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NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS

THEORETICAL STUDY OF AUTOMATIC FLIGHT
CONTROL OF AIRCRAFT*

By ¥. Haus
VOLUME T

INTRODJCTION

The purpose of the present report is the theoretical study of auto-
matic flight control of aircraft.

The report starts with a presentation of definitions, conventions,
and generalities; it is important to have them determined before broaching
the subject. This presentation comprises the first four chapters.

Chapter V is devoted to a summary investigation of the effect of the
controls on the conditions of equilibrium of an airplane for steady state.

Following, the present report takes up the clarcsical theory of the
motion of airplanes which is based on the linearized eguations. In the
summary of that theory which is contained in chapters VI to XI we attempted
to show to what high degree employment of dimensionless coefficients
systematizes the problem, and we have stressed the physical aspect of
the phenomena which in the greater part of previous reports has been made
only insufficiently clear.

We believe, besides, that the exposition we give here of the line-
arized theory, which is today classical, contains a certain number of
new original points, notably the explanation of maneuvers of an actual
pilot by means of the Duhamel integral, and the ensuing graphical con-
struction (chapter XII).

Once the essential points of the theory of motion of airplanes are
established, it becomes possible to go into the study of automatic pilots.
The properties of airplanes provided with ideal equipment acting without
inertia and following simple laws, are easily obtained by a simple gen-
eralization of the linear theory.

*”Etude Theorlque du Pilotage Automatique des Avions." Memoires

de la Societe Royale Belge des Ingenleurs et des Industriels, Serie B,
No. 1, 1950.



This investigation, presented in chapters XV and XVI, leads to
valuable indications. It was made during the occupation, and the con-
clusions reached were not published. After the liberation we learned to
our pleasure that similar work, resulting in analogous conclusions, had
been carried out during the war in Great Britain and in the United States.

One of our general conclusions was that the properties of an auto-
matic pilot for use with a prescribed airplane must depend on the char-
acteristics of the motion which the airplane performs with controls fixed.

This idea now seems to be universally admitted; consequently, an
importance it did not have formerly is attributed to the study of the
relative motions of the airplane.

However, the "idealized" theory of automatic flight control consti-
tutes only a first approximation and the indications it furnishes require
extension.

Taking into account the inertia and frictions, one may set up the
equations of motion of the automatic-flight-control instrument, and com-
bine them with the equations of motion of the airplane.

However, setting-up the equations according to the convertional
methods of mechanics leads to insurmountable complications; to continue
the investigation, it is necessary to resort to methods analogous to those
used in the field of electricity. The most efficient approach seems to
be the study of the response of the system when it is subjected to har-
monic or sinusoidal excitations.

The last chapters of this report serve to indicate the possibilities
offered by this method of investigation, that is, the study of the fre-
quency response.

The present investigation is, above all, of theoretical character.
As regards the practical verifications, we are forced to refer to tests
which have been carried out abroad and made the object of publications
there.

An attempt made before the war (with highly valuable collaborations)
to establish experimental methods permitting a kinematic analysis of the
trajectories was stopped by the events and could not be taken up again.
This attempt has shown that the means necessary for experimentation in
flight considerably exceed everything which we should have been able to
set up.

Information we acquired regarding the magnitude of the means used
in research centers abroad entirely confirms this point of view.



Our contribution to the solution of the problem of automatic flight
control is presently limited to theoretical work. Nevertheless we believe
that the publication of the pressnt investigation might attract the atter-
tion of organizations who have at their disposal the means for investiga-
tion in flight, taking advantage of theoretical studies related to the
dynamics of flight.

In the course of discussions we held with French engineers on the
problems which form the object of our study we have found that certain
airplane designers shared our opinion regarding the usefulness of a
simultaneous investigation of the airplane and of the apparatus for auto-
matic flight control.

We wish to express here our gratitude to the officials of the
"Research Center for the Mechanics of Flight" for regularly keeping us
up-to-date on their work. We also thank the National Society of Aeronautic
Constructions of the South-East ani the Airplane Society Bréguet for the
information their technicisns were authorized to communicate to us.

