PROGRAM STANDARDS

Office of Manned Space Flight

Quality
 Program
 Evaluation
 Procedures

September 1963

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C.

ERRATA
NASA SP-6003

QUALITY PROGRAM EVALUATION PROCEDURES

Office of Manned Space Flight
September 1963

In the second paragraph of the Preface, (Code MIR-M) should read (Code MAR-I).

Page 1-10: The sentence below item 5.53 should read:
Suppose sum of Column $A=76$, and sum of Column $C=60.8$
$C \div A \times 100$ or $60.8 \div 76 \times 100=80$ percent.
Page 1-11: In the Column A heading, delete (1-10).
Under Coumn C, across from 14.0 , 6.0 should be 6.2
Under Column C, across from Totals, 76.9 should be 76.8
Under Column D, across from 14.0, 2.0 should be 1.8
Page 2-3/2-4: In the heading, the word "Reliability" should be "Quality"
Page 2-5/2-6: In the Column A heading, delete (1-10).
Page 2-32: Under Column A, across from 7.33, enter the number 8.

OFFICE OF MANNED SPACE FLIGHT

QUALITY PROGRAM EVALUATION PROCEDURES

(R-2)

PREFACE

Quality Program Evaluation Procedures and related survey checklists are established as a stardard to assure consistent evaluations of quality procedures and controls being applied to Manned Space Flight Programs. More specifically, the objectives are threefold:
a. To establish uniform standards for evaluating the degree and effectiveness of quality practices and controls.
b. To identify quality type problems for evaluation and correction.
c. To permit ϵ valuation of various methods of controlling a specific quality area, leading to improved reliability and safety levels. This standard is based on and is consistent with NASA Publication NPC 200-2; however, it may be used to survey contractual compliance to all quality publications. It is designed to identify problem and improvement areas corsistent with the severe reliability and safety requirements of manned space flight systems.

Comments and questions concerning the requirements set forth in this publication should be referred to the Office of Manned Space Flight (Code MIR-M), NASA Headquarters, Washington 25, D.C. Questions concerning its application to specific contracts should be referred to the cognizant NASA Center.
Section Title Page

1. QUALITY PROGRAM EVALUATION PROCEDURES 1-1
1.1 INTRODUCTION 1-1
1.2 RESPONSIBILITIES 1-1
1.3 ACTIVITY AREAS 1-2
1.4 EVALUATION PROCEDURE 1-3
1.5 SCORING MET'HODS 1-5
2. QUALITY PROGRAM EVALUATION CHECKLISTS 2-1
1.0 INTRODUCTION 2-7
2.0 BASIC REQUDIEMENTS 2-8
3.0 MANAGEMENT 2-10
4.0 DESIGN AND JIEVELOPMENT CONTROL 2-15
5.0 CONTROL OF CONTRACTOR PROCURED MATERIAL 2-19
6.0 CONTROL OF GOVERNMENT FURNISHED PROPERTY (GFP) 2-27
7.0 CONTROL OF CONTRACTOR FABRICATED ARTICLES 2-28
8.0 NONCONFORMING MATERIAL 2-37
9.0 INSPECTION, MEASURING, AND TEST EQUIPMENT 2-40
10.0 INSPECTION STAMPS 2-44
11.0 PRESERVATION, PACKAGING, HANDLING, STORAGE, AND SHIPPING 2-45
12.0 STATISTICAL PLANNING, ANALYSIS, AND QUALITY CONTROL 2-48
13.0 TRAINING AND CERTIFICATION OF PERSONNEL 2-50
14.0 DATA REPOR'TING AND CORRECTIVE ACTION 2-52
15.0 AUDIT OF QUALITY PROGRAM PERFORMANCE 2-56

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Examples of Degree of Effective Coverage and Weighted Effective Coverage Scoring 1-8
1-2 Example of Activity Area Degree of Effective Coverage Calculation 1-10
1-3 Example of Quality Program Evaluation Summary Sheet Calculations 1-11

1. QUALITY PROGRAIM EVALUATION PROCEDURES

1.1 INTRODUCTION

The reliability and quality requirements of the Manned Space Flight Program demand design, manufacture, test, and operations reliability and quality levels that far exceed those required in the past. The Quality Program Evaluation Procedures presented in this section hav ϵ been developed to assist in assessing the degree that quality and inspection programs are properly related to the over-all needs of the Manned Space Flight Program, and to provide a base from which the specific action required to make the programs more effective can be developed.

