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I.	 INTRODUCTION AND SUMMARY 

In a rocket motor having a de Laval nozzle with a fixed expansion ratio, there is 

only one pressure ratio 1 /j for which this expansion ratio is correct. At any other 
pressure ratio the gases will be either underexpanded or overexpanded, depending on 

whether the pressure ratio is higher or lower than the correct value. Rocket motor 

flame pattrns illustrating the four possible regimes are shown in Figures 1 to 4, 

inclusive. \In Figure 1, the pressure ratio is higher than the correct one for the 

fixed expansion ratio of the nozzle, resulting in underexpansio1\of the gases. in 
Figure 2, the pressure ratio is thecorrect one. in Figure 3, the pressure ratio is 

only slightly lower than the correct one, resulting in overexpansion without separa-

tion of the gases from the wall.JIn Figure 4, the pressure ratio is considerably below 
the correct one, resulting in overexpansion with separation of the gases from the 

nozzle wall. The present report is concerned primarily with this fourth type of flow, 
that is, overexpansion of the gases with separation of the flow from the wall. Such a 
situation exists in a rocket motor operating at a considerably lower altitude than 
that for which its exhaust nozzle was designed. 

Tests were made with overexpanded nozzles, and a record was taken of the pressure 

variation along the wall of the nozzle in each test. 2 The pressure followed the 

theoretical adiabatic expansion curve down to the point of separation below atmos-
pheric pressure, and then returned quite abruptly to approximately atmospheric 

pressure. The point of separation was found to move downstream with increasing chamber 
pressure, the curve of separation area ratio vs chamber pressure being nearly a 

straight-line function. Typical values are: separation at area ratio 5.5 at 200 psia 

chamber pressure, and separation at area ratio 8.3 at 350 psia chamber pressure. Also 

the point of separation was found to be relatively unaffected by changes in the nozzle 
divergence angle, varying only about 0.8 area ratio at a given chamber pressure for 
changes in nozzle divergence half-angles from 10 to 30°. 

The gases were found to separate from the wall when they had expanded to a 

pressure of about 5 psia, and this separation pressure decreased slightly with 

\ increasing chamber pressure. Of special significance is the fact that this separation 
pressure appears to be independent of mixture ratio, gas temperature, adiabatic 

expansion exponent  (and hence propellant combination), total expansion ratio, and 
nozzle divergence half-angle. 

The loss in thrust resulting from operation of a nozzle having a total expansion 

ratio of 10, as compared with one having a total expansion ratio of 3.65, was deter-

mined for various divergence half-angles. A typical experimental loss value was 8 per 
cent, compared with a theoretically predicted value of 12 per cent when separation 
was neglected. 

1The nomenclature used in this report is given in Table I. 

2 Some preliminary tests with an overexpanded nozzle were made by R. B. Canright 

of this Laboratory, which aided materially in determining the course of the research 

reported herein. 
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II. TEST EQUIPMENT 

A rocket motor having a nominal thrust of 750 pounds at 300 psia chamber pressure 
was used as the test motor. A drawing of this motor is shown in Figure 5. The injector 

used in all tests was the impinging-jet type with six pairs of replaceable orifices. 

Chamber pressure was measured. at the injector face through a tap not shown in the 

drawing. The steel chamber and the chrome-plated copper nozzle were separately cooled 
by water. The cooling water was piped through Fischer-Porter rotameters for flow 

measurement, and temperature of the water was taken at each inlet and outlet by means 
of iron-constantan thermocouples. The millivolt output from these thermocouples was 

recorded on either a Brown or a Leeds and Northrup 12-point r ecording potentiometer. 

The nozzle shown in Figure 5 was designed for optimum expansion, that is, for 

expansion from 300 psia chamber pressure to 14 psia atmospheric pressure at the nozzle 
exit. Drawings of the overexpanded nozzles tested are shown in Figure 6. These nozzles 

included three having expansion ratios of 10 with divergence half-angles of 10, 15, 
and 20°, and one having an expansion ratio of 20.8 with a divergence half-angle of 

15°. The nozzle was water-cooled except for the portion between area ratio 3 and the 

exit, this portion of the expansion section being uncooled. This type of construction 
was possible because the temperature of the exhaust gases was low enough to prevent 

overheating of the uncooled portion beyond area ratio 3. This construction also 
greatly simplified the installation of the pressure taps for the pressure measurements. 

Holes of 1/32-inch diameter were drilled at 1/2-inch intervals in the expanding 

portion of the nozzle, starting at approximately area ratio 3 and extending to the 

nozzle exit. These holes were drilled carefully to be normal to the nozzle surface 
and to have sharp corners without burrs. The pressure was conducted to the mercury 

manometer bank through copper tubes, 1/4 inch in diameter, which were brazed into the 

nozzle wall as shown in Figure 6. Certain of the pressure taps were repeated in two 
other circumferential locations around the nozzle in order that any nonsymmetry of 

pressure might be determined. Figure 7 is a photograph of a typical nozzle showing all 

these details of construction. in this photograph, the cooled copper portion of the 

nozzle appears in the center, the outer case for optimum expansion is at the left, and 

the outer case for overexpansion is at the right. 
Ine test rocket motor was mounted on a parallelogram-type thrust stand as shown 

in the photograph of Figure 8. The parallelogram was supported by eight ball bearings 

and pushed against a hydraulic piston (area 1 sq in.) for transmission of the thrust 

force to the recording gage. The hydraulic piston was rotated slowly within its 
housing in order to minimize friction forces. Operation of the rocket motor was 

observed through the windows between the control room and the concrete test area. 

III. INSTRUMENTATION 

The quantities of most importance to be measured during a test were thrust, 

chamber pressure, and pressures at the various stations in the expanding portion of 

the nozzle. Additional data taken but considered of minor importance were flow of 
oxidizer, flow of fuel, flow of cooling water through the chamber and nozzle, and 

temperature rise of this cooling water. 
In order to increase the readability of the thrust measurement on the recording 

gage, a mechanical preload was applied to the thrust system. Known weights were placed 

in the preload pan on its lever arm, visible in Figure 8 just under the rocket motor, 

and acting in the direction opposite to that of the thrust force. The preload force 

could be varied by changing the weights in the preload pan; thus a thrust of 500 to 

1000 pounds was always measured on a 250-pound gage. The instrument used was a Brown

/ 
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circular chart-recording pressure gage, having a range of 0 to 250 psi. A similar 
gage, having a range of 0 to 500 psi, was used to obtain the chamber pressure record. 