TABLE OF THE PRINCIPAL NOTATIONS USED
A,B,C without subscript: moments of inertia of an airplane

A with subscript: coefficients of the characteristic
nondimensional equation

C with subscript: aerodynamic coefficient

D diameter of the propeller

D duration for decrease to half-value

G weight of airplane

I moment of inertia of a propeller

J total acceleration

K with subscript: coefficients of the characteristic equation

in dimensional form
L.M,N components of the aerodynamic moment
Q engine torque

S 1lifting surface
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a,b,c,d,e,h,k

propeller thrust

period of an oscillation

velocity

power

components of an aerodynamic force

control-surface hinge moments

with subseripts: aerodynamic coefficients

without subseript: wing span

without subscript: wing chord

with subscript: chord of a movable surface (control)
acceleration of gravity

distance

V-1

intensity of a current

real part of the root x

distance from the tail unit to the center of gravity
Napierian log

mass of airplane

velocity of engine rotation expressed in number of
revolutions per unit time

symbolic variable

components of angular velocity
radius of gyration

semispan of wing

imaginary part of the root x

T



-

£,n,0

time

velocity components

root of characteristic equation, in dimensional form
general expression for an input signal

general expression for an output signal

angle of incidence

angle of sideslip

index of propeller operation

general expression for an increment

angle of deflection of current

angle of inclination between one direction with respect
to another

error or difference
angles determining the inclination of the airplane

root of the characteristic equation in nondimensional
form

real part of the root A

density of airplane

reduced expressions of angular velocities
specific mass of air

imaginary part of the root A

symbolic expression for the degree of throttling
angle of inclination of the flight path
aerodynamic time

deflection of the control surfaces
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w

angular velocity of engine
frequency of an excitation

angular velocity of airplane




CHAPTER I

KINEMATICS OF THE AIRPLANE

1. Fixed Axes Referred to the Ground

Let a system of axes TXO, TYO, TZO be prescribed, originating

from a point T fixed to the ground.

The axis TZy will be oriented vertically, positive upward.

The axes TXg end TYy may be chosen arbitrarily, with the one

condition that the orthogonal system of axes should be right-hand
rotational.

The orthogonal system of axes TXO, YO’ ZO constitutes a system of

fixed axes, called in what follows, geodetic orthogonal system of axes.

2. Axes with Origin at the Center of Gravity of the Airplane

We shall utilize two systems of axes fixed to the airplane issuing
from an origin O which coincides with the center of gravity of the
airplane.

The first system is a system of axes OXO, OYO, OZO, restricted to
reraining parallel to the axes of the geodetic orthogonal system of axes.
This system constitutes the geoparallel orthogonal system of axes. Its
origin is the only one vhich is involved in the translational motion of

the airplane.

The second system is a system of axes O0X, O0Y, O0Z fixed to the
airplane and involved at the same time in the motions of translation and
of rotation of the machine.

This system constitutes the dynamic orthogonal system of axes.

Every airplane possesses a plane of symmetry. We shall agree to
place the axes OX and 07 in the plane of syrmetry, attaching the
axis OX +to a significant direction of the airplane, defining its logi~
tudinal axis. By convention, we shall direct OX forward.



The orthogonal system of axes will be right-hand rotational, and
the positive directions of the axes will be as follows:

Forward for the axis O0X
Upward for the axis OZ
Toward the left for the axis OY.

It remains to select the significant direction along which we shall
place the axis OX.

We may choose one of the following directions:

Direction of the propeller axis

/

\
\

Direction of the geomztric chord of the wing
syrmetry )

in its plane of

Direction of the chord corresponding to zero 1lift

Direction of the central axis of inertia nearest to the directions
designated above.

In fact, these directions form between them, only angles of a few
degrees.

If we choose the direction of the chords, we facilitate the expres-
sion or zerodynamic forces along the axes, but we complicate the eguations
of motion.

If we choose the direction of the axis of inertia, we simplify the
equations of motion but we impose upon ourselves the transformations
necessary for referring the expressions of the aerodynamic forces to
axes not fixed to the external forms of the airplane but to the distri-
bution of masses in its interior.

Since our purpose is to study the equations of motion, we shall
choose the second method.

