5) define a rela-

tionship between any two of the selenocentric orbital parameters. In particular,

since the geometrical characteristics of the selenocentric hyperbola and the

resulting lunar orbit are of particular interest, it would seem advantageous to

reduce the equations to a form which gives the selenocentric orbital inclination

as a function of the selenocentric orbital nodal position. Obtaining such a

relationship by algebraic manipulation is difficult and, in general_ numerical

techniques are required. Solutions of equations (4) and (5) can be generated by

an iterative technique such as the Newton-Raphson method outlined in reference 4.

Some typical solutions of equations (4) and (5) are presented in figures 3

and 4 for the five transfer trajectories whose injection conditions are given in

table I. Figure 3 presents the locus of entry points on the sphere of influence

for each trajectory. Each point on the entry-point curve corresponds to a par-

ticular orbital plane as illustrated schematically in the figure. Also_ three of

the resulting orbital planes are indicated by dashed lines for each entry-point

locus. The entry point for each orbital plane is indicated by a dot and the

direction of orbital motion in the plane is given by the arrow.
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Figure j.- Locus of entry points on sphere of influence.

TABLE I.- CHARACTERISTICS OF TRANSFER TRAJECTORIES

_Geocentric injection radius = 4,259 miles; injection angle = O_

Trajectory

A

B

C

D

E

1.000

.995

.992

.995

.995

l o ,

deg

3O

5o
3o

5

30

Rp, miles

i, 180

i_ 180

i_ 180

ij 180

i, 58O

T_

hours

5O
68
81
62
62
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Figure 4.- Selenocentrlc orbital characteristics.

i0



It is seen from figures 3(a), (b), and (c) that the entry-point curve for
each trajectory is nearly circular and the curve becomesmore circular and smaller
as the transfer-trajectory energy increases. In addition_ the center of the curve
movestoward the earth-moon line and slightly toward the earth-moon plane as the
energy increases. Comparingfigure 3(b) with 3(d) indicates that decreasing the
inclination does not change the size or shape of the curve but moves the center
closer to the earth-moon plane. Finally, from figures 3(b) and 3(e) it is seen
that increasing the periselenian distance of the approach hyperbola increases
the size of the entry-point locus but does not displace the center appreciably.

It is to be noted that for the higher energy cases the orbital planes nearly
pass through the center of the region boundedby the entry-point curve. If this
were true for all the orbital planes, then the inclination and nodal position of
the selenocentric orbital plane could be related by the laws of spherical trigo-
nometry to give

tan i sin(_ + _c) = tan _c (6)

where _c and _c are the coordinates on the sphere of influence of the center

of the entry-point region. The lower part of figure 4 shows a comparison between

the inclination as a function of nodal position as calculated from equations (4)

and (5) and as calculated from equation (6) by using the indicated values of _c

and qc" The agreement for these three cases seems to indicate that equation (6)

is a valid relation between the inclination and nodal position of the selenocen-

trlc orbital plane. Therefore, for a specific transfer trajectory, /7o, to,

\
(_Ol___ io]_ equation (6)defines a relationship between _ and i_ and only

%

I

one of these elements can be chosen arbitrarily. From the equation and from fig-

ure 5, it is seen that the nodal position can vary over the range 0° to 360 °

while the inclination is limited to the range l_cl _ i _ 680-i_ c I}" The

highly inclined lunar orbits correspond to nodal positions near the entry-point

region and low inclination orbits correspond to nodal positions nearly 90 ° away

from the entry point.

These results might have been anticipated from the following reasoning.

Suppose it is desired to calculate the entry-point locus for some transfer tra-

Jectory and some periselenian distance Rp. First, equations (5) are utilized

to calculate the entry point for the selenocentric hyperbola which has zero angu-

lar momentum; i.e., impacts normal to the moon's surface and therefore _ = O.

