UKPUBLISHED PRELIMNAYY DATA

$250 p$

COMET INTERCEPT STUDY

NASw-414

$163102 \% 9$ is ite

OTS PRICE

$$
\begin{aligned}
& \text { a subsidiary of } \quad \text { i homposon Ramo wooldriogelac. } \\
& \text { ONESPACEPARK } \operatorname{CNEDONDOBEACH,~CALIFORNIA~}
\end{aligned}
$$

COMET INTERCEPT STUDY

FINAL REPORT

NASw-414

8668-6002-RU-000

 ONESPACEPARK - REDONDO BEACH, CALAFORNIA
SECTION Page
I INTRODUCTION 1-1
II THE COMETS AND THEIR ORBITS 2-1
III PHYSICS OF COMETS AND COMET INTERCEPT EXPERIMENTS 3-1
A. GENERAL PHYSICAL PROCESSES IN COMETS 3-1
B. COMET INTERCEPT EXPERIMENTS 3-7

1. Comet Structure Experiments 3-7
2. Plasma Interaction Experiments 3-10
3. Chemical Composition Experiments 3-12
4. Summary of Proposed Payload Experiments 3-14
5. Possible Future Experiments 3-14
6. The Comet As Its Own Experimental Source 3-16
7. Some Scientific Constraints on Mission Requirements 3-17
IV REQUIREMENTS FOR A MISSION TO A COMET 4-1
A. GENERAL COMET MISSION REQUIREMENTS. 4-1
8. Overall Characteristics of Trajectories from the Earth to the Comet 4-1
9. Guidance 4-17
10. Spacecraft and Subsystem Requirements 4-25
11. Booster Capabilities 4-26
12. Launch Schedule 4-27
13. Reliability 4-30
B. MISSION REQUIREMENTS FOR SPECIFIC COMETS 4-31
V A POSSIBLE COMET MISSION 5-1
A. MISSION PROFILE 5-7
B. SPACECRAFT 5-11
14. Structure 5-11
15. Orientation Control 5-14
16. Thermal Control 5-15
17. Data Subsystem 5-17
18. Communication Subsystem 5-19
19. Electrical Power Subsystem 5-24
20. Midcourse and Terminal Correction Engine. 5-29
21. Spacecraft Weights and Mass Properties 5-29
22. Interaction With Space Environment. 5-31

ILLUSTRATIONS

Figure Page
2-1 Miss Sensitivities Near Perihelion for Encke 2-4
Comet Orbits and Observed Arcs for:
Encke 2-6
Grigg-Skejellerup 2-7
Honda-Mrkos-Pajdusakova 2-8
Temple (2) 2-9
Tuttle-Giàcobini-Kresak 2-10
Pons-Winnecke 2-11
Kopff 2-12
Giacobini-Zinner 2-13
Forbes 2-14
Perrine-Mrkos 2-15
Wolf-Harrington 2-16
Schwassmann-Wachmann (2) 2-17
Daniel 2-18
Wirtanen 2-19
D'Arrest 2-20
Arend-Rigaux 2-21
Reinmuth (2) 2-22
Brooks (2) 2-23
Harrington (2) 2-24
Finlay 2-25
Borrelly 2-26
Faye 2-27
Reinmuth (1) 2-28
Arend 2-29
Schaumasse 2-30
Comas-Sola 2-31
Väisälä (l) 2-32
Neujmin (3) 2-33
Gale 2-34
Tuttle 2-35
Neujmin (1) 2-36
4-1 Minimum Energy for Launch Date to Encke, 1964 4-3
4-2 Contours of Velocity for Flight Time and Launch Date, Encke, 1964 4-3
4-3 Typical Trajectories to Comet Encke on a Single Launch Day 4-5
4-4 Closing Velocity Between Spacecraft and Comet for Flight Time and Launch Date, Encke, 1964 4-6
4-5 Declination of Velocity Vector on a Given Launch Date as a Function of Flight Time 4-9
4-6 Contours of Azimuth and In-Plane Angle for Declination of $\mathrm{V}_{\text {infinity }}$ Vector and Launch Window. 4-9
4-7 Miss Distance as a Function of Flight Time and Launch Date, Encke, 1964 4-11

ILLUSTRATIONS (Continued)

Figure Page
4-8 Heliocentric Velocity of Spacecraft as a Function of Flight Time and Launch Date, Encke, 1964 4-13
4-9 Eccentricity of Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964 4-14
4-10 Heliocentric Launch Angle, β, of the Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964 4-15
4-11 Sun Frame Inclination of the Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964 4-16
4-12 Contours of Constant Flight Time, Encke, 1964 4-18
4-13 Contours of Heliocentric In-Plane Angle, θ, Encke, 1964 4-18
4-14 Miss Sensitivities in X Direction (Equatorial) as a Function of Day of Correction 4-22
4-15 Miss Sensitivities in Y Direction (Equatorial) as a Function of Day of Correction 4-22
4-16 Miss Sensitivities in Z Direction (Equatorial) as a Function of Day of Correction 4-23
4-17 Midcourse Velocity Requirement as a Function of Time for Correcting Injection Errors Plus Comet Ephemeris Errors 4-23
4-18 Error Ellipses for a March 1964 Launch to Encke 4-24
4-19 Typical Launch Site Schedule 4-29
Path of Comet, Miss Distance, Closing Velocity, and Injection Velocity for:
Encke 4-32
Grigg-Skjellerup 4-34
Honda-Mrkos-Pajdusakova 4-34
Tempel (..... 4-36
Tuttle-Giacobini-Kresak 4-37
Pons-Winnecke 4-38
Kopff 4-39
Giacobini-Zinner 4-40
Forbes 4-41
Perrine-Mrkos 4-42
Wolf-Harrington 4-43
Schwassmann-Wachmann (2) 4-44
Daniel 4-45
Wirtanen 4-46
D'Arrest 4-47
Arend-Rigaux 4-48
Figure Page
Reinmuth (2) 4-49
Brooks (2) 4-50
Finlay 4-51
Faye 4-52
Arend 4-53
Schaumasse 4-54
Tuttle 4-55
5-1 Reorientation Maneuvers for Mission to Encke, 1964 5-2
5-2 Payload Performance of Atlas/Agena/Solid Propellant Third Stage Vehicle 5-3
5-3 Drawing of Proposed Comet Probe 5-5
5-4a Earth, Comet, and Transfer Orbits in the X-Y Plane of the Ecliptic 5-9
5-4b Earth, Comet, and Transfer Orbits in the X-Z Plane of the Ecliptic 5-9
5-4c Earth, Comet, and Transfer Orbits in the Y-Z Plane of the Ecliptic 5-10
5-5 Three-Dimensional Composite of Earth, Comet, and Transfer Orbits 5-10
5-6 Data Subsystem 5-18
5-7 Communication System Pictorind Diagram 5-20
5-8 Ten-Element Franklin Array 5-21
5-9 Spacecraft Command Receiver 5-22
5-10 Transmitter Block Diagram 5-23
5-11 Command Decoder Block Diagram 5-24
5-12 Electrical Subsystem Block Diagram 5-25
5-13 Solar Array Power Capability Versus Array Voltage 5-27
TABLES
2-1 Geometrical Elements and Periods of 31 Comets 2-2
3-1 Weights and Power of Experiments 3-14
5-1 Power Loads 5-26
5-2 Solar Array Performance Factors 5-28
5-3 Spacecraft Weights and Mass Properties 5-29

1. INTRODUCTION

STL has been studying, during the past year, the problems of carrying out a comet intercept mission. During the course of this study, the properties of 31 short-term comets have been examined to determine the feasibility of a mission to any of them during the next 15 years. In the process of selecting the se comets, injection energies for each of these comets at a suitable launch period were determined. In addition, the distance of the earth at intercept, the transit and flight times, and the guidance requirements were evaluated. Also, to determine the effectiveness of such a mission, possible scientific instruments which could be used to measure the various characteristics of the comets have been studied. Finally, to determine the present feasibility of such a mission, the payload capability of available boosters was examined, and a spacecraft configuration with appropriate subsystems was also studied.

The origin of the name "comets," given to bright and extended objects occasionally observed in the sky, must be traced to the earliest historians who recorded their appearances. Being wholly unlike other astronomical bodies because of their apparent angular motion, their rapid changes in shape and brightness and the apparent irregularity of their apparitions, comets always were an attractive subject for speculation. Their study from a modern scientific point of view started when Halley explained the motion of the comet carrying his name on the basis of Newtonian mechanics. The subsequent development of cometary dynamics established that all comets are members of the solar system, although some of them may have elliptical orbits with major semiaxes of $10^{5} \mathrm{AU}$, with inclinations and directions of perihelia nearly at random. The extent of the solar system appears, thus, to be far larger than the domain occupied by the planets would indicate, and the only sources of information about such remote vastness of the solar "sphere of action" are the comets. Not all comets have nearly parabolic orbits, however. When a highly elliptical comet approaches the inner regions of the solar system along a random orbit, there is a small but finite probability that its motion will be strongly perturbed by Jupiter, becoming "captured" into an orbit with a period of a few or a few tens of years. Such is believed to be the origin of about 100 short-period comets known at present, which in general are fainter than the sporadic, nearly paraboliclones...

The light in which all comets are observed derives from the sun, either by scattering, or by induced fluorescence. In a typical comet the scattered radiation arises mainly in the nucleus, a bright source of small angular dimension which is believed to be an aggregate of solid matter with an effective cross section for scattering around $100 \mathrm{~km}^{2}$. The coma, a more or less tenuous envelope of the nucleus extending $10^{4}-10^{5} \mathrm{~km}$ around it, also contains solid particles inmersed in a gas characterized by resonant emissions of $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{NH}_{2}, \mathrm{CN}$, and other molecules. The outer parts of the coma blend in the antisolar direction with the tail, an elongated feature with filamentary structure characterized by the emission of CO^{+}and N_{2}^{+} molecules together with varying amounts of dust particles. The dimensions of the tails vary greatly from object to object. Nearly parabolic objects have been observed with tails more than one astronomical unit in length. At the other extreme, Schwassmann-Wachmann I, a comet of the Jupiter family with small eccentricity, at certain epochs has the appearance of an asteroid, without detectable tail or coma.

An understanding of the complex physical processes taking place in a comet as result of the interaction of cometary matter with the solar corpuscular and electromagnetic radiation, and with the interplanetary magnetic field, is far from being complete. It would be more proper to say that just a beginning has been made in this direction. It is for this reason that the question of inquiring into the practical possibility of probing a comet, in order to make on-the-spot measurements, is of actual interest.

The general conclusion of this study is that a mission to a comet is completely feasible and could be carried out in the very near future. A booster consisting of the Atlas-Agena with a solid propellant third stage could inject a satisfactory spacecraft to intercept any one of a number of comets. A simple, spin-stabilized spacecraft, with a technique which can change the direction of the spin vector of the spacecraft, would permit the spacecraft to have a constant attitude with respect to the sun, allowing excellent solar-cell power-supply characteristics and excellent thermal control characteristics. More importantly, it would allow the use of a fan-beam antenna which would have a $13-\mathrm{db}$ gain over an omnidirectional antenna. This system can assure a very satisfactory information rate from the scientific experiments during intercept. In addition, such a spacecraft would be a useful interplanetary explorer before and after intercept.

The single important problem remaining appears to be the accurate determination of the orbit of the comet. Although a great deal of work has been carried out to determine comet orbits, the orbit accuracy of even the best-known comets, such as Encke, is insufficient to assure a suitable intercept. Our evaluation of the types of scientific instruments to be carried indicates that the spacecraft should pass at a distance from the nucleus which is about 40 percent of the coma diameter. And as a rule of thumb, we have assumed that the comet diameter is $100,000 \mathrm{~km}$ and thus the spacecraft should pass within $10,000 \mathrm{~km}$ of the nucleus. At present, the position and velocity of a comet are not known well enough to assure such a small miss. However, STL performed a comet tracking analysis and determined that if the position of the comet were measured for 8 months prior to intercept, its position and velocity would be known to $10,000 \mathrm{~km}, 1 \sigma$. This analysis assumed 1 measurement per week to assure a different sky background and that each observation was accurate to 2 seconds of arc. Our experience indicates that even a great many more measurements will not substantially increase the accuracy of the orbit determination. Therefore, it appears that in order to assure a high probability of intercept at the right distance from the nucleus, the accuracy of the angular positions of the chosen comet should be improved at least by a factor of 3 . The fundamental limitation in the reliability of cometary positions at present arises from the uncertainties in the reference stars to which comet positions are generally referred (Astrographic Catalogue). However, on the basis of modern photographic material as currently used in the revision of the AG Catalogues, it would not be an unduly extensive or costly task to relate the position of a number of stars along the comet's path to the FK_{2} or other fundamental system. The possibility of carrying out such a program was demonstrated in the much more extensive 1930-Eros campaign that lead to the determination of the solar paradax.. Therefore, it appears that a mission to specific comets is feasible and sensible within a few years.

This final report is divided into four basic sections: Section II sets the background for the rest of the report, describing the comets and their orbits. Section III describes the physics of comets and the types of experiments which would be appropriate for a comet intercept mission. Section IV describes both the general requirements for an intercept mission, i.e., the properties, the injection energies required, the transmission distance at intercept, the closing
velocity of the comet and the spacecraft, and typical kinds of misses to be expected for the comets. It also includes a discussion of the accuracy required, the general spacecraft characteristics, the booster vehicle capabilities, launch logistics, and reliability. In addition, Section IV also includes a separate page of figures giving the intercept characteristics for each of the comets studied in detail. Section V contains a brief analysis of a specific intercept mission to the comet Encke, the type of spacecraft and circumstances, and a specific intercept trajectory.

II. THE COMETS AND THEIR ORBITS

The first step in our comet study was to examine all short-term comets, with periods less than 20 years, that make an appearance between 1963 and 1977. Thirty-one comets fall within this category; the elements, periods, and future apparition dates of the se comets are given in Table 2-1. All of these comets rctate counter-clockwise, and all, except Borrelly, Tuttle, and Giacobini-Zinner have inclinations less than 22 degrees. All, except Neujmin (1), Tempel-Tuttle, and Westphal, have periods less than 15 years and most have periods of less than 9 years. The source of the data for this table is J. G. Porter's Catalogue of Cometary Orbits, 1960, and Memoirs of the British Astronomical Association, Vol. 39, No. 3, June 1961.

To give the trajectory specialist a feeling for the properties of these comets, the orbit of each comet has been drawn showing all of the major orbital elements. The vernal equinox was fixed in each drawing to provide a uniform orientation with respect to the solar system. A second drawing is also presented showing the apparent motion of each comet for ± 100 days from perihelion as seen from the earth. The position of the earth on the day of a few perihelion passages is shown so that the conditions for observation of the comet can be visualized. Subsequent earth-comet relationships are indicated by the perihelion position of the earth at that time. Since the earth is fixed, the comet appears to move in a clockwise direction rather than counter-clockwise as it would appear inertially. Since the earth moves about the sun approximately 1 degree per day, an error in time of perihelion passage of a day can be compensated for by simply moving the position of the earth through an appropriate angle. In this figure, the comet trajectory is projected onto the plane of the ecliptic rather than rctated onto the ecliptic, and hence, the effect of the out-of-plane component is not shown. These two figures can allow us to get a physical understanding of the path cf the comet about the sun with respect to the earth, and are useful in understanding the intercept trajectory problems discussed in Section IV.

A third figure showing an cbserved arc of recent passages of the comets is also given. This figure, coupled with the apparent path figure, will allow us to understand the sighting problems which are very important in determining the comet orbit because, as discussed in Section IV, the accuracy with which we know the orbit of any given comet before its reappearance is

Table 2-1. Geometrical Elements an Periods of 31 Comets														
	SEMI-MAJOR AxIs	PERIHELION DISTANCE q	APHELION DISTANCE	ECCENtricity	ARGUMENT OF PERRHELION ω	LONGITUDE OF ASCEND- ING NODE Ω	INClination (Degrees FROM PLAP E OF ECLIPTIC i	$\left\|\begin{array}{c} \text { POLAR } \\ \text { DISTANCE } \\ \text { RROATHE } \\ \text { FRLYTIAT } \\ \text { PERIHELION } \end{array}\right\|$	HELIOCENTRIC DISTANCE TO THE INNERMOST NODE	$\begin{gathered} \text { PERID OF } \\ \begin{array}{c} \text { IRI MOST } \\ \text { THECNNT } \\ \text { ORBIT } \end{array} \\ p \end{gathered}$	NOMINAL PERIHELIA OF THE NEXT SUCCEEDING PASSAGES THROUGH 1977			
	(AU)	(AU)	(AU)		$\begin{aligned} & \text { (degrees from } \\ & \text { ascending node } \end{aligned}$	$\begin{gathered} \text { vermal } \\ \text { equinox) } \end{gathered}$	plane of	($\times 10^{6} \mathrm{NMII}$	(AU)	YEARS	T_{1}	T_{2}	T_{3}	T_{4}
ENCKE	2.21	0.339	4.09	0.847	185.2	334.7	12.4	0.56469	0.339	3.30	1964 MAY 26	1967 SEP 12	1970 DEC 31	1974 APR 19
GRIGE-SK IELILEMY	2.87	0.855	4.88	0.704	356.3	215.4	17.6	1.21003	0.850	4.90	1961 DEC 31	1966 NOV 24	1971 OCT 19	1976 SEP 13
HONDA-MRKOS-PAJDUSAKOVA	3.01	0.556	5.46	0.815	184.1	233.1	13.2	0.72603	0.557	5.21		1964 JUL 9	1969 SEP 24	1974 DEC 10
TEMPEL (2)	3.02	1.369	4.68	0.548	191.0	119.3	12.5	4.51752	1.376	5.27	1962 MAY 15*	1967 AUG 18	1972 NOV 22	
TUTTLE-GIACOBINI-KRESAK	3.11	1.117	5.10	0.641	37.9	165.6	13.8	13.22988	1.216	5.48		1962 APR 23*	1967 OCT 19	1973 APR 13
PONS-WINNECKE	3.35	1.161	5.53	0.653	170.2	94.4	21.7	5.56623	1.168	6.12		1964 FEB 20	1970 JUL 9	1976 OCT 25.
KOPFF	3.42	1.516	5.32	0.556	161.7	121.0	4.7	3.22680	1.546	6.32	1964 MAY 15	1970 SEP 7	1977 DEC 30	
GIACOBINI-ZINNER	3.45	0.936	5.97	0.729	172.8	196.0	30.9	5.24355	0.939	6.42	1966 MAR 27	1972 AUG 26		
FORBES	3.45	1.545	5.36	0.553	259.7	25.4	4.6	9.84174	2.181	6.42		1961 JUL 24	1967 DEC 21	1974 MAY 23
PERRINE-MRKOS	3.47	1,154	5.79	0.667	167.8	242.6	15.9	5.64690	1.167	6.47	1962 MAR 17*	1968 SEP 2	1975 feB 19	
WOLF-HARRINGTON	3.49	1.604	5.37	0.540	187.0	254.2	18.5	5.00154	1.608	6.51	1965 FEB 13	1971 AUG 19		
SCHWASSMANN-WACHMANN (2)	3.49	2.157	4.83	0.383	357.7	126.0	3.7	0.48402	2.156	6.53	1968 MAR 18	1974 SEP 29		
daniel	3.54	1.465	5.62	0.586	7.3	69.7	19.7	5.08221	1.471	6.66	$\begin{gathered} \text { MISSED IN } \\ 1957 \\ \hline \end{gathered}$	1963 DEC' 16	1970 AUG 18	1977 APR 17
WIrtanen	3.54	1.618	5.47	0.543	343.5	86.5	13.4	8.55102	1.643	6.67	1967 DEC 15	1974 AUG 16		
D'ARRESt	3.55	1.378	5.73	0.612	174.4	143.6	18.1	3.22680	1.381	6.70	1967 JUN 17	1963 OCT 30	1970 JUL 11	1977 MAR 23
arend-RIGAUX	3.56	1.385	5.73	0.611	326.4	124.6	17.2	18.15075	1.478	6.71	1964 MAY 26	1971 feb 9	1977 OCT 27	
REINMUTH (2)	3.56	1.933	5.18	0.457	45.5	296.2	7.0	13.55256	2.131	6.71	1967 AUG 11	1974 APR 27		
BROOKS (2)	3.56	1.763	5.36	0.505	197.1	176.9	5.6	4.03350	1.789	6.72	1967 MAR 8	1973 NOV 26		
HARRINGTON (2)	3.59	1.582	5.60	0.559	232.8	119.2	8.7	15.32730	1.845	6.80	1967 APR 18	1974 FEB 4		
FINLAY	3.62	1.077	6.17	0.703	321.6	42.1	3.6	3.22680	1.182	6.90	1967 JUL 25	1974 JUN 17		
borrelly	3.67	1.452	5.88	0.604	350.8	76.2	31.1	10.32576	1.459	7.02	1967 JUN 20	1974 JUN 28		
faye	3.80	1.652	5.95	0.565	200.6	206.3	10.6	8.55102	1.692	' 7.41	1962 JUL 31*	1969 DEC 29	1977 MAY 28	
Reinmuth (1)	3.88	2.026	5.74	0.478	12.9	123.6	8.4	5.40489	2.044	7.65	1965 NOV 17	1973 JUL 14		
Arend	3.93	1.832	6.03	0.534	44.5	337.6	21.7	37.91490	2.035	7.79	1967 JUN 17	1975 APR 2		
SCHAUMASSE	4.06	1.196	6.92	0.705	52.0	86.2	12.0	15.73065	1.423	8.18	1968 JUN 22	1976 AUG 27		
COMAS-SOLA	4.19	1.777	6.61	0.576	40.0	62.8	13.4	21.37755	1.944	8.59	1969 NOV 4			
VÄISÄLÄ (1)	4.78	1.741	7.82	0.636	44.4	135.4	11.3	19.28013	1.957	10.46	1970 OCt 25			
NEUJMIN (3)	4.93	2.032	0.588	7.83	144.8	156.2	3.8	6.37293	2.179	10.95	1962 MAY $8+$			
gALE	4.94	1.183	8.70	0.761	209.1	67.3	11.7	9.43839	1.249	10.99				
tuttle	5.70	1.022	10.38	0.821	207.0	269.8	54.7	29.84790	1.073	13.61	1967 JAN 26			
NeUJMİ (1)	6.86	1.547	12.17	0.74	346.7	347.2	15.0	7.58298	1.568	17.95	1966 DEC 5			

not sufficiently high to warrant launching. Therefore, we will want to sight the comet and recompute the precise trajectory before launching.

A precise knowledge of the position and velocity of the comet at any time is necessary not only for scheduling the booster vehicle and determining launch windows, but as an essential requirement for midcourse fuel capabilities and thus payload sizing, to evaluate problems, to establish visibility constraints, and to take care of all requirements associated with the launch iogistics. The effects of errors in the six elements are shown in Figure 2-1. As can be seen, the effect of errors are generally smallest near perihelion and indeed go to 0 for an error in inclination at perihelion, since in this case the node and perihelion are almost at the same point. However, the effect of an error in time at perihelion passage is largest at the perihelion point and can have an effect of as much as $37 \mathrm{nmi} / \mathrm{sec}$ error in prediction. Since for many comets an error in time of perihelion passage of 1 day is not unusual, this could result in a miss of about 3 million nmi. The largest source of error might be in the determination of the orbit eccentricity, which could give us an error between 1,000 and $2,000 \mathrm{nmi}$ per second of degree error. It should be emphasized that these partial derivatives do not convert directly into actual miss for a mission to a comet, since only those components which are perpendicular to the relative velocity vector of comet and spacecraft lead to actual miss. Thus, these partial derivatives provide only upper bounds to the actual miss. This is discussed in greater detail in the guidance section, IV, 2.

As we discuss later in Section IV, the accuracy to which we know an orbit of a comet is one of the key problems in establishing the feasibility of a comet mission. Presently, a considerable effort is being carried on throughout the world to determine comet orbits to greater accuracy than is now available; nevertheless an error of a day in time of perihelion passage is not uncommon. Therefore, the following recommendations are made with respect to observing comets in the event that a comet mission is planned.

First, a concerted effort should be made to improve the accuracy of the orbit determination for the comet selectedi This requires that a consider able number of observatories concentrate on the selected comet to avoid the local effects of weather and to satisfactorily schedule telescope time.

Error in Semi-Major Axis

Error in Time of Perihelion Passage

Error in Position of Nodes

Error in Eccentricity

Error in Inclination

Error in Argument of Perihelion

Figure 2-1. Miss Sensitivities Near Perihelion for Comet Encke

Secondly, such an effort should be coordinated by a central astronomical group who can establish effective and computable techniques which all of the assigned observatories can use. If such a program were carried on, even though very briefly, it is expected that the errors in the elements of the comet could be made almost negligible. Another factor which must also be considered is the baseline to be used for positioning the comet, that is, the fundamental star catalogues. Since much of present astronomy is devoted to astrophysics rather than astrometrics, the fundamental star catalogues have not been kept up-to-date for all regions of the sky. Thus, it is possible that some of the errors in the ascension and declination of a comet are due simply to errors in the fundamental catalogues, and it may be necessary to reduce the effect of these biases. With such an overall program carried on at a central location, utilizing a large computer, the effects of all perturbations can be readily calculated. For example, in the course of this study the comet Encke was integrated with two apparitions, using elements by S. G. Mackover, in a little more than four minutes and included the perturbations by the six planets Mercury to Saturn. A copy of the computation is appended to this report.

Some of the intercept problems resulting from the physical characteristics of the comet orbit and the earth-comet relationship are discussed. An important consideration is flight time which determines the spacecraft lifetime. Flight time is dependent upon the injection velocity, and both depend upon the relative location of the earth at launch time and the comet at intercept. In general, since we must launch in the direction of the earth's motions to make effective use of the earth's velocity and hence reduce our injection velocity requirements, good transit orbits occur when position of the earth is such that a launch along its trajectory will carry us out across the comet trajectory easily. For convenience, comets which go inside the earth's orbit are called "Venus-type comets" and those which go outside, "Mars-type".

ENCKE

Encke, a Venus type comet, is inclined by 12.4 degrees and is the shortest period comet known. It has been successfully observed on almost every apparition. Therefore, its elements are known the best of all the comets and this comet appears to be most appropriate for a comet mission.

GRIGG-SKJELLERUP

Orbit of the Comet
Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Grigg-Skjellerup, a Venus type comet, has the second shortest period, 4.9 years. It is inclined 17.6 degrees and is relatively eccentric, $e=0.7$. Moreover, the earth is not very well located during its next three appearances, 1966, 1971, and 1976, and high injection velocities as well as rather long flight times are required. Three of four apparitions after 1976 will make this a very appealing mission, especially since its orbit will have been very accurately observed.

$\begin{array}{ll}\text { Orbit of the Comet } & \text { Orbit of the Comet From a Fixed } \\ \text { Earth (Bi-polar Coordinates) }\end{array}$

Observed Arcs of Recent Passages

Honda-Mrkos-Pajdusakova, a Venus type comet, was discovered recently, 1948. Although missed in its last apparition in 1959, the earth will be excellently placed for intercept in its 1969 and 1974 apparitions; however, the 1964 apparition will require long flight times at reasonable velocities.