The dynamic axes then coincide with axes of inertia.
The principal moments of inertia will be A, B, C.
All three products of inertia are zero:

D and F due to the existence of a plane of symmetry

—

E as a conseguence of our choosing the direction OX,



3. Position of the Airplane in Space
The position of an airplane in Space will be defined:

(1) By the three coordinates of its center of gravity O, referred
to the geodetic orthogonal system of axes TXO, YO’ ZO

(2) By the orientation of the dynamic orthogonal system of axes 0, X
Y, Z, referred to the geoparallel orthogonal system of axes 0Xgp, Yy, Zoye

The rotations we use are not those utilized by Euler. We shall
actually accomplish:

(l) An amplitude rotation ¥ about OZO, changing the axes OXO
and OYO into OX' and oy whereas the auxiliary axis Oy! is,
according to definition, the intersection of the plane XO, OYO with the

plane z, 0, Y

(2) An amplitude rotation 6 about the axis 0Y', changing 0Zq
into 0Z', and oOX° into 02

(3) An amplitude rotation ® around the axis 0X, changing Oy!
into 0OY, and 0Z' into 0z.

The positive sense of these rotations is
¥ >0 makes the airplane turn to the left

8 >0 causes nose down

® > C causes inclination to the right.
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. The direction cosines of the three axes OX, 0Y, OZ with respect
to the orthogonal system of axes 0Xg, Yo, Zy are given by the table.

. 0X oy 0z,

- cos @ sin ¥ sin @ sin V¥

o) s
XO cos 6 cos ¥ + sin @ sin 6 cos ¥ |+ cos @ sin 6 cos ¥

OYg | cos 8 sin v cos @ cos ¥ ~ sin @ cos V¥
+ sin @ sin © sin ¥ |+ cos @ sin 6 sin V¥
0Zp - sin 6 sin @ cos 6 COSs @ cos 8
= Knowledge of the direction cosines permits an easy setting up of

the transformation formulas that might be required.

Let us note that the three angles v, 8, @ are fixed to the
parameters customarily used for characterizing the position of an

airplane.
If © =9 =0 ¥ defines the azimuth.
If 9 = 0 0 defines the trim.
If ¢ = O @ defines the lateral inclination.

4. Motion of the Airplane
The motion of the airplane is, at every instant, determined:
(1) By the velocity V of its center of gravity

(2) By the angular velocity Q about an axis of rotation going
through its center of gravity.

If the atmosphere in which the airplane flies is stationary, that
is, is not in motion due to air currents, V expresses at the same
” time the velocity with respect to the ground and the velocity with
respect to the surrounding medium.

A motlonless observer, that is, fixed to the ground, will define
the motion by the projections V and 0 on the system of fixed axes
attached to the ground.
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An observer placed in the airplane will define the motion by the
projections V and § on the dynamic axes.
Assume:

u, v, w to be the projections of V on the dynamic axes.
P, Q, r to be the projections of Q on the dynamic axes.

One has necessarily:

V2

Q2

W@t v e

22+ 2 + 12

These six projections define actually the motion of the dynamic
orthogonal system of axes referred to itself, that is, with respect to
the instantaneous position it occupies. Since it is being continually
displaced, the motion of the airplane in space is not always described
in a convenient manner by these six projections.

However, the problem we are dealing with is, in fact, the study of
the motion as perceived by the pilot, not that of the motion as seen by
an observer on the ground.

Thus we shall always refer to the motion of the dymamic orthogonal
system of axes, and shall continuously make use of the projections u,
v, w and p, g, T.

5. Relations Between the Angular Velocities and the Attitude Angles

The three components p, q, r of the angular velocity correspond
to motions determined as follows:

The component p, about the axis O0X, constitutes the motion of
rolling.