The two circular chart-recording gages appear at the top of the control panel in 

Figure 9. Typical thrust and chamber pressure records obtained on these gages are 

shown in Figure 10. In this Figure, a portion of each of the circular charts has been 
reproduced. Note that, in this particular test, a preload of 426 pounds was used; the 

total thrust is therefore the chart reading plus 426 pounds. The chamber pressure was 

235 psig (or 249 psia). 
Pressures from the taps in the expanding portion of the exhaust nozzle were 

transmitted to the mercury manometer bank shown in Figure 9. There were twenty-six 
tubes in this bank. The black inch marks visible in the photograph were a great help 
in reading the mercury level in the various tubes. The manometer was illuminated from 
the rear in order that good pictures could be obtained. Pictures of the manometer bank 

were taken at frequent intervals during the tests. A means was provided for blowing 

out the tubes leading to the manometer bank, the twenty-six valves at the left in 
Figure 9 being used for this purpose. The tubes were blown out just before each test 

in order to remove any moisture condensation. 
For propellant flow measurement, the depth of each propellant in its calibrated 

tank was measured before and after each test. The flow rate of the propellant was then 
obtained by dividing the quantity of propellant used by the duration of the test. The 

cooling water for the rocket chamber and nozzle was metered through Fischer-Porter 

rotameters. These rotameters were the visual type, giving a direct reading of the flow 
of water in pounds per second.

IV. TEST PROCEDURE 

The test cell was piped according to the simplified diagram shown in Figure 11. 
The propellant tanks, containing red fuming nitric acid (6/47, NO2 added) and aniline, 
were equally pressurized from commercial high-pressure nitrogen cylinders through a 

pressure-reducing regulator. Opening the first set of valves in the propellant lines 

established flow through the restrictors in the starting circuit. The ignition of red 

fuming nitric acid and aniline in the rocket motor is spontaneous. The chamber 
pressure developed by this restricted flow acted on a pressure switch which in turn 
opened the second set of valves in the propellant lines, establishing the 'flow through 

the full-flow circuit. With this method of operation, test starts were obtained 

quickly and were nearly identical from test to test. 
Tests were normally 30 seconds in duration, and in those tests made with over-

expanded nozzles, pictures were taken of the manometer bank recording the nozzle 

pressures at 1- or 2-second intervals. From these manometer pictures it was determined 

that equilibrium conditions were reached in approximately 5 seconds, and pressures 

were relatively steady after that interval. 

V. RESULTS OF TESTS 

The exhaust nozzle for a rocket motor normally has a much larger divergence angle 

than is usual in the design of the de Laval steany nozzle. The advantage of increasing 

the nozzle divergence angle is the reduction in the weight of the nozzle and in the 


surface area of the nozzle through which heat losses occur. The disadvantage is, of 


course, a loss in thrust. Early experiments at this Laboratory indicated that a 

divergence half-angle of 15° was a good compromise when these factors were considered,

and nozzles having approximately this divergence angle have been used since that time.


In the present series of tests, a nozzle having a divergence half-angle of 15° 


was tested first. Subsequently, nozzles having divergence half-angles of 10 and 20°

I' 
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were tested, since it was believed that this range would cover the normal spread 

encountered in rocket motor work. Finally, because an apparently anomalous result was 
obtained, a nozzle having a divergence half-angle of 30° was tested. 

A.	 Separation Data 

1. Method of. presenting data. Results of individual tests are presented by 
plotting the pressure ratio pa/p against the area ratio f/ft , where 

p pressure measured at plane in nozzle 

f = area of nozzle cross section where pressure is p 

PC = chamber pressure 

nozzle throat area 

Included on each graph of the data are theoretical curves assuming adiabatic expansion 

of the gas through the nozzle according to the usual expression (Cf. Ref. 1): 

I	 r	 ___ 
V ( 	 (_p 

\\PC)	 \Y- 1,1 •	 .PC 

in which r' is a constant defined by the equation 

y+1 

/ 2 - 1) 1) . 2( 

= Y	
+ 

Theoretical curves for y = 1.20 and y = 1.26 are included, since these values will 

approximately bracket conditions encountered in the acid-aniline rocket motor. 

The results from groups of tests have been summarized in regard to separation 

data byplotting the chamber pressure against the area ratio at which separation occurred. 

2. Tests with nozzle of 15° divergence half-angle and at high mixture ratio. 

Operation at a mixture ratio of approximately 3 produces maximum exhaust velocity with 

the acid-aniline propellant combination. However, at this mixture ratio, where the 

combustion temperature is 5020°F, the lifetime of some rocket motor parts (such as 
chrome-plated copper nozzles) is rather limited. For this reason, most tests were 

made at a mixture ratio of 1.9 to 2.0 (combustion temperature 3650°F'), but a few tests 
were made at high mixture ratio to determine the effect of varying this parameter. 

Three tests were made at mixture ratios of 3.1 to 3.3, and the data are plotted 

in Figures 12, 13, and 14. The nozzle had a divergence half-angle of 15° and a total 

expansion ratio of 10.0, and the tests were made at 302 to 306 psia chamber pressure. 
The experimental curve followed the theoretical adiabatic expansion curve down to the 

point of separation (which was considerably below atmospheric pressure) and then rose 

quite abruptly to approximately atmospheric pressure. Separation of the gas from the 

wall in these tests. at .high mixture ratio occurred.ataiarea ratio of 8.0 to 8.1 

where the static pressure was 5 psia. 
Subsequent tests at lower mixture ratio showed that the experimental curve 

followed the theoretical adiabatic expansion curve of a correspondingly higher value 

of y, as it should for a lower combustion temperature. In fact, in most tests, the 
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shape of the pressure curve upstream from the separation point fitted a theoretical 
adiabatic expansion curve closely enough to permit determination of the effective 

adiabatic exponent y to a fair degree of accuracy. Thus, since the effect of changes 

in mixture ratio had been tested and found to be normal and predictable, the remaining 

tests were made at a mixture ratio of about 1.9 in order that the equipment would have 

a suitable lifetime. 