Let the location of this normal-impact entry point on the sphere of influence be

denoted by the point (_n,_n)" The solution of equations (5) also gives a value of

V s at the point (_n,_n)" If this value of Vs is substituted into equation (4)

along with the desired value of Rp _ O, a value of _ _ 0 can be calculated.

For typical transfer trajectories and for Rp not much greater than the lunar

radius, the value of _ < 5° . Now consider a new or modified entry point (_,_)

ll



Sphere of

influence

S Orbi±al
lane

_'--Ear%h-Moon

plane

Normal impact _---R

°
Vs --Modifi ed/ /

_" _ _ hyperbola

Figure 5-- Illustration of the mo_fied selenocentric traJecto_.

which is displaced _ from the normal-impact entry point (_n, qn)" The situa-

tion is shown schematically in figure 5 where the plane of the paper represents

the selenocentric plane connecting the two points (_n, qn) and (_,q). In general,

small changes in the injection time and _o can be made so that the vehicle

passes through this modified entry point without changing any of the other char-

acteristics of the normal-impact transfer trajectory. This displacement of less

than 5° on the lunar sphere of influence represents a small change in position

relative to the earth, hence the geocentric velocity vector of the vehicle at the

point (_,q) will be nearly equal to the velocity vector if the vehicle entered at

the point (_n, qn)" Consequently, the velocity of the vehicle relative to the moon

12



is nearly the sameat the two points. By assuming the velocity vector at the
two points to be equalj it is seen from the geometry of figure 5 that the angle
between _s and _ at the modified entry point is also _; thus_ the modified
trajectory will have the desired periselenian distance. It is also seen that
the plane connecting points (_n,_n) and (_,_) will be the plane of motion. The
samearguments hold for any point which is displaced _ from the normal-impact
entry point. Hencefor a given transfer trajectory and periselenian distance,
the locus of entry points would be expected to approximate a circle with center
at point (_n,_n) and all the orbital planes would be expected to pass through
the center of this circle. Therefore the node and inclination of the resulting
selenocentric orbits will be related by an equation analogous to equation (6)
with _c and _c replaced by _n and _n_ respectively,

tan i sin (_ + _n) = tan _n (7)

and the geometrical properties of the resulting lunar orbits will depend on the

( o)injection conditions 70, ro_ o" i through the coordinates of the normal-

impact entry point (_n, qn)" The next section presents a method for relating

these entry-point locations to the injection conditions.

Approximate Equations and Solutions

The calculation of the normal-impact entry points can be readily obtained

by using the laws of conservation of geocentric energy and angular momentum as

before. For this case the selenocentric orbital parameters (i, _, _) have no

meaning; instead the coordinates (_,_) of the entry point will be used to

specify the direction cosines. The normal-impact condition provides an addi-

tional piece of information; namely, that the velocity vector Vs must be par-

allel to R at the entry point. Hence

= R(ZI_ x + mlSy+ nl_ z)

= R(-cos q cos _ ex + cos h sin _ _y + sin _ ez)

and

_S = Vs(C°S _ COS _ _x - cos _ sin _ _y - sin _ ez)

Substitution of R and _s into equations (i) and (2) and then into (}) gives

for the angular-momentum components:

13



hx = h sin io sin _o = -RVm sin _

hy -h sin i0 cos go = DVs sin

h z h cos io = -RV m cos _ cos _ + DVm - DVs cos _ sin

Likewise equations (5) become

Vs2 + Vm 2 - 2VsV m cos B sin _ - 2_e(R 2 + D2 -2RD cos T] COS _)-i/2

ro

=0

R2Vm + D2Vs2)sin2_ _ 2_er o coS27o sin2io = 0
o

RVm cos n cos _ + DVs c°s q sin _ + 2_<V_p ) c°s 7o c°s io - DVm = 0o .,

(8)

(9)

With the substitutions,

V s R

Vm D

= cos _ sin v = cos _ cos

these equations take a form which is convenient for the application of a

Newton-Raphson iteration for k, _, and w

\roVm2/(21_e I[i__ _pp)o]"f '_2_e 0.2 )-1/2 _ (V 2

(_,_,,:,._)(,_,,__,,_).(_)<,n_,o_o
_X + _v + (b_k-_cosio - z = o

\DVm]