Orbit of the Comet

Orbit of the Comet From a Fixed Earth (Bimpolar Coordinates)

Observed Arcs of Recent Passages

Tempel (2), a Mars type orbit, has been observed frequently although its orbit is still not known very accurately. Its inclination, which is 12.5 degrees, is comparable to that of Encke. In general, as can be seen, it will be very easy to observe its 1967 apparition and should provide an excellent target at that time, both in terms of velocity required and flight time.

Orbit of the Comet

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Tuttle-Giacobini-Kresak, a Mars type comet, approaches very close to the earth's orbit. Although it has been frequently missed on its most recent passages, it was observed for a long period of time. The earth is in a very poor position to launch during its 1967 position but it will be in an excellent position in 1973.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Pons-Winnecke, a Mars type comet, passes very close to the earth's orbit. Although it has been frequently observed, it was missed on its last passage. The position of the earth in its 1964 apparition as well as its 1976 apparition is very poor, but is excellent in its 1970 apparition and at that time should provide an excellent target even though the comet is inclined by 21.7 degrees.

KOPFF

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Kopff, a Mars type comet, is a possible target in 1964 although perihelion distance is quite large, 1.5 AU. Moreover, since its descending node is near the orbit of Jupiter, large perturbations can be expected. Its low inclination, 4.7 degrees, simplifies intercept and substantially increases the probability of mission success. The earth is in a good position in 1964 and 1970, but rather poor in 1977.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Giacobini-Zinner, a Venus type comet, is quite elliptical and has a very high inclination, 30.9 degrees. Although it appears in both 1966 and 1972 and has frequently been observed, it does not appear to be a very good target, largely because the high inclination will make injection velocity requirements and accuracy requirements severe. The position of the earth is good in 1972, but poor in 1966.

FORBES

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Forbes, a Mars type comet, has a very low inclination. It should not suffer large perturbations from Jupiter since the nodes are almost at right angles to Jupiter's orbit. Although there have been successful observations of this comet, its orbit does not appear to be known well enough to be considered for a mission in the near future. However, the position of the earth is very good in 1974, but it is poor in 1967.

Orbit of the Comet

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Perrine-Mrkos, a Mars type comet, approaches quite close to the earth's orbit and should present a possible target in 1968. It is subject to large perturbations from Jupiter since it crosses Jupiter's orbit almost at the nodal point. Its inclination of 15.9 degrees does not make it a less feasible target. Observations of this comet during its next apparitions should be excellent. The position of the earth is poor in 1975 and flight times at reasonable velocities will be long.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Wolf-Harrington, a Mars type comet, does not come very close to the earth at perihelion passage and has a fairly high inclination of 18.5 degrees. Although observation of the comet in 1965 should be excellent, its elements are not know well enough to warrant a mission at that time and at its next appearance in 1971, observation should not be as good. Probability of a successful mission to this comet is low, especially in 197 l when the position of the earth is not good and flight times will be long.

Observed Arcs of Recent Passages

Schwassmann-Wachmann (2), a Mars type comet, has been observed frequently. However, it has a large perihelion distance, over 2 AU , and hence, it is not a desirable target since its great distance from the sun at the intercept point will considerably complicate power supply and communications problems. The position of the earth is good in 1968, but flight times at reasonable velocities will be long in 1974.

DANIEL

Observed Arcs of Recent Passages

Daniel, a Mars type comet, will be in an excellent position for observation in its December 1963 passage and its orbit could be computed accurately. However, its inclination of 19.7 degrees, as well as the position of the earth at the 1970 and 1977 appearances, makes it a poor target at those times.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Wirtanen, a Mars type comet, is a possible target in 1967; however, its orbit at the present time is not known to a high accuracy. Moreover, its distance at perihelion is a substantial 1.6 AU which will complicate solar power supply problems. However, during its next apparition in 1967, observation conditions should be excellent with good tracking prior to launch and could provide an excellent target. The position of the earth at the 1974 apparition will be poor.

D'ARREST

Observed Arcs of Recent Passages

D'Arrest, a Mars type comet, could be a good target in 1970 since observations during 1963 could be used to determine its orbit to high accuracy. However, since it is inclined by 18.1 degrees, the guidance and propulsion requirements will be magnified. The position of the earth is poor in both the 1970 and 1977 apparitions and flight times will be long for reasonable velocities.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Arend-Rigaux, a Mars type comet, has not been frequently observed and hence, would be a very marginal mission. Moreover, the comet is inclined by 17.2 degrees which complicates the guidance problem. However, the position of the earth in its 1971 apparition is excellent, both in terms of injection velocity and flight time.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Reinmuth (2), a Mars type comet, is not steeply inclined; however, it is far from the sun at perihelion which complicates temperature control and solar power supply problems. Observation of the comet during 1967 will be quite good but during 1974 will be difficult. Reasonable velocity trajectories will have extremely long flight times, especially in 1974. For these reasons, this comet was not analyzed in Section IV.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Brooks (2), a Mars type comet, has been regularly observed. However, its perihelion distance is 1.76 AU which will somewhat complicate the solar power supply problem. Moreover, the earth is in a relatively poor position in terms of velocity and lifetime requirements during 1967; thus, a sensible, reasonable mission could not be considered until 1973.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Harrington (2), a Mars type comet, has not been observed frequently. Moreover, during both of the possible launch periods in 1967 and 1974 the position of the earth is extremely poor for launching to this comet at reasonable injection velocities and flight times. For these reasons, this comet is not analyzed in Section IV.

FINLAY

Observed Arcs of Recent Passages

Finlay, a Mars type comet, makes a very close approach to the earth's orbit and has a relatively low inclination. Although observed a number of times it has frequently been missed and hence its orbit is not well known. The earth is favorably located for launching to this comet during the next two apparitions in 1967 and 1974.

Observed Arcs of Recent Passages

Borrelly, a Mars type comet, has frequently been missed during its approach near earth. It will occasionally be subject to large perturbations by the planet Jupiter since the ascending node is essentially on Jupiter's orbit. During its next two appearances in 1967 and 1974, the earth is very poorly located in terms of reasonable flight times and injection velocities. For these reasons this comet was not analyzed in Section IV.

FAYE

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Faye, a Mars type comet, has been very frequently observed and has a reasonable inclination. The position of the earth at its next apparition in 1969 is very satisfactory in terms of injection velocity and reasonable flight times. It has a reasonable inclination of 10.6 degrees.

REINMUTH (1)

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Reinmuth (1), a Mars type comet, has a perihelion distance of 2 AU which will complicate power supply problems and implies long flight times at reasonable velocities. Also, since its descending node is almost at Jupiter's orbit, it will occasionally be subject to large perturbations. In addition, the position of the earth on its 1965 apparition is very poor in terms of reasonable injection velocities and flight times. In 1973 its position is somewhat better; nevertheless, all flight times at reasonable velocities should exceed 6 months. For these reasons this comet is not analyzed in Section IV.

Observed Arcs of Recent Passages

Arend, a Mars type comet, has a perihelion distance of 1.8 AU and an inclination of 21.7 degrees. Although both of these factors complicate guidance as well as the power supply problems, the long trip time missions of the order of 250 days can be carried out in either 1967 or 1975.

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Schaumasse has been observed a number of times and comes quite close to the earth's orbit. However, since its nodes are far from perihelion, it will be far out of the plane of the ecliptic at that time and this will complicate the intercept trajectory. Moreover, in both its 1968 and 1976 apparitions the position of the earth is not suitable for intercept in terms of injection propulsion requirements and communications at intercept.

Orbit of the Comet

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Observed Arcs of Recent Passages

Comas-Sola, a Mars type comet, has been observed frequently for long durations and is a possible target during 1969. However, since its descending node is near the orbit of Jupiter, substantial perturbations must be anticipated. Moreover, since its perihelion distance is quite large, 1.8 AU , thermal control and solar power supply problems are increased. For this reason, this comet is not analyzed in Section IV.

$V A ̈ l S \ddot{A} L \ddot{A}(1)$

Observed Arcs of Recent Passages

Väisälä (1), a Mars type comet, has a long period, 11 years. Although it has been observed in all of its recent passages, its orbit has not been well determined and the opportunities for intercept are very poor in its next apparition in 1970. Therefore, this comet has not been analyzed in Section IV.

Observed Arcs of Recent Passages

Neujmin (3), a Mars type comet, has not been observed frequently. Moreover, its perihelion distance is 2 AU . Therefore, although the earth is in a reasonable position during its next apparition in 1973, it was not analyzed in Section IV.

Observed Arcs of Recent Passages

Gale, a Mars type comet, approaches quite close to the earth's orbit. Although it is in a very appropriate position during its next passage in 1971, it was not analyzed in Section IV.

TUTTLE

Orbit of the Comet From a Fixed Earth (Bi-polar Coordinates)

Orbit of the Comet

Observed Arcs of Recent Passages

Tuttle, a Venus type comet, is very eccentric and has a period of more than 13 years. It was not observed in its last apparition in 1952. It is also inclined by 54.7 degrees and hence, will present a difficult guidance problem. However, the position of the earth on its next apparition in 1967 will be very good both in terms of observation and in terms of reasonable injection velocities and flight times.

NEUJMIN (1)

Observed Arcs of Recent Passages

Neujmin (1), a Mars type comet, has a perihelion distance of 1.5 AU and an inclination of 15 degrees. It has also been successfully observed on its recent passages. However, the earth is extremely unfavorably located in its apparition in 1966 and therefore, this comet was not analyzed in Section IV.

III. PHYSICS OF COMETS AND COMET INT ERCEPT EXPERIMENTS

A comet has been defined as a composite body, surrounded by a gaseous atmosphere, and moving around the sun in an elliptical orbit, crossing the plane of the ecliptic at any angle. Of particular interest in the study of comets have been general astronomical observations (occurrence and orbits), the structure and composition, the physical and chemical properties and their behavior in the particular environment of the comet, and the inferences from these observations as to the creation, life, and general cosmological significance of comets. This section first summarizes some of the available knowledge of comets and their behavior and also points out areas where significant questions still exist, and will then attempt to evaluate the information to be derived from a comet intercept flight. It should be pointed out at the onset that comets are individual apparitions, and that many of the statements applied to the general group are thus only qualitative in nature. It should also be pointed out that studies of comets are difficult and that, until recently, visual observation rather than photometric determinations of brightness and spectral emission have provided the bulk of data with respect to comets.

A. GENERAL PHYSICAL PROCESSES IN COMETS

Comets, in general, are postulated to consist of a rather small nucleus, composed of solid material, a gaseous envelope called the coma, and a less dense gaseous region called the tail. The nucleus is believed to be only several kilometers in diameter, the coma perhaps $10^{4}-10^{5}$ kilometers in diameter and the tail region about 10^{6} kilometers long and 10^{4} kilometers wide.

The presently accepted model of the nucleus is the "icy conglomerate" model proposed by Whipple in which the nucleus consists of a mass of frozen gases containing interspersed solid micrometeorite particles. This model offers significant advantages over the previously accepted "sand bank" model in which the nucleus was postulated to consist of small solid particles; the gas supply was occluded and absorbed gases. The "icy conglomerate" model suggests a much larger gas reservoir and in addition can explain the survival of comets at small heliocentric distances where the solar thermal energy
input and the tidal force is large. An upper limit to the cometary mass is set by the fact that comets do not appear to exert any observable gravitational effects on close passage to planets or their satellites; lower limits to the cometary mass are set by cometary survival at small heliocentric distances although the disruptive effects depend largely upon the assumed physical structure. In general, the cometary mass is assumed to be $10^{17}-10^{20} \mathrm{gms}$.

Evidence for the presence of solid material is derived from two sources. Firstly, meteor streams are known to be associated with comets. Secondly, some of the light observed from the coma and certain tails has the spectrum and polarization characteristic of reflected sunlight. Emission spectra of some meteors on entry into the earth's atmosphere are characteristic of iron.

Thus, the present idea is that the frozen gaseous surface is sublimed by the solar thermal radiation as the comet approaches the sun. Interspersed with the gases are micrometeorite fragments. In the newer comets, where'new' is meant to imply that the comet has not completed many solar orbits, the rate of solid particle emission is enhanced with respect to the gases. This presumably implies that in the older comets the solid material occurs in larger fragments; it is not clear how this agglomeration occurs in the presumably frozen nucleus.

As the comet approaches the sun, the sublimation of material from the surface of the nucleus increases. The brightness of the comet increases rapidly, which is accounted for by the increase of solar radiation intensity and the increase in density of the radiating gases and reflecting particles. The emission from the coma consists of the molecular spectra of a wide variety of neutral free radicals including $\mathrm{CN}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{NH}, \mathrm{NH}, \mathrm{Na}$, and the ionized stable molecules $\mathrm{CO}^{+}, \mathrm{N}_{2}{ }^{+}$and $\mathrm{CO}_{2}{ }^{+}$. The dimensions of the coma appear to be different depending upon the: spectral region observed which indicates a variable distribution of molecular species. The densities in the coma are believed to range from $10^{10} / \mathrm{cc}$ near the nucleus to perhaps 10^{3} at the periphery. Although the surface temperature of the icy nucleus is probably $10^{\circ}-100^{\circ} \mathrm{K}$, it is reasonable that the sublimed molecules have a temperature of $100^{\circ}-500^{\circ} \mathrm{K}$. If the density is sufficiently low so that
collisions do not occur, then the expansion velocity is about l kilometer/sec. The density, estimated from the emission intensity, and the expansion velocity give the rate of gas loss from the nucleus; the "icy conglomerate" model was proposed to account for these loss rates.

It is probable that the gaseous molecular emission is the result of photo-excitation by solar radiation rather than collisional processes because of the low densities. Although only the spectra of free radicals are observed, it has been assumed that the parent molecules are the simplest stable molecules which can be dissociated to yield the observed free radicals. In the "icy conglomerate" model, it is therefore assumed that these stable molecules constitute the solid material. It is also true that solar radiation will dissociate the molecules which may then recombine to other stable molecules ($2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$). Explosive chemical reactions between these new molecules are possible and the sudden increases in cometary brightness are attributed to these sources. It is reasonable to propose, however, that the recombination of these free radicals can lead to rather complex molecules with, as yet, unknown chemical properties.

The mechanism for ionization of the molecules is unclear. It is unfortunate that those molecules which radiate well in the ionized state radiate only weakly in the neutral state and vice versa. Thus, the simultaneous observation of the density of ionized and neutral states of a particular molecule, as a function of distance from the nucleus, is not possible. However, there is evidence that no single ionization process is sufficient to account for the observed behavior of the different molecular constituents. The radiated intensity pattern in the coma for CN indicates that the neutral lifetime is in the order of $10^{5} \mathrm{sec}$, whereas the appearance of CO^{+}reasonably close to the nucleus indicates a lifetime of only $10^{3} \mathrm{sec}$ for CO. The ionization potentials for both molecules are about 14 ev ; the difference in the geometrical appearance of the ionization implies at least an active ionization mechanism in addition to charge-exchange or photo-ionization processes, perhaps chemical in nature. The observed cometary molecular spectra are similar to those observed in low temperature laboratory gases of similar composition; however, the relative intensities of the same band are different. This can be explained if it is assumed that the cometary radiation is the result of solar photo-excitation and the observed intensities are thus modified by the known intensity variations in the solar spectrum.

Two types of comet tails have been observed; although usually only one type is present in any comet, both may occur simultaneously or the tail may be completely absent. One type consists mainly of solid particles and shows a pronounced curvature which indicates the absence of any large solar repulsive force. The light from these tails is reflected sunlight; these tails are characteristic of "new" comets. The other tail type consists of ionized stable molecules identified by their characteristic emission spectrum. These tails show only little curvature indicating a solar repulsive force greater than the attractive solar gravitational force. The ions identified include $\mathrm{CO}^{+}, \mathrm{N}_{2}{ }^{+}$, and $\mathrm{CO}_{2}{ }^{+}$; the abundance of other ions has not been established. The observation of streamers and filaments with a relatively long lifetime, similar to those observed in a variety of gas discharges in magnetic fields, implies that magnetic fields are associated with cometary phenomena.

It was first believed that the observed steady-state acceleration of the tail could be attributed to the solar radiation pressure. However, calculations by Wurn indicated that the radiation $-\mathrm{CO}^{+}$cross-section $\left(\mathrm{CO}^{+}\right.$is the most abundant observed ion) is too small for radiation pressure to account f., the observed accelerations. The correlation, sometimes rather poor, between solar activity and enhanced comet brightness and more violent tail accelerations led Biermann to propose that corpuscular emission from the sun (solar wind) was the source of the observed acceleration. Biermann suggested that charge exchange between the solar plasma and the neutral gas in the coma was the dominant ionization mechanism, and that the tail acceleration resulted from momentum transfers between electrons in the solar plasma and the cometary ions. If reasonable values of the comet tail density were used ($10^{3} / \mathrm{cc}$), densities in the order of $10^{5} / \mathrm{cc}$ were required in the solar wind to yield the observed acceleration. Both direct and inferential estimates of the solar wind density indicated an upper limit of about $10^{3} / \mathrm{cc}$ for the steady state density; thus Biermann's collisional interaction was too small. However, several possible collective plasma interactions are known which would essentially greatly increase the probability for momentum transfer; these may be of either the electrostatic or hydromagnetic type and are discussed in detail by Hoyle and Harwit. ${ }^{40,41}$ The collisionless electrostatic shock which occurs as a result of unstable plasma oscillation
arising from the interaction of two plasma clouds had been postulated by Kahn and Parker and Noerdlinger as a possible source for the observed superthermal particles in the earth's radiation belts. Recent calculation by Noerdlinger ${ }^{42}$ and Ek, et al ${ }^{43}$ indicate that a high ratio of directed to thermal velocity for both electrons and ions is required for the instability to occur and that the instability proceeds first as an electron-electron interaction followed by the ion-ion interaction. Hoyle and Harwit suggest that the electron-electron instability is possible only in the initial transient interaction between the solar wind and cometary plasma; the result of the instability would be a heating of the cometary electrons so that, in steady state, the instability would not occur. This analysis is probably valid as long as no energy loss process for the cometary electrons can occur so that the electron temperature remains high. Probably collisional loss processes (inelastic collisions) are absent at the low densities. However, radiation might be expected at the plasma frequency $(\sim 1 \mathrm{mc})$; Scarf ${ }^{44}$ had advanced some arguments for the radiation only of the higher harmonics of f_{p}. The observation of low frequency electromagnetic radiation associated with comets is questionable.

Thus in the absence of electron energy loss processes, Hoyle and Harwit conclude that electrostatic instabilities cannot account for the observed tail accelerations and that the interaction must be hydromagnetic. This interaction requires the existence of a cometary magnetic field which Hoyle and Harwit postulate arises in the following manner. It is rather likely that the solar wind retains some trapped magnetic field (circulating currents) since it is presumed to be hydromagnetic in origin. As a result of charge exchange between the relatively stationary cometary neutrals and the solar protons, the solar wind magnetic field is decelerated and trapped in the comet plasma. The interaction of further solar plasma on this trapped field exerts a pressure on the cometary plasma which, with perhaps reasonable assumptions of mass and density, can account for the observed acceleration.

There are several theories for the role of comets in the cosmology of the solar system. It has generally been believed that comets cannot enter the solar system from the galaxy because of the relative absence of hyperbolic orbits; the few observed hyperbolic orbits probably arise as a result of
perturbations by Jupiter. Possible sources of comets may be the following: Condensation of portions of the solar nebulae at the time of planet formation, association with the formation of the asteroids, or trapping of material by the sun during passage through a particularly dense and active interstellar cloud. It is quite clear that the lifetime of comets in a small heliocentric orbit is small (10^{5} years) because of the high rate of material loss and solar disruptive effects. It is also reasonably clear that recondensation or accretion of new material cannot greatly increase cometary life. It is reasonable to assume therefore that a rather large number of comets exist in very large orbits beyond Pluto, where they are not subject to solar effects. These comets are randomly perturbed into observable orbits by the combined effects of the outer planets and perhaps stellar perturbations. The comets represent the principal source for the meteor streams and also perhaps for the interplanetary dust. As a consequence of the Poynting-Robertson effect, the interplanetary dust is swept into the sun, and its replenishment is necessary to maintain the observed steady state conditions.

There is perhaps only one significant piece of information which might suggest an extra-solar system origin for cometary material. The C^{12}, C^{13} ratio, as determined by the isotope shift observed in the CN molecular bands, is variable from comet to comet, and ranges from the high values characteristic of the solar system to the low values characteristic of the carbon rich stars. The implication of these observations is rather unclear at present.

Although the comet-meteor stream relationship has been well established, the relationship of comets and meteorites is not as well understood. Since meteorites are, in general, absent from veryold deposits in the earth's crust, the general conclusion has been that meteorites are of recent origin as the result of the disintegration of a planet. A relationship between meteorites and comets thus also infers a recent origin for the comets. It is possible that, as a result of a planet's disintegration, material may have been distributed into distant orbits; however, the solid material would probably be rather large in size and this conflicts to a degree with Whipple's icy conglomerate comet model and does not explain the origin of the required gas reservoirs.

B. COMET INTERCEPT EXPERIMENTS

It is pertinent to ask what information might be desirable to obtain a more complete understanding of the physical and chemical nature of comets and their interaction with their environment, and whether a suitably instrumented flight in the near vicinity of a comet could yield important information. In the following sections a number of possible experiments are discussed which could be included into a space-probe payload at the present time, i.e., with existing instruments and technology. The final sections contain a discussion of significant measurements that might be included as future comet probe experiments. It must be pointed out that, in general, a single experiment or measurement, while contributing to the general scientific knowledge of comets, will not in itself necessarily resolve any of the basic outstanding questions of cometary phenomena. These basic categories are concerned with 1) structure, 2) plasma interactions, and 3) chemical composition. Some currently possible experiments appropriate to each are discussed below.

1. Comet Structure Experiments

a. Television. Undoubtedly, photography of the nucleus from short distances would be valuable in confirming the icy conglomerate model, and in confirming present ideas of the nuclear size and mass. If we assume that the encounter between the probe and the comet occurs at 1 AU from the sun and that the nucleus of the comet is visible by reflected sunlight with a 10 percent reflectivity, then the total energy flux per unit area reflected by the nucleus is $1.4 \times 10^{5} \mathrm{ergs} / \mathrm{cm}^{2} / \mathrm{sec}$ over all wavelengths. If we further assume a miss distance of $10^{4} \mathrm{~km}$ and treat the nucleus as a sphere of radius R cm, then the energy flux entering an objective lens of diameter $D \mathrm{~cm}$ will be given by

$$
\frac{1.4 \times 10^{5} .4 \pi R^{2}}{4 \pi \times\left(10^{9}\right)^{2}} \cdot \frac{\pi D^{2}}{4}=1.1 \mathrm{R}^{2} \mathrm{D}^{2} \times 10^{-13} \mathrm{ergs} / \mathrm{sec}
$$

If the lens transmits 50 percent of the energy falling on it then the energy flux per resolution element incident on the photocathode of the television camera tube will be $5.5 \mathrm{R}^{2} \mathrm{D}^{2} \times 10^{-14} \mathrm{ergs} / \mathrm{sec}$. Of the total reflected solar
energy incident on the TV tube cathode, only a fraction is effective due to the spectral response of the photocathode. If we choose the interval from $3000 \AA$ to $6500 \AA$, this represents about 43 percent of the solar energy flux. Thus the effective flux on the TV tube is $2.36 \mathrm{R}^{2} \mathrm{D}^{2} \times 10^{-14} \mathrm{ergs} / \mathrm{sec}$.

Let us choose a telescope such as the Questar, whose physical dimensions are easily incorporated into a space-probe payload. This instrument has a focal length of 120 cm and an aperture of F/II. The diameter of the image then will be $2.4 \mathrm{R} \times 10^{-7} \mathrm{~cm}$. Let us now assume a nuclear radius of $1 \mathrm{~km}=10^{5} \mathrm{~cm}$. Then the image diameter equals $2.4 \times 10^{-2} \mathrm{~cm}$ and the image area equals

$$
\frac{\pi(2.4)^{2} \times 10^{-4}}{4}, 4.52 \times 10^{-4} \mathrm{~cm}^{2}
$$

The television system will probably require some kind of storage prior to telemetry readout. Therefore, a storage videcon pick-up tube is suggested. The best resolution that can be achieved is about 1000 lines/in. at 10^{-2} ft -candles illumination and with $1 / 30$ second integration time. This means a minimum energy density of $2.93 \times 10^{-2} \mathrm{erg} / \mathrm{cm}^{2}$ is needed. From the above image area a minimum total energy of $\left(4.52 \times 10^{-4}\right)\left(2.93 \times 10^{-2}\right)=$ 1.325×10^{-5} ergs must fall on the photocathode. This in turn will require an exposure time of $2.36 \mathrm{R}^{2} \mathrm{D}^{2} \times 10^{-14}$ seconds. The effective diameter of the lens is given by $D=\frac{f}{F}$ where f is the focal length and F is the f-number. Then $D=\frac{120}{11}=10.9 \mathrm{~cm}$. For $R=10^{5} \mathrm{~cm}$, the minimum exposure time is 4. 72×10^{-4} seconds.

Now 1000 lines/inch resolution means resolution elements of about $6.45 \times 10^{-6} \mathrm{~cm}^{2}$. Therefore, the image will cover

$$
\frac{4.52 \times 10^{-4}}{6.45 \times 10^{-6}}=70
$$

resolution elements. The area of the nucleus treated as a circular disc is $\pi R^{2}=3.14 \times 10^{10} \mathrm{~cm}^{2}$ so that we resolve elements of surface area equal to $\frac{3.14 \times 10^{10}}{70}=4.5 \times 10^{8} \mathrm{~cm}^{2}$. This corresponds to linear elements on the comet of $2.1 \times 10^{4} \mathrm{~cm}$ or 0.21 km . The only way this can be improved is to use a longer focal length lens or achieve a miss distance less than $10^{4} \mathrm{~km}$.

The above calculations have been based on an attitude-controlled, nonspinning vehicle such that the videcon tube can view the comet for at least 4.72×10^{-4} seconds with negligible lateral displacement of the image. Suppose now that the vehicle is spinning at 2 revolutions/sec and that the look direction is at right angles to the spin axis. In 4.72×10^{-4} seconds, then, the camera will sweep out $4 \pi \times 4.72 \times 10^{-4}=5.93 \times 10^{-3}$ radians. At $10^{4} \mathrm{~km}$, there are 10^{-4} radians $/ \mathrm{km}$ so in the time required for the exposure we sweep out $5.93 \times 10=59.3 \mathrm{~km}$, which of course completely smears out the image.

In general, distance swept out in $\mathrm{km}=0.493 \omega$ where ω is revolutions $/ \mathrm{min}$. The resultant resolution, in km , due to the lateral motion superimposed on the intrinsic resolution of the system, is given by $\sqrt{(.21)^{2}+(.493 \omega)^{2}}$. If we accept a final resolution of .3 km , then $\omega=.43$ revolutions $/$ minute. If it is not desirable to de-spin this much or less, then of course much detail of the nuclear surface is lost.

The telemetry problem does not appear too difficult since only about 70 resolution elements are involved with, say, 5 levels of grey.. This would be 350 bits of information per picture. This information could be placed in a buffer storage and additional pictures could then probably be taken. It may also be of interest to obtain pictures in different wavelength regions by using filters. If we take, say, four pictures at 15 -minute intervals, then the telemetry rate would be only about $1 / 3$ per second. Let us then assign $1 \mathrm{bit} / \mathrm{sec}$ for the television.