3. Tests with nozzle of 150 divergence half-angle at various chamber pressures. 

With the nozzle having a total expansion ratio of 10.0 and a divergence half-angle of 

15°, a systematic study of the -effect of variations in chamber pressure was made. All 

of the tests were - made at a mixture ratio of about 1.9. Results of the individual 
tests are shown in Figures 15 through 24, which are arranged in order of increasing 
chamber pressure. Separation of the gases from the wall occurred at every chamber 

pressure tested, with a rather abrupt return to near-atmospheric pressure just down-
stream the separation point, and then a gradual return to exactly atmospheric 

pressure at the nozzle exit. 

In several of these tests (Cf. Figs. 15, 16, 17, 19, 20, 23, and 24) a nozzle 
was used in which the pressure taps extended as far upstream as the throat of the 
nozzle. The purpose of these tests was to determine that no discontinuities existed 

in the expansion process at any place between the throat and the nozzle exit. That no 

discontinuities existed is evident from the smoothness of the curves plotted from the 
measurements taken. Within the experimental accuracy, the measured throat pressure 

agreed with the predicted value (Cf. Ref. 1) of

V


	

t	 ( 2 

	

P C 	 y+i) 

A summary curve for the separation data is presented in Figure 25, in which the 

area ratio at the plane of separation is plotted against chamber pressure. From this 

curve it is seen that the point of separation moves downstream as the chamber pressure 

increases. The change is nearly a straight-line function, the point of separation 
varying from area ratio 5.5 at 200 psia chamber pressure to area ratio 8.3 at 350 psia 

chamber pressure. 
As noted in Section II, on some of the nozzles certain pressure taps were 

repeated in two other circumferential locations around the nozzle in order that any 
nonsymmetry of pressure might be determined. During the tests, the pressures were 

found to be quite symmetrical, the greatest deviations occurring, as would be expected, 
in the pressure downstream from the plane of separation where the-pressure curve was - 

returning very steeply toward atmospheric pressure. The method of indicating the 7' 
asymmetry of pressure is given in Figure 21. Here the dotted vertical line through. - 

alternate test •points indicates the amount of asymmetry at the point, and the three 

circumferential pressures fall within these vertical lines. The only point of appre-
ciable difference is at area ratio 7.55, which is just downstream from the separation 

plane. Because of the rapid rate of change of pressure in this region, this asymmetry 

is also negligible. in all subsequent graphs, vertical dotted lines through test) 

points have the same meaning as indicated here. 

4. Tests with nozzle of 15 0 divergence half-angle and expansion ratio 20.8. 

Tests were made with a nozzle having a total expansion ratio of 20.8 and a divergence 
half-angle of 15°. One purpose of these tests was to determine whether the length of 
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the nozzle affected the plane of separation of gases from the wall. Data from the 

individual tests are shown in Figures 26 through 31, which are arranged in order of 
increasing chamber pressure. The pressures were nearly identical with the pressures 

measured in the nozzle having a total expansion of 10, following the theoretical 

adiabatic expansion down to the point of gas separation and then returning to atmos-

pheric pressure at the nozzle exit. Also the plane of separation of the gases was 

nearly identical, as indicated by Figure 32, in which the area ratio at the plane of 

gas separation is plotted against chamber pressure. The experimental points for both 

nozzles (€ = 10.0 and € = 20.8) are shown in the Figure. 

Although the plane of separation of the gases from the wall is not affected by 
the length of the nozzle, the thrust of the motor is less for the nozzle having a 

total expansion € of 20.8 than for the nozzle having a total expansion € of 10.0. The 
increased loss is due to the larger area of the nozzle downstream from the separation 
plane where the pressure inside the nozzle is subatmospheric. More details on this 

point will be given in Section V-C. 
Another important result has been determined with this greatly overexpanded 

nozzle; the detached flow persists even when the chamber pressure is made sufficiently 

low to satisfy conditions for the occurrence of a plane shock wave within the nozzle. 

According to the rocket motor theory which neglects separation, the plane shock wave 
would stand at the exit plane of the nozzle when the pressure just upstream from the 
normal shock p and the chamber pressure are such (Cf. Ref. 2) that 

y-i 

= 4y y 

( P̂_Sci

- I 
P, si 	 y2 - I [) 

 
y+ I 

and

fe 

ft

( 
Ps 

Vc)

,,+ I 

2 	 2(y - I) 

+ 1)

, \	 V 

For any chamber pressure less than this value, the theory indicates that the shock 

wave would occur within the nozzle. 
For the nozzle having a total expansion ratio of 20.8, the conditions for the 

normal shock to stand at the exit plane of the nozzle are satisfied when the chamber 
pressure is 197 psia. Tests were made with the nozzle at chamber pressures as low as 
130 psia; separation continued to occur, with no indication of the normal shock at any 

chamber pressure between 130 and 200 psia. Figure 32 shows one point at 167 psia 
chamber pressure with gas separation occurring at expansion ratio 4.7. 

Thus it has been demonstrated that, with a nozzle having a divergence half-angle 
of 15° and under the conditions of the tests, the plane shock wave solution postulated 

in such theories as Reference 2 does not occur. 
5; Tests with nozzles of 10, 20, and 30 0 divergence half-angles. Rocket motor 

nozzles for most applications may be expected to have a divergence half-angle between 
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about 10 and 200. In order to have complete data covering this range, tests were mad 

with a nozzle having a divergence half-angle of 10 0 and also with one having a 

divergence half-angle of 200. For each of these nozzles the total expansion ratio was 

10.0, similar to the previous nozzle having a divergence half-angle of 15°. 
Pressures measured during individual tests with a nozzle of 10° divergence half-

angle are shown in Figures 33 through 36, which are arranged in order of increasing 

chamber pressure. Similarly, tests with a nozzle of 20 0 divergence half-angle are 

shown in Figures 37 through 42. The behavior in these nozzles was similar to that in 

the previous nozzles, pressure following approximately an adiabatic expansion curve 

to the point of separation and returning to atmospheric pressure at the nozzle exit. 
A summary of the separation data for these two nozzles, as well as a repetition 

of the data for the nozzle of 15° divergence half-angle, is given in Figure 43. As 

shown, separation occurred in the 10 and 20° nozzles along curves parallel to the 
curve for the 15° nozzle, but at slightly larger area ratios for equal chamber 
pressures. The curve for the 20° nozzle fell between the curves for the 10 and 15° 

nozzles, and the small scatter of the data around these curves seemed to indicate 
that this effect was real. 