1.2 RESPONSIBILITIES

1.2.1 OMSF Responsibilities

The Office of Manned Space Flight will:
a. Be responsible for the establishment and revision of evaluation procedures.
b. Insure follow-up review of the quality program requirements to determine the actions teken on deviations noted during the evaluation.
c. Monitor scheduling and maintain a record of all evaluations and follow-up reviews.

1.2.2 NASA Center Responsibilities

The cognizant NASA Centers will be responsible for implementing an effective program of periodic quality prograra evaluations (surveys). More specifically, this will involve the following responsibilities:
a. Schedule surreys.
b. Designate a chairman and direct the survey team.
c. Notify the contractor, OMSF, and, if applicable, the cognizant Government representative by letter at least 30 days prior to the date of the proposed survey.
d. Conduct a presurvey conference at which team members will meet with contractor personnel at the contractor's facility. The survey team chairman will explain the objectives and general plan of the evaluation for the understanding of all concerned.
e. Conduct the surveys and evaluate the quality program utilizing the procedures and checklists outlined herein.
f. Conduct a postsurvey critique with contractor personnel and discuss the preliminary results of the evaluation. The contractor should be given an opportunity to explain any unusual or discrepant information obtained.
g. The chairman of the survey team will be responsible for preparing a final report of the evaluation for the NASA Center and OMSF. Copies of this report will be sent to evaluation team members and other activities as necessary. The contractor will be notified in writing of the results of the evaluation and action necessary to correct or improve deficiencies.
h. Follow-up specific survey results to determine the action taken as a result of deficiencies noted during the survey. The assistance of the cognizant Government representative and resident Apollo System Project Office, if applicable, will normally be utilized to the maximum extent in this follow-up.
i. Maintain records of all survey reports and related follow-up summaries.
j. Transmit to OMSF copies of all survey reports and related follow-up summaries, with copies to other NASA Centers and team members as appropriate.

1.2.3 Survey Representatives

Survey teams will usually be comprised of the following members:
a. NASA Center chairman and designated representatives.
b. Cognizant Government representative (if applicable).
c. OMSF representatives.

1.3 ACTIVITY AREAS

Quality program activities consist essentially of a network of interrelated procedures and controls that are designed to assure an end product which meets Manned Space Flight Program needs. This quality program extends throughout the entire organization in its Work Element coverage; its time-phased coverage extends from initial contract definition throughout the entire program.

1-2

A quality program can be considered to consist of 15 major Activity Areas, each bearing a separate and distinct relationship to the over-all program. These Activity Areas are described in NPC 200-2 and are listed as follows:
1.0 Introduction
2.0 Basic Requirements
3.0 Management
4.0 Design and Development Control
5.0 Control of Contractor Procured Material
6.0 Control of Government Furnished Property (GFP)
7.0 Control of Contractor-Fabricated Articles
8.0 Nonconforming Material
9.0 Inspection, Measuring, and Test Equipment
10.0 Inspection Stamps
11.0 Preservation, Packaging, Handling, Storage, and Shipping
12.0 Statistical Planning and Analysis
13.0 Training and Certification of Personnel
14.0 Data Reporting and Corrective Action
15.0 Audit of Quality Program Performance

An evaluation of the Degree of Effective Coverage for each Activity Area can be established by determining the importance of individual Work Elements and the determination of the Degree of Effective Coverage provided for each within individual Activity Areas. Similarly, an over-all quality program evaluation of an entire quality program can be developed from compiling the results of the individual Activity Area evaluation.

1.4 EVALUATION PROCEDURE

1.4.1 Objectives

Quality evaluations are conducted to provide means of:
a. Determining effective quality program coverage in terms of Manned Space Flight Program needs.
b. Determining effective quality program coverage in terms of specific contractual requirements.
c. Determining the relative strengths and weaknesses in each of the major Activity Areas.
d. Determinng the relative strengths and weaknesses of the individual Work Elements which make up each Activity Area.
e. Measuring, through subsequent surveys, changes in effectiveness of quality activities.
f. Making recommendations for improving, strengthening, or de-emphasizing Aclivity Areas.