Due to the fact that at 10^{4} km the image of the nucleus only occupies a small fraction of the available television field, a sensing error of $\pm 10^{-2}$ radians from the probe-nucleus vector would still allow the image of the nucleus to fall on the television tube cathode. Some kind of optical sensing device will be necessary to locate the optical center of gravity of the comet which is presumably the location of the nucleus. After a sufficient time for tracking and scanning by the sensor, the television camera would be turned on and the picture recorded.

A ruggedized television camera with a slow scan videcon tube, such as has been developed by Hallamore Electronics, would represent a typical
system. Such a unit would weigh 7 pounds and consume about 9 watts of power.
b. Micrometeorite Experiment. Measurements of the abundance and mass of the solid particles in the coma would contribute to a knowledge of the nuclear structure and also possibly to the knowledge of meteor streams. Since the polarization and intensity of the continum portion of the cometary spectra, as observed by terrestrial telescopes, depends on the nature, size distribution, and shape of the scattering particles, any information pertaining to these parameters would greatly enhance the interpretation of the spectrum.

Many types of micrometeorite and dust particle detectors have been developed and flown in the past so that the "state-of-the-art" is well developed. If we choose a comet such as 1957c (Encke), then the dust density as estimated from the intensity of the continum is $10^{-9} / \mathrm{cm}^{3}$, at $4-9 \times 10^{4} \mathrm{~km}$. Assuming a relative velocity of $15 \mathrm{~km} / \mathrm{sec}$ between the probe and the comet, then, with a detector of area $350 \mathrm{~cm}^{2}$ we could expect about one impact every two seconds. A minimum momentum impact sensitivity of 10^{-5} dyne-sec would detect particles of mass about 7×10^{-12} grams at the above velocity. If these are spherical iron particles, this results in a minimum radius of about 0.6 micron. A micrometeorite detector such as the one being flown by Alexander on OGO has this order of sensitivity and is capable of measuring any charge which may reside on the particles as well as both the momentum and the energy of the particles. The velocity is determined by a time of flight measurement which is accurate to about 1.5 percent. The information to be read out would be velocity, momentum, charge, and total number of impacts. These could probably all be contained in one 9 -bit digital word resulting in a telemetry rate of about 5 bits/second. This type of experiment would weigh less than 10 pounds and consume less than 1 watt of power.

2. Plasma Interaction Experiments

It is doubtful whether measurements of this type in the tail can, in themselves, lead to a complete understanding of the observed accelerations. It is believed that more detailed measurements of the tail properties can,
however, distinguish between the electrostatic and hydromagnetic plasma interaction possibilities and also provide a more rigorous test of the various present theories. The significant parameters would be ion density, electron temperature, and the vector magnetic field.
a. Plasma Probe. By measuring the electron temperature, by means of, for instance, a planar ion and electron trap, a great deal could be learned about the interaction between the solar wind and the cometary plasma. In particular, this experiment should be able to resolve the question as to whether the acceleration of ions into the tail is due to electrostatic instabilities in the plasma or whether the interaction is hydromagnetic in origin. In addition, measurements of the solar wind while en route to the comet would be invaluable.

An ion and electron trap such as the one being developed by Whipple for OGO is capable of measuring the density and temperature of thermal electrons as well as densities, masses, and temperature of thermal ions. Such an instrument is capable of detecting positive or negative currents as small as 10^{-13} amps. This corresponds to 6.25×10^{5} electrons/sec. With a relative velocity of $15 \mathrm{~km} / \mathrm{sec}$ between the probe and the comet and assuming a $20 \mathrm{~cm}^{2}$ detector area, the minimum detectable electron density would be 2×10^{-2} electrons/ cm^{3} and similarly for the positive singly charged ions. The information to be read out would be a digital voltage word for each of four electrodes and a digital current word for the electrometer for a total of 45 bits at each sampling. If we sample once per second, then the rate must be $45 \mathrm{bits} / \mathrm{sec}$. The weight of the entire experiment would be about 5-8 pounds and would require about 2 watts of power.
b. Magnetic Fields. Many magnetometers have been flown on satellites and space probes in the past and t he state-of-the-art is well advanced to the point where no problems should be expected with placing a magnetometer aboard a comet probe. One would want to measure the vector magnetic field both in interplanetary space and as the probe approached, passed through, and receded from the comet. The magnetometer should have a sensitivity on the order of one gamma or less since this is the order of magnitude of cometary magnetic fields that have been postulated in order to explain certain molecular ionization phenomena and plasma interactions.

A triaxial flux gate magnetometer along with a rubidium vapor magnetometer, so as to obtain independently both the components and the absolute magnitude of the magnetic field, would eliminate the principal disadvantages of either instrument alone. If we assume a range of 0.1 to 3.2 gamma in 0.1 gamma steps, then we need 6 digital bits for each of the flux gate components plus an additional 6 bits for the rubidium vapor information. Thus, a total of 24 bits per sampling is required. If we sample twice per second, then the rate is $48 \mathrm{bits} / \mathrm{sec}$. The weight of such a package including electronics would be about 13 pounds and the total power consumption about 8 watts.
c. Contamination Experiment. A third possibility which should be included under plasma interactions would be to contaminate the comet with a suitable substance released from the probe in the vicinity of the comet. If, as is believed, there exists a cometary magnetic field of the order of a few gamma, then the ions produced by photoionization of the contaminant material could become trapped by the field. The observation from the earth of the solar radiation resonantly scattered by the se ions could provide some useful information on the nature of the forces involved and the interactions between the ions and the solar wind. As pointed out by Münch, the lifetime of the phenomena, or the time available for observation, is a function of the mass of contaminant and explicitly $t=\frac{M}{4.55}$ where M is in kilograms and t is in days. Thus, a mass of contaminant on the order of 23 kilograms or 51 pounds would result in the ability to observe the motion over a period of 5 days. This is, of course, much longer than an instrumented probe would remain in the vicinity of a comet. Therefore, the contamination experiment is a possible way to study the large scale dynamics of cometary ions.

3. Chemical Composition Experiments

Because of the extended size of the coma and tail, the emitted light intensity would not be increased significantly on close approach so that no appreciable increase in spectral sensitivity could be achieved. It is also presumed that, in the near future, it will be possible to perform spectroscope observations above the earth's atmosphere, thus enabling access to the UV region. Thus, it appears that the only spectroscopic gain in a near approach would be an increase in the geometrical resolution and it is
questionable as to whether this is necessary. A more rewarding series of experiments directed toward the identification of cometary compounds and the ionization dissociation processes is possible in the coma. Presumably the parent molecules are abundant only in the near vicinity of the nucleus. In general, the spectroscopy of polyatomic molecules is complicated and the laboratory spectra for these molecules are not well known. Thus, it would appear that spectroscopic identification of the parents is insufficient and that mass analysis represents the most feasible approach. Some conclusions with respect to dissociation processes can be obtained by observation of the molecular mass distribution as a function of distance from the nucleus. A measurement of the percentage ionization as a function of distance from the nucleus would provide valuable confirmation of the spectroscopic data; even more significant would be the determination of the percentage ionization for the individual molecules which could lead to the proper interpretation of the various ionization mechanisms.
a. Mass Spectrometer. Ion mass spectrometers are currently being developed which will have sensitivities down to 10^{-14} amperes. This corresponds to a flux of singly charged ions of 6.25×10^{4} ions/sec. For a window area of $12 \mathrm{~cm}^{2}$ and a relative velocity of $15 \mathrm{~km} / \mathrm{sec}$, the minimum measur able density will be about 3.5×10^{-3} ions $/ \mathrm{cm}^{3}$. Unfortunately, it is very difficult at the present time to perform a mass analysis of the neutral molecules since the efficiency for ionization by an electron beam is on the order of only l in 40,000 . However, the relative abundances of the ionized molecules could be measured by this method and this in itself would be a significant experiment. An in ion spectrometer such as the one being developed by Taylor for OGO is capable of measuring positive ion masses from (1 to 45 amu. This rangenincludes ald lof thenolecular ion's that have been observed spectroscopically. From 1 to 6 amu the resolution is 0.5 amu and from 7 to 45 amu the average resolution will be 1 amu . The information sought here will be in the form of an ion current converted to a proportional voltage by the electrometer tubes. Different masses are analyzed and allowed to impinge on a collector electrode by appropriately varying certain grid voltages. Since itis notknown definitely a priori just what ion species to expect, the remaining available telemetry should be assigned to this experiment. If the total telemetry capability is $250 \mathrm{bits} / \mathrm{sec}$,
then the mass spectrometer would use $151 \mathrm{bits} / \mathrm{sec}$. The total instrument including two spectrometer tubes weighs about 8 pounds, occupies about l cubic foot, and consumes about 8 watts of power.

4. Summary of Proposed Payload Experiments

The following table summarizes the weights and power of the presently feasible experiments which could be included as a comet probe payload.

Table 3-1.. Weights and Power of Experiments

Experiment	Weight (lbs)	Power (Watts) T	Telemetry Rate (bits/sec)
TV	7	(9 - at the comet during operation))
Micrometeorite	10	1	5
Plasma Probe	8	2	45
Magnetometer	13	6	48
Mass Spectrometer	8	(8 - at the comet intermittently)	151
Total	46 (lbs)	9 (average watts)) 250 (bits/sec)

Thus, with the exception of the contamination experiment which would increase the weight by about 50 pounds, the five experiments above would have a combined weight of 46 pounds and a total power consumption of about 28 watts.

5. Possible Future Experiments

It is clear that experiments which can be performed with present "state-of-the-art" techniques yield no information whatsoever with respect to the cosmological significance of comets and only limited information with respect to the radiation chemistry and molecular configuration of cometary material. This section will discuss some of the problems involved and will outline some possible experimental approaches for consideration in future experiments. The ideal future experiment would
consist of a landing on the nucleus, sampling of nuclear material, and return of the sample to earth for analysis. If we confine this experiment to the far distant future, there are however other experiments which may be considered.
a. Elemental Analysis. The elemental constitution of the solid fragments would be most important in establishing the origin of cometary material. The collection and analysis of the micrometeorite fragments could be a reasonable approach to this problem. It is clear, of course, that because of the small sample size fractionation effects during formation would be of major importance and probably only elements with very similar physical properties might coexist in the sample. A reasonable method of analysis might be through neutron activation and subsequent analysis of the activation spectrum. This experiment implies that the isotopic abundances of the studied elements would require an irradiation time of about 1 hour to yield detectable activities. This appears marginally feasible at best with conventional neutron sources, but should be considered as possible.
b. Isotopic Analysis. Isotopic abundances which could yield information with respect to the time of fragment formation is clearly more difficult. This is further complicated because of cosmic ray bombardment of the small samples so that the isotopic abundances no longer reflect the time of formation. However, if possible, this would be an interesting experiment.
c. Radiation and Radio Chemistry. The radioactivity expected to be associated with the small solid samples arises from cosmic ray bombardment. The cosmological interpretation of these radiations is doubtful, but rather interesting radio chemical information may be obtained.
d. Neutral Particle Mass Spectrum. The important radiation chemistry problems would involve a study of the parent molecules sublimed from the nucleus and a direct determination of the ratio of ionized to unionized abundance of a given molecule. It is believed that ion mass spectroscopy is feasible in the coma and tail. However, the mass spectroscopy of neutral molecules is more difficult because of the low efficiency of ionization. The development of neutral particle mass spectrometers for particle densities less than $10^{6} / \mathrm{cc}$ remains to be done.

6. The Comet As Its Own Experimental Source

To this point the experiments and detection sensors considered all have been restricted to more-or-less conventional means of data elicitation and gathering in space experimentation. However, another approach, similar in some respects to the contamination experiment, is to place all of the complex measurement equipment on the ground and enhance the visible characteristics of the comet. The most effective way of doing this is simply to transport a nuclear weapon to the comet, detonate it on command, and sense and record the resulting phenomena from earth-bound stations employing sensitive observational equipment. The simplest version of this scheme would dispense with on-board scientific instrumentation and associated data storage, described in later sections, and use the additional mass capability of the spacecraft to transport the weapon. In this way, the resolution of the detection equipment can be chosen as great as is consistent with the techr nology of earth-bound astronomical observational equipment, without regard for equipment mass or size.

The physical facts which make such a scheme appear interesting are:
a) A very large mass of cometary material will interact with bomb plasma and radiation, even a relatively low yield bomb. Typically, the mass of ambient material which will be affected (in ways useful for our purposes) by nuclear radiations and/or by kinetic energy of the device following burst may be 100 to 1000 times that of the device itself. In effect this yields an experiment with 100 or more times the mass of a contaminant which could be carried by the spacecraft, and the "contaminant" is material (neutral as well as ionized species) of the comet itself.
b) Extensive electronic excitation will take place and provide intense, distributed, and relatively long-lived sources of photon radiation. These can be exploited by space-resolved, time-resolved, as well as general spectroscopy to provide a wealth of information on chemical composition, distribution and density of neutral species, and cometary structure, and some data on plasma interactions.
c) Large-scale motion of considerable masses of energetic plasma will occur as bomb plasma or "debris" interacts with cometary matter and magnetic fields. Direct photography as well as high-resolution time-resolved spectroscopy can be used to determine the details of this motion, and results of such measurements could provide both direct and deductible
information about magnetic field strengths and structure, plasma interactions within the comet, and cometary mass structure.
d) The great increase in electron density caused by the release and distribution of the weapon energy could provide an observable source of radio emissions at cyclotron frequencies in the local magnetic field. Measurement of signal amplitude/ frequency distribution with large and sensitive earth-bound radio telescopes would (in conjunction with other data) provide further information on atom densities, temperatures, and magnetic field strengths.

The possibilities of this experiment have not been analyzed in any detail here; however, some simple numerical considerations are presented in Appendix C to illustrate several possibilities for experimentation.

The utility of this method of comet exploration depends in large measure on the energy yield which can be released by the nuclear device, since this sets the level of source strength and hence determines the detectability (or otherwise) of signals here on earth. Brief unclassified considerations lead to a belief that quite adequate payload capability is available; more detailed study should include basic data on weapon masses and yields. It is also worth noting that this use of nuclear weapons for peaceful, scientific purposes could perhaps provide a test or check of high altitude weapons test detection systems now under development.

7. Some Scientific Constraints on Mis sion Requirements

In this section we shall examine some specific comets in greater detail with particular regard to which comets seem most suitable to investigate with the proposed experiments and how the scientific results are affected as a function of miss distance.

It must be understood, at the outset, that numbers pertaining to cometary dimensions, ion and dust densities, and other physical properties of comets that have been deduced from terrestrial observations, are at best only order-of-magnitude values. These numbers will vary considerably, of course, depending on which specific assumptions one imposes on the comet and which interpretation one gives to the experimental observations.

As was already pointed out, a comet, in general, can be divided into three physical regions: the nucleus, the coma, and the tail. The nucleus probably consists of frozen gases interspersed with solid micrometeorite particles ("icy conglomerate" model) and has a diameter on the order of several kilometers. As the comet approaches the sun, the material at the surface of the nucleus sublimes as a result of the effect of the solar radiation. The density of sublimed gases and particles increases as the heliocentric distance decreases. These materials form the coma and are responsible for the observed molecular emission spectra, the brightness increasing as the comet approaches perihelion. The dimensions of the coma are different when viewed in different regions of the spectrum, indicated a non-uniform distribution of molecular species. In general, the coma extends from $10^{4}-10^{5}$ kilometers in diameter. The molecules in the coma are neutral free radicals that have been dissociated from stable parent molecules as well as ionized species.

The third region, the tail, consists primarily of ionized stable molecules and small solid particles. The dimensions of the tail are perhaps 10^{6} kilometers long and 10^{4} kilometers wide. Not all of the proposed experiments could be best accomplished in only one of the se regions. We shall first specify the particular region of interest for each experiment.

The television picture, of course, is concerned with the solid nucleus. The micrometeorite experiment would deal principally with the coma. The plasma probe and magnetometer would be most useful in the tail but important information could also be obtained in the coma. Finally, the ion mass spectrometer would probably be most useful in the coma since something might then be said about the neutral molecules from a measurement of the ion densities in this region. This, of course, does not rule out the possibility that significant results might be obtained in the tail.

Let us now look at a few specific 'typical" comets for which molecular ion and dust density estimates have been made. From photoelectric and spectroscopic observations of Encke (1957c) and Giacobini-Zinner (1959b), the density of CO^{+}molecules near the head ($\sim 10^{4} \mathrm{~km}$) is of the order of 1 to 100 molecules $/ \mathrm{cm}^{3}$. The average dust densities for these comets are of the order of 10^{-19} to $10^{-24} \mathrm{gm} / \mathrm{cm}^{3}$. For comet Arend-Roland (1956b)
the dust densities are of the order of 10^{-11} to $10^{-14} \mathrm{gm} / \mathrm{cm}^{3}$. It can be seen that not only are the se densities very small but the estimates range over many orders of magnitude. For a micrometeorite detector with a minimum sensitivity of 10^{-5} dyne-sec, and a relative velocity of $15 \mathrm{~km} / \mathrm{sec}$ between the probe and the comet, one could detect spherical iron particles of minimum radius 0.6 microns or spherical CO_{2} particles of minimum radius 1.0 micron. From the intensity of the continum and certain assumptions regarding the number and density of the solid particles, the radius of the particles is believed to be of the order of 0.5 microns. If the area of the detector is $350 \mathrm{~cm}^{2}$ then the number of impacts per second $=5 \times 10^{8} \mathrm{p}$ where ρ is the dust density in particles/ cm^{3}. For comparison, the dust density of Encke is believed to be $\sim 10^{-9}$ particles/cm ${ }^{3}$ and for a "dusty" comet, such as Giacobini-Zinner, it is $\sim 10^{-7}$ particles/cm ${ }^{3}$. Thus, the impact rates seem reasonable as long as the momentum is sufficient.

As with molecular and dust densities the dimensions of cometary nuclei are subject to considerable uncertainties. Most estimates of nuclear radii are based on observations of visual magnitudes. To convert this information to a nuclear radius requires a knowledge of the albedo, A. We do not know the value of A for cometary nuclei. The lowest value ever observed on astronomical objects is 0.028 (for Ceres) and the highest one is 0.61 (for Venus). These maximum and minimum values result in the following radii:

Encke (1957c) 0.67-4 km
Halley-Peltier (1936a) 25-60 km
Giacobini-Zinner (1959b) 0.72-4.6 km
Mrkos (1957d) 3.93-232 km
Bester (1948I) 7-41 km
Winnecke (1927) 0.17-0. 80 km
Bappu (1949c) 8. 3-36 km

For a miss distance of $10^{4} \mathrm{~km}$ we could obtain a resolution of 0.2 km at the surface of the nucleus with the system described in section B.1.a. This should be sufficient to resolve some structure for most nuclei. There can be no doubt, in general, that in order to make any significant measurements with the presently proposed experiments, the probe must penetrate the coma to at least 10 percent of the distance to the nucleus. This means a miss distance of less than $10^{4} \mathrm{~km}$. In addition, in order to learn something of the dynamics involved in the tail from the plasma probe and magnetometer, the probe must also pass through the tail. As far as the experiments themselves are concerned, there is no particular reason to prefer one comet to another except perhaps one whose motion is retrograde, such as Halley's or Temple-Tuttle which would thereby increase the probe-comet relative velocity as well as enabling the probe to traverse the tail longitudinally.

REFERENCES

1. Encyclopaedia Britannica, Inc., v. 8, p. 423, Chicago, Wm. Benton Publisher, 1958 Ed.
2. Ibid., v.6, pp. 101-102
3. Lyttleton, R.A., "The Comets and Their Origin", London, Cambridge University Press, 1953, 173 pp.
4. Pannekoek, A., "A History of Astronomy", New York, Interscience Publishers, Inc., 1961, 521 pp .
5. Baker, R. M. L., Jr. and M. W. Makemson, "An Introduction to Astrodynamics", New York, Academic Press, 1960, 358 pp.
6. Brouwer, D., "Secular Variations of the Elements of Encke's Comet", Astron. J., v. 52, whole no. 1163, 1947, pp. 190-198.
7. Recht, A.W., "An Investigation of the Motion of Periodic Comet d^{4} Arrest", (1951 II), Astron J., v. 48, no. 7, whole no. 1107, 17 July 1939, pp.65-78.
8. Idelson, N., "La Comete d'Encke en 1924-1934", Bull. Observ. Poulkovo, v.15, no.124, 1935, pp.1-17.
9. Backlund, O., "La Comete d'Encke 1891-1908", Mem.Acad.St.Peters burg, Ser.8, v.30, no.2, 1911, pp. 1-49.
10. Matkiewscz, L., "Recherches sur le Mouvement de la Comet d'Encke", Bull.Obs.Poulkovo, v.14, no.6, 1935, pp. 1-32.
11. Vsekhsvyatskii, S., "The Brightness of Comet Encke", Russian Astron J., v. 4, 1927, pp. 298-301.
12. Vsekhsvyatskii, S., "The General Catalogue of Absolute Magnitudes of Comets", Russian Astron. J., v. 10, no. 3, 1933, pp. 327-338.
13. Vsekhsvyatskii, S., "Extension of the Catalogue of Absolute Magnitudes of Comets", - I., Russian Astron. J., v. 12, no.3, 1935, pp. 243-250.
14. Vsekhsvyatskii, S., "Extension of the Catalogue of Absolute Magnitudes of Comets -II", "The Comets of the Years 1840-1880", Russian Astron.J., v. 14, no's. 5-6, 1937, pp. 480-496.
15. Van Woerkom, A.J.J., "On the Origin of Comets, B.A.N.", v.10, no.399, 8 Dec. 1948, pp. 445-472.
16. Porter, J.G., "Comets and Meteor Streams", The International Astrophysics Series, v.2, New York, John Wiley and Co., Inc., 1952, 123 pp.
17. Whipple, F.L., "A Comet M del - I. The Acceleration of Comet Encke", Astrophys.J., v. 111, no.2, March 1950, pp. 375-394.
18. Whipple, F.L., "A Comet Model - II. Physical Relations for Comets and Meteors", Astrophys. J., v. 113, no.3, May 51, pp. 464-474.
19. Whipple, F.L., "A Comet Model - III. The Zodiacal Light", Astrophys. J., v. 121, no. 3, May 1955, pp. 750-770.
20. Vorontsov-Velyaminov, B., "Structure and Mass of Cometary Nuclei", Astrophys., J., v. 104, no.2, Sept. 1946, pp. 226-233.
21. Sekanina, K., "Collisons of Comets with Dust Particles in Interplanetary Space", Bull. Astron. Insts. Czech., v. 13, no. 4, 1962, pp. 155-163.
22. Corlin, A., "How Larger Bodies may be Built up out of Small Particles in Interstellar Space", Z. fuer Astrophys., v. 15, no. 4, 1938, pp. 239-263.
23. Corlin, A., "La Densite d'une Nebuleuse Obscure Entourant le System Solaire C lculee d'Apres les Mouvements Cometaires", Ann.Astrophys. (Paris), v. 1, no. l, Jan. 1938, pp. 247-259.
24. Mianes, P., S. Grudzinska, and A. Stawikowski, "Observations Physiques de la Comete Periodique Giacobini-Zinner (1959b), " Ann. Astrophys. (Paris), v. 23, no. 5, 1960, pp. 788-796.
25. Grudzinska, S., "L'Abondance des Molecules $\mathrm{CN}, \mathrm{C}_{2}$ et $\mathrm{C} 0^{+}$et Particules Solides dans les Cometes", Ciel et Terre, v. 76, nos. 5-6, May-June 1960,
pp. 173-176. pp. 173-176.
26. Grudzinska, S., "The Abundance of CO^{+}Ions in the Tails of Comets", Ann. Astrophys. (Paris), v. 23, no. 5, 1960, pp. 797-801.
27. Belgium, University Liege, Instit. of Astrophys., "Research of Relations between Cometary, Solar, and Upper Atmospheric Physics", by P. Swings, AFCRL-TR-58-232, Jan. 1958, ASTIA AD $152525,32 \mathrm{pp}$.
28. Houziaux, L. and L. Battiau, "Note sur les Relations Entre les Activities Solaire et Cometaire", Bull. Cl. Des. Sci. Acad. Roy. Bel., 5 Ser., v. 43, 1957, pp. 171-178.
29. Link, F., "Variations Lumineuses de la Comete Encke", Ann. Astrophys.
(Paris), v. ll, no. 1, 1948, pp. 73-76.
30. Swings, P., "Cometary Spectra", Mon. Not. Roy. Astron. Soc., v.103, 1943, pp. 86-111.
31. Hogg, F.S., "A Synopsis of Cometary Spectra", J. Roy Astron. Soc.(Canada), v. 23, 1929, pp. 55-89.
32. Bobrovnikow, N., "A Bibliography of Cometary Spectra", Rev. Mod. Phys., v. 14, 1942, p. 164.
33. Vekhsvyatskii, S., "On the Spectrum of Encke's Comet", Bull, Observ. Central Poulkovo, v. 15, no. 129, 1938, pp. 1-21.
34. Dufay, J. and M. Bloch, "Recherches sur les Spectres de Cometes", Ann. Astrophys. (Paris), v. 11, no. 2, 1948, pp. 107-116.
35. Swings, P., "Le Spectre de la Camete d'Encke 1947 i", Ann. Astrophys. (Paris), v. 11, no. 2, 1948, pp. 124-136.
36. Belgium, Univ. Liege, Inst. Astrophys., "Notes on Cometary Physics", by P. Swings, B. Rosen, L. Haser, L. Houziaux, and L. Battiau, Contr. AF 61 (514)-912, Tech. Sci. note no. 1, 1957, AFCRC TN-57-450, ASTIA AD 117 169, 111 pp.
37. Belgium, Univ. Liege, Inst. Astrophys., "Notes on Cometary Spectra", by P. Swings and L. Haser, Contr. AF 6l(514)-628c, Tech. Rept. no. 2 , 1956, AFCRC TN-58-266, pp 20.
38. "La Physique des Cometes", Papers presented at the 4th Intern. Colloq. on Astrophysics, Liege, Belgium, 12-21 Sept. 1952, Mem. Soc. Roy. Sci. Liege, 4 Ser., v. 13, nos. 1-2, 1953, 389 pp .
39. Vinter Hansen, J. M., "The Physical Structure of Comets", Pub.Astron. Soc. Pacific, v. 56, 1944, pp. 182-191.
40. Hoyle F. and M. Harwit, Astrophysical Journal 135, 3 (1962).
41. Harwit, M. and F. Hoyle, Astrophysical Journal 135, 3 (1962).
42. Noerdlinger, P.D., Astrophysical Journal 134, 1034 (1961).
43. Kahlas, Ek, and Tidman, Phys. Fluids 5, 328 (1962).
44. Scarf, F.L., Space Tech. Labs. Report 9990-6135-Tu-000 (1962).
45. Swings, P., in "Astrophysics" Ed. by J. A Hynek, McGraw Hill Book Company, New York 1951.
46. Beyer, N., P.S wings, "Vistas in Astronomy", Ed. by Beers 1956.
47. "Symposium on Comets", The Astrophysical Journal, A6, 8, 1961.
48. Horiziaux, L., "On the Origin of the Continuous Spectrum of Comets", Technical Scientific Note No.3. ASTIA No. AD243271.
49. Biermann, L., et al. Zertschrift fuer Astrophysik, v. 53, no. 4 (1961).
50. Swings, P., "Possible Contributions of Space Experiments in the Field of Cometary Physics! Smithsonian Institute (1962).
51. Space Age Astronomy, Chapter 16, Ed. by A.J. Deutsch and W. B. Klemperer, Academic Press (1962).
52. Oort, J.H., and Schmidt, M., "Differences between new and old Comets", B.A.N. No. 419, p. 259. (1951).
53. Dubyago, A.D., "Structure of Comet Nuclei and Formation of Meteor Streams", Astronomicheskiy Zhurnal, Vol. 27, No.l (1950).
54. Schmidt, M., "The Variation of the Total Brightness of Comets with Heliocentric Distance", B.A.N. No. 419, p. 253 (1951).
55. Houziaux, L., "Density of C_{2} Molecules in the Head of Comet MRKOS 1955 e.", Technical Note No. 9 (1961) ASTIA No. AD269914.
56. Swings, P., "Excitation and Abundances in Comets", Technical Note No. 5 (1960), ASTIA No. AD243275.
57. Donn, B. and Alexander, W.M., "Discussion of Comet Probes", Goddard Space Flight Center Report X-613-62-52 (1961).
58. "Relations between Cometary and Solar Activity", Technical Note No. 4 (1960), ASTIA No. AD243274.
59. Goldberg, L., "Properties of Comets", STL Informal Report, Space Physics Department.
60. Magnolia, L. R.", "Interplanetary Matter: A Bibliography, "ASTIA No. AD 276064, Space Technology Laboratories No. 9990-6058-KU-000 (June, 1962).
61.. Ibid, 1962 Supplement (Apiril, 1963). :

IV. REQUIREMENTS FOR A MISSION TO A COMET

This section discusses first the general requirements for a mission to a comet and then describes the specific requirements for each of the comets studied.