Because of the apparently anomalous results mentioned in the previous paragraph, 
a nozzle having a divergence half-angle of 30° was constructed and tested in an effort 
to clear up this effect. Pressures measured during individual tests with the nozzle of 
30 0 divergence half-angle are shown in Figures 44 through 48, which are arranged in 
order of increasing chamber pressure. The data did not have the same consistency as 

had been obtained with the previous nozzles, and when the separation data were 

plotted, as shown in Figure 49, the points scattered among the points for the other 

three nozzles. 
The scatter obtained with the nozzle of 30° divergence half-angle was probably 

due to one, or a combination, of the following factors: (1) Tests for symmetry of 

separation made with the 20° nozzle (vertical dotted lines through points in Figs. 37 7 
through 42) showed an increase in asymmetry of separation over that in the 10 and 15° 

nozzles. Tests for symmetry of separation were not made with the 30° nozzle, and it 

seems probable that there was a greatly increased amount of asymmetry of separation 
with the nozzle of such a large divergence angle. This factor would account for the 

scatter in the separation data, and is very likely the major contribution. (2) Another 
possible source of difficulty may be that 30 0 is approaching too closely the angle at 

which separation is caused by divergence, and may thus result in unstable pressures in 

the overexpanded portion. SeparatIon of the gases from the wall is known to occur with 

a divergence half-angle somewhere between 30 and 40°. 
Although testing the 30 0 nozzle did not in itself clear the apparently anomalous 

results obtained with the other nozzles, it showed an important result: The plane of 

separation is relatively unaffected by changes in the nozzle divergence angle. It is 

evident, for instance, that in Figure 49, at a chamber pressure of 300 psia, separa-

tion would occur at an area ratio between 7.4 and 8.2 for any nozzle divergence half-

angle between 10 and 30°. For all practical applications, this range of divergence 

angles is more than adequate, and rocket performance with overexpanded nozzles can be 

quite accurately estimated from the data presented. 

Another result s which is possibly the most important with regard to practical 

applications, is a crossplot, from all of the foregoing curves, of separation pressure 

vs chamber pressure. This plot is shown in Figure 50, which includes points at high 

mixture ratio, at low mixture ratio, with total expansion ratios of 10.0 and 20.8, 

and with nozzles having divergence half-angles of 10, 15, 20, and 30 0 . Although there 

is considerable scatter of the points, there is a definite trend indicating that the 

pressure at which separation of the gases from the wall of the nozzle occurs decreases 
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as chamber pressure increases. Since points are included from all the nozzles tested, 

this curve appears to he independent of mixture ratio, gas temperature, adiabatic 

expansion exponent 'y (and therefore propellant combination), total expansion ratio, 

and nozzle divergence half-angle. The one question that 'could not be determined with 
the present experimental equipment was the effect of varying the back pressure. in all 

tests, the back pressure was atmospheric pressure of about 14.2 psia. If the influence 

of the absolute value of.back pressure is not appreciable, the designer of a high-

altitude rocket could assume adiabatic expansion of the gases from the chamber 

pressure to the pressure shown by Figure 50, at which pressure separation would take 

place; thus the designer could determine thrust at launching and during flight. 

B.	 Induced Separation 

For each external pressure there exists an optimum nozzle whose expansion ratio 

gives maximum thrust. For vertical flight, where pressure is continually decreasing, 
the most efficient nozzle would be one with a continually varying expansion ratio. 

Because of the evident difficulties of constructing such a nozzle, present-day rockets 
have a rigid nozzle designed for some mean altitude. in some instances, however, an 

appreciable increase in altitude might be obtained by having two or three expansion 

ratios built into one nozzle with a means for causing gas separation to change from 

one to another. It has been shown (Cf. Ref. 3) that, in most instances, very little 

advantage is obtained by having more than two such steps. 
During the course of the present investigation, several possible methods of 

inducing separation at a desired area ratio have come to mind. (1) A ring (or rings) 

of holes (Cf. design a of Fig. 51) might be drilled in the nozzle wall and connected 

to external pressure or ram pressure of the ascending rocket, causing separation at 

the air inlet. These onings could be valved off as the rocket ascended and a larger 
nozzle area ratio was required. 2) An abrupt change in angle in the diverging portion 

of the nozzle wall (Cf. design b of Fig. 51) might cause separation at low pressure 

ratios of p c1po and not at the higher 'pressure ratios at increased altitude. (3) A 
step (or steps) of material of proper melting temperature might be placed in the 

diverging portion of the.nozzle to cause separation until each successive step was 

burned away (Cf. design c of Fig. 51). (4) A sliding section might be built into the 

nozzle that would move out into position at a predetermined pressure ratio (Cf. design 

d of Fig. 51). 
A few preliminary tests have been made using the first of these methods, that is, 

drilling holes through the nozzle wall to allow air to be drawn in, thus causing 

separation. Six tests were made. A brief description of each test follows, and graphs 

of pressure ratio vs area ratio for each test are shown in Figures 52 through 57. 

1. In test E40W (Cf. Fig. 52) the nozzle having a divergence half-angle 

of 15° and a total expansion ratio of 10.0 was used. First, fourteen 
holes of 1/4-inch diameter were drilled through the nozzle wall at area 

ratio 7.0. At a chamber pressure of 330 psia where separation would 

occur normally at area ratio 8.0, separation was induced at the air 
inlet holes at area ratio 7.0. Fluctuations in the pressure near the 

separation point are indicated by the dotted portion of the curve with 

the limits of fluctuation indicated by the two plotted points at area 

ratio 7.0. 