The component g, about the axis O0Y, constitutes the motion of
pitching. ®

The component r, about the axis 0Z, constitutes the motion of
yawing.
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The resultant angular velocity may be defined either by its compo-
nents p, g, r about the axes O0X, 0Y, and O0Z, or by the three
components:

%% around the axis 0OX

de around the axis OY'
dt

dy .
Fr around the axis OZO

Projecting on the axes OX, 0Y, 02 a vector the components of
which along the axes OX, OY' and 0%y are @2, 29, EE, one obtains:
dat® dt° dt

Sde _dv
P gy g o ®
_ 46 dy .
q = it cos @ + it cos B sin @
dy

a8
cos B cos @ - —~

at sin @

dt

These purely geometrical relations occur in the equations defining
the motion.

do de dy

Written so as to express explicitly T’ az’ av’ they become:

dg sin © .

E_E =P + E—as—é(q sin @ + r cos q))
ae '

-_ = COsS - Y S1in

at q @ Y

dy 1 .

—— = —-——(q sin @ + r cos

dt cos G(q ? @)

Remark: If ® =0 (wings horizontal), one obtains:

a8 _a
1T % ro=gg s 8
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Pitching modifies the longitudinal inclination of the airplane,
the motion of yawing displaces the airplane in azimuth.

The relation between the motions of the airplane relative to the
air, q and r, and its displacement with respect to the ground is
orthogonal.

When ¢ =x/2, that is, when the wings are vertical:

- Qv __ 438
q = aE-cos e r = - FE?

The usual relation between the motions of the airplane relative
to the air and its displacement with respect to the horizon is reversed;
the pitching modifies the azimuth of the airplane whereas the yawing
motion modifies the longitudinal inclination.

6. Equivalent Representation

Utilization of the six components

u,v,w Qihnensions LT'9
P,q,r Qiimensions T'l)

tresents difficulties sometimes. It can be useful to employ only one
cingle dimensional characteristic, the velocity, and to define the five
other elements of the motion by dimensionless parameters.

For this purpose, one may define the motion with respect to the
dynamic orthogonal system of axes as follows:

(1) Instead of using the three projections of the vector V, one
characterizes the translational motion by the numerical value of the
resultant V, and the orientation of this vector with respect to the
dynamic orthogonal system of axes. This orientation will be charac-
terized by two angles; the angles of attack and of sideslip the exact
definition of which is given in the following section.

(2) Instead of using the components p, q, r of the angular
velocity, it is of advantage to use the three dimensionless quantities

called "rotational velocity ratios."l

lp is used also to designate the specific mass of the air. Never-
theless, we think it possible to use p to denote two essentially
different quantities since no confusion whatsoever could arise.
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» =E
A Vv v

In these expressions s represents a transverse dimension, 1 a
longitudinal dimension of the airplane.

The rotational velocity ratios then express the relationship that
exists between the linear velocities of a point at a prescribed distance
s or 1 from the center of gravity due to the rotation considered, and
the velocity V of the center of gravity.

As a matter of fact, we will take:

s semispan of the airplane.

I

1 = lever arm of the horizontal tail surfaces, that is, the distance
separating the centroid of the tail plane from the center of gravity of
the airplane.

7. Axes Dependent on the ¥Flight Path and on the Airplane

Assume an axis Ox coinciding with the velocity, an axis Oz,
defined by the intersection of the plane originating from O and
perpendicular to O0x with the plane of symmetry Z0X - this axis Oz
will be directed upward - and an axis Oy, perpendicular to the preceding
ones and directed toward the left.

These axes define an orthogonal system of axes, called aerodynamic
orthogonal system. Let Vg be the projection of the velocity on the

plane of symmetry.

The angle measured in the plane of symmetry end comprised between

the directions Vg and Ox 1s called the angle of attack a.

The angle measured in the plane VOV and comprised between the
directions Vg and V 1is the angle of sideslip B.

According to definition:

The angle of attack a will be positive if Vg 1is directed below OX,

The angle of sideslip B is positive if V 1s directed at the left
of OY.
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One has, under these conditions:

u =7V cos acos B

v V sin B

w -V sin a cos B
and knowledge of the velocity V and the two angles of a and B is
quite equivalent to knowledge of the three projections.

Two angular quantities, the angles « and B are sufficient for
a complete determination of the respective position of the aerodynamic
and dynamic orthogonal systems of axes since, according to the conven-
tion for determining Oz, the two orthogonal systems are not completely
independent of each other.