1.4.2 Evaluation Prccedure Steps

In meeting the above objectives, the quality program evaluation is performed in the following basic steps:
a. Determining the Relative Importance (in percent) of each of the quality Activity Areas to the specific program in terms of Manned Space Flight Program needs.
b. Determining the Relative Importance (1 to 10) of the individual Work Elements within each of the Activity Areas.
c. Establishiag the Degree of Effective Coverage ($0,20,40,60,80$, or 100 percent) of the individual Work Elements within each of the Activity Areas.
d. Listing re ated document number and date (where applicable) for individual Work Elements.
e. Determiniag the current assignment of Functional Responsibility for each of the: individual Work Elements.
f. Developinc' a Weighted Effective Rating for each Work Element by multiplying the Relative Importance Factor by the Degree of Effective Coverage.
g. For each Work Element, subtracting the Weighted Effective Coverage Rating from the Relative Importance Factor to evaluate each Work Element ir terms of need for action and priority. (The higher the number, the greater the need.)
h. Developing (similar to Step f) a composite Weighted Effective Coverage Rating for each Activity Area based on Effective Coverage Ratings on individual Work Elements.
i. For each Activity Area (similar to Step g), subtracting the Weighted Effective Coverage Rating from the Relative Importance Factor to evaluate ezch Activity Area in terms of need for action and priority. (The highe: the number, the greater the need.)
j. Developing and establishing specific recommendations to increase the effectiveness of the Manned Space Flight Quality Program.
k. Reviewing survey reports to identify Activity Areas and Work Elements where imp:oved reliability or quality procedures and controls are needed.

1. Reviewing survey reports to determine Activity Areas and Work Elements where exceptionally effective quality procedures and controls have been identified.

1.4.3 Contractual Compliance Procedure Steps

In determining complianse to specific contractual requirements, only a slight modification to the above prosedure is required and is accomplished as follows:
a. The individual Work Elements within the Activity Areas are recollated, a:s applicable, against the requirements of the specific contractual documents, thereby replacing the Activity Areas by Contractual Requirement Areas.
b. Establishment of Relative Importance Factors for the Work Elements within the Contractual Requirement Areas.
c. Upon completion of Step e, in paragraph 1.4.2, the results of Step c of that procedure (Degree of Effective Coverage), Step d (applicable document number and date), and Step e (assignment of Functional Responsibility) are posted to this revised breakdown.
d. Steps f through l are then repeated on a Contractual Requirement Area basis instead of an Activity Area basis.

Contractual requirement evaluations will supplement, not replace, the procedure of paragraph 1.4.2 because of the greater coverage required by increased reliability and safety needs of Mannəd Space Flight Programs.

1.5 SCORING METHODS

1.5.1 Determining the Relative Importance of Activity Areas

Each of the Activity A reas listed in paragraph 1.3 has a separate and distinct contribution in a quality program. However, all of these Activity Areas are not independent and a major weakness within a quality program in one of these Activity Areas can have a decided effect upon the contribution of the other Activity Areas.

In the implementation of the quality program survey, the first step is to establish Relative Importance Factors for each Activity Area. For initial planning purposes, a set of Relative Importance Factors has been established as shown on page 2-5. These Relative Importance Factors can be revised in later surveys to reflect adjustments indicated for the type of program being surveyed.

1.5.2 Determining the Relative Importance of the Individual Work Elements of Each Activity Area

Each of the Activity Areas is made up of a number of Work Elements. These Elements describe the key quality procedures and controls that are necessary to obtain maximum results from the Activity Area. The Work Elements are in the form of numbered declarative statements with an affirmative response scoring favorably. The number of Work Elements used for each Activity Area varies with the complexity of the Activity Area. The Work Elements are grouped under subheadings for easy reference. It is intended that the Work Elements, but not the subheadings, be scored. These Work Elements can be used in a survey regardless of the specifications and/or other requirements of the contract, as indicated in paragraph 1.4.3. Work Elements within an Activity Area are not equally important. Initial Relative Importance Factors have been established for each Work Element as noted in Column A of the Survey Checklists (Section 2). These factors will be subject to revision based on survey experience.

1.5.3 Rating Work Elements for Degree of Effective Coverage

The successful application of a quality program survey in fulfilling its objectives as a program status and improvement tool lies in the logical and accurate evaluation of the Degree of Effective Coverage currently provided against each Work Element.