2. In test E41W (Cf. Fig. 53), using the same configuration as in test 

E40W, a test was made at 350 psia chamber pressure where separation 

would occur normally at area ratio 8.3. Again, separation occurred at 

the air inlet holes at area ratio 7.0. Increased fluctuations in 
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pressure downstream from the separation point were noted. 

3. In test E42W (Cf. Fig. 54) an effort was made to distribute the in-
coming air more evenly; the fourteen holes of 1/4-inch diameter were 

connected by a groove 3/32 inch wide and 1/8 inch deep on the inner 

surface of the nozzle. A test was made at 351 psia chamber pressure 
where separation would occur normally at area ratio 8.3. Separation 

occurred at the air inlet, and an appreciable decrease in the pressure 

fluctuations downstream from the separation point was obtained. 
4. In test E44W (Cf. Fig. 55) a second ring of holes consisting of five 

holes of 1/4-inch diameter was drilled through the nozzle wall at area 
ratio 4.8 and connected by a groove 3/32 inch wide and 1/8 inch deep on 

the inner surface. The objective was to cause gas separation at this 
area ratio. A test was made at 328 psia chamber pressure where separa-
tion would occur normally at area ratio 8.0. Separation did not occur 

at the upstream air inlet at area ratio 4.8, but continued to occur at 

the second air inlet at area ratio 7.0. 

5. In test E45W (Cf. Fig. 56), using the same configuration as in test 

E44W, a test was made at 255 psia chamber pressure, at which pressure 

the normal separation point is at area ratio 6.6 Separation did not occur 
at the upstream air inlet, but continued at the normal separation point. 

6. In test E47W (Cf. Fig. 57), in order to simulate ram pressure in an 

actual vehicle, nitrogen gas at a velocity of 500 ft/sec was introduced 

at the upstream air inlet holes. This velocity was chosen since it is 
that of the existing R'AC CORPORAL vehicle at the end of boost. With a 

chamber pressure of 308 psia (normal separation point area ratio 7.6) 
the gases still did not separate at the upstream air inlet, but 

continued to separate at the downstream air inlet at area ratio 7.0. 

In this series of preliminary tests, a limited amount of success was obtained 

with this method of inducing separation of the gases from the rocket nozzle wall. For 
a specific application in which an appreciable advantage could be obtained by having 

more than one nozzle expansion ratio, additional tests with design a of Figure 51 

(or one of the other three designs) would be warranted, with good chances for early 
successful achievement. Examples of the advantage that can be obtained by having a 

nozzle with two expansion ratios rather than one fixed expansion ratio have been 
calculated in Reference 3. A nozzle designed with an infinitely variable area ratio, 

such that the optimum may be obtained for each altitude, was chosen (Cf. Ref. 3) as 

the standard by which maximum performance may be calculated. The ratio of the summit 
altitude reached by a rocket vehicle with a conventional nozzle of fixed area ratio to 
the altitude obtained by the ideal nozzle is symbolized by the ratio ft. In one example 
it is shown that, for a rocket vehicle having a sea-level specific impulse of 200 

seconds, an initial acceleration of 1 g, and initial velocity of 0, a loading density 

of 0. 85, a chamber pressure of 300 psia, and y of 1.2, the optimum fixed expansion 
ratio is 7.5 and ft = 0.835. Then if a two-step nozzle of expansion ratios 6 and 35 is 

substituted, all other conditions remaining the same, ft is increased to 0.913. In 
other words, a 9 per cent increase in summit altitude is obtained by using a two-step 
nozzle having expansion ratios of 6 and 35 over the altitude reached by a single-step 

nozzle of expansion ratio 7.5. Similar increases in altitude are indicated in the 
other examples calculated in Reference 3. 

C. Effect of Overexpansion on Thrust 

The equation for thrust of a rocket motor may be written in the form (Cf. Ref. 1) 
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F =&Ve+ (Pe Po)fe 

The two terms in the right-hand member of the equation are referred to as velocity 
thrust and pressure thrust, respectively. If Pe = p0 , all the thrust is velocity 

thiust. If Pe < p0 , the gases are overexpanded and the pressure thrust is negative, 
although partially compensated by an increased velocity thrust. If Pe > p0 , the gases 

are underexpanded. Although the pressure thrust will then be positive, it will not 

compensate completely for loss in Ve caused by inadequate expansion. in the present 
report, the effects of overexpansion on thrust are correlated by means of the thrust 
coefficient Cf. I r	 __ 

C 2 	 j-(	 v	 + (^ePo fe 
F' P C I	 L- 1 L	 PC )7 

In a rocket motor nozzle, if the phenomenon of jet separation did not take place 

but the gases followed an adiabatic expansion process down to the nozzle exit, then 
the theoretical loss in thrust would be as shown in Figure 58 for a change in expan-
sion ratio from 3.5 to 10.0. Here Cf has been plotted against PC for € = 3.5 and 
e = 10.0, assuming y = 1.26 and no loss due to nozzle divergence ()'. = 1.0). The loss 
in thrust in changing from E 3.5 to € = 10.0 varies from 24.4 per cent at p = 200 
psia to 8.8 per cent at p = 350 psia. in an actual nozzle, jet separation does occur 
and the loss in thrust is not as great as the theory indicates. in Figure 59, experi-
mental CF values have been plotted against p for nozzles having expansion ratios of 
3.5 and 10;0, each having a nozzle divergence half-angle of 15 0 . It is seen that the 
loss in thrust in changing from € = 3.5 to E = 10 0 amounts to approximately 9. 2 per 
cent at PC = 200 psia to 7.1 per cent at P = 350 psia. In Figures 60 and 61, similar 
data are presented for nozzles having divergence half-angles of 10 and 20°, respec-
tively, although the number of experimental points with these nozzles is insufficient 

to establish the curves to the same degree of accuracy as the curve for the 15 
nozzle. 