Under the general requirements, the overall problems concerned with the trajectory of the spacecraft from the earth to the comet, the injection velocity requirements, the approach velocities, and the miss at impact for a given set of injection errors for given launch dates and flight times are described. Secondly, the accuracy requirements, both in terms of our knowledge of the orbit of the comet and in terms of the requirements upon the spacecraft, are given. The payload capabilities of a range of boosters, emphasizing current relatively low cost boosters are given. We then discuss some of the problems associated with the logistics of the launch of the entire booster and spacecraft. At this point the requirements of the spacecraft and its subsystems suitable for this mission are given. And finally some general considerations concerning the reliability requirements for typical comet trajectories are also described.

The second subsection describes these requirements in terms of specific comets. These are arranged by comet in order of the comet period about the sun.

A. GENERAL COMET MISSION REQUIREMENTS

1. Overall Characteristics of Trajectories from the Earth to the Comet

The first step in selecting a trajectory to a comet is to determine the injection velocity requirements since this sizes the booster. Since existing boosters, which have a limited payload capability, are considered for this study, only the lowest energy transfer trajectories may be used. These are a function of the synodic period of the earth and the comet. However, a certain amount of time for launch, conventionally called the "launch window," is required. Hence, "the" minimum energy trajectory to the comet cannot be used since a month or two is needed for this launch.

A plot of minimum energy per launch day, for trajectories for a mission to the comet Encke in 1964, is shown in Figure4-1. As canbe seen, the minimum energy trajectory possible, injection velocity of $40,000 \mathrm{fps}$ at 22, 000,000 feet altitude (177 nmi), occurs in October 1963 and March 1964. If a 2 -month launch window is allowed, a velocity of $44,000 \mathrm{fps}$ is required. And if the launch window is made larger, an even greater velocity range is needed. Two curves are shown-one which corresponds to trajectories which take us less than 180 degrees heliocentric longitude, called "Class I," and one which is greater than 180 degrees, called "Class II." In general, a 180-degree transfer trajectory requires very high velocities since the plane of that trajectory (which is fixed by the position of the earth at launch, the sun, and the position of the comet at intercept) is normally very highly inclined to the orbit of the earth, and thus very little use can be made of the velocity of the earth in its orbit about the sun. Therefore, there are usually two classes of low-energy trajectories separated by the 180 -degree mark. Useful as these curves of minimum energy are, an even more helpful curve is the one that has been used throughout this report. It shows contours of injection velocities as functions of flight time and launch date, since flight time is also one of the key criteria in evaluating a spacecraft mission because it determines the minimum lifetime requirement for the spacecraft.

Figure 4-2 shows contours of injection velocity at 177 n mi altitude for comet Encke in 1964. (Although velocity is referenced to a 177 nmi injection altitude, the equivalent velocity at any other injection altitude can easily be obtained by use of the energy equation.) Also plotted on this curve is the transmission distance at arrival in natical miles. These diagonal lines correspond to fixed arrival dates. Communication distance is important since it is a factor in determining the power system requirement. (This transmission distance includes the out-of-plane effects of the trajectory.)

The velocity contours show a number of interesting properties. If we examine the velocity contours for the trajectories which have a heliocentric angle greater than 180 degrees, injection velocities from $40,000 \mathrm{fps}$ up to $60,000 \mathrm{fps}$ are shown. The region of principal interest to us, that under 50,000 fps, has a very regular contour. However, for this class of

Figure 4-1. Minimum Energy for Launch Date to Encke, 1964

Figure 4-2. Contours of Velocity for Flight Time and Launch Date, Encke, 1964
trajectories in the $42,000 \mathrm{fps}$ region, the minimum flight time is in the order of 250 days and the maximum about 320 days. The launch window runs from about August 30 to October 30, a period of two months. If the booster can provide $45,000 \mathrm{fps}$ of injection velocity with the required payload, it is possible to launch between August 10 and November 30. Although this window is perfectly adequate, the long flight times make this class of trajectories undesirable.

For Class I velocity contours, 42,000 fps permits a flight time as short as 90 days and as long as 150 days. The launch window at this velocity runs from February 26 to April 21, a period of two months, which is satisfactory. The transmission distance for both classes in the $42,000 \mathrm{fps}$ region is 22 million miles (which is to say that the arrival date is the same), a modest communication requirement similar to the typical short communication distance to Venus. However, these contours show a peculiar property which is not seen in interplanetary trajectories, that is the peculiar vertical characteristics of the contour above $45,000 \mathrm{fps}$ for Class I trajectories. With an injection velocity of $50,000 \mathrm{fps}$, and a launch date in the middle of March, the flight time appears to be indefinite, running from as low as 60 days up in excess of 400 days. This property arises from the eccentricity picture of Encke's orbit and the launch date possible. Figure 4-3 shows these characteristics of the launch to Encke in March 1964. For a launch in March with a given velocity, the flight time can be changed substantially simply by changing the direction of our velocity vector a small amount as it leaves the earth. This is possible because a small change in the direction at earth allows the spacecraft to move up and down the essentially flat path of Encke's orbit. Thus, with a single velocity, the flight time can be changed enormously. Although, of course, we are primarily interested in short flight times and hence these long flight times are of academic interest, this property has an effect in the terminal phase of the trajectory which is of considerable interest and is discussed later.

Figure 4-4 shows the closing velocity of the spacecraft and comet for the same parameters, that is launch date and flight time. Closing velocities are, of course, of great interest since they show how long the spacecraft is in the comet itself and thus helps design the experimental

Figure 4-4. Closing Velocity Between Spacecraft and Comet for Flight Time and Launch Date, Encke, 1964
instruments to be used. As can be seen, the closing velocity ranges from as little as $12,000 \mathrm{fps}$ up to $100,000 \mathrm{fps}$. This velocity, of course, depends on two major factors, the velocities of both the spacecraft and the comet on one hand and the angle between the velocity vectors on the other. A large intercept angle, of course, causes a relatively high closing velocity.

If Figure 4-2 is compared with Figure 4-3, theregions of kigh closing velocities can be estimated; thus, for a lanch in the plane of the comet, the intercept angle will generally be smaller especially on long flight time trajectories. A launch about the first of March, which approximately corresponds to the location of the descending node of the comet of the plane of the ecliptic will tend to minimize closing velocity and the slowest closing velocity should occur when both the spacecraft velocity and the comet velocities are relatively low and the intercept angle small. For the range of cases examined then, minimum closing velocities should occur for about 400 days flight time and launches near the first of March. Launches on any other date will show a gradual increase in approach velocity since the spacecraft will be out of the plane of the comet and have a larger closing angle. And this is what is shown - the very long flight times give very low approach velocities, and launches near the first of March give the lowest of these.

This condition is obviously quite sensitive to the syodic period since the likelihood of being able to launch in the plane of the comet at such a time that the comet can be intercepted with reasonable injection velocity is not frequently possible. However, in general, the key element is not the closing angle but the low inertial velocities of both the comet and the spacecraft near the aphelion of their trajectories. But these very low relative velocities only occur on very long flight times, which are undesirable. Rather, this in-plane effect should be exploited on the relatively short transfer trajectories. The lowest achievable approach velocities should occur for launches near the first of March for the relatively short trip times in the order of 100 to 150 days, and indeed, this is the case. (See Figure 4-4.) Thus, a launch in March 1965 would appear to be very desirable both from the point of view of minimum injection energy, minimum flight time and minimum approach velocity, and minimum transmission
distance. However, as pointed out in Section III, a minimum approach velocity is not necessarily desirable since some of the scientific instruments carried depend upon fairly high closing velocities to sense properties being evaluated. Nevertheless, a desirable objective for some experiments is that they be in this comet for as long as possible. This can only occur with relatively low closing velocities. Moreover, another fact is that to make a terminal correction to insure that a close miss of the nucleus, or to make a correction to change time the spacecraft is in the comet, a low relative velocity is desirable since a reasonable impulse from a spacecraft propulsion system can perform this maneuver very effectively.

In general then, it may be said that a launch near March 1965 allows a reasonable injection velocity and gives a high probability of mission success with a good potential for trajectory modification to improve our experimental data results.

Having selected a launch time, it is important that we consider the precise conditions at injection, since it is not always possible to achieve all necessary launch conditions from a given launch site without violating range safety requirements. A key parameter in selecting a launch site is the declination of the $V_{\text {infinity }}$ vector which sets the inclination of the coast orbit which, in turn, sets launch azimuth. Figure 4-5 shows the declination of the $V_{\text {infinity }}$ vector for the various launch dates as a function of the flight time. For flight times of 80 to 200 days - the region of greatest interest - the declinations range from +20 degrees to more than -80 degrees. Figure 4-6 shows contours of azimuth, A, and the total inflight angle, θ_{i}, for the various declinations of the $V_{\text {infinity }}$ vector as a function of the available launch window for a launch from Cape Canaveral. The cross-hatch region shows the generally acceptable range-safe azimuths from AMR, which are between 80 to 120 degrees. With this allowable azimuth, our maximum declination is about ± 42 degrees. Thus, a launch from Cape Canaveral is bounded by this declination. Turning back to Figure 4-5, we see that launch cannot occur before March 22 since declinations associated with these launch dates have either too short or too long a flight time with an acceptable declination. However, it is clear that the spacecraft can be launched between March 22 and November 27 and still

Figure 4-5. Declination of Velocity Vector on a Given Launch Date as a Function of Fiight Time

Figure 4-6. Contours of Azimuth and In-Plane Angle for Declination of $\mathrm{V}_{\text {infinity }}$ Vector and Launch Window
keep our flight time under 200 days. For example, between February 21 and March 22 there are many declinations between +20 degrees and -40 degrees with flight times of between 80 to 140 days. The daily launch window for such trajectories will be completely satisfactory.

Thereis still another important characteristic missing - the sensitivity of the particular trajectory selected to errors at injection. At booster burnout, large guidance errors still remain, and these must be corrected during the course of the transit trajectory to insure impact. We cannot carry out a detailed error analysis over all comets and energies. However, we can conveniently introduce a "guidance figure of merit," simple enough to be included as a part of the basic calculations for all missions, yet sufficiently meaningful to allow us to draw useful conclusions about the guidance problems, and more particularly the midcourse correction requirements. These are based on computations of miss coefficients at the comet resulting from injection errors. For each of these trajectories computed, a set of injection errors were assumed. These were: a 2 nmi error in injection altitude; two-tenths of a degree error in both right ascension and declination; one-third of a degree error in azimuth and in flight path angle; and a 10 fps error in the burnout velocity. The errors have been combined into a single figure of merit, and formed the rss of the individual misses.

Figure 4-7 shows the miss distance which can be expected at the comet with these errors at injection. Since midcourse corrections will reduce these misses by two orders of magnitude, the principal purpose of showing these curves is to indicate the launch conditions which will minimize the expected miss distance and hence, minimize the propulsion required to make the midcourse correction. However, as a general rule, the miss coefficients areinversely related to the miss distance. Thus, if the miss is large, a small correction can readily compensate for the error, and conversely, if the miss is small it may take a large correction to eliminate such an error. Experience also indicates that with highly inclined orbits, the miss sensitivities are substantially larger than might be intuitively expected. Therefore, when a particular comet is highly inclined, it should be expected that the out-of-plane effect will result in

Figure 4-7. Miss Distance as a Function of Flight Time and Launch Date, Encke, 1964
large sensitivities. Nevertheless, these curves do indicate regions which should be avoided and indicate the magnitude of the corrections required and call attention to high risk trajectories.

Thus far we have considered the trajectory conditions only in terms of what happens at earth or at intercept, but these transfer trajectories to the comet can also be usefully examined in the sun's frame of reference. On the transfer trajectories to Encke during the 1964 launch interval, we noticed that there were a wide range of flight times available for a given injection velocity, especially for the Class I trajectories. The same launch interval in the sun's frame of reference for the velocity of the spacecraft with respect to the sun, given in Figure 4-8, shows that the long transit trajectories are associated with the largest velocity in the sun's frame of reference, as would be expected, and the shortest flight times have the lowest sun frame velocities.

Velocities below 97, 000 fps mean, of course, that the transfer orbit has less energy than the earth in its orbit, and such trajectories will either be highly eccentric or smaller than the earth's orbit. If we look at Figure 4-9, eccentricity of the transfer trajectories, we see that this is the case. Obviously, the eccentricity of the orbit depends upon not only the injection energy but also the angle of which the spacecraft goes into orbit of the sun. This angle is made up of two components: Beta.is the angle of the $V_{\text {infinity }}$ measured from a radial line from the sun through the earth at launch. Beta is 90 degrees when the $V_{\text {infinity }}$ vector is essentially tangential to the earth's velocity, zero degrees when $V_{\text {infinity }}$ lies along a radial line, and 180 degrees directly in toward the sun. The other component of the angle is the inclination of the spacecraft trajectory with respect to the ecliptic - when inclination is positive the trajectory is above the ecliptic and, when negative, below the ecliptic. Figures 4-10 and 4-11, of beta and inclination for launches to the comet Encke in 1964, show the features which we expect. For example, for launches from March through July, the inclination gets gradually smaller (from -15 to -2.5 degrees) with flight time. Since, at this time, both the spacecraft and the comet are going out away from the sun, if the flight time is short, the spacecraft trajectory must be at least as inclined as the comet orbit (which is inclined by about 12 degrees) to intercept early and must be negative

Figure 4-8. Heliocentric Velocity of Spacecraft as a Function of Flight Time and Launch Date, Encke, 1964

Figure 4-9. Eccentricity of Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964

Figure 4-10. Heliocentric Launch Angle, β, of the Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964

Figure 4-11. Sun Frame Inclination of the Transfer Trajectory as a Function of Flight Time and Launch Date, Encke, 1964
since the comet has just passed through its descending node. However, as the flight times get longer, the inclination will become smaller and smaller since the intercept point is farther and farther along the comet orbit. The same launch region for beta shows that for a given launch date, beta is essentially vertical, which means that flight time is changed only by changing our inclination. This property is shown even more clearly in Figure 4-12 where the contours are of fixed flight times. Here we see that flight times from 100 to 400 days can be achieved on the same day with the same beta from 35 to 85 degrees, but higher betas are associated only with longer flight times.

Figure 4-13, which shows contours of heliocentric in-plane angle from earth at launch to intercept, indicates not only the correlation between flight time, launch time and distance about the sun, but also shows that the angle traversed is relatively insensitive near the arrival time corresponding to the low energy trajectories studied. What is implied by the fact that many transfer angles can be used for the same flight time, especially for early launches, is that the spacecraft can leave the earth in many directions and still intercept the comet. Later, during the launch window, the spacecraft can leave the earth in essentially only one direction.

2. Guidance

The guidance requirements for a comet mission were analyzed using the following guidance procedures: (Comet Encke was used for analysis.)
a) Use the optical data from an earlier apparition of a comet to determine its orbit and predict the intercept orbit
b) Begin optical tracking at the first appearance of the comet during its intercept apparition
c) Launch the spacecraft on the basis of both sources of data
d) Track the spacecraft
e) Continue optical tracking of the comet to improve the orbit estimate
f) Use midcourse corrections to reduce the errors caused by injection inaccuracy and error in the earlier comet orbit estimate.

Figure 4-12. Contours of Constant Flight Time Encke, 1964

Figure 4-13. Contours of Heliocentric In-Plane Angle, θ, Encke, 1964

The results of this analysis shows that the comet orbit optical tracking error, assumed to be 2.5 seconds of arc for each observation, is currently the largest contributcr to both midcourse fuel requirements and final miss. The probability of having the spacecraft pass within $10,000 \mathrm{~km}$ of the nucleus of the comet with this error but after 8 months of observation is about 0.5 . This probability could be improved to about 0.99 if the optical tracking error were reduced by a factor of 3 . An improvement of this magnitude is possible if the dim stars which are used as references for the comet observations are themselves located more precisely from the basic stars. Although this clearly can be done, it has not been since there has been no need for this degree of accuracy previously.

Miss Coordinate System. The coordinate system used is discussing the miss caused by the various errors is the "impact parameter" system. The three axes are known as the b_{1}, b_{2}, b_{3} axes, and are defined in terms of Voo (the velocity vector of the spacecraft relative to the target) and the equatorial plane. The b_{1} axis is along the negative of the $V_{\text {infinity }}$, while the b_{2} and b_{3} axes are in a plane perpendicular to the $V_{\text {infinity }}$ vector (the impact-parameter plane). The b_{2} axis is along the intersection of the impact-parameter plane and the equatorial plane, and the b_{3} axis is roughly north. The system is right-handed. The b_{2} and b_{3} values indicate the closest approach distance while the b_{1} value indicates the arrival time error when it is divided by $\mathrm{V}_{\text {infinity }}$.

Prior Orbit Optical Tracking Error. The error resulting from tracking Encke for nine months in 1960-61 was determined for data rate of 1 observation per week with a 1σ angle error of 2.5 seconds. When the position at the time of intercept is predicted from this data the 1σ values of the errors in b_{1}, b_{2}, and b_{3} are the following:

$$
\begin{aligned}
\sigma_{1} & =129.4 \mathrm{Mm} \\
\sigma_{2} & =129.3 \mathrm{Mm} \\
\sigma_{3} & =1.677 \mathrm{Mm}
\end{aligned}
$$

where $1 \mathrm{Mm}=10^{3} \mathrm{~km}$. The arrival time 1σ error is 67.3 minutes.
Because the 1964 position was obtained by predicting about three years
ahead, the errors tend to be highly correlated.' The cotrelation coefficients are:

$$
\begin{aligned}
& \rho_{12}=1.000 \\
& \rho_{23}=0.979 \\
& \rho_{31}=0.979
\end{aligned}
$$

A higher data rate does not yield significantly better accuracy because the position of the comet is measured relative to a dim star background (which is itself the source of most of the uncertainty), and observations taken closer than one week apart would be so highly correlated that no new information would be gained.

1964 Optical Tracking Error. Eight months of tracking the 1964 pass age were simulated with the following results:

$\sigma_{1}=6.59 \mathrm{Mm}$	$\rho_{12}=-0.842$
$\sigma_{2}=9.90 \mathrm{Mm}$	$\rho_{23}=-0.0611$
$\sigma_{3}=3.42 \mathrm{Mm}$	$\rho_{31}=0.0795$

Time of arrival 1σ error $=3.46$ minutes. These errors could be reduced by a factor of 3 if the locations of the dim stars in the background were established more accurately.

Injection Error. The miss caused by a representative set of errors in injecting the spacecraft into its transfer orbit was evaluated with the following results:

$$
\begin{array}{rlrl}
\sigma_{1} & =175.2 \mathrm{Mm} & \rho_{12} & =-0.906 \\
\sigma_{2} & =155.3 \mathrm{Mm} & \rho_{23}=-0.567 \\
\sigma_{3} & =146.0 \mathrm{Mm} & \rho_{31}=0.573
\end{array}
$$

Time of arrival 1σ error $=92.2$ minutes.

Spacecraft Tracking Error. For this mission the error involved in tracking the spacecraft is negligible compared to the error in tracking the comet. The 1σ values can be less than 1 Mm with reasonable data rates.

Midcourse Velocity Execution Errors. An overall midcourse correction accuracy of about $1 \% 3 \sigma$ (1% in velocity magnitude and 0.6° in orientation) introduces essentially no error compared to the optical tracking error. Therefore, one correction with a 1% system could be made, or two corrections with a 10% system could be used (10% in velocity magnitude and 6° in orientation).

Midcourse Velocity Requirements. The midcourse velocity sensitivities are displayed graphically in Figures 4-14, 4-15, and4-16. These sensitivities were used to calculate the velocities required (in a statistical sense) to correct the uncorrected miss with a high (>0.99) probability of having sufficient fuel. One firing was assumed at various times along the transfer orbit. The velocity required to correct the three-dimensional miss and the velocity required to correct only the b_{2} and b_{3} components (the "criticalplane" correction) were both calculated and are plotted as functions of time in Figure 4-17. For these corrections it was assumed that the spacecraft could be oriented to the desired attitude before the firing.

Error Ellipses. Figure 4-18shows the 1σ error ellipses for both periods of optical tracking and for the injection errors. Also shown is a 10 Mm circle which can be considered to be the target area. In this figure only the center of the 1960-61 tracking ellipse can be seen since it is quite large compared to the target area.

The significant comparison to be made is between the 1964 optical tracking ellipses and the target circle. The 1964 optical tracking ellipse essentially describes the final miss after the midcourse corrections. Note that this ellipse is entirely within the target circle. There is, therefore, greater than 1σ probability (46.5%) of passing through the target area. If the tracking error were reduced by a factor of 3 , the probability of passing through the target area would be about at the 3σ value $(99.5 \%$). The over all improvement would not be quite a factor of 3 since the spacecraft tracking and velocity execution errors would then start to become important, but the probability could easily be improved to 90%.

Figure 4-14. Miss Sensitivities in X Direction (Equatorial) as a Function of Day of Correction

Figure 4-15. Miss Sensitivities in Y Direction (Equatorial) as a Function of Day of Correction

Figure 4-16. Miss Sensitivities in Z Direction (Equatorial) as a Function of Day of Correction

Figure 4-17. Midcourse Velocity Requirement as a Function of Time for Correcting Injection Errors Plus Comet Ephemeris Errors

Figure 4-18. Error Ellipses for a March 1964 Launch to Encke

3. Spacecraft and Subsystem Requirements

Flight times between 100 and 300 days are required for a wide-range comet mission, and transmission distances between 20 and 200 million nautical miles are also required. In addition, as described in Chapter 3, experiments weighing a minimum of about 50 pounds and up to 100 pounds will be required. Power requirements wili vary primarily as a function of transmission distances, but a minimum of 100 watts is desirable. In addition, a propulsion system is required to perform midcourse and terminal maneuvers.

The comet spacecraft must be able to assure that it hits the comet and adjusts its velocity in the vicinity of the comet; it must have a communications system, a data handling system, a propulsion system, a thermal control system, a power supply system, and some type of attitude control system, as well as carrying an experiment package. The key factors in the over-all spacecraft design are that it must be extremely simple, and reliable, but it must also have a reasonable cost with high probability of success. An appreciable item of cost and reliability is the attitude control system. A fully attitude controlled system determines the maximum life-time of the spacecraft because it requires a supply of cold gas which must be finite. Since comet missions encompass a wide range of flight times, transmission distances, and thermal environments, we have considered tire alternative of using a spin-stabilized spacecraft since such stabilization is not only permanent, but costs less. During the last year, STL has been studying a spinstabilized spacecraft for NASA's Ames Research Center, which is specifically designed to explore interplanetary space. Much of the work done for that spacecraft study applies equally well to this comet mission and is used here. Communication ranges considered in that study were between 100 and 200 million miles and the spacecraft lifetime was of the order of six months or 180 days. Although the success of the Mariner II mission to Venus indicates that the fully attitude controlled system can be expected to operate effectively over life times of up to 6 months, the reliability of such a system must, of necessity, be lower and the cost somewhat higher. Therefore, we have decided to consider the simplest type of probe that can carry out the comet intercept mission.

Typically, such a spacecraft requires approximately 50 pounds for com munications, 100 pounds for power supply, 150 pounds for propulsion, 20 pounds for temperature control and with a 50 pound experiment, about 70 pounds of structure, giving a total of about 450 pounds. Since such a spacecraft weight is about the same as the Mariner II, but without any allowance for attitude control, we will find that a spin-stabilized system should save us at least 30 to 40 pounds and substantially increase system reliability. A specific spacecraft, suitable for this mission, is described in some detail in Section V.

4. Booster Capabilities

The principal consideration in the selection of a booster for a comet mission is that it satisfies the velocity requirement with a suitable payload. Injection velocities between 38,000 and $50,000 \mathrm{fps}$ will carry us to most comets, and as we have shown above, a spacecraft weighing in the order of 400 to 500 pounds can quite easily carry out the full comet mission*. Of course, our primary interest is with injection velocities around $40,000 \mathrm{fps}$ since most available low-cost boosters do not have a payload capability much in excess of 500 pounds at velocities of $42,000 \mathrm{fps}$. Since this energy requirement is not much greater than those to Venus or Mars, which require between 37, 000 to $40,000 \mathrm{fps}$, boosters do exist, as evidenced by the Mariner II mission, which can perform this mission. Mariner II spacecraft weighed about 450 pounds and was boosted by the Atlas-Agena booster.

If we assume that the mission is to be carried out within the next few years, we cannot include boosters such as those for the Saturn vehicle, which are not only very expensive but reserved for the U. S. manned lunar program. Other vehicles which are in the state of development, such as various combinations using the Titan II or the LOX Centaur upper stage are not yet available for space missions but will probably become available in two or three years. Nevertheless, these booster vehicles are in large part spoken for and are probably more expensive and more complex than is necessary for the relatively simple mission contemplated here. Therefore, there are two readily available vehicles. One, the Thor-Delta vehicle, has too small a payload

[^0]capability to be suitable for this mission since it can carry only about 100 pounds to escape velocity. However, as we know, the Atlas-Agena vehicle, used on the Ranger and Mariner missions, has performed quite reliably and will doubtlessly improve in the future. However, as a two-stage vehicle it probably does not allow an adequate margin for launch on such a mission; hence it will require the addition of a solid propellant third-stage such as has been used on the Thor-Delta and has been used on the Atlas-Able 5 lunar missions. We can reasonably assume that with a third-stage such as the ABL 258, about 500 pounds of payload can be injected to $41,000 \mathrm{fps}$. Attachment No. 1 '(Confidential) contains graphs showing the specific performance of various vehicle combinations discussed above. With the Atlase Agena vehicle, the mission not only has a proven booster, but one which is currently in production, relatively easy to obtain, and considerably less expensive than the larger, newer vehicles. Moreover, launch systems for this vehicle are already available at both the Atlantic and Pacific Missile Range which considerably simplifies the launch logistics problem.