Let us note that - % = tan o and % = tan B cos a

The aerodynamic orthogonal system is frequently used. In wind-
tunnel tests, the aerodynamic reactions are always determined by means
of balances which measure the components in directions invariably fixed
to the airstream.

These directions are usually:

The direction -Ox; that is, that of the airstream

The direction Oz.

The direction Oy.

It is frequently necessary to refer to the dynamic axes forces which
are defined by their components along the aerodynamic axes.

The transformation formulas can be immediately set up as soon as the
direction cosines of one system of axes with respect to the other one
are known.

These direction cosines of the three axes O0x, Oy, Oz with respect
to the dynamic orthogonal system of axes OXYZ are given by the table.

Ox Oy Oz
0X cos a cos B -cos a sin B sin «
)4 sin B cos B 0

0Z -sin o cos B -sina sin B cos a
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CHAPTER II

DYNAMICS OF THE AIRPLANE

1. Forces and Moments

The external actions affecting the airplane are:
(a) The force of gravity applied at the center of gravity
(b) The aerodynamic forces and moments exerted on the airplane

(c) The forces exerted by the propeller and transmitted to the air-
plane by the motor mounts

These actions adrit the following components, along or around the
dynamic axes.

Weight.~ The projections of the weight G along the three dynamic
axes are the projections of a continually vertical force. One has
therefore:

G, = G sin 6
Gy = -G sin @ cos 6
G, = -G cos B cos @

The projections of the force of gravity depend therefore on the
angles 6 and ©Q.

Aerodynamic_actions exerted on the airframe.- The aerodynamic
actions exerted by the airframe consist in a resultant F, applied at
the center of gravity, and a moment C.

We shall call X, Y, Z the components of F along the three
dynamic axes, and L, M, N the components of C around the three
dynemic axes.

The positive directions are necessarily those of the forces acting

along the positive direction of the axes, and those of the moments tending

to produce positive rotations p, gq, r.
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Effects exerted by the propeller.- The forces transmitted to the
airplane by the motor mounts comprise:

(a) The aerodynamic reactions exerted by the surrounding medium
on the propeller

(b) The internal forces of the power plant, such as gyroscopic
moments. These last may be considered as external actions as far as
their effect on the motion of the airplsne is concerned.

The reactions comprised in (a) are the thrust T of the propeller
and a torque Q acting around that axis.

The thrust acts precisely along the propeller axis only when the
velocity V coincides with the propeller axis. It may show components
perpendicular to the axis if the forward speed forms an appreciable angle
with the axis.

On the other hand, the propeller axis is not necessarily parallel to
one of the axes of the airplane. Under these conditions, the thrust
possesses, generally, three components Ty, ?y’ T, along the axes fixed
t3 the airplane.

If the straight line along which the thrust is acting does not pass
through the center of gravity, the thrust exerts a moment the components
of which around the three axes will be called Ip, My, N,.

The moment Q 1is equal to the engine torque.2 It depends therefore
on the throttle setting selected by the pilot. It possesses, as a rule,
three components: Q, Qy, Q-

Tne propeller exerts a gyrostatic moment which, for certain maneuvers,
1s not negligible.

Let I be the moment of inertia of the gyrcstat (propeller), w its
angular velocity.

If the gyrostat is driven by a forced rotation Q, it exerts a moment
of reaction Taf! the components of which are

[
"

g I( r - ahq)

=
i

g = I(wzp - ukr)

= I(aq - @yp)

2When the engine is not geared down. If there is a reduction gear, the
gecr ratio must be taken into account.

(0]
1
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calling Wy Wy Wy the projections of the vector  on the dynamic

axes. This general expression may be simplified, however.

Sum of the external actions.- Let us call =X, £Y, 2Z the sums
of the projections of the various external forces along the three axes,
and XL, ZIM, EIN the sums of the projections of the external moments
acting around these axes.

One then has, as a rule:

X =X+ T, + G sin 6

XYY =Y+ T G cos 6 sin @

LZ =2+ T, - Gcos 6 cos @

ZL

L+ 1y +Q + L
ZM=M+Mh+Qy+Mg

Z.N=N+I\Ih