In tests made with the nozzle having a total expansion ratio of 10.0, the loss in 

thrust can also he obtained by integrating the pressure forces acting on the nozzle 
between area ratios 3.5 and 10.0. This check method was used in several tests and, by 
means of a graphical integration, agreement within 1 per cent of the measured thrust 
was obtained. 

When separation of the gases takes place in a nozzle, subatmospheric pressure 
exists in the nozzle from that point to the nozzle exit. Thus, when the nozzle having 
a total expansion of 20.8 was tested, the gases separated at the same area ratio as 
in the nozzle having a total expansion ratio of 10.0 (as shown in Section V-A of this 
report); the thrust, however, was somewhat decreased. This effect is shown in Figure 
62 in which CF is plotted against chamber pressure for the nozzles having € = 3.5, 
10.0, and 20.8. The ideal theoretical curve (A. = 1.0) is included in Figure.62. 
Whereas the average thrust loss between € = 3.5 and € = 10.0 is about 8 per cent, the 
average loss between € = 3.5 and € = 20.8 is about 11 per cent. 

A suninary of the rocket motor performance data obtained during all tests is given 
in Table II. In examining this table, it should be remembered that the accuracy of 
thrust, chamber pressure, and CF is good, but that the accuracy of mixture ratio, 
exhaust velocity, and specific impulse is only fair because of the tank deflection 
method of obtaining flow rates. The accuracy of these latter items also decreases as 
the duration of the test decreases because of the influence of end effects (starting 
and stopping transients). 
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VI.	 CONCLUSIONS 

Although the phenomenon of jet detachment has been observed before, the sys-

tematic behavior of the point of separation with chamber pressure apparently has not 

been described in the literature on this subject. in Reference 3, a hypothesis for 

predicting the nature of these curves of-pressure ratio vs area ratio was established.. 

It was assumed in Reference 3 that the detachment of the jet was accompanied by an 

oblique shock wave near the nozzle wall, and that the angle and strength of the. 

oblique shock corresponded to the wedge angle 8, by which the stream lines adjacent to 

the wall were deflected. The hypothetical flow structure is. sketched in Figure 63-. By 

means of one-dimensional supersonic nozzle theory and one-dimensional oblique shock 

theory (applicable to the local region near the wall), a system of equations was 
developed that could be solved for the area ratio of separation as a function of 

pressure ratio for various parametric values of the wedge angle 8. If the experimental. 

data for various values of a and the theoretical data for various values of the wedge 

angle 8 are both plotted on the same graph, as in Figure 64, it is found that the 

experimental curve for each nozzle is reasonably parallel to the family of theoretical 

curves for constant wedge angle. The assumption of a constant wedge angle of 18±3°. 
would include all of the experimental data. An interesting conclusion is that, over 
the range of conditions tested, the wedge angle is almost independent of the nozzle 
divergence angle, and is relatively unaffected by changes in pressure ratio, gas 

temperature, adiabatic expansion exponent y, and nozzle length. 

Another conclusion which has been tentatively established is that the separation 

pressure is independent of mixture ratio, gas temperature, adiabatic expansion 
exponent y (and hence propellant combination), total expansion ratio, and nozzle 

divergence angle. This conclusion will be checked by further experimentation already 

undertaken by this Laboratory, using nitrogen gas in a two-dimensional nozzle.1 
Since jet separation is found to occur in highly overexpanded nozzles,, the loss 

in thrust at launching of a sounding rocket is not as severe as the theory predicts 
when jet separation is neglected. Preliminary attempts to induce separation at a 
desired area ratio have met with some success, and the performance of a sounding 

rocket might be improved by inducing separation of the jet at two or more area ratios 

during the powered flight. 

'Unpublished report on experiments with two-dimensional supersonic exhaust 

nozzles using nitrogen gas by John D. McKenney of this Laboratory. 
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TABLE II


NOMENCLATURE 

c = effective exhaust velocity (ft/sec). 

c' = characteristic exhaust velocity (ft/sec). 

CF = thrust coefficient. 

f = area (sq in.). 

nozzle exit area (sq in.). 

fS = area at plane of separation (sq in.). 

ft = nozzle throat area (sq in.). 

F = thrust (lb). 

ISP = specific impulse (lb sec/lb). 

= mass flow rte (lb/sec). 

p = pressure (psia). 

pc = chamber pressure (psia). 

Pe = pressure at nozzle exit (psia). 

p0 = atmospheric pressure (psia). 

•	 = pressure at plane of separation (psia). 

= pressure upstream from normalshock (psi). 

Pt = pressure at nozzle throat (psia). 

•	 r = mixture ratio = wo/wf. 

time (sec). 

Ve = exhaust velocity parallel to axis (ft/sec) 

Wf = fuel flow rate (lb/sec). 

wo = oxidizer flow rate (lb/sec). 

a = nozzle divergence half-angle (°). 

y = ratio of specific heats. 

€ = fe/ft = nozzle expansion ratio. 

r' =y (_2 
)2(Vul) 

+ 1 

9 = wedge angle (°). 

= nozzle divergence angle function. 
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Test t 
No. (sec) 

, 

32 30.5 
31 27.0 . 
33 31.0 
34 31.5 
14 29.7 
18 30.3 
q 30.9 
36 31. 5 
35 32.0 
38 31. 5 
37 31.0 

9 29.5 
8 56.6 

10 31. 7 

30 9.5 
29 8.0 
24 10.5 
17 31.0 
26 13.5 
25 11.5 
50 :D.7 
39 31. 2 
28 10.5 
27 14.5 

75 30.4' 
91 29.7 
71 30.5 
70 30.7 
69 31.4 
89 29.8 

88 30.7 
87 30.6 
48 :D. 9 
86 30.5 
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TABLE II 