5. Launch Schedule

Launching a spacecraft is a complex task which requires many months of planning for the specific mission and many years of planning to integrate a specific mission into the overall U. S. space program. In most cases, launch stands have been allocated 2 years in advance and every space mission must consider its impact upon all other space missions. For this reason it is essentially impossible at this time in the U. S. space program to plan a launch to a new comet since such a mission would require that a specific launch stand be made available as soon as new comet is discovered. This, in turn, would probably require rescheduling, of a part of the U. S. space program. Moreover, since time is required to determine the orbit of the comet accurately, the planning for the mission could not be completed until some months after the initial observation. Finally, the behavior of comets is still very unpredictable and in some cases the comets have divided or behaved in an otherwise unusual fashion which would make the targeting and the intercept problem greater. Therefore, we should choose to intercept comets whose behavior in the past has been predicted, if possible, and whose orbit is known accurately.

Let us examine how much time is required to launch a spacecraft to a comet. If we sight a comet, such as Encke, at least 2 or 3 months of careful astronomical tracking will be required to make a good initial orbit determination. Then, at least 2 weeks of trajectory computation for the boost vehicle and the free flight trajectory must be added. During these $2-1 / 2$ months, the launch vehicle can be shipped to the Cape and checked out, the launch pad prepared, and the spacecraft delivered. In addition, the complete upper stage and payload can be checked out at Florida. However, the guidance constants cannot be established until after the booster and free flight trajectories have been determined and these will require an additional 2 weeks and subsequent to this, another week for final checkout and launch will be required.

This means that a minimum of almost $3-1 / 2$ months are required from the initial sighting of the comet. Figure 4-19 shows the launch site time requirements. However, the actual launch window selected in advance may not occur until 4 or 5 months after the initial sighting of the comet (this appears to be the case for the comet Encke in 1964 as indicated earlier). Such a situation is desirable since it appears that at least 8 months of optical tracking is required before intercept. However, for many other comets, as we have indicated and even for comet Encke, on some years it might be difficult to acquire the comet sufficiently early to guarantee an appropriate time for launch preparations. All comet missions must therefore be planned with all of these practical matters in the foreground.

In addition, the planning must also consider the problems of the boost trajectory. These include declination, range safety considerations, payload capability, and aerodynamic considerations. Since we must, in general, launch either from Cape Canaveral or the Pacific Missile Range, we have a limited number of range safe azimuths which we can use and these tend to limit the actual intercept trajectories we can fly, although coasting trajectories considerably alleviate this problem. Nevertheless, the boosters to be used have a limited payload capability and cannot make turning maneuvers to get them on the correct path easily since such a turn costs a great deal of payload. Moreover, aerodynamic heading, the effects of winds, and other aerodynamic considerations also tend to constrain the boost trajectory to a fairly narrow band of alternatives.

	weeks													
booster launch schedule	1	2	3		4	5	6	7	8	9		10	11	12
VEHICLE SHIPPED TO LAUNCH SITE														
Checkout in hanger														
preparation of launch STAND														
bOOSTER CHECKOUT ON STAND														
SECOND StAge mated														
SECOND STAGE CHECKOUT ON STAND														
THIRD STAGE AND PAYLOAD MATED												Δ		
THIRD STAGE AND PAYLOAD CHECKOUT														
LAUNCH														

Figure 4-19. Typical Launch Site Schedule

Although launch considerations are quite important and at this stage in space exploration tend to eliminate new comets from our planning, there appears to be no serious difficulty in planning an effective comet intercept mission.

6. Reliability

The basic problem for any spacecraft mission is essentially one of cost versus probability of success. The key element in a comet mission is that opportunities to launch to a specific comet with a high probability of success are very infrequent and the duration of the launch interval or window.is, at most, a month or two. Under this condition, we cannot expect more than two launches to be made within the launch window. Experience indicates that for a single shot mission to be successful, the system reliability must be extremely high, requiring simplicity of design, very large design margins, and almost complete equipment redundancy.

To give a very high reliability of mission success, a minimum of two launches is necessary and a large payload margin desirable. In large measure, the reliability of the spacecraft depends upon the total number of parts carried and upon our knowledge of the operational effectiveness of these parts in the space environment. Another key element of the reliability complete system is the reliability of the booster vehicle. The booster suggested earlier in the report, that is, the Atlas Agena, has at present a fairly high reliability and it is expected that this reliability will continue to increase, although a 6 month or 180 -day duration in the space environment requires almost complete redundancy throughout the spacecraft. It is also imperative that only proven components and subsystems be used, a thorough test and evaluation program be applied to all the equipment, and complexity be minimized in all areas. Special manufacturing and quality assurance procedures should be followed and ample time be allowed for a special reliability demonstration program.

Moreover, the program should be planned in such a way as to ensure that no unusual development and test differences are required and to ensure that no advances of the state of the art are required.

Appropriate reliability figures are: a 0.7 for the booster and a 0.8 probability of surviving six months for the spacecraft and subsystems, exclusive of experiments. Such spacecraft reliability can be achieved without great difficulty and a reliability of 0.7 for the type of booster proposed should be achievable in the near future.

B. MISSION REQUIREMENTS FOR SPECIFIC COMETS

On the following pages are presented the injection velocity requirements and transmission distance to the probe at intercept; the closing velocities; and the miss at intercept for each of the comets studied in detail.

Miss Distance Resulting From
Uncorrected Errors at Injection

Closing Velocity Contours

Encke is an excellent target in 1964. In its next appearances-these velocity requirements are shown on the next page-il is in requirements, even in 1974, are 42,000 ps 42 excess of 200 days. In 1964, however, with and there is a launch window of over 3 months. The closing velocities in 1964 can vary between 20,000 to $60,000 \mathrm{fps}$, depending largely on the
precise launch date and somewhat on the injec-
 can be extremely small, in the order of 250,000
miles, and a sensitivity to the out-of-plane commiles, and a sensitivity to the

$$
\begin{aligned}
& \mathrm{q}=0.339 \mathrm{AU} \\
& \mathrm{i}=12.4^{\circ} \\
& \mathrm{e}=0.847
\end{aligned}
$$

Injection Velocity Contours and
Transmission Distance at Arrival

 1976, and at some later date, launch conditions will be much better. How-
ever, the flight time for reasonable

able and the transmission distance is
near minimum, about 45 million miles.
The closing velocities will be at the
The closing velocities will be at the
minimum of about $70,000 \mathrm{fps}$ and could quite easily be larger. The anticipated miss distance in the region of
interest can be as small as 250,000
miles. Since Grigg-Skjelle rup is

Injection Velocity Contcurs and
Transmission Distance at Arrival
(Injection Altitude: 177nmi)

Closing Velocity Contours

HONDA-MRKOS-PAJDUSAKOVA
squasaxd enoxesn!ped-soyx - -epuoh Honda-Mrkos-Padjusakova presents
in 1974, and a rather poor target in
 - ¥f! ε ठิurxnp pəsn əq uej sdf 00G'zø fo flight time as short as 100 days and per-

be between 40,000 to $62,000 \mathrm{fps}$. The million miles and will not present a sub-

 to us at this time, but similar event interplanetary trajectories.

 4-35

Path of the Comet Rotated Into the Ecliptic

$$
\begin{aligned}
& \begin{array}{l}
\text { injection energies as low as } 38,000 \mathrm{fp} \\
\text { can be used with a } 2 \text {-month launch }
\end{array} \\
& \begin{array}{l}
\text { can be used with a } 2 \text {-month launch } \\
\text { window. The flight time for these }
\end{array}
\end{aligned}
$$

әч7 pue suluou f पeyt əxour si Moputim
s! əouełsṭp uoiss
$\begin{aligned} & \text { by } 12.5 \text { degrees, } \\ & \text { not be substantial. }\end{aligned}$

Closing Velocity Contours

Miss Distance Resulting From
Uncorrected Errors at Injection
 Cailnoar dian
hunch date

[^1]Legend:
tUTtLE-GIACOBINI-KRESAK
Tuttle-Giacobini-Kresak is an excellent comet for intercept in its
1973 apparition. Minimum velocity 1973 apparition. Minimum velocity,
even for the Class I trajectories, is 37,500 fps and the flight time is 90
 transmission distance at intercept is around 15 million miles. Closing
velocities for these trajectories can
 $30,000 \mathrm{fps}$, and this choice is fairly insensitive to flight time. Again, the
uncor rected miss distance can be
uncorrected miss distance can be
kept as low as 500,000 miles, even
 The low injection velocity is in large
part due to the fact that intercept occurs near the node and so out-of-plane component is also low. However, it can be
substantial since the orbit is inclined by almost 14 degrees.

Injection Velocity Contours and
Transmission Distance at Arrival

Miss Distance Resulting From
Uncorrected Errors at Injection

PONS-WINNECKE

Injection Velocity Contours and
Transmission Distance at Arrival
 4-38

Miss Distance Resulting From
Uncorrected Errors at Injection

KOPFF
 of about 220 days and that with as much as 43,000 fps, the flight time can be reduced to

 and flight time can be greatly increased using

 tricity, is the fact that on a given launch date
for a wide range of injection velocities, the

 on the miss curves, is quite insensitive to the
launch date, which is largely the result of the
low comet inclination.

 (Injection Altitude: 177nmi) 4-39

Closing Velocity Contours

> P
> 듣융
> - अं ${ }^{\circ}$
> $\begin{aligned} & \mathrm{q}= \\ & \mathrm{i}= \\ & \mathrm{e}=\end{aligned}$

Legend:
$\stackrel{\rightharpoonup}{\square}$
Giacobini-Zinner presents a
fairly good target in 1972 but is confaiderably less good in 1976. With velocities in the order of $45,000 \mathrm{fps}$,
there is a launch window of 2 months there is a launch window of 2 months
and flight times will vary between 120 to 160 days. For Class II trajec-
tories, with 37,500 fps, there is a

 for Class I trajectories will be quite
high, a minimum of $60,000 \mathrm{fps}$, and is high, a minimum of $60,000 \mathrm{fps}$, and is
the same for the low flight times in Class II trajectories. Although the uotfeutiout әч7 'səitu 000 '00G se Iteuus
se 'əgix
 sensitivities will be very large.

s.nozuoつ Kitวoto

Path of the Comet Rotated
Into the Ecliptic

Miss Distance Resulting From
Uncorrected Errors at Injection

FORBES

Forbes presents a fairly good
target in 1974 but a rather poor target

 velocities can be extremely large. A corollary of this is that the closing
velocities are almost exclusively a function of flight time and generally

a long flight time in the order of 350
days, the closing velocity can be as days, the closing velocity can be as
low as $10,000 \mathrm{fps}$. The miss distance for this comet can readily be kept
below 750,000 nmi. Since it is

Injection Velocity Contours and
Transmission Distance at Arrival
(Injection Altitude: 177 nmi)

Miss Distance Resulting From
Uncorrected Errors at Injection

Closing Velocity Contours

since the inclination is approximately 16 degree
fairly large miss coefficients can be expected.

Miss Distance Resulting From
Uncorrected Errors at Injection
WOLF-HARRINGTON
Wolf-Harrington is an excellent
target in 1965 and can be reached target in 1965 and can be reached with a minim. At $40,000 \mathrm{fps}$ there is a 2 month launch window and the flight times
range between 160 to 230 days. The
range between 160 to 230 days. The
is of the order of 100 million miles

Trajectories is insensitive to flight time which can be expected for an

fo โenx
 minimized. However, since the
orbit is inclined by 18.5 degrees, orbit is inclined by 18.5 degree miss coefficients.

4-43

Closing Velocity Contours
Closing Velocity

佇

SCHWASSMANN-WACHMANN (2)
Schwassmann-Wachmann (2) with a minimum energy of about $40,000 \mathrm{fps}$ and with about 2 month

 mission distance is 220 million miles.
The wide range of flight times, $140-$ 300 days, for the same injection velocity indicate that an asymptotic approach October or November. This same
effect can also be seen on the closing effect can also be seen on the closing
velocity curve where, with essentially
the same injection velocity and the same launch day, the closing velocity The general symmetry of the miss distance contours suggests that the effects of injection errors can readily be

?
속 $\underbrace{}_{n}$
$\dot{\sim} \dot{\sim} \dot{\sim}$
Legend:

Miss Distance Resulting From
Uncorrected Errors at Injection

DANIEL

Ṭu pue 'sdf 000'09 07000 '0才
Kıen sathiofon yoeoxdde 'ten
¢ounei ətqissod әчı siutund esolu
uotitum 0t punoxe fe pazṭututur oste st əวuetstp uotssṭusuex d eskep 00t se
jо saṭịootas чттм ' $\varepsilon 96 \mathrm{I}$ uI -0L6I
u! ұəถิx飞7 xə77əq e sdeyxəd pue

Closing Velocity Contours

Injection Velocity Contours and
Transmission Distance at Arrival
10
1
+
7

Path of the Comet Rotated
Into the Ecliptic

Miss Distance Resulting From
Uncorrected Errors at Injection

WIRTANEN

Wirtanen will be an excellent dow of 2 months is available and flight times can be as low as 129 days. such a time that near minimum transsəા!u uolituu 09 fo səouefstp uotssṭu
 energy times the closing velocities
will be as low as 30,000 fps or as

 300,000 miles, even with the large errors assumed. Since the comet is
inclined by 13.4 degrees, the miss inclined by 13.4 degrees, the miss

Closing Velocity Contours

Miss Distance Resulting From
Uncorrected Errors at Injection

 mum velocity is 220 days. Velocity requirements for Class itrajectorie considerably in excess of $50,000 \mathrm{fps}$. The approach velocity for the mini-
mum energy trajectory was in the order of $50,000 \mathrm{fps}$ and could be re
duced to $30,000 \mathrm{fps}$ if a $48,000 \mathrm{fps}$ ssink pasn axəм Кұ! sensitivities indicate that, in general,
the variation expected is probably no more than a factor of 5 and hence, this is not an important consideration. The important property of this intercept
is, of course, the location of the earth is, of course, the location of the ear is poor. The transmission distance
of about 55 million miles for most of about 55 million miles for most
intercepts is satisfactory.

Closing Velocity Contours

Injection Velocity Contours and
Transmission Distance at Arrival
(Injection Altitude: 177nmi)

Closing Velocity Contours

$$
\begin{aligned}
& \mathrm{q}=1.383 \\
& \mathrm{i}=17.20 \\
& \mathrm{e}=0.611
\end{aligned}
$$

Injection Velocity Contours and

Arend-Rigaux is a good target in - uṭ qounel e seq sdf 000 eq fo Kxol
dow of almost 1 month long. With months long and the flight time ranges
 is about 107 million miles, which is
 tories will lie in the $30,000 \mathrm{fps}$ region and cannot easily be increased, if
desired, without substantially increas ing injection velocities. The miss distance for these trajectories can
vary by as much as a factor of 6 ;

in the 1 million mile miss region.
17 degrees, we can expect that the
miss coefficients will be very sensi-
Reinmuth (2) makes a fair target in
R mor in 1974. Neverthe1967 but is quite poor in 1974 . Neverthe-
less, even in 1967 the minimum velocity
 Wince the transit trajectory can be quite
 vertical and the flight time can be changed

 at the node and hence the intercept angle
is small. Since Reinmuth (2) is 0.9 AU is small. Since Reinmuth (2) is 0.9 AU
from the earth's orbit at perihelion, the transmission distance will be very long, at least 200 million miles.

Injection Velocity Contours and
Transmission Distance at Arrival
(Injection Altitude: 177 nmi)

Miss Distance Resulting From
Uncorrected Errors at Injection This distance is largely the result of
the fact that the comet does not approach the fact that the comet does not approrb Closing velocities for the low injection
velocity launch period are all about change this velocity through trajectory selection. The miss distance can
fluctuate considerably but is generally fluctuate considerably but is generally
in the order of 500,000 miles. Brooks (2) is an excellent target
in 1973 in in 1973 in terms of injection velocity;
however, the flight times are a minimum of 160 days and a maximum of 220 days. The transmission distance
of 120 million miles is also large. of 120 million miles is also large.
This distance is largely the result of
closer than 0.76 AU of the earth's
Closing velocities for the low injection in the order of 500,000 miles.

Injection Velocity Contcurs and
litude: 177 nmi$)$
$4-50$

Closing Velocity Contours

Miss Distance Resulting From
Uncorrected Errors at Injection

Injection Velocity Contours and
Transmission Distance at Arrival
(Injection Altitude: 177 nmi)

Path of the Comet Rotated
Into the Ecliptic

Miss Distance Resulting From
Uncorrected Errors at Injection

Closing Velocity Contours

$$
\begin{aligned}
& \text { FAYE } \\
& \text { Faye will be a possible target in } \\
& \text { 1969 but a rather poor target in } 1974 \text {. } \\
& \text { In } 1969, \text { with } 40,000 \text { fps, there is } \\
& \text { almosta two month launch window } \\
& \text { and flight times can be as low as } 150 \\
& \text { days. The transmission distance is } \\
& \text { in the order of } 90 \text { million miles which } \\
& \text { is not unreasonable. During a June or } \\
& \text { July launch, the closing velocities } \\
& \text { will be in the order of } 40,000-7,000 \\
& \text { fps. The miss can be less than } 1.5 \\
& \text { million nautical miles. Since the } \\
& \text { inclination is not great, miss coeffi- } \\
& \text { ents will not be large. }
\end{aligned}
$$

Closing Velocity Contours

Miss Distance Resulting From
Uncorrected Errors at Injection

Arend is not a good target in either 1967 or 1975. For the 1975 trajectories, a minimum
velocity of $40,000 \mathrm{fps}$ is associated with the

 distances are about 190 million miles, which is of interest are large, about 60,000 fps. For long flight times, the closing velocity can be as little as $30,000 \mathrm{fps}$ for a March launch which allows the vehicle to fly in the plane of the be

 n
n
\vdots

Closing Velocity Contours

Miss Distance Resulting From
Uncorrected Errors at Injection.

Miss Distance Resulting From
Uncorrected Errors at Injection

Schaumasse does not present a
particularly good target in either 1968 or 1976. As can be seen, in 1968 the
flight times are all very long, in the order of 320 to 420 days, even though the injection velocity is not large,
39,000 fps. For these flight times, the transmission distance is also very long, about 170 million miles. The 40,000 to $70,000 \mathrm{fps}$. In addition to the other difficulties presented by this
set of errors can be very large, between pould present substantial midcourse requirements even though the miss
coefficients might be very sensitive.

Injection Velocity Contours and
Transmission Distance at Arrival

$$
\begin{aligned}
& \text { Tuttle is a possible candidate } \\
& \text { during } 1967 \text { and the injection velocities } \\
& \text { are quite nominal. Moreover, the } \\
& \text { flight time from an injection velocity } \\
& \text { of } 40,000 \text { fps can be as small as } 75 \\
& \text { days. The launch window is in the } \\
& \text { order of } 4 \text { months. However, Tuttle } \\
& \text { is inclined by } 54.7 \text { degrees and is } \\
& \text { quite eccentric, } 0.821 \text {. The sharp } \\
& \text { inclination has the effect of making } \\
& \text { the transmission distance a minimum } \\
& \text { of } 20 \text { million miles even though peri- } \\
& \text { helion is almost at the earth's orbit. } \\
& \text { In addition, as shown on the closing } \\
& \text { velocity figure, the minimum closing } \\
& \text { velocities are in the order of lo0, } 000 \\
& \text { fps. Again, although the miss distances } \\
& \text { can be kept fairly small in certain areas, } \\
& \text { the miss coefficients will be extremely } \\
& \text { large. }
\end{aligned}
$$

Miss Distance Resulting From
Uncorrected Errors at Injection

V. A POSSIBLE COMET MISSION

STL has analyzed a specific mission to the comet Encke. Encke was selected because the injection velocities are reasonable and because it is the most well known of all the comets and, hence, its orbit has been determined accurately. Although the discussion here is merely intended to indicate the feasibility of such a mission, STL's extensive work in related fields, and especially in the study of interplanetary probes, indicates that the mission could be carried out in the very near future, if desired.

The most effective means for achieving long term stabilization with minimum weight is with a spinning spacecraft. The simplest way of getting antenna gain with a spinning spacecraft is by using a narrowed 360° antenna beamwidth which is oriented so that the earth is in the beam. Again, the simplest way of maintaining thermal control and maximizing power from the sun with the spinning spacecraft is to place the spacecraft in space such that a specific area of the spacecraft sees the sun continuously. The method presented here permits both of the se objectives to be achieved.

The comet intercept spacecraft is designed to maintain an essentially constant attitude with respect to the sun and the earth. The constant attitude with respect to the sun simplifies the thermal control and power supply system, and the constant attitude with respect to the earth allows 13 db of antenna gain which greatly reduces the transmission power requirements. Although this concept was originally proposed for use with spacecraft which can be placed in the plane of the ecliptic, it can also be used for missions such as this comet mission.

The spacecraft is injected into its trajectory to the comet. After separation from the third stage, the spinning spacecraft is then reoriented in two steps (see Figure 5-1). The first step aligns the spacecraft perpendicular to a line from the sun. This step is performed by using simple sun sensors which get signals from the sun and cause a gas jet to fire a small portion of each spacecraft revolution, which torques the spacecraft. Two sets of sun sensors are used for signals from the sun and delay circuitry insures the correct firing time during each revolution. When the signal from the sun has been nulled at each sensor, the spacecraft is then perpendicular to

Figure 5-1. Reorientation Maneuvers for Mission to Encke, 1964
a radial line from the sun. During step 2 the jet is again fired with a different delay causing the spin axis to rotate in the plane perpendicular to the sun line. This rotation is continued until the fan beam of the antenna is centered on the earth. The centering is determined on the ground from the magnitude of the signal received. In general, since transfer trajectories may be substantially out of the plane of the ecliptic, the angle between the spacecraft's plane and the earth line changes. Therefore, step 2 will need to be repeated from time to time. For the Encke trajectory proposed, the maximum total precession will be less than 90° so that gas consumption will be small. Of course, for this trajectory, it would be possible to use simply a parabola rather than a fan beam and keep that parabola going toward the earth after the spacecraft is in its trajectory without affecting power or thermal control. However, to simplify the spacecraft to make it applicable for all comet missions, a fan-beam antenna is used.

The booster assumed is an Atlas-Agena D with a solid propellant third stage whose performance is shown in Figure 5-2.*

Figure 5-2. Payload Performance of Atlas/Agena/Solid Propellant Third Stage Vehicle

As can be seen in this curve, the vehicle can inject 600 pounds to $42,000 \mathrm{fps}$, 500 pounds to $43,200 \mathrm{fps}$, and 450 pounds to about $44,000 \mathrm{fps}$. We can compare this with the injection velocity contours for comet Encke shown in Section IV to determine what our capabilities are. The region of

[^2]interest is clearly in the $42,000 \mathrm{fps}$ contours for the short flight times of 100-150 days. As we can see, this gives us a launch window from about February 18 to April 18. Such a launch window is more than adequate since, as pointed out earlier, we can expect to sight the comet more than 200 days before launch time. A 6 -month interval is clearly more than satisfactory for determining Encke's orbit to the accuracy required and allows a considerable amount of time for any unexpected problems arising in the sighting, in the orbit determination, or in the actual launch preparation.

The proposed comet probe is shown in Figure 5-3. It is a simple spin-stabilized spacecraft evolved from STL's Explorer VI and Pioneer V spacecraft and is essentially a modification of STL's recent Pioneer spacecraft developed in a study for NASA, Ames Research Center. The spacecraft is shown mounted on the ABL 258 solid rocket motor. The ABL 258 is mounted on a standard spin table (the one shown is the Douglas ThorDelta spin table) which is attached to the Agena. Eight small solid rocket motors are mounted to the spin table and, when ignited, spin the third stage up to 150 rpm to control the thrust alignment of the third stage. A conical adapter supports the ABL 258 with a V-clamp for separation. The separation force is provided by three matched and oriented springs located inside the nozzle cone which minimizes tip-off problems. An exit clearance of 15° from the interstage is provided for the nozzle.

The spacecraft is supported on the $A B L 258$ by a cylindrical interstage attached to the upper end of the ABL 258. The separation force between the third stage and the spacecraft is also provided by three matched, oriented springs mounted as close together as possible, again to minimize tip-off. The separation force is exerted through a cylindrical section surrounding the nozzle which is also used as a heat shield for the nozzle during flight. Again, a 15° exit clearance is provided for the spacecraft nozzle. A standard yo ball spin mechanism will be used on the third stage to insure separation.

The spacecraft itself consists essentially of a cylindrical outer shell upon which the solar cells are mounted, a central equipment mounting platform which is attached to the shell and to a hydrazine tank in the center, and a cylindrical support structure around the engine and attached to the

inner edge of the central platform and the hydrazine tank mounting structure. An additional shelf area is provided above the central equipment mounting platform for additional equipment. An 18-element Franklin array antenna is mounted at the top of the hydrazine tank and supported by the metal cover of the spacecraft. At the top of the high-gain antenna, an omnidirectional antenna is also mounted. Beneath the main platform a set of bimetallically actuated thermal control louvers are mounted to permit excess heat to be radiated into the spacecraft. During low power portions of the duty cycle, the louvers close automatically to maintain the internal environment at a satisfactory temperature.

The hydrazine monopropellant system is used for midcourse guidance corrections and terminal corrections. The nozzle of this system is mounted at the bottom of the spacecraft along with the high-pressure nitrogen gas bottles which carry 13.2 pounds of $4,000-$ psi nitrogen. This gas is not only used for propellant tank pressurization but is also used for the reorientation system which torques the spinning spacecraft into any desired attitude. The nitrogen engine is a 4-start, 20 -pound thrust unit and is sized to supply $2,500 \mathrm{fps}$ correction capability. The reorientation system, with a 3-pound thrust nozzle located near the propulsion system nozzle, can turn the spacecraft through a minimum of 1440°. A yo ball de-spin mechanism is mounted around the outside of the nozzle area and is used in the vicinity of the comet to reduce the spacecraft spin rate to 1 rpm in order to take the TV picture of the comet.

The main equipment shelf carries the high-power equipment and the batteries since they require the most careful thermal control. The upper shelf area, if required, will carry the low-power items such as experiments, etc. The entire compartment, including the top cover, is thermally insulated to insure the proper internal temperature. Forty pounds of batteries are mounted in a ring on the main equipment compartment. The solar array mounted on the outside of the shelf consists of 32 modules, each 37.67×3.671 in., arranged side by side around the cylindrical surface. The array has 18,900 cells which produce 142 watts at 1 AU from the sun and 63 watts at 1.5 AU from the sun. The spin stabilization of the spacecraft is assured since the ratio of roll-to-pitch moment of inertia is a minimum value of 1.2. The spacecraft and third stage are surrounded by the OGO nimbus fairing during the aerodynamic phase of the launch.

A. MISSION PROFILE

The spacecraft will be launched from Cape Canaveral by the AtlasAgena ABL 258 booster vehicle and placed into a 100 nmi coasting orbit where it coasts until the proper time for injection into the trajectory which will take it to the comet intercept. At the end of the orbital coast period, the Agena will restart, burn, and shut down; the third stage and spacecraft will be spun up by the spin table, and the third stage will be ignited. At the end of the third stage burning, the spacecraft will be separated and coast on its way to intercept. After separation, a yo ball de-spin mechanism will pull the third stage away to prevent it from impacting the spacecraft should there by any residual chuffing.