It should be recognized that the assignment of the Relative Importance Factor for Work Elements (paragraph 1.5.2) and the determination of their current Degree of Effective Coverage are directed at establishing those Work Elements and those Activities that merit the highest priority of action to strengthen the program coverage and effectiveness. Some Work Elements of an Activity Area may be highly important but have a low Degree of Effective Coverage. It is those Work Elements which have the highest combination of Relative Importance and lack of Effective Coverage that will merit highest priority of action.

As shown in Column B of Figure 1-1, when rating the Degree of Effective Coverage, each Work Element will be given a rating of $0,20,40,60,80$, or 100 percent. This rating expresses, in percentage points, the Degree of Effective Coverage of the Work Element found by the survey team personnel. Satisfactory coverage warrants a rating of 100 percent. Ratings l ess than 100 percent should be supported by adequate notes.

The product of Column B and Column A is now inserted in Column C to give a quantity which represents the Weighted Effective Coverage of the Work Element.

1.5.4 Determining Document Numbers and Dates

Where applicable to individual work statements, the related document numbers, titles, and dates which reflect compliance are recorded as indicated in Figure 1-1. This might be a special or periodic report or procedure, for example.

1.5.5 Determining Current Assignment of Functional Responsibility for Work Elements

The Column E (Function Responsible for Work Element) will be filled in to indicate the organization unit responsible for the Work Element.

The possibility of multiple assignments or the lack of assignments must also be recorded, as appropriate. Inportant details that cannot be stated in this column should be supplied in a supporting narrative report which will be referenced in Column E.

1.5.6 Determining the Felative Need for Action of the Individual Work Elements of an Activity

When reviewing the results of surveys or when recommending corrective action, it is desirable to point out the extent of lack of coverage of Work Elements and to include at the same time the Relative Importance aspect of the Work Elements. To do this, subtract Weighted Degree of E ffective Coverage (Column C) from the Established Importance Factor (Column A). 'The result is then placed in Column D. The higher the number, the greater the need.

1.5.7 Developing Activily A rea Effective Coverage Ratings

The Degree of Effective Ccverage of an Activity Area is a function of the Degree of Effective Coverage of its individual Work Elements, weighted by their Importance

Factor. The mechanics of determining the Activity Area Degree of Effective Coverage are shown in Figure 1-2 and are detailed as follows:
a. Add the Weirghted Degree of Effective Coverage for all Work Elements (Column C) :o obtain a total for the Activity Area.
b. Add the Reletive Importance Factors for all Work Elements (Column A) to obtain a total for the Activity Area.
c. Divide the Astivity Area total for Weighted Degree of Effective Coverage (step a above) by the Activity Area total for the Relative Importance Factor (step b above). The result is the Activity Area Degree of Effective Coverage and should be noted on the last page of the Activity Area Work Element sheets. As shown on Figure 1-3, the Activity Area Degree of Effective Coverage number should also be inserted in Column B of the quality program evaluation summary sheet.

1.5.8 Rating Activity Areas in Terms of Need for Action

The procedure for rating Activity Areas in terms of need for action is identical to the procedure for rating the Work Elements. The Relative Need (Column D) is the difference between the Established Importance Factor and the Weighted Degree of Effective Coverage (Column A - Column C).

1.5.9 Determining Over-all Degree of Effective Coverage

The over-all Degree of Ef ective Coverage for each quality program is established directly from the Relative Importance Factors of the individual Activity Areas and their associated degree of current Effective Coverage. It is developed in the same manner as the Degree of Effective Coverage of the Activity Areas was established, except all Importance Faciors must add to 100 percent as shown in Figure 1-3.

The Relative Importance Factor (Column A) established for each Activity Area is multiplied by the Degree o: Effective Coverage determined for that Activity (Column B) and the result, representirg a Weighted Effective Coverage figure in percent, is inserted in Column C.

The sum of Weighted Effective Coverages (Column C) is then totaled and is a percentage representing the degre 3 of over-all quality program coverage.

QUAJITY PROGRAM EVALUATION___SUMMARY SHEET

This section contains the Quality Program Evaluation Summary Sheet for rating and evaluating the fifteen (15) Activity Areas. It also contains the individual Activity Area checklists for use in rating and evaluating the Work Elements that comprise each area.
Contractor____ \quad Code
 National Aeronautics and Space Administration

2-5/2-6
QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM EVALUATION
(

QUALITY PROGRAM E VALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

QUALITY PROGRAM EVALUATION