ROCKET MOTOR PERFORMANCE DATA 

F Pc r c* C, Isp Po Ps Is 
(1b) (psia) (ft/sec) (sec) (psia) (psia) It 

E = 3.5 (Optill1l.ll!l); a = 15° 

479 201 1.88 4030 1. 312 164.2 14.1 -- --
SOO 210 1. 92 3833 1. 307 155 .. 6 14.2 -- --
639 258 1. 81 . 4185 1. 360 176 .. 8 14.1 -- --
631 258 1. 88 4183 1.347 175.0 14.1 -- --
736 298 1. 88 4160 1.379 178.2 14.1 -- --
753· 299 1. 91 4077 1. 379 174.6· 14.2 -- --
738 301 1.84 4301 1.392 185.9 14.2 -- --
757 301 1. 75 4264 1.388 183.8 14.1 -- --
774 308 1.84 4293 1. 381 184.1 14.1 -- --
890 348 1.78 4444 1.413 195.0 14.1 -- --
889 349 1.82 4239 1.407 l85.2 14.1 -- --

€ = 10 (Overexpanded); a = 15°; High Mixture Rat10 

693 302. 3.31 4203 1.247 162.8 14.2 4.95· 8.1 
700 306 3.12 4548 1.251 176.7 14.1 4.97 B.O 
705 :D6 3.18 4512 1.262 176.8 14.1 4.90 8.1 

E = 10 (Overexpanded); a = 15°; Low Mixture Ratio 

457 206 2 .. 11 3536 1.197 131. 4 14 .. 2 5.26 5.7 
486 218 2.18 3308 1.197 123.0 14.2 5.59 5.7 
589 256 2.11 4097 1.237 157.4 14.2 5.43 6.6 
690 299 1.69 4550 1.268 179.3 14.2 5.15 7.4 
710 299 1.98 4085 1. 275 161. 8 14.1 4.88 7.6 
712 300 2.17 3907 1. 272 154.4 14.1 5.04 7.5 
710 . 302 1. 86 4241 1. 266 . 166.7 14.1 5.12 7.4 
761 326 1. 78 4372 1.276 173.2 14.1 5.10 7.8 
858 352 2.00 3859 1. 308 156.7 14.2 4.78 8.2 
883 360 . 1. 87. 4422 1. 315 180.6 14.1 4.91 8. 5 

€ = 20.8 (Overexpanded); a = 15° 

347 '. 167 1. 72 3946 1.122 137.5 14.1 5.57 4.7 
445 205 1. 93 4196 1.174 152.9 14.1 5.62 5.3 
575 258· -- -- 1.208 -- 14.1 5.16 6.5 
,.706 309 1. 90 4286 1.238 164.8 14.1 4.76 7.6 
844 363 1.88 . 4360 1.256 170.1 . 14.1 4.47 9.0 
879 374 1.84 4516 1.270 178.1 14.1 4.55 9.2 

E = 3.65 (Optimum); a = 10° 

466 189 1. 80 4277 1.305 173.4 14.1 
652 253 1.86 4176 1. 366 177.3 14.1 
768 298 1.86 4283 1.376 183.0 14.2 
919 345 1. 415 14.1 
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TABLE II (Cont'd) 

Test t F Pc r c* CF Isp Po Ps Is 
No. (sec) (lb) (psia) (ft/sec) (sec) (psia) (psia) -T 

€ = 10 (Overexpanded); a = 10° 

54 30.6 429 195 1.86 4042 1.173 147.2 14.2 5.20\ 6.0 
53 30.2 574 249 1. 78 4091 1.239 157.4 14.2 4.98 7.1 
51 30.7 703 299 1.80 4422 1.257 172.6· 14.2 ~78 8.2 
52 30.6 864 353 1. 81 4395 1. 315 179.5 14.2 4.72 9.0 

€ = 3.65 (Optimum); a = 20° 

58 30.7 468 195 1.92 4027 1.280 160.1 14.1 -- --
57 30.8 637 254 1. 87 4227 1.336 175.4 14.1 -- --
55 30.4 774 302 1. 83 4415 1. 364 187.0 14.1 -- --
56 30.6 899 347 1.84 4808 1.391 207.7 14.1 -- --

E = 10 (Overexpanded); a = 20° 

62 30.6 434 196 1. 93 4021 1.163 145.2 14.1 5.80 5.7 
61 30.7 573 251 1.86 4163 1.205 15S.B 14.1 5.41 6.8 
60 20.2 TI9 302 1.93 4169 1.270 164.4 14.0 5.12 7.7 
65 30.3 723 303 1. 84 4337 1.260 169.7 14.1 5.32 7.65 
66 31.0 850 345 1. 81 4306, 1.299 173.7' 14.1 5.05 8.6 
59 10~1 841 349 2.07 4082 1. 285 162.9 14.0 4.92 8.5 

€ = 10 (Overexpanded); a = 30° 

96 13.4 419 201 2.13 4333 1.121 150.8 14.1 5.43 5.5 
95 .10.8 423 204 2.07 4145 1.115 143.5 14.1 5.28 5.6 
94 11.0 549 255 1.81 3845 1.158 138. :3 14.1 5.32 6.45 
93 10.7 688 311 1. 95 4336 1.186 159.7 14.1 4.96 8.1 
92 11.1 831 361 1.97 4396 1.233 168.3 14.1 4. 95 9.0 

Induced Separation 

40 31.2 780 330 1. 85 4215 1. g05 170.8 14.1 -- --
41 31.1 848 350 1. '85 4255 1. 327 175.3 14.1 -- --
42 27.5 850 351 1.99 4017 1. 333 166.3 14.1 -- --
44 30.8 786 328 1. 95 4054 1. 334 167.9 14.1 -- --
45 30.1 584 255 1.99 3964 1.259 155.0· 14.1 -- --
47 61. 7 729 308 1.87 4323 1. 300 174.5 14.2 -- --
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Figure 1 
Underexpansion of Rocket 

Motor Flame 

Figure 3 
Overexpansion of Rocket Motor 

Flame Without Jet Separation 

Figure 4. Overexpansion of Rocket Motor Flame %ith 
Jet Separation 
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Figure 5. Test Rocket Motor with Optimum Expansion Nozzle 
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Figure 6. .Overexpanded Nozzles 
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Figure 7.	 Typical Test Nozzle 

Installation -. Manometer Bank 
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Figure 10. Typical Thrust and Chamber Pressure Records 