Spacecraft commands during powered flight will be handled internally. Soon after separation the spacecraft will begin the first step in its reorientation maneuver to insure good thermal control and adequate power supply. The spacecraft will be tracked by the DSIF station at Johannesberg and possibly at Woomera using the omnidirectional antenna for both reception and transmission. Tracking will continue for 5-7 days, at which time the errors accumulated at burnout will be carefully evaluated and the direction and magnitude of the midcourse correction will be determined. At this point the second step in the reorientation maneuver will be performed to determine the attitude of the spacecraft. Once the attitude of the spacecraft is determined, which should be good to $\pm 1^{\circ}$, the spacecraft will then be torqued in an open-loop mode using an on-board counter which is commanded from the ground. The spacecraft will then be torqued into an arbitrary direction which will place the spacecraft spin axis perpendicular to the critical plane. At this time, the spacecraft will be commanded to fire the midcourse propulsion engine for proper duration to remove the errors at injection. The uncorrected miss at intercept for the boost configuration assumed here will be in the order of $100,000 \mathrm{nmi}, 3 \sigma$. After the midcourse correction, the error ellipse at intercept should be reduced to the order of 500 nmi . Upon completion of the midcourse correction, the spacecraft will go through its reorientation maneuver and come back to the nominal attitude perpendicular to the sun and with the fan-beam antenna on the earth.

The actual trajectory studied is shown in Figures 5-4, a, b, and c, and 5-5 for all three axes. As can be seen from the se figures, the spacecraft is launched from the earth with a beta somewhat less than 90° and an inclination of about 12°, which is almost the exact inclination of the comet orbit itself. The spacecraft first moves outside the earth's orbit slightly, but at the time of impact it has recrossed the earth's orbit and is about 1 AU from the sun and about 20 million nmi from the earth, largely beneath the earth. This trajectory is an excellent one from all practical points of view since injection velocities are reasonable and only used to take account of the inclination of the comet; the flight time is short; the transmission distance at intercept is excellent: and the solar power, as well as thermal control, are considerably simplified since the spacecraft is only about 1 AU from the sun. At intercept, since the spacecraft is south of the earth, the ground antennas at Woomera and Goldstone can be used, but the antenna at Goldstone will not be useful.

As described in Section IV, the combination of spacecraft injection accuracy and comet orbit determination will result in injection exrors in the order of 500,000 miles. The first midcourse correction should reduce the overall error to less than 10,000 miles. However, sufficient propellant is carried in the spacecraft to allow a correction near the comet of 2500 fps . If this correction is made 10 days before intercept, the spacecraft can be moved 300,000 miles. This capability can therefore be used to refine the spacecraft trajectory using about 100 days of both comet and spacecraft tracking data. However, since it is not expected that a correction of this magnitude will be necessary, this propulsion capability can also be used to change the velocity of the spacecraft with respect to the comet during intercept if desired, either to increase the closing velocity or to decrease it.

At intercept, since an important experiment is to take a TV picture of the nucleus, it will be necessary to slow down the spin rate of the spacecraft to give adequate resolution. The method proposed is to use yo ball de-spin mechanisms, attached around the propulsion nozzle, which have been sized to slow down the spacecraft to 1 rpm . At this speed the resolution of the spacecraft speed will be just adequate. However, an inertial wheel system has also been considered. Such a wheel, which

Figure 5-4a. Earth, Comet, and Transfer Orbits in the $\mathrm{X}-\mathrm{Y}$ Plane of the Ecliptic

Figure 5-4b. Earth, Comet, and Transfer Orbits in the $\mathrm{X}-\mathrm{Z}$ Plane of the Ecliptic

Figure 5-4c. Earth, Comet, and Transfer Orbits in the $\mathrm{Y}-\mathrm{Z}$ Plane of the Ecliptic

Figure 5-5. Three-Dimensional Composite of Earth, Comet, and Transfer Orbits
would need to weigh about 10 pounds and revolve at about $6,000 \mathrm{rpm}$, could be used to absorb the angular momentum of the spacecraft and slow down its spin rate almost to zero. In addition, when the wheel is turned off, the energy will go back into the spacecraft and bring it up to its initial spin rate, the reby insuring as long a life of the spacecraft as the electronic components will allow. Thus, after intercept the spacecraft can continue into interplanetary space making additional useful measurements of the environment it encounters.

B. SPACECRAFT

1. Structure

The comet spacecraft (Figure $5-3$) is a spin-stabilized vehicle which has evolved from STL experience on Explorer VI and Pioneer V. The structural concept directly and logically satisfies the major design criteria of providing spinning stability and the appropriate strength and rigidity to withstand the steady state and dynamic loads of the boost phase environment.

Spin stabilization is achieved by having a larger moment of inertia about the spin axis than any other spacecraft axis. This ratio is increased by mounting experiments and subsystem equipment near the periphery of the spacecraft on two ring-shaped equipment shelves. The cylindrical shell which supports the solar modules is fastened to the rim of the platform.

The basic structural load path extends from the attachment to the ABL 258 engine through a short adapter to a series of structures which support the equipment: shelf. The central tank is supported through a continuation of the adapter. The platform carries the load imposed by the weight of the outer shell and the solar array. The inside of the louver platform is attached to the support structure around the central spherical hydrazine tank. The communications antenna mast is rooted to the hydrazine tank. Sideloads transmitted by the mast are taken out by the upper cover, which is removable for packaging accessibility.

The integrated platform hydrazine tank, cylindrical shell and cover provide a structure having inherently large torsional and lateral rigidity.

The direct load paths minimize structural weight. In this way, the STL structural design for Pioneer achieves ample structural strength and stiffness within the constraints of volume, solar-cell area, antenna length, dynamic responses, thermal environment, and weight. The primary structure of the comet spacecraft is designed for the primary loads during boost.

The interstage is a truncated conical shell fabricated from a ZK60A magnesium roll-ring forging. It serves to transfer all spacecraft loads from the equipment platform to the $A B L 258$ adapter. The interstage is attached to the ABL 258 adapter by a V-clamp band which is preloaded in hoop tension upon installation. The mating flanges of the interstage and the adapter each slope 45 degrees. The hoop tension load in the band supplies a wedging force which maintains a compressive load at the separation plane and the capability to carry boost-phase loads through the mating flanges. The spacecraft is separated by releasing the V-clamp band by means of an ordnance device which allows the compressed separation springs to impart a relative velocity between the spacecraft and the third stage. The V-clamp band is restrained from damaging contact with the spacecraft by means of restraining cables and structural shielding. Aluminum sand wich - center support platforms are used because they make it easy to locate equipment and also provide a flat, rigid, mounting surface for efficient thermal transfer of equipment heat.

The magnesium alloy cylindrical shell provides a mounting base for the solar-cell substrates. The shell is ring-stiffened at the base. The shell, together with beaded aluminim cover and the intermediate equipment platform, forms a rigid cylindrical box. The solar array consists of solar cells mounted on 25 beryllium alloy substrates. Each substrate is 32.56 inches long and 3.71 inches wide.

Beryllium is chosen because of its high modulus of elasticity and low density. The substrates are stiffened by integral longitudinal flanges and and are attached to the spacecraft shell by means of six threaded studs. The substrates carry only their own inertial loads and those of the attached solar cells.

To stabilize the vehicle during third-stage operation, the spacecraft and ABL 258 will be spun up on the Thor-Delta spin table prior to secondand third-stage separation. The angular velocity will be in the range of 150 rpm . This spin rate is high enough to provide sufficient stability during powered flight, and low enough so that the angular momentum needed to perform the reorientation maneuver is not excessive. The planned spin rate does not impose excessive structural loads on either the probe or the third stage.

On the basis of Explorer VI experience, the attitude tip-off at separation of spacecraft from third stage will be quite small, so that the spacecraft attitude error will also be about 3 degrees. Such errors are compatible with the mission requirements on third-stage velocity direction and on initial spacecraft attitude. The spacecraft will be separated from the burned-out third stage by means of the Douglas separation springs (Figure 5-3), imparting a differential velocity of about $6 \mathrm{ft} / \mathrm{sec}$. STL has used similar spring separation successfully on Pioneer V and Explorer VI. To insure that the third-stage case does not catch up and bump the spacecraft, separation of the spacecraft from the burned-out third stage will occur about 2 minutes after third-stage burnout, and be followed 2 seconds later by the deployment of a yo-type tumble device. The tumble device, proven on several Thor-Delta launches, consists of a weight attached to the end of a wire wound around the upper end of the third stage. The yo reduces the spin of the third stage to zero and changes its thrust direction drastically, eliminating the danger of bumping. The orientation maneuver, consisting of a series of step changes in spin-axis direction produced by timed impulses from gas jets, imparts a conical free precession or wobble. A wobble damper, consisting of a small angular tube partially filled with mercury mounted concentric with the spin axis of the probe, will damp this wobble. Flight test results from Explorer VI show that jet damping stabilizes the vehicle during third-stage burning. The damper will be designed to produce a negligible cone angle buildup during coast periods. Since the spin-axis moment of inertia of the probe is larger than its transverse axis inertia in the ratio 1.2, the attitude of the probe after reorientation will remain stable indefinitely except for small solar-pressure effects. Upper bound calculations indicate an attitude drift, due to solar pressure, of less than 1 degree in 6 months, which is acceptable.

2. Orientation Control

The spinning spacecraft is oriented by a cold gas torquing system so that the earth is in the pattern of the high-gain antenna. Simple sun sensors act as a reference for two axes, and the high-gain ante nna provides the third reference. The orientation control subsystem consists of a pneumatic assembly, four sun-sensor assembiies, and an electronics assembly. The subsystem is redundant, and failure of any single component does not prevent orientation or subsequently cause disorientation.

After staging, the first orientation step is completed automatically, pointing the spin axis to within ± 1 degree normal to the sunline. (The first step can also be initiated by a command.) Calculations of possible perturbations show that step 1 orientation will be maintained throughout the mission without further operation of the orientation control subsystem, although the subsystem will automatically orient if required.

The second orientation step orients the spacecraft such that the antenna is optimally aligned for maximum gain to the earth. This second step proceeds in three stages. After the first orientation step, the first stage of the second step is commanded. Upon reception of each command, the spacecraft is torqued through about 5 degrees at 0.1 degree per second and then automatically stops. Commands are given to align the antenna pattern parallel to the earth. The first stage is completed using knowledge of the nominal orbit injection parameters.

Next, the second phase of step 2 is commanded. Commands are sent until the maximum gain of the high-gain antenna pattern is realized. The spacecraft transmitter intensity is plotted at the ground station to determine when the spacecraft has rotated just past the maximum transmitter intensity, at which point the reorientation is stopped. The number of degrees (or steps) past the maximum gain is noted and a different command is sent to torque the spacecraft back to the maximum gain point. When the maximum gain point is passed, another command mode of small single firings in the same direction as the second command brings the earth back into the center of the pattern.

Because the commands initiate only small incremental steps, rather than a continuous movement requiring another command to stop, achievement of proper orientation is not jeopardized by a temporary communications interruption.

For either orientation step, the spin-stablized spacecraft is torqued at the proper time of rotation on a signal from the appropriate sun sensor, by a single fixed pneumatic gas jet, during 90 degrees of each spin revolution. Each sun sensor, which is a simple, shaded, on-off device incorporating complete electronic part redundancy, gives only "sun-present" information within its field of view. An "enabled" sun sensor will sense the sun through its rotational acceptance angle and will command the gas jet to fire a constant thrust of gas at a particular phase referenced to the probe-sun line, torquing the spacecraft in a direction normal to the spin axis. By using four sensors, the spacecraft may be torqued in either direction about two orthogonal axes normal to the spin axis. A fifth sensor is used to produce indexing (reference) pulses for the telemetry and the orientation control command logic.

3. Thermal Control

The thermal-control system maintains the required internal temperature $\left(60^{\circ} \pm 5^{\circ}\right)$, and avoids local overheating well under all operating conditions from 0.5 to 2 AU . An active, insulated system, it uses louvers and actuators adapted from the OGO spacecraft, as well as insulation and thermal coatings.

The cylindrical equipment compartment is insulated against the entry of solar heat and the uncontrolled loss of internal power dissipation. A louvered radiator on the underside of the equipment mounting shelf dumps internal power dissipation (plus any heat leakage) into space. Surface coatings, conductive paths, and a carefully planned distribution of heat sources complete the thermal-control subsystem.

Performance analysis of a nonisothermal spacecraft having an active insulated, control system is summarized below.

Equipment Mounting Plate Temperature (${ }^{\circ} \mathrm{F}$)

	$\frac{R=0.8 \mathrm{AU}}{65}$		$R=1.0 \mathrm{AU}$
High Power Mode	62		$R=1.2 \mathrm{AU}$
Low Power Mode	57	55	53

With improved insulation and minimized conductive paths to portions of the spacecraft exposed to solar flux, internal temperatures can be held to tolerance so that the spacecraft can go to 0.3 AU of the sun.

The equipment compartment is insulated from the solar array by multiple-layer reflective insulation. Such insulation also covers the top of the compartment, that portion of the bottom not given to louvered radiating area, and the part of the antenna mast that passes through the compartment. Wherever possible, structural connections are made with fiberglass. All interior surfaces of the compartment are made thermally "black" for radiative thermal coupling to the equipment shelf. The equipment is arranged for as uniform a distribution of heat sources as is possible within other constraints, and without producing hot spots. The louvers, actuated by individual bimetallic springs thermally coupled to the mounting shelf, are center-balanced and extend radially from the center to minimize spin effects.

Each louver spring is externally insulated to make it responsive only to the local plate temperature. The louvers will have no effect on the magnetometer.

In the fully open position, the highly reflective and specular louver surfaces minimize infrared radiation from them back to the mounting plate. They are also made thermally insulating by five layers of reflective Mylar between the metal louver faces, so that they are closed as a result of low compartment temperature.

The radiating lower surface of the equipment mounting plate is coated with a stable epoxy-based paint such as Cat-a-lac or is anodized, providing a hemispherical infrared emittance of 0.85 . The inner surface of that part of the solar array extending below the plane of the louvers is covered by a multiple layer of reflective insulation having an outer layer of 3 mil Mylar,
with the aluminized side facing the inside of the cylinder. The smooth, flat, specular surface thus afforded insures maximum radiation away from the mounting plate.

Because the solar array is insulated from the spacecraft, array temperature in nominal flight depend solely on incident energy and array thermal radiation properties. Solar array temperatures listed below are acceptable.

Temperatures $\left({ }^{\circ} \mathrm{F}\right)$

	$R=0.8 \mathrm{AU}$	$\mathrm{R}=1.0 \mathrm{AU}$	$\mathrm{R}=1.2 \mathrm{AU}$	
Maximum Power Con-	138		73	25
\quad sumptior:	144	76	24	
High Power Mode	147	80	30	

A coating of low a/t ratio (solar absorptance to infrared emittance) in the area between the cells reduces the se temperatures by as much as $20^{\circ} \mathrm{F}$.

4. Data Subsystem

The data subsystem will store and convert engineering and scientific data to a form suitable for transmission to earth.

The data system consists of two parts: a digital telemetry unit (DTU) and a digital storage unit (SU). Figure 5-6 illustrates the fundamentally simple interrelationships between these units. The DTU, shown in Figure 5-6 consists of a clock, a programmer, a main multiplexer and submiltuplexer gates, an analog-to-digital (A/D) converter, a sun counter (for special correlation of input data and determination of spacecraft spin rate), a combiner, and a biphase modulator. The DSU consists of a max/min detector and data storage. Two real-time modes of operation can be provided: a scientific mode, containing 28 prime words and 64 submultiplexed words; and an engineering mode, containing the 64 submultiplexed words only. Seven possible bit rates between 512 and 1 cps can be used in either mode. During periods when the ground stations are not available the DSU, which stores 30,000 bits, permits two modes of operation.

Figure 5-6. Data Subsystem (30, 000 Bits Storage)

In one mode (max/min), maximum and minimum values of 20 measurements can be obtained together with their time of occurrence during each of 16 equal periods of time spanning up to an 18 -hour interval. In the other mode (sampled data), each measurement in the scientific format may be recorded 64 times during the transmitter off-time, providing a maximum time between closest samples of 17 minutes during an 18-hour shutdown. A flexible format which permits the sampling rates between experiments to be altered by command will be a part of the programmer. Similarly, a fast scan mode permits rapid collection and storage of a large number of closely spaced samples during a solar flare or any other time a fine structure analysis is included. These are initiated by command from the earth or by some output or combination of outputs from the experiments themselves.
5. Communication Subsystem

The communication subsystem provides: 1) an efficient communication channel for transmission of data from the spacecraft to the DSIF to a range of at least 100 million nmi, 2) a communication channel to effect the orientation maneuver and to command the subsystems for maximum performance under conditions of both normal and failure mode operation, and 3) tracking information.

A block diagram of the subsystem is shown in Figure 5-7. The subsystem consists of high-gain and omnidirectional antennas, redundant 2300 mc receivers, redundant decoders, redundant 2 -level 25 and 10 watt TWT power amplifiers, and a transmitter driver. Either receiver and either power amplifier can be connected on command to either antenna, thus providing full cross-strapping capability. The two receivers operate on slightly different frequencies so that entry is accomplished by frequency address. The demodulated command output of the selected receiver is connected to both decoders and selection of the desired decoder is accomplished by command address. In the noncoherent mode, the transmitter driver can, by command choice, operate either from a separate crystal oscillator or from the rest frequency of either receiver. The TWT power amplifiers can operate at either 25 - or 10 -watt power levels. Through the use of careful component selection and redundancy, the subsystem has a 0.967 reliability of operating for 6 months in a space environment.
a. Command (Up-Link) Power Budget. The command link provides at 50 million nmi, a 5.7 db performance margin with the low-gain antenna and a margin of 18.7 db with the righ-gain antenna. These margins are conservative since they are predicated on a 10^{-5} bit error rate, and with the command logic used, the corresponding command error rate is 6×10^{-10}. The spacecraft can be commanded out to 325 million nmi.
b. Telemetry and Tracking (Down-Link) Power Budget. The telemetry power budget allows transmission over 150 million nmi. At this range the required bit (16 bps) and bit error $\left(10^{-3}\right)$ rates are obtained with a $3-\mathrm{db}$ performance margin.

Figure 5-7. Communication System Pictorial Block Diagram.

The 512 bps rate can be used out to 20 million nmi , the 64 bps rate out to 60 million nmi, and the 8 bps rate to 150 million nmi. At 150 million nmi, the carrier signal to noise ratio in the DSIF receiver (noise bandwidth 12 cps) is 6 db ; thus, it is probable that data transmission can be maintained at reduced bit rates to a range of about 212 million nmi, and complete loss of phase lock will probably occur at about 306 million nmi. If the DSIF receiver noise bandwidth is reduced below the 12 cps value, a longer range can be expected.
c. Antenna System. The antenna system consists of: l) an omnidirectional antenna, 2) a high-gain antenna, 3) two channel separation filters (diplexers), and 4) five coaxial latching switches. The omnidirectional antenna provides coverage prior to spacecraft orientation. The high-gain antenna provides a narrow beam coverage (5 degrees beamwidth to the 3 db points) with a gain of 13 db . The diplexers provide sufficient isolation for simultaneous operation of transmitters and receivers on the same antenna. Coaxial switches interconnect and select among receivers, transmitters, and antennas.

A smaller version of the high-gain antenna shown in Figure 5-8 is a modified Franklin array of skirted dipoles consisting of nine driven elements and nine parasitic elements. The omnidirectional antenna, a discone, is mounted at the top of the array and excited coaxially through the high-gain array. The channel separation filters (diplexers) consist of two bandpass filters to isolate the transmitted and received frequencies, as well as for preselection and transmitter spurious radiation rejection.

Figure 5-8. Ten-Element Franklin Array

Fail-safe coaxial switches are used to select the desired receivertransmitter antenna combination. These switches feature a latching mechanism for positive switching, and require electrical power (6 watts) only during the switching phase (20 milliseconds).
d. Receiver. The spacecraft command receiver provides a coherent drive to the telemetry transmitter permitting a precise measurement of two-way doppler shift; and, secondly, efficiently demodulates the command information and provides a suitable output to the command decoder. A block diagram of the receiver is shown in Figure 5-9.

Figure 5-9. Spacecraft Command Receiver.
The transmitter is shown on the abbreviated block diagram (Figure 5-10). The 115 mc drive is obtained from the receiver assembly at a 2 -milliwatt level and is amplified and modulated in a solid-state driver which produces an output power of 500 milliwatts. This signal is applied to the X20 varactor multiplier which supplies 50 milliwatts output at 2295 mc to drive the TWT final amplifier. For missions going away from the sun, two operating modes are included in the final design amplifier for extra reliability in the event of solar-array degradation beyond normal expectations. Output powers of 25 and 10 watts are available. The output of the varactor driver is connected directly to the antenna prior to the orientation maneuver so as
to minimize battery drain and avoid activation of the high voltage supplies at the critical altitude. The driver weighs 12 ounces, occupies 15 cubic inches, and consumes 1 watt. A single TWT with bracketry weighs 14 ounces and occupies 15 cubic inches.

Figure 5-10. Transmitter Block Diagram.
e. Command Decoder. The command system, with a capability of 64 discrete commands, makes use of the existing Ranger command encoding equipment located at all DSIF stations and the AF 823 command decoder. Utilizing an 18-bit message which FSK's a 150 -cps subcarrier, the following functions are provided: 1) selection of one of the two redundant decoders, 2) selection of the spacecraft, 3) selection of one the 64 discrete commands using bit-by-bit parity check, thus providing ahigh immunity to false commands, 4) command execute or dump as verified by the ground station transmitter monitor.

The decoder accepts the command signal from either receiver and demodulates the digital message. The output consists of appropriate pulses to drive an 8×8 silicon controlled rectifier matrix located in the command distribution unit. A block diagram is shown in Figure 5-11.

Figure 5-11. Command Decoder Block Diagram

6. Electrical Power Subsystem

The electrical subsystem provides electrical power from a battery prior to solar-array orientation; converts solar energy to electrical energy; distributes electrical signals and commands; interconnects the various spacecraft equipment; converts primary electrical power to regulated voltages; and provides power fault protection.

The subsystem consists of a solar array, batteries, converterregulators, the CDU, and cabling. The solar array is assembled from modules similar to those STL is using for OGO. The batteries, cable assembly components, converters, and command distribution unit are all standard items.

The chief features of the subsystem are: l) it affords ample power margins over system loads; 2) gives high reliability by providing protection against effects of failures either in loads or power-subsystem components; 3) after launch, the batteries represent only a backup mode; and 4) parallel strings of solar cells ensure reliability through redundancy.

Figure 5-12 is a block diagram of the electrical subsystem. Table 5-1 gives the power and voltage requirements. The battery is used for system power (it load-shares with power available from the array) only until the solar-array output exceeds the battery voltage. It will then be commanded off until required either for a mission far from the sun or for high loads in the vicinity of the comet. Two redundant converters-onc for each power

Figure 5-12. Electrical Subsystem Block Diagram
amplifier and one containing redundant converters for all other loads_are provided. The CDU serves as a central control point for all distribution, power control, command-control signals via the command matrix, undervoltage relay, and associated control relays.

An under-voltage relay removes the experiments and power amplifiers from the unregulated bus in the event of a fault or if the solar array output should degrade catastrophically. This removal of loads from the solar array allows for additional fault-clearing capacity without interrupting the
ground-spacecraft command capability. The under-voltage relay can be bypassed by ground command, and equipment turned off by the under-voltage relay can be turned on only by ground command.

Even if the array should degrade more than predicted, the transmitter load can be commanded to a lower power, and the capability for satisfactory communication would still exist.

Table 5-1. Power Loads

Continuous Loads

Receivers (2)
2. 5 watts $\quad-16$ volts

Decoders (2)
0.9 watts $\quad 10$ volts

Driver

1. 0 watts $\quad-16$ volts

DTU $\quad 1.4$ watts $\quad-16,-6,10,16,-16$ volts
5.8 watts

Bus load (average converter efficiency) 9.4 watts

Experiments (bus)
11.0 watts

DSU (bus)
0.3 watts

CDU (bus)
0.5 watts
21.2 watts

RF Amplifier	25	watt output	$-1020,-520,60$ 5.4 volts
	10	watts at bus	
		Total	121.2 watts
	with	10 watt output-	71.2 watts

Figure 5-13 shows the solar array power capability versus array voltage for the parameter of distance from the sun, and the range voltages for these conditions. The I-V curves of array output capability were calculated for the appropriate solar energy intensity levels and the calculated solar cell temperatures. Table 5-2 gives the detailed assumptions used in arriving at the final array output.

Figure 5-13. Solar Array Power Capability Versus Array Voltage.

Table 5-2. Solar Array Performance Factors
Transmission factor (including losses in cover glass,
$=0.92$
ultraviolet filter, and adhesive, and the reflection losses due to the curvature of the array surface)

Radiation degradation factor (solar protons, 6 months) $=0.95$
Diode loss factor
$=0.98$
Impedance mismatch factor (mismatch of shingles and
$=0.96$
strings resulting in less than maximum power transfer)
Product
0.822

Solar Constant:

> at $0.8 \mathrm{AU}: \quad 219 \mathrm{mw} / \mathrm{cm}^{2}$
> at $1.0 \mathrm{AU}: 140 \mathrm{mw} / \mathrm{cm}^{2}$
> at $1.2 \mathrm{AU}: 97.2 \mathrm{mw} / \mathrm{cm}^{2}$
> at $1.5 \mathrm{AU}: \quad 62 \mathrm{mw} / \mathrm{cm}^{2}$

Equilibrium temperature and temperature factor:
Cover glass with blue filter
at 0.8 AU
$138^{\circ} \mathrm{F}$
0.832
at 1.0 AU
$73^{\circ} \mathrm{F}$
l. 027
at 1.2 AU
$25^{\circ} \mathrm{F}$

1. 17
at 1.5 AU
$-39^{\circ} \mathrm{F}$
Array output: (cell area $=1.8 \mathrm{~cm}^{2}$) Il percent efficiency cell. Only $1 / \pi$ of all of circular array effectively normal to incident radiation. Then

Array Output at Bus after 6 months	9900* Cells
at 0.8 AU	200 watts
at 1.0 AU	142 watts
at 1.2 AU	103 watts
at 1.5 AU	63 watts

* The possible 10,000 cells are reduced to 9900 because of sensor windows in the array surface.

7. Midcourse and Terminal Correction Engine

A compact and efficient spacecraft injection engine, designed, built and used by STL in the Able-5 moon probe, will be used for midcourse trajectory adjustment (vernier velocity) in either direction along the spin axis prior to reaching the vicinity of the comet. Ignition is commanded by radio from the ground. Hydrazine is used as the monopropeilant. Two nozzles, one at each end of the spacecraft along the spin axis, are fed from a single hydrazine reservoir which is pressure-fed by nitrogen bottles. The engine has a capability of six starts.

The thrust level of the engine is nominally 18.5 pounds. The measured specific impulse is 230 seconds. The thrust chamber and nozzle are uncooled and have been operated from periods in excess of 30 minutes. The nozzle has an expansion ratio of 50:1.

The total weight of the urit is approximately 40 pounds; tankage is provided to carry a maximum of 140 pounds of hydrazine. The system furtishes a total of about 25, $000 \mathrm{lb}-\mathrm{sec}$ of impulse. The firings are completely independent and may be performed at any time or in any sequence required.

The rocket uses a regulated pressure system consisting of four 200-psia nitrogen spheres which also supply the reorientation subsystem, a pressure regulator set at 250 psia, and six explosive-actuated valves.

8. Spacecraft Weights ard Mass Properties

Table 5-3 itemizes the weight of the comet spacecraft and associated booster weights.

Table 5-3. Spacecraft Weights and Mass Properties

Structure	Weight, Lb.	
Skin		$\underline{46.0}$
Rings (3)	8.0	
Top Cover Plate	6.0	
Artenna Supports and Internal Structure	3.0	
Equipment Platforms and Mounting Brackets 20.0		

Table 5-3. Spacecraft Weights and Mass Properties (Continued)

Adapter Ring Cylinder and Flanges	5.0
Damper	1.0
Miscellaneous Hardware	2.0

Communications
Coax Switches (5)
Diplexer (2)
Receivers (2)
Command Decoders (2)
Digital Telemetry Unit
Data Storage Unit
Power Amplifiers (2)
Driver
Antennas (Includes 24" ext.)
Electrical System
D-C to D-C Converter No. 1 (2)
D-C to D-C Converter TWT No. 2 (2)
Command Distribution Unit
Batteries
Cabling and Connectors
Orientation System
Sun Sensors
Logic (0.8 lb in CDU)
Pressure-Transducers and Switch
Pressure Regulator
Plumbing and Supports
Valves
Propulsion
Motor ard Plumbing
Tanks \& N_{2} Gas
N_{2} Gas
Hydrazine
Temperature Control
Louvers and Structure
Linkage and Miscellaneous Insulation
Solar Cell Array
Cells, Class, Wire Adhesives, Substrate

Balance Weights (Internal)	10.0
Total Spacecraft Weight Less Contingency	
and Experiments	$\underline{368.9}$
Contingency (5%)	$\underline{18.0}$

Table 5-3. Spacecraft Weights and Mass Properties (Continued)

		Weight, Lb.
Total Spacecraft Weight With Contingency,		$\underline{386.9}$
Less Experiments		$\underline{46.0}$
Experiment Package		
TV	10.0	
Micrometeorite	8.0	
Plasma Probe	13.0	
Magnetometer	8.0	
Mass Spectrometer		
Total Separable Spacecraft Weight With		432.9
Contingency and Experiments		

Note: Douglas interstage of 9.5 lb is not shown as part of separable spacecraft.

9. Interaction with Space Environment

The physical enviromment that the comet spacecraft will encounter in space has been examined for influence on performance. It is clear that the deleterious effects of the space environment have been overcome by prudent design and selection of materials and components.

The comet spacecraft will be subjected to four major environmental conditions. First is the solar heat flux, which has been controlled by judicious thermal-control materials design. Second is the ultrahigh vacuum of outer space, with its resultant material sublimation and reduction in contact lubricity between friction surfaces. These effects have been negated by a design which isolates lubrication from space environment, and the selection of surfaces and lubricants known to be compatible with the spatial environment. For example, of the metallic structural materials used (aluminum alloys, magnesium, stainless steel and beryllium), magnesium has the highest vapor pressure, yet the loss of magnesium over a l-year period is negligible. The fiberglass epoxy laminate, a nonmetallic structural material, will incur some weight loss. This will produce a minor reduction in structural strength, which has been allowed for. The louver bearing assembly employs solid lubricants developed for the OGO program. This
assembly has been laboratory-tested in vacuum and shown to maintain the required frictional conditions. Third is the problem of meteorite and micrometeorite impact and penetration. However, an estimate of this hazard, based on latest available data, indicates that the possibility of these particles disabling the spacecraft structure during its lifetime is extremely small. The fourth and most significant factor is that of chargedparticle radiation, particularly resulting from solar flares. Change in structural properties of both the metallic and nonmetallic components owing to radiation damage has been assessed as negligible. The Pioneer radiation dosages are several orders of magnitude below the threshold damage levels for any of the structural materials. Maximum structural loadings occur upon launch and orientation. Following the operational phases, demands on structural strength are minimal. Thus the minor cumulative effects on structural properties caused by vacuum and radiation are not threatening to the spacecraft.

COMET INTERCEPT STUDY

NASW-414

APPENDIXES

OTS PRICE

 asubsidiary of rhompson Romor woldridoelinc. ONESPACEPARK P REDONDOBEACH, CALIFORNIA

CONTENTS

A OUT LINE OF A CONTAMINATION EXPERIMENT
FOR STUDYING THE MAGNETIC STRUCTURE OF
A NATURAL COMET

B
ORBIT OF COMET ENCKE B-1
C SOME ASPECTS OF NUCLEAR WEAPON DETONATION IN A COMET C-1

COMET INTERCEPT STUDY

FINAL REPORT

NASw-414

$8668 \rightarrow 60.03-$ RU-000

APPENDIXES

28 MARCH 1963

SPACETECHNOLOGY LABORATORIES, INC. asubsidiary of thompson Ramo wooldridge lnc. ONESPACEPARK• REDONDOBEACH, CALIFORNIA

APPENDIX A

OUT LINE OF A CONT AMINATION EXPERIMENT FOR STUDYING THE MAGNETIC STRUCTURE OF A NATURAL COMET

The performance of experiments in a comet is fundamentally limited by the short time during which a probe may stay in the close neighborhood of the comet. The dynamical conditions of an encounter also are such that only a very small part of a comet can be directly probed at a given time. It is, therefore, of interest to investigate the possibility of contaminating the comet material with a trace substance, that may "ride" with the comet for several days, to an extent that it may be observed from the earth or from the probe itself. The purpose of this note is to suggest the general foundations for such an experiment and to show that the amount of contaminating substance needed is within the payload limitations existing today.

The reasons for believing that a magnetic field exists in the coma and the tail of a comet are varied (Alfvén 1957; Hoyle and Harwit 1962). The actual topology of the magnetic fields, as well as their strengths, is so far only conjectural, but in order to understand the multifarious phenomena observed in the structure and development of the comae and tails, nearly all recent investigators agree in believing that forces of magnetic origin play a fundamental role. Besides an inner magnetic field set up by the streaming motions of cometary ions, there must exist a boundary layer where the strength of the interplanetary magnetic field has been increased considerably (at least by an order of magnitude) by compression.

The essential idea of the suggested experiment is to make use of the cometary magnetic field to trap ions produced by solar photoionization of material released from a probe. The observation of solar radiation resonantly scattered by these ions would provide information related to the manner in which the ions are diffused throughout the comet and hence about the nature of the forces acting on them. The large-scale features of the cometary magnetic field, which is expected to have lines of force along the tail, could thus be studied over an interval of time much longer than the time during which direct magnetometer measures could be made. We propose to estimate the mass M of material to be released under the requirement that it is to be observed over
a given interval of time. Following Biermann, Luest and Schmidt (1961), we shall suppose that the material to be released is an alkali, Calcium, Strontium or Barium, in atomic form. The reason for choosing these atoms is that their first ionization potential is low, while their second is very high. At l AU from the sun, the lifetimes τ_{i} of these atoms against solar photoionization are 20,10 , and 2.7. minutes respectively, and at the low densities we shall be concerned that the ions formed remain in the singly ionized state and essentially in their lowest energy level, where they may scatter solar radiation in their resonance lines, which are at $\lambda \lambda 3933$ and 3968 A for Ca , $\lambda \lambda 4077$ and 4215 A for Sr , and $\lambda \lambda 4554$ and 4934 A for Ba . The probabilities for resonance scattering a_{s} of solar radiation at 1 AU from the sun are 0.9 , 0.3 and $0.15 \mathrm{sec}^{-1}$, respectively for the three ions in order of increasing mass (Biermann et al, 1961).

Let the nominal time of collision between probe and comet be t_{0}, and suppose the mass M is released effectively in atomic form at a time t_{1} such that $\tau_{i}<t_{o}-t_{1}$. If released with a smail relative velocity, the parent atoms and their ions will keep traveling along the same orbit as the probe, except that the released matter will expand nearly at a rate set by their rms thermal speed

$$
\begin{equation*}
v_{t}=\sqrt{\pi \mathrm{kT}} \frac{\mathrm{Am}_{\mathrm{H}}}{} \tag{1}
\end{equation*}
$$

where T is the temperature, k is Boltzmann constant, m_{H} is the mass of the hydrogen atom and A is the atomic weight. The temperature after their photoionization and thermalization has been estimated by Biermann et al (1961) at $2000^{\circ} \mathrm{K}$, and the corresponding values of V_{t} are $1.0,0.68$ and $0.54 \mathrm{~km} / \mathrm{sec}$, respectively for the three ions of mass 40,88 , and 137 . The use of equation (1) to estimate the expansion of the cloud is justified on the grounds that over a large fraction of the interval $t_{o}-t_{1}$ the kinetic mean free path will exceed the dimensions of the cloud. In this context it may also be mentioned that a sodium cloud ejected from the second Soviet cosmic rocket was observed from ground, from a distance of $135,000 \mathrm{~km}$, to expand at a mean rate of $1.3 \mathrm{~km} / \mathrm{sec}$ (Kachiyan, Kalloglyan, and Kazaryan, 1959). The expansion and motion of the ion cloud will be unaffected by interplanetary magnetic fields if its kinetic pressure exceeds the magnetic pressure, a situation which will be verified for the densities derived below, when the
magnetic field is of the order of 10^{-5} Gauss. The time of release, then, may be estimated assuming uniform expansion at a rate V_{t}. If the cloud is required to have linear dimensions L_{o} when it reaches the vicinity of the comet we then have:

$$
\begin{equation*}
t_{0}-t_{1}=\frac{L_{o}}{V_{t}} \tag{2}
\end{equation*}
$$

If the minimum detectable number of ions along the line of sight is $\mathrm{N}^{*}\left(\mathrm{~cm}^{-2}\right)$, at t_{o} we should have:

$$
\begin{equation*}
M=\frac{\pi}{6} L_{o}^{3} n\left(t_{o}\right) A m_{H}<\frac{\pi}{6} L_{o}^{2} \quad N * A m_{H} \tag{3}
\end{equation*}
$$

where $n(t)$ is the density (cm^{-3}). In order to have an idea of the numbers involved, let us take $L_{o}=2000 \mathrm{~km}$. At a distance $R=0.1 \mathrm{AU}$, the cloud would appear then to subtend an angle of $28 \mathrm{arc} / \mathrm{sec}$. From equation (2) then we obtain $t_{o}-t_{f}$ to be 35,50 and 60 minutes for the three substances. Adopting $\mathrm{N}^{*}=2 \times 10^{9} \mathrm{~cm}^{-2}$, an amount more than enough to be easily detectable, we find $M=2.8,6.1$ and 9.5 kg , respectively, and the number densities $n\left(t_{0}\right)$ are of the order of $10 \mathrm{~cm}^{-3}$. When the ion stream at these densities encounters the cometary magnetic field, assumed to be the strength $B=10^{-4}$ Gauss, in a transverse direction, and with a velocity V_{o} equal to the terminal velocity between comet and probe, the ions will gyrate with radii

$$
\begin{equation*}
r_{g}=A V_{o} \frac{m_{H^{c}}}{e B}=3 \mathrm{~A} \times 10^{7} \mathrm{~cm}, \tag{4}
\end{equation*}
$$

distance which is much smaller than the dimensions of the comet. Since the dynamic pressure of the stream also is smaller than the magnetic field pressure, it is seen that the ions will be indeed trapped in the comet, or in the region where the field is compressed to give rise to the coma and tail.

The development of the ionized alkali cloud following its capture by the comet will be set by diffusion and drift along the lines of force. Essentially it will thus expand only in one dimension, along the tail, with a speed nearly equal to V_{t}. If the line of sight is perpendicular to the tail, at a time t such that $t-t_{0}>t_{0}-t_{1}$, the number of atoms $N_{\perp}(t)$ in a column of unit cross section will be:

$$
\begin{equation*}
N \perp(t)=\frac{M}{A m_{H} L_{o} V_{t}\left(t-t_{o}\right)} \tag{5}
\end{equation*}
$$

If the comet, on the other hand, is observed along the line of sight, $N_{11}(t)$ would remain essentially constant, except for the fanning out of the lines of force and drift, but certainly would decrease more slowly than $N_{\perp}(t)$. Considering only the more unfavorable case, we require then that for a given time t_{m}, $N\left(t_{m}\right)$ just equals the minimum detectable number:

$$
\begin{equation*}
M=N * L_{0} A m_{H} V_{t}\left(t_{m}-t_{0}\right) \tag{6}
\end{equation*}
$$

Since $t_{m}{ }^{-} t_{0}$ will be required to be larger than $t_{0}-t_{1}$, so as to observe the ion cloud for a reasonable time, the mass M defined by equation (6) may be larger than that found above from equation (3).

We shall now fix the value of N^{*}, by considering the practical aspects of detection of a signal $I *$, expressed in Rayleighs $R\left(1 R=10^{6}\right.$ photons $/ \mathrm{cm}^{2} \mathrm{sec}$. steradian). We are dealing with the detection of an emission line with a spread set by the Doppler effect of the ionic motions, and it amounts thus to a few tenths of an Angstrom. The signal has to be discriminated against external noise, set by sky brightness and cometary brightness, in the case of ground observations, and in the case of observations from the probe, by cometary brightness alone. In either case, we are not limited by dark noise in the detectors, unless a monochromator of very high spectral resolving power were available. The possibility of developing a resonant detector cell, such as the Blamont magnetic scanner, should be explored in detail. But for the time being let us suppose that a pass band $\delta \lambda$ a few Angstroms in width is isolated around the line concerned by means of a multilayer interference filter or a grating monochromator of the Ebert-Fastie type.

In the case of detection from ground, the ultimate surface brightness detectable is set by the airglow and the natural brightness of the comet. We are implicitly assuming that the observations are made on moonless nights, of course. Since we are interested in detecting the contaminating substance in the faintest parts of the comet (the tail), we can take only the airglow as signal noise. Because of auroral emission of N_{2}^{+}at $\lambda 3914 \mathrm{~A}$ and the CO^{+} cometary bands (tail bands) around $\lambda 4100 \mathrm{~A}$ are not far from the resonance lines of Ca^{+}and Sr^{+}, it would appear that the case of the $\mathrm{Ba} \lambda 4554 \mathrm{~A}$ line is the most favorable to consider. The surface brightness of the airglow around $\lambda 4554 \mathrm{~A}$ is $\mathrm{I}_{\mathrm{b}}=0.04 \mathrm{R} / \mathrm{A}$ (Chamberlain 1961). We set then the minimum
specific intensity of the resonantly scattered radiation in the ion cloud equal to the external noise intensity

$$
\begin{equation*}
\frac{N^{*} a_{s}}{4 \pi}=\delta \lambda I_{b} \tag{7}
\end{equation*}
$$

corresponding to a signal to noise ratio of unity. If the pass band $\delta \lambda$ is measured in Angstroms from (7), we have:

$$
\begin{equation*}
\mathrm{N}^{*}=3.4 \times 10^{6} \mathrm{~cm}^{-2} \tag{8}
\end{equation*}
$$

and from equation (6) we obtain the minimum mass $\mathrm{M}\left(\mathrm{t}_{\mathrm{m}}\right)$ of Ba^{+}ions needed to be detectable up to time t_{m} :

$$
\begin{equation*}
\mathrm{M}=0.366 \mathrm{~L}_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{\mathrm{o}}\right) \delta \lambda \quad(\mathrm{Kg} / \mathrm{km} . \mathrm{A} . \text { day }) \tag{9}
\end{equation*}
$$

where L_{o} is expressed in thousands of kilometers and $t_{m}-t_{o}$ in days.
We still have to fix the conditions of detection in such a manner that the amount of radiation reaching the detector exceeds by some factor k the dark noise. For an efficient blue sensitive photomultiplier, operating at dry ice temperatures, the equivalent dark noise E_{0} is about 100 photons $\pi s e c$. We should then require a telescope with aperture D and a diaphragm at the focal plane with angular measure ω such that

$$
\begin{equation*}
\frac{\pi^{2}}{16} D^{2} \omega^{2} \delta \lambda I_{b} \geqslant k E_{o} \tag{10}
\end{equation*}
$$

where the number k depends on the technique used to filter the signal from the dark noise (time constant) and also includes reflection and transmission losses in the optical system. The focal length of the telescope F, on the other hand, should be such that the angle in the sky subtended by the entrance diaphragm is not larger than the smallest angular dimension of the ion cloud in the comet:

$$
\begin{equation*}
\omega=\frac{\mathrm{d}}{\mathrm{~F}}<\frac{\mathrm{L}_{\mathrm{o}}}{\mathrm{R}} \tag{11}
\end{equation*}
$$

where d is the linear diameter of the diaphragm. Reflecting telescopes with $D=40$ inch and Cassegrain focci with $F / D=15$ are found in observatories fairly well distributed over the entire world, and could be used for continuous
coverage. With such a telescope, a diaphragm with $d=2 \mathrm{~mm}$ just satisfies (11) for $L_{o}=2000 \mathrm{~km}$, and equation (10) would give

$$
\begin{equation*}
\frac{\delta \lambda}{k}>23 \tag{12}
\end{equation*}
$$

We see thus that with $\delta \lambda=20 \mathrm{~A}$, we would begin to be dark noise limited, and the mass required would be

$$
\begin{equation*}
M=14.2\left(t_{\mathrm{m}}-\mathrm{t}_{\mathrm{o}}\right) \quad(\mathrm{kg} / \text { day }) \tag{13}
\end{equation*}
$$

If the telescope aperture were increased to 80 inches, then the mass requirement would decrease by a factor 4. It would appear, in any case, that the amount of contaminating substance needed for ground observations extending over two or three days could be part of a realistic payload.

The conditions for detectability by observations from the probe are quite different, because the light collector used would have to be no larger than - say- $D=6$ inch, and for an unrefrigerated photomultiplier we would have $E_{o}=10^{4}$ photons $\pi \mathrm{sec}$. These are not the most serious limitations, however, as the noise would not be dark, but the natural brightness of the comet itself. If the vehicle is only spin stabilized, the entrance aperture to the detector would have to be at least an order of magnitude greater than for ground detection, and the noise would then be a factor of 10^{2} larger than before. For a telescope with $D=15 \mathrm{~cm}, F=225 \mathrm{~cm}$ and $\mathrm{d}=2 \mathrm{~mm}$, the contaminant would be observable but only for a distance satisfying (11), or from less than $225,000 \mathrm{~km}$. Since the probe and comet have a relative velocity of $15 \mathrm{~km} \pi \mathrm{sec}$, the corresponding time would be only 4 hours. It appears thus that the observation from ground is much more advantageous than from the probe.

In this brief survey we have not considered the actual mechanism through which the required mass could be released in atomic form. The history of the contamination experiments of the upper atmosphere (Marmo, Aschenbrand, and Pressmann, 1959, 1960) should give us confidence towards finding an explosive chemical reaction that can produce the release efficiently.

REFERENCES

Alfvén, H., 1957, Tellus, 9, 92.
Biermann, L., Luest, R., Luest, Rh., and Schmidt, H., 1961, Zs. f. Astrophys., 53, 223.
Chamberlain, J. A., 1961. "Physics of the Airglow and Aurorae", p. 505/ Academic Press, New York and London.

Hoyle, F., and Harwit, M., 1962, Astrophys. Journal, 135, pp 867 and 875.

Kachiyan, E. Ye., Kalloglyan, A. T., and Kazaryan, M. A., 1959 Astronomicheskiy Tsirkulyar Nr. 205, pp 2-3.
Marmo, F. F., Aschenbrand, L. M., and Pressmann, J., 1959, Planetary and Space Science, 1, pp 291 and 306. 1960, Ibid, 2, pp 17, 174, 228.

APPENDIX B

ORBIT OF COMET ENCKE

The following is a print-out of the Orbit of Comet Encke from December 1960 to December 1967. Since an already existing computer program was used in which the comet was substituted for a spacecraft, many quantities were printed, some of which are not very useful.

LINE 1

The time is GMT. Time-Start is minutes from epoch

LINE 2	
LAT	- North Latitude
LONG	- East Longitude $\}$ See Fig.
V.APO	- Velocity at Apogee
V. PERI	- Velocity at Perigee
(DEG)	- Degreas
(FPS)	- Feet per Second
LINE 3	
Alt	- Altitude $=$ Height from earth's surface to Comet
APO	$\begin{aligned} \text { Apogee } & =\begin{array}{l} \text { Farthest point in the trajectory from the } \\ \text { earth's mean equatorial radius } \end{array} \end{aligned}$
PERI	Perigee $=$ Nearest point in the trajectory from the earth's mean equatorial radius
PERIOD	Time in minutes for one revolution
(NM)	Nautical Miles
(MIN)	Minutes

LINE 4
Soe Fig. 2 (measured in $A U$ and $A U / s e c$)
LINE 5
See Fig. 3A and Fig. 3B (measured in AU, AU/sec, and ciegrees)
LINE 6
A - Semimajor axis of trajectory (AV)
E - Eccentricity
I - Inclination (degrees)
NODE - Longitude of the ascending node (degrees)
W - Angle between line of nodes and major axis of trajectory, also called omega (degrees)
M - Mean anomaly (radians)
See Fig. 4

```
LINE 7
            Earth center to Comet distance (statute miles)
            Comet velocity wrt rotating earth (meters/sec)
            \(=\) Earth fixed path angle (deg)
            Earth fixed Azimuth angle (deg)
SVE = Sun- Comet -earth angle (deg)
F \(\quad=\) True anomaly (deg)
LINE 8
EARTH LOOK
\(\left.\begin{array}{l}\text { MOON LOOK } \\ \text { SUN LOOK }\end{array}\right\}\) Nonrelevant
RM \(=-\) Distance from Comet to moon (earth radii)
RS = - Distance from Comet to sun (earth radii)
```

LINE 9
$\left.\begin{array}{l}\text { ETA, ZETA, } \\ \text { RHO, XPRIME }\end{array}\right\}$ Nonrelevant
LINE 10 and 11
XMV, YMV, ZMV - X, Y, Z distance from moon to Comet
$X M, Y M, Z M \quad-X, Y, Z$ of moon
XSV, YSV, ZSV - X, Y, Z distance from sun to comet
$\mathrm{XS}, \mathrm{YS}, \mathrm{ZS} \quad-\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of sun
Units are earth radii.

웅
 $i n$
0
0
0
m－
100ヶ
么ラ L

－Mo O－N

 $\cdots N O O O O$$\infty$
∞
∞
1 l 2
2
2
2
$>$
 ．．．عO EOS8EEST•（9ヨJI9NOT

U－ONONの $0 \sum_{0} 11 m$ a －z七NNo $\boldsymbol{\sim}$ in －－N～Mのか そOOのホホN 						

$\begin{aligned} & 00 \\ & \ln 0 \end{aligned}$			

 00
mot
$0+0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ $\stackrel{+}{+}$
－•－Nos o mNin
$\sum_{2} N \sim N M$

0
 II

JヨS－NIW

ω

들

9000000 カカ！

かのロロー～
0060

41

Nのがmio
 YSV－． 19931234

8 H
μ
4
0
2
2
3
3

NO
ーに～
Nの
omin
${ }^{\infty} \circ-1$
응
No
م \quad •••• N N
 ino
anonom

\rightarrow
$\begin{array}{cccc}a & 0 & 0 & 0 \\ N & -1 & 0 & 0 \\ 0 & 0 & 0\end{array}$
on！
NMNina NMMが

3	
\bar{n}	$\rightarrow-0$
¢2－	i
OL	
-2	
O0－	$0>$ U
O日	$\times 0$
04α	O
O 山	\geq
$v>0$	
∞	ONN
In	000
－	
ma	$t a 0$
00	$\infty \cdots$

＋ 1

m

 ○ールびさす \rightarrow かのッin

 －ーロ～ロ

ェu nin
MNO 山 山 tin 0
4
4ナNImm いNががN
 にす！

 OOtono oonmoon
 oNmo o m
 ∞

－～～ の－an

 $N \infty$
N
N N

 ○ットロルにな～ のかゅめロローが

$\infty \infty$

$a \rightarrow 0$
nin
MNN
$\stackrel{n}{x} \underset{x}{x}$
$\operatorname{in}_{0}^{\operatorname{nn}} 0$

定 $\sum_{N} \geqslant$
Onn
00 N
MR
$\sim_{0}^{\infty}{ }^{\infty}$
ut
$\begin{gathered}\text { Na }\end{gathered}$
oin
\because
ii
$\underset{N}{i} \gg$
몽n 00
$m N$
$m N m$
ののー
in mo Noo $\stackrel{N}{0}$ 오 ∞ i

\therefore
\because
\because
\because

NOWOC
ロNーW山゙ OO

$$
1570.5000
$$ ∞

0
0
i
i
-

$$
\begin{aligned}
& 80 \\
& 80 \\
& 80 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

TII

$$
.41760
$$

$$
\begin{aligned}
& 05 \\
& 05 \\
& 05
\end{aligned}
$$

C5 XS－． 23428735

YS
$\begin{aligned} & +\infty \\ & 4+5\end{aligned}$
$\begin{gathered}\text { N } \\ \text { N } \\ i \\ i \\ \sim\end{gathered}$
in

$$
\begin{aligned}
& \text { u } \\
& \text { un }
\end{aligned}
$$

$$
\begin{aligned}
& \text { U } \\
& \hline
\end{aligned}
$$

No

G

－＜\％心の 心 in 10－0moのかm

～

$\underset{x}{x}$

으응ㅆㅇ․
 1

Nの式化岕
がい 衣に方え

エツ
のーがーツ
000
1
$1+0$

HR
0
0
0
1
0
0
0
0
n

 Nu～のN。

 No山 －\quad ㄹ․ い $\because \sum N$ O～～山 SVE $\quad .1539686702$
RS $\quad .78416450$ O5
VEHICLE
YY -.2701858205
$Y S-.1913853505$ ninnon N
 $\underset{\infty}{x} \times \times$
\sim
gingin
のにさ

monin
monor ormoo
 の「が
 ©
$x \varangle \gg$ ミ ミ ミ へ
$>$
 ع0－8

R
ELK
ETA
XMV
XSV

$\stackrel{1}{0}$
\sim
o
m
m
\cdots
∞
\cdots
\cdots
\cdots
\cdots
mトトゥس～のin moinonamn NatoramNon かの

NNEWNON
$0 \mathrm{mmN} \quad 山$

 inountNuNt $\begin{array}{lll}\infty \infty & n & n \\ m \rightarrow \infty & m & m\end{array}$

$$
10
$$

ONNG

 on のかった～ ∞

 mo゚NルNな
 なㅇ․

 －TNOMinñon

 のかっすが心

 OOOONNin

 －••

我畐交玄

シu～シN
MN O
00 ñ inn ∞ N のNuエのN MNNUNM $\alpha_{0}^{\infty} \sim N>N N N$ ． 19

03 10

$$
\begin{aligned}
& 00 m \infty \quad 0 \\
& 0 \rightarrow 0 \quad 0
\end{aligned}
$$

$$
\begin{array}{lll}
0 \rightarrow \infty \\
0 & 0
\end{array}
$$

$$
\cdots+i n N+\infty
$$

$$
-\infty
$$

$$
1 \underset{x}{x} x<x
$$

NODE

$$
0 m \rightarrow 0+N
$$

$$
+\infty \quad \alpha=0(n)
$$

$$
\begin{array}{lllllll}
a & \infty & 0 & 0 & 0 & m \\
\infty & n & \rightarrow & n & m
\end{array}
$$

$$
\begin{array}{ccc}
\infty & n & 0 \\
+\infty & 1
\end{array}
$$

$$
\cdots \underset{N}{\infty}
$$

－$-4 \leq \leq$
$山>$
Monn $\rightarrow m$ oo ena N～ロッド oNNo下か
 Nが心がか N N
－
논

かMmnumun 1
+
+
∞
m
m
\cdots
\cdots
$i n$
i

$$
Q<\underset{\sim}{\infty} \underset{\sim n}{\infty} \underset{\sim n n n}{\infty}
$$