_ere__o_ore_=_O(Vt)ocos_o-

(i0)
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Simultaneous solutions to equations (i0) are presented in figure 6 for a

range of injection-velocity ratios and transfer-trajectory inclinations and for

two injection flight-path angles. The loci of entry points are symmetric about

the earth-moon plane and, as can be deduced from the first two of equations (8),

the solutions corresponding to _ < 0 are for transfer trajectories for which

the vehicle is ascending at the time of passage through the sphere of influence

and those solutions corresponding to _ > 0 are trajectories for which the

vehicle is descending. A normal-entry point location from figure 6 is to be

interpreted as representing the center of the entry-point locus for selenocen-

tric trajectories which do not impact normally. The radius of the entry-point

locus, _, is to be calculated from equation (4) by using the appropriate value

of V s from figure 6. With this interpretation the resulting entry-point loci

will have the same properties as the loci obtained from the more exact calcula-

tions and presented in figure 3. Also note that the value of V s at the normal-

impact entry point agrees well with the more exaet values presented at the top

of figure 4.

For the range of velocities presented here the entry-point region is seen

to represent a small area on the sphere of influence. This fact can lead to some

serious limitations on the types of selenocentric orbits suitable for a given

mission. For example, it is shown in reference 5 that for circumlunar trajec-

tories the maximum allowable inclination of the selenocentric orbital plane is

17 ° . Hence, if such a fail-safe trajectory is to be utilized as the nominal

lunar-approach trajectory for manned exploration missions, then the landing sites

are restricted to a narrow band about the earth-moon plane. A similar example

of such a restriction on the possible landing sites is afforded by assuming that

the lunar orbit rendezvous technique is utilized for missions with exploration

times of a few days. For this case the inclination of the selenocentric orbital

plane must be a few degrees greater than the latitude of the desired landing site

if an efficient recovery operation is to be possible during the entire explora-

tion period. Under this condition it is clearly seen to be impossible to land

at the midlatitudes (30o to 60 ° ) on the western limb of the moon, for to be able

to do so requires selenocentric orbital inclinations between approximately 30 °

to 60 ° and orbital nodal positions in the first and third quadrants. These lat-

ter requirements are incompatible with the fact that the limited entry-point

area is in the second quadrant which demands that, for such high inclination

selenocentric orbits, the nodal position must be in the second and fourth

quadrants. A more quantitative description of the possible landing areas can be

determined by using the data of figure 6 once the transfer-trajectory character-

istics and the lunar-landing procedures have been specified.

For the normal impact case the calculation of the required nodal position

for the transfer trajectory becomes a simple matter. Dividing the first two of

equations (8) gives

tan _o = (_)I_s)RVm (ii)

Over most of the injection-veloclty range, V s is approximately equal to or

greater than Vm (3,361 fps) and hence

17



tan _ _ _ = 0.1498

Therefore, the nodal line for the earth-to-moon transfer trajectory must fall in

the first and third quadrants and be within l0 ° of the earth-moon llne at the

time the vehicle enters the sphere of influence. Comparing the results of equa-

tion (ll) with the more exact results from equations (4) and (5) showed good

agreement except when the inclination of the transfer-trajectory plane became

within a few degrees of 0° or 180 °.