Figure 11.	 Piping Diagram of lest Installation 
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Figure 12. Pressure in Overexpanded Nozzle, E = 10, a 15°, High Mixture Ratio 
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Figure 13.	 Pressure in Overexpanded Nozzle, E = 10, a = 15°, High Mixture Ratio 
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Figure 14. Pressure in Overexpanded Nozzle, e = 10, a = 15°,F!igh Mixture Ratio 
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Figure 15. Pressure in Overexpanded Nozzle, c = 10, a = 15°, Pc 20 psia 
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Figure 16.	 Pressure in Overexpanded Nozzle, e	 10, a = 150, 
Pc 200 psia 
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Figure 17.	 Pressure in Overexpanded Nozzle, c = 10, a = 150, Pc 250 psia 
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Figure 18. Pressure in Overexpanded Nozzle, c = 10, a = 15°, Pc 300 psia 
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Figure 19. Pressure in Overexpanded Nozzle, E = 10, a. 15°, Pc 300 psia 
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Figure 20. Pressure in Overexpanded Nozzle, c = 10, a = 150, 
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Figure 21.	 Pressure in Overexpanded Nozzle, € = 10, a = 15°, 
Pc 

300 psia 
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Figure 22.	 Pressure in Overexpanded Nozzle, 6 = 10, a = 150, Pc 330 psia IIIHHH_III 
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Figure 23.	 Pressure in Overexpanded Nozzle, E = 10, a = 15°, p	 350 psia 
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Figure 24. Pressure in Overexpanded Nozzle, 6 = 10, a 150 , P	 350 psia 
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Figure 26.	 Pressure in Overexpanded Nozzle, € = 20. 8, a = 150 
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Figure 27. Pressure in Overexpanded Nozzle, € = 20. 8, a = 150 
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Figure 28.	 Pressure in Overexpanded Nozzle, € = 20.8, a. = 15° 
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Figure 29. Pressure in Overexpanded Nozzle, € = 20. 8, a = 15° 
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Figure 30. Pressure in Overexpanded Nozzle, e = 20.8, a = 150 
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Figure 31. Pressure in Overexpanded Nozzle, € = 20 .8, a. = 150 
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Figure 32. Area Ratio at Plane of Separation vs Chamber Pressure for a =15°, 
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Figure 33.	 Pressure in Overexpanded Nozzle, € 10.0, a = 100 
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-	 Figure 34. Pressure in Overexpanded Nozzle, € 10.0, a = 100 

Page 3- 	 RESTRICTED 



RESTRICTED	 Progress Report No. 4-103 

0


10


20


30


40


PC /p 50


60


70


80


90


100

FTJ 
ATM. PRESSURE	 14.2 psio 

- -ThEORY y	 1.20 

–THEORY y	 1.26 TEST E5IW 

PC -	 PSO 

r	 1.8  

a 10 F-1 
- 
— 

I	 Z	 5	 'I	 0	 b	 1	 a	 9	 10	 II	 12	 13	 14	 15 

Figure 35.	 Pressure in Overexpanded Nozzle, € ='10-.0, a = 10° 
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Figure 36. Pressure in Overexpanded Nozzle, E = 10.0, a = 100 
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Figure 37. Pressure in Overexpanded Nozzle, € = 10.0, a = 200 
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Figure 38. Pressure in Overexpanded Nozzle, 6 = 10.0, a = 200 

Page 32	 RESTRICTED 



RESTRICTED
	

Progress Report No. 4-103 

0 

20 

30 

40 

50 
PC /P

60 

70 

80 

90 

100

111111 
• ,ATM	 PRESSURE	 14.0 psia 11± 12E1T 1111 

IN 
N^ 

TEST E60W 

P C :	 302psia 

r	 1.9 

a	 20°

\ \ 
\ \ -THEORY y	 1.20 

-THEORY y	 1.26

_j 
I	 q	 D	 b	 (	 S	 9	 10	 II	 12	 13	 14	 15 

Figure 39. Pressure in Overexpanded Nozzle, € = 10.0, a. = 200 
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Figure 40. Pressure in Overexpanded Nozzle, € = 10.0, a = 200 
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Figure 41. Pressure in Overexpanded Nozzle, € =10.0, a- = 200 
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Figure 42. Pressure in Overexpanded Nozzle, E = 10.0, a. = 20° 
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Area Ratio at Plane of Separation vs Chamber Pressure for E = 10. 0,


a = 10, 15, and 200 
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Figure 44. Pressure in Overexpanded Nozzle, € = 10.0, a = 309 
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Figure 45. Pressure in Overexpanded Nozzle, € = 10.0, a 300 
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Figure 47. Pressure in Overexpanded Nozzle, € = 10.0, a = 300 
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Figure 48. Pressure in Overexpanded Nozzle, E = 10.0, a = 300 
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Figure 53. Tests on Inducing Gas Separation 
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Figure 56. Tests on Inducing Gas Separation 
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Figure 57.	 Tests on Inducing Gas Separation 
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Figure 58: Theoretical Thrust Coefficient, Neglecting Separation 
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Figure 59.	 Experimental Thrust Coefficient, a = 15° 
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Figure 60. Experimental Thrust Coefficient, a = 100 
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Figure 61. Experimental Thrust Coefficient, a = 20° 
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Figure 62.	 Experimental Thrust Coefficient, a = 15 0 , € = 3.5, 10.0, 20.8 

EFFECTIVE WEDGE ANGLE 
DIVERGENCE
	

fe 
ANGLE

JET BOUNDARY 

AXIS OF	 a 
	I	 OBLIQUE SHOCK WAVE 

NOZZLE	 i	 I SUBATMOSPHERIC PRESSURE 

	

I	 ATMOSPHERIC PRESSURE 

I	 REGION OF UNDISTURBED 

	

THROAT	 OPTIMUM	 I	 EXIT
	 GAS 

	

SECTION	 AREA	 I	 SECTION 
AREA OF 

DETACHMENT 

Figure 63. Hypothetical Flow Structure in Overexpanded Exhaust Nozzle 
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Figure 64. Variation of Plane of Gas Separation with Chamber Pressure 
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