10 mN
OOOOONH
 にNMNAがN
 OtNの日縕
 $\because N 0 \infty$
1 1 응

O－N～NNNか OOOOHされ $\infty \infty 0$ in ∞ м

 minN
GNON

1心のNへ
Nomommut

 otmoo onm ONNのかmNo
 mmto •i：i MN ∞

Noñon
ion
Nonn

$$
{ }_{0}^{0}
$$

0

$$
\begin{gathered}
n \\
\infty \\
\infty \\
\infty \\
\infty
\end{gathered}
$$

 N N
0 \qquad N^{Σ} Σu
$\leadsto \sum_{N}$
oㅇomm。山 01
－

\section*{\circ

$\stackrel{\circ}{N}$

N}
ш

マO NVITN
0

$\cdots \rightarrow \infty \quad 0 m m$ mNoOOON O O L NMNiNo

 mNONMagama $\begin{array}{lll}0 & 0 \\ \cdots & 0 & 0 \\ \cdots & 0 & 0 \\ 0 & 1\end{array}$ $\underset{\sim}{\mu} \underset{\sim}{n} \quad \underset{\sim}{\infty} \underset{x}{x}$ oza 0 -

 $\begin{array}{lll}00 \infty \text { in in in o o O } \\ 0 & 0 \\ 0 \rightarrow 0 & 0 & 0\end{array}$
 $\begin{array}{ccc}N_{1} & +\infty \\ m\end{array}$
 $N m$
$m m$ $m m$

NOMOOOOO LONG(DEG)
APO(NM) \sum
2
2
2
2

0

$+\infty\rangle\langle u\rangle$ 4∞
$1 \sim$
$\infty \rightarrow-1-m$

+ + OOOONONa $\begin{array}{ll}\infty & 0 \\ m \rightarrow n & 1\end{array} \in m m m$ - $n a r m i n+\infty$ 25 OCTOBER $山$ $\cdots \mu N \sim 0-10$ 4+NOOOQ +0 una

 JUL
 $-$ 0
u
1
2
2
2
 \sum_{2}^{2} NOMOOOOO 10
2
2
2
2 monnmon

$$
\alpha \ln \sigma\rangle\langle\omega\rangle
$$

I

MN 世 00 结山吉的 n + momION

 $\rightarrow N$
－Womino －ロN゙Nス mののoin－ 응응№
 －${ }^{\circ}$
$1 i \underset{\sim}{x} \sum_{x} \approx$ 4
$\underset{\circ}{2}$
2

 $\omega>$

上，ミN

mosin

－
$\underset{\sim}{x}$
ぶざす。～ 3 － 1738157205

 － \times
？
$6-07$
702
703
－ to のはのロッロけよ
 ш
 にOーがか～
 $\xrightarrow[n]{n}$
$\cdot 5$ ． 5 ERI（FPS
こえ出岂之
 $\underset{\Sigma}{\Sigma}$
$\rightarrow の N{ }^{+}$

上毋
O

0
+

$\ln _{0} \mathrm{~m} 0$

$$
\underset{x}{0} \sum_{x} \underset{x}{n}
$$

むさむ
in on

$$
n_{n}^{n}
$$

$$
\operatorname{con}_{\infty} \operatorname{cin}_{\infty}^{n}
$$

$$
\begin{array}{r}
.6 \\
.9 \\
.8
\end{array}
$$

ornon
NNは
NoN in
ONO

$$
\begin{aligned}
& 10 \sim \\
& N=\$
\end{aligned}
$$

$$
\underset{\sim}{N} \underset{-1}{N} \underset{\sim}{n}
$$

$$
\because
$$

$$
\mathbb{E} \geq \geq
$$

Gin to

$$
\begin{array}{ll}
100 \\
n \\
n
\end{array}
$$

$$
\begin{aligned}
& \text { Noon } \\
& 0 \\
& \hline 1
\end{aligned}
$$

$$
\infty N
$$

ETA
XMV
XSV

$$
\begin{aligned}
& \text { O~N } \\
& \overrightarrow{0} 0 \\
& \text { Non } \\
& { }^{\circ}{ }_{N}^{N} \underset{\sim}{N} \\
& \text { N~N } \\
& \because \because
\end{aligned}
$$

$u \quad n \sum \backsim$

Nu U
$\operatorname{con}_{6} 0$ n
$\rightarrow N$ Iou $\infty \in \omega ト+$ $+N>\infty$

	n）
00	n
0 O	
pn	
N	∞

 $\alpha \times \times \times$
\cdots
MO

No 0 on
000
$+N 0-4$
$\begin{array}{ll}0 \rightarrow 1 \\ 10 n & 0\end{array}$
No Oin
$\begin{array}{ll}m N O \\ m & 0\end{array}$
$\begin{array}{lll}m N O & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$
n $n \rightarrow \infty$
m

$>$
NO 0
+
0
1
o
1
n
0
0
0
0
m
$i n$
n

$\begin{array}{lll}0 & 00 & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$ uno ∞ in on o a mm

$\cdots \quad$ EO 6SL8856を
 －

0 0 0 1 0 0 0 0 0

$\begin{array}{ll}0 \\ 0 & 0 \\ 1 & 0\end{array}$
＋ O ＋
かんmminnoin
$+O N N Q M M N$
 $\cdots N 1$
$0 \infty \times N \leq 4 \leq n$ in $4 \times$
aOnNmN

号

설 ：$\frac{5}{x} \frac{5}{x} \frac{0}{x}$
$0<0>4 n$

－ 0000 oinnNM

－O oNinNAmonnm
$\alpha 0 \infty 000 \infty 0 \cdots \cdots$
m

－•Nomeroinu 0
3
2
2
2

$\alpha N+><\omega\rangle$

さu n u n mNN

MN U
00 nn
 un $n=\omega \backsim \pi$

$=\underset{\sim}{>} \underset{\sim}{x}>\infty$
におin in
$-N$
OOのNNo
 Nのかの○M aOMOAM
 $\rightarrow \infty \quad i \quad i \quad i$
$11 \underset{\sim}{x} \underset{\sim}{x} \underset{\sim}{n}$

N－1 Notaか $\rightarrow N \mathrm{~m}$
 $\cdots \cdots \infty$ in $\cdots+\cdots M N O$ 0
0
r．t
$\cdots \rightarrow \frac{\square}{n} \underset{\sim}{\infty} \geqq$
$+\cos 0 \ln \ln$
$0 M-N \cap \infty$
00aOo t
 nosnmu $\begin{array}{ccccc}0 & 0 & 0 & n & 0 \\ 0 & 0 & -1 & n & 4 \\ 0 & -1 & 0 & 0\end{array}$ $50 \cdot 1$ －

$山>$
No in in
－1
OO 0 un on
Nonminn

$C 2 \varepsilon$
$C 8 \%$
$\varepsilon \varepsilon \downarrow$
680
598
intonmis
No
$N m$
$x \in \geq>$
x
x
x

$\stackrel{U 1}{H} N \ln 0-1 \sim$
0
-1
0
1

NOS コW11 ココS
$\square n$

nnm
1 JヨS－NIW

NNO

m
$+$
M．4448224104 LM．24765439 O4
05 YM

0
0
0
0
0

天NM

18ロSーヨWII

$N 0 \rightarrow \infty 00$ on in

- NOMN MNN OOOONNNO
 ontNoono

 $\mathrm{Num} N$

2《u>

겅ㅇㅇ ootíno in o m ∞ onm $n \rightarrow-1 m$
$\underset{\sim}{x} \underset{\sim}{x} \geq$ x

 0
2
$=$
$=$

人＞
 －rNーN～NにN OONONNNのN

 のルヘのッがい ○ONm．i i in $0+2$

 NへN心のナinco かんにのがが

 $\rightarrow \infty$
のッかN

なinoopooñon

 ソO

> -.33360629 | 4 |
| :--- |
| \sim |

Σ

 Mingo …i mino

 －NOMNへmin －OOO

 －N

$\rangle\langle u\rangle$
Mosoin
いーかm ○
－000かんのか
 mintisin in No
 がNのがNo～が か오N№n
\because N．
 ののmm心のNN
 mo

60
50 Nさル～ご～N $0 m m=$ ш

 ヘロッn L
in
N
N
-
N
0
0
0
0
2
2

\circ
\circ
0
0
0
n
n

and

へ品が Mになのu nmomu にのかのa

응

$$
\infty \quad \infty \quad \mathrm{m}
$$

ELLIPS

ZNG ©NNONGーN

$$
\rightrightarrows
$$

$$
\begin{gathered}
T \\
N \\
0 \\
0 \\
0 \\
0 \\
N \\
N \\
\infty \\
N
\end{gathered}
$$

$$
\begin{aligned}
& 110 \mathrm{dV} \cdot \wedge \\
& 0000+228 Z^{\circ}
\end{aligned}
$$ TIME

$$
28656000
$$

五

| |
| :---: |ココS NIW

 $93015 N 01$
$73 S-N W$

0
0
0
0
0
in 응

n
0
0
N
Non
on
80
$\stackrel{-1}{N}$
40
4
-102
\pm
a
－
$00 \quad 0 \quad$ invinn
のo oomN
은
100～
．

$$
\text { JULIAN DATE } 3280.5000
$$

$$
\begin{aligned}
& \operatorname{li} 10 d V \bullet \wedge \\
& 0000 z T \subseteq 8 z^{\circ}
\end{aligned}
$$

$$
m \cdot N a m o \underset{0}{m} 01 n
$$

$$
539
$$

$$
\begin{gathered}
(2 \exists 1) \\
7 コ 1
\end{gathered}
$$

$$
\left[\begin{array}{llll}
000 & m & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
$$

－NiW
 2

 VH

 ranmin
 ㅇ․

1かったへ 0
0
0
0
0
0
0
0
W．
0
0
0
2
0
0
0
－10\％ma～

いか」の

（AT（DEG）－
（9ヨ0）1甘7

2894400007 JULIAN DATE

ตㅇ

$$
\begin{aligned}
& \mathrm{O} \\
& \dot{\circ} \\
& i \\
& \dot{0} \\
& \dot{N} \\
& \mathrm{~N}
\end{aligned}
$$

0 0 0 1 0 0 0

MIN

$$
\underline{\sim} \underset{\sim}{N} \underset{\sim}{N}\rangle\langle u>
$$

山ーローロー～OOO 40 M O 우

$$
11 \text { ЭヨS }
$$

$$
\underset{\sigma}{\alpha} \underset{\sim}{\infty}\rangle\langle u\rangle
$$

$$
\begin{aligned}
& \text { + }
\end{aligned}
$$

$$
\begin{aligned}
& \text { にぺッッ~ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { zinmかinmomom }
\end{aligned}
$$

「ror
000
けんの
N～が
品の
$\underset{\sim}{m}$
\rightarrow on
$\stackrel{\circ}{2} 9$
－
© ${ }_{\circ}^{\circ}$
－
miN

$$
\begin{aligned}
& \text { zホ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { に ニ゙ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8-1~ } \\
& \text { へのの人。 } \\
& \text { になのだ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { トの }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I }
\end{aligned}
$$

\circ
－•ron
∞

$$
\begin{aligned}
& \text { を5 }
\end{aligned}
$$

\footnotetext{
9

 ーッルッローば

∞
n
n

玉un n n $m N N$
 in $O U O O$
m
m
I $\begin{array}{lll}m_{0} N \sim \omega \infty \\ 0 & \infty \\ 0 & 0 \\ 0 & 0\end{array}$ が心が $\stackrel{-1}{-1}$

0 ninn -10 $000 \pm O$
MNN
N N N $\cdots \wedge \sim N \infty$ mancon

 $\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & m \\ 0 & 0 & m \\ 0 & 0\end{array}$ 0 i
0
0
0

-0 OWOn
$0 m m m m i n$
$00 m o m i n$

$\omega>$ $m \rightarrow i n$
0 $\rightarrow M$ $\sum a \sum_{x} n$ NDDE 30384000 OT JULIAN DATE
3 V．APO（FPS）． 32567123
3390.5000

mmN 10 000 otin Nmヶousino NoON～ロホM へNのーがのN

 in O
 0005

on onot	OM Oto	NOZOM OJON	
$m \omega \sim \sim m$		0000 OOO	OOOO OOO
－\sim an	号出的寺		
のーNm	いoのの号	○な「へ	
$\underset{\sim}{0}$	－＋＋N 」 J No		
いい			
		$\leftarrow{ }^{-\infty}$	
	のの・••号	ペ．．．	－
		$\sim \infty$	
u \sim NN	のロロNさH こミN		mino
		$\stackrel{1}{ }$	
大ッ山ち			
	「00in	－－ 1 mroo	
○ーエ	－${ }_{\text {cmoinox }}$	－－nヶountエon	N
吹へ山	そそいいのがいい	いてか00のN世m0	いて○ののさん
吹过		号	－ $\sin ^{\text {coson }}$
	－ーへNいかN	－＜－¢－－	山こOOO＊心
¢oin			
	OLの・••0 の		
			inac 1．
$\underset{\sim}{\omega} \underset{x}{x}$	$\hat{\sim}$	$\hat{\sim}$	
nnning in		mNo 山 心	Mñ
	上～	$\stackrel{+}{5}$	－ $000 \rightarrow \sim$
	－	ぐなOOOON	anroooonnmm
m		－	
へNがomo	べN	へべ紜	人m
oNogn	－NN心		
		3	
		2	
$\sum_{\alpha} 0 \times \sim$		$\hat{c}_{0}^{a} \Sigma_{1}^{1} \quad 1 \sum_{\alpha \times x \times}^{a} \sum_{x}^{n}$	
	N ${ }_{\text {N }}$	울	은
	－		
	m	N OOOOO	m
人nm			
促	N		－
	『～N	，	NON 0 －
	$\sim \infty$	家	E
	ON		
		${ }_{2}^{\text {山 }}$	
		士•Noーvóo	－
$\infty \times$	U6－HTOmo	บ 0 －0m	
べッ			山山下O000
m ${ }_{\text {co }}$	哏へ		
m			
\rightarrow－	4	\＆	
	ミ	들 잉	$\underset{\sim}{2}$
ミ上さえ		－•上上さら	
	\times	$\stackrel{0}{0} \boldsymbol{\sim}$	N゚，さNさ入
¢ ${ }^{-1}$		エoin m゙，min	
	mッ0ヶ－m		
－${ }_{\text {－}}^{+}$	mooooos	¢N0000－mNm	
¢ $\sim_{\infty}^{\text {¢ }}$			
－ma		－	－onncomonñ
¢－\％	○O○かんめNへ		N
－No			
$\because \sim$			的in
	\propto 免䦽	¢	N
			尤ち
	α	$\alpha x \alpha<\alpha$	$x \alpha<\alpha w w_{x}^{2} \underset{x}{n}$

$\begin{array}{cccccc} & \text { VEHICLE } & \text { IS } & \text { NOT ECLIPSED } \\ \text { YM } & .23917217 & 04 & \text { ZM } & .76293091 & 02 \\ Y S & .12760936 & 05 & \mathrm{ZS} & .55337061 & 04\end{array}$

にñ n

 －N N ジのベ $\rightarrow \infty$ N゙さ～ No $\because \because i$ $\underset{x}{2} \sum_{x}^{n}$ ninno NNさ N～N 5N $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{m}{0}$ 온․․
RHO ZMV ZSV

Binco
∞ mo
さNin
－0
ㅇon
－$\underset{\sim}{\sim} \sim \sim$
－•

$\underset{\sim}{\text { 늦춫 }}$

$$
\text { JULIAN DATE } 3750.5000
$$

05
80
0
0
0
n
ñ
n
n

＜

ino in

－

こすずす。 | 8 |
| :--- |
| 8 |
| 0 |
| 0 |
| 1 |

$\begin{aligned} & x \\ & \\ & \hline \end{aligned}$

$z \rightarrow \leftarrow \sim \infty N \infty \infty 0 N M$

 Na＿\quad in i
 ーNかNNOOMNNNH xさのかんOm aかNmaOm

上NM，Nomooninin
山ぃた

APPENDIX C

SOME ASPECTS OF NUCLEAR WEAPON DETONATION IN A COMET

In Section III of this report, the possibility of comet analysis, using a nuclear weapon and earth-based instrumentation, is discussed briefly. In this technique, the comet is excited by detonation of a nuclear device (delivered to the comet by the booster/spacecraft vehicle with the datagathering equipment on earth), and the comet becomes a very strong artificial source whose radiations and motions will be measured by extremely sensitive detection equipment located on earth. This is in contrast to the conventional method discussed in the body of this study, in which less sensitive detectors are transported to the vicinity of the (weak) natural cometary source, and the data obtained is transmitted over a great distance back to earth. The nuclear weapon probe possibility has not been considered or analyzed in depth or detail during this study; this appendix is solely for the purpose of displaying some numerical indication of the possibilities for approximation.

The categories in which information is desired are: 1) Physical and magnetic structure, 2) plasma interaction (comet hydromagnetics), and 3) chemical composition. Source indicators of importance for the acquisition of new knowledge in each of these categories can be generated by the detonation of a nuclear weapon internal to the comet. The magnitude of each effect will depend entirely on the energy yield effective for activation of that particular effect, and thus upon the weapon yield itself. If the size is properly selected, the bomb expansion will be contained within the coma envelope and nearly all of the weapon yield, no matter how it is partitioned initially between radiation and mass motion, will go into continuum and line radiation from the excited atoms of bomb debris and comet material. If the yield is much larger and cannot be contained within the comet, then some (perhaps large) fraction of the energy released will dissipate as mass motion (expansion) away from the burst point and the comet. The initial partition of energy is set by characteristics of the nuclear device, and is not considered here. Rather, for simplicity we choose the effective yields arbitrarily for purposes of illustration.

Nucleus. The energy yield of the device could go into vaporization of the icy conglomerate, believed to constitute the nucleus, if the device is detonated at the nucleus. Assuming an effective yield of 1 KT (kiloton) $=$ 4.2×10^{19} ergs, we find that $10^{10} \mathrm{gm}$ of the nucleus could be vaporized assuming that $100 \mathrm{cal} / \mathrm{gm}$ for vaporization. This mass is small compared to the total estimated comet mass of 10^{17} to $10^{20} \mathrm{gm}$ (Section III) but may be significant compared to the mass of a small (ca. a few km diameter) nucleus. The sudden production of $10^{10} \mathrm{gm}$ of gas would lead to a great increase in gas density near the nucleus, over the value of 10^{10} atoms $/ \mathrm{cm}^{3}$ believed to characterize this region in the normal state during sun passage. If the gas produced expands at $\mathrm{v}_{1} \mathrm{~km} / \mathrm{sec}$, then n_{1} atom $/ \mathrm{cm}^{3}$ would be reached in a time given by $10^{10}=m_{H} A 4 \pi^{3}\left(v_{1} t\right)^{3} n_{1}$. For $n_{1}=10^{10}, v_{1}=1 \mathrm{~km} / \mathrm{sec}$ and $A=15$ this gives $t \sim 520 \mathrm{sec}$ at ${ }^{3}$ which time the radius would be $R_{1}=520 \mathrm{~km}$, quite large compared to the normal dimensions of the nucleus. Such a considerable increase in gas density would yield a very much stronger source of solar-photon-excited resonance radiation within a thousand km or so of the nucleus and thus could allow more highly resolved spectral measurements. If the effective yield werel MT (megaton), the increase would be much more striking, possibly all of the nucleus could be vaporized, and the radius to a density of 10^{10} atoms $/ \mathrm{cm}^{3}$ would be the order of 5000 km .

Of course, the matter of the nucleus is not simply vaporized. Rather, the energetic bomb debris and radiations will raise many atoms to highly excited states, and thus produce strong sources of artificially stimulated decay radiation. The atoms so excited, if not initially in the coma, shortly expand into it, and measurement of the decay radiation spectra could dis close differences in constituency between nucleus and coma. The scale of this effect is indicated by the calculations just given; 1 KT could lead to a 1000 km diameter sphere at density 10^{4} to 10^{6} greater than normal coma densities.

Coma. Consideration of the spacecraft guidance and comet orbit uncertainties indicates it is more reasonable to expect the detonation to occur well out into the coma. In this case, when the bomb is detonated, prompt radiation emitted will interact with the coma gases, stripping them out to some radius, and ionizing out to a greater distance. These radiativelyexcited atoms will decay to their ground states by radiative recombination and by three body collisions. The kinetic energy of the system initially

$$
\mathrm{C}-2
$$

resides largely in the bomb debris which moves outward from the burst point. This material is highly ionized and expands against the magnetic field within the comet. As it expands, it also interacts with coma atoms by two-body collisions and by collective effects through hydromagnetic coupling with the magnetic field. As the bomb plasma is slowed down and stopped, its kinetic energy must go into heating and excitation of the coma atoms, and thus must be transformed in part into radiant emission.

For an effective radiative yield of $\mathrm{E}_{\mathrm{r}} \mathrm{KT}$ and an average (multiple) ionization energy of $\varphi_{i} \mathrm{ev} /$ atom, an ionized sphere of initial radius $R_{2} \mathrm{~km}$ will be formed around the burst point, according to $4.2 \times 10^{19} \mathrm{E}_{\mathrm{r}}=\frac{4}{3} \pi \mathrm{R}_{2}{ }^{3}$ $10^{15} n_{2} \varphi_{i} 1.6 \times 10^{-12}$, where n_{2} is the density of neutral gas plus natural ions in the coma. Assuming $E_{o}=1 \mathrm{KT}, \varphi_{i}=30 \mathrm{ev} /$ atom, and $n_{2}=10^{6}$ atoms/ cm^{3}, this gives $R_{2} \simeq 600 \mathrm{~km}$. At a distance of 0.1 AU, this sphere subtends an angle of about 17 arcsec, which should be measurable with fair accuracy. As indicated, measurement of size would provide an immediate estimate of neutral atom density around the burst point within the coma, while spectrographic measurements could be made which would yield good information on the chemical composition of coma gases. The total mass $m_{r} \mathrm{~kg}$ involved in this radiative excitation is given by $m_{r}=m_{H} \mathrm{An}_{2} \frac{4}{3} \pi R_{2}{ }^{3} 10^{15}=$

$$
\mathrm{m}_{\mathrm{H}} \mathrm{~A} \frac{4.2 \times 10^{19} \mathrm{E}_{\mathrm{r}}}{\varphi_{\mathrm{i}} 1.6 \times 10^{-12}}
$$

and is $m_{r} \simeq 2.1 \times 10^{4} \mathrm{~kg}$ for the above example. Thus, even at $\mathrm{E}_{\mathrm{r}}=1 \mathrm{KT}$, the mass excited and available for inspection is the order of 500 times greater than that of the chemical contamination experiments discussed in Section III and Appendix A. If the available yield were l MT, the mass involved would be 1000 times larger and the geometric scale of effects increased tenfold.

Now, let us suppose a kinetic yield of E_{k} KT. Considering only plasmastopping by magnetic field containment, the stopping radius $\mathrm{R}_{3} \mathrm{~km}$ in a field of strength B gauss would be given by

$$
\frac{4}{3} \pi \mathrm{R}_{3}{ }^{3} 10^{15}\left(\frac{\mathrm{~B}^{2}}{8 \pi}\right)=4.2 \times 10^{19} \mathrm{E}_{\mathrm{k}}
$$

Assuming $B=10^{-4}$ gauss this gives $R_{3} \simeq 2.9 \times 10^{4} \mathrm{~km}$ for $E_{k}=1 \mathrm{KT}$.

This expansion would develop moderately rapidly with time and could be followed both by optical photography and time-resolved spectroscopy (e.g. moving-film spectrographs). Measurement of the radius/time history could yield information on the magnetic field strength, and spectroscopy (of collisionally excited atoms) again would provide data on density, composition, and distribution of coma gases. Here we see that the size of the expansion is no longer small compared to typical coma dimensions (ca. $10^{5} \mathrm{~km}$) and it is evident that $\mathrm{E}_{\mathrm{k}}=1 \mathrm{MT}$ would not be contained magnetically within the coma if the B field strength is that assumed above. At $E_{k}=1 K T$ the magnetic containment sphere subtends roughly 14 arcmin (half the size of the moon) at 0.1 Ad.

Of course, B field expansion alone will be the stopping mechanism only if the mass density of the coma is so low the mass interacted with in expanding to the B field stopping radius is not large compared to the mass of bomb plasma. For comparison let us take an opposite point of view, ignore work against the B field, and suppose that the expansion is slowed down by simple acquisition and acceleration of mass swept up by the expanding front. Further let us assume, ad hoc, that the expansion effectively stops when the mean radial speed is decreased to $v_{r} \mathrm{~km} / \mathrm{sec}$. Then the total mass M taking part in the expansion will be given approximately by $\frac{1}{2} \mathrm{M} 10^{3} \mathrm{v}_{\mathrm{r}}^{2} 10^{10}=$ $4.2 \times 10^{19} \mathrm{E}_{\mathrm{k}}$ for E_{k} in KT, M in kg , and v_{r} in $\mathrm{km} / \mathrm{sec}$.

Assuming expansion stops when mean thermal speeds of comet atoms of order $v_{r} \sim 1 \mathrm{~km} / \mathrm{sec}$ are reached, then $\mathrm{M} \simeq 8 \times 10^{3} \mathrm{~kg}$ for $\mathrm{E}_{\mathrm{k}}=1 \mathrm{KT}$, roughly comparable to that estimated as contributing to radiative emission for excitation by $E_{\mathbf{r}} \simeq 1 \mathrm{KT}$. The size of sphere which can contribute this much mass from coma ions is found from
$\frac{4}{3} \pi R_{i}{ }^{3} n_{i} A m_{H}=M$ to be $R_{i} \simeq 2000 \mathrm{~km}$ for $n_{i}=10^{4}$ ions $/ \mathrm{cm}^{3}$ and $A \approx 15$, as before. Again, 1 MT yield would encompass 1000 times as much mass and reach a tenfold greater radius.

The brightness of any of the sources considered, whether from radiative excitation or collisional excitation of mass swept up, will be determined by the rate of decay or recombination of the excited species. This is set by the larger of radiative recombination or three-body collision rates in the
coma gas. Careful estimates must be made of these rates in order to determine exact sensitivity required and resolution obtainable in ground based photographic and spectral detection equipment.

Other effects of interest which have not been assessed may include greatly increased cyclotron radiation from the increased number of free electrons due to ionization of the coma gases by bomb radiations and kinetic energy exchange. It is conceivable that sufficiently strong cyclotron radiation signals would be generated to allow detection by earth-based radio telescopes of high resolution and sensitivity, and that by this means another direct measurement of magnetic field strength might be obtained.

[^0]: *Booster payload capabilities were calculated for injection at 100 nmi and the injection yelocity requirements for each comet were calculated for an injection at 177 nmi ; consequently, some additional energy will be required of the booster (350 fps).,

[^1]: AU
 1.369
 12.5
 0.548
 q
 i
 e

[^2]: ${ }^{*}$ The performance of the vehicle shown here is taken from SP RFP A-6842: NASA-Ames Research Center.