Another characteristic of the solution can be obtained from the second

equation of (9) which can be written as

/2_ero IVy12 cos27o

sin _ = _/ -_'P__]O.-

V R2Vm2 + D2Vs2

Neglecting R 2 in comparison with D2

equation can be closely approximated by

sin io (12)

2
and approximating _e/D by Vm the

_2_oIVmlIV 1

sin _ _ _--_-\_s/\T/o cos 70 sin i0

In reference to figure 6, Vs is more strongly dependent on

(13)

(V_) ° than on io,

hence this relationship shows that for a transfer trajectory with a given energy

and injection angle the sine of the latitude of the normal impact entry point is

proportional to the sine of the transfer-trajectory inclination. But as shown

previously, the minimum-inclination lunar orbit which can be established from a

given transfer trajectory has an inclination equal to the latitude of the normal-

impact entry point. Thus the preceding equation gives an approximate relationship

between the minimum-inclination lunar orbit and the transfer-trajectory charac-

teristics. Hence, if it is desirable to establish a lunar satellite in the

earth-moon plane, imi n would represent the magnitude of the least orbital plane

change that would be required. As an example, consider a transfer trajectory

with an energy consistent with that for the close lunar approach circumlunar mis-

sion; that is, (V_)o _ 0"9937" Taking an average value of Vs from figure 6

of about 4,000 fps and substituting into equation (13) gives

(sin i)min _ 0.16 cos 7o sin io

From a propulsion standpoint the most unfavorable conditions for getting into

the earth-moon plane are io = 90o and 7o = 0 which would result in a required

plane change of at least 9° . The most favorable conditions are of course io = 0

or the unrealistic condition 7 = 90o.
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Once the normal-impact entry point is determined, the geometrical properties

of all possible lunar orbits are given by equation (7),

tani =
tan _n

sin(_ + _n)

The accuracy of this relation when Gn and In are taken from figure 6 is

indicated in figure 4, for the values of _c and Dc used there are actually

the corresponding values of _n and Nn" Notice that equation (7) does not

depend explicitly on the periselenian distance of the approach hyperbola; how-

ever, the accuracy of equation (7) does depend on this parameter, for if Rp is

large compared with the lunar radius_ _ will not be a small angle and the

approximations required in deriving the equation will not be valid. Numerical

comparisons with the more exact results from equations (4) and (5) for the median-

energy transfer trajectory, (V_) = 0.995, indicate that for a given _, equa-
o

tion (7) will predict the resulting inclination within 3° for periselenian alti-

tudes up to 500 miles. For values of _ where i is not changing rapidly with

and for the same range of Rp, equation (7) predicts i to within 0.2 ° .

Before figure 6 can be utilized to determine _n and _n in equation (7),

the injection conditions must be known. The injection-velocity ratio and flight-

path angle are usually determined from launch vehicle considerations and are

generally known within small tolerances. The inclination of the transfer-

trajectory plane to the earth-moon plane is somewhat more arbitrary. Refer-

ence 6 presents a method for calculating the transfer-trajectory inclination as

a function of the launch azimuth at Cape Canaveral and the coasting arc in the

terrestial orbit.

CONCLUDING REMARKS

An analysis has been made of the geometrical characteristics of lunar orbits

which can be established from typical earth-moon transfer trajectories. A

patched-conic approximation was utilized and proved convenient for analyzing the

general qualitative aspects of the problem.

The results of the study indicate that lunar orbits with a wide variety of

geometrical characteristics can be established from essentially the same transfer

trajectory; however, there is a minimum-lncllnation lunar orbit which can be

established from any given transfer trajectory. An approximate relation shows

that the sine of the minimum inclination is proportional to the product of the

sine of the transfer-trajectory inclination to the earth-moon plane and the

cosine of the injection flight-path angle of the transfer trajectory. For

median-energy transfer trajectories, the most unfavorable situation results in

a minimum inclination of about 9°.
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In addition, it was shown that to a first approximation all the orbital

planes have a common line of intersection. This results in a relation between

the lunar orbital inclination and nodal position; hence, only one of these two

parameters can be chosen arbitrarily. For the range of transfer-trajectory

energies considered here, the locus of the common points of intersection of the

selenocentric orbital planes represents a small area on the sphere of influence.

This result can lead to the exclusion of the mid_latitudes of the moon's western

limb as possible landing sites if the lunar orbit rendezvous technique is
utilized.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., February i, 1963.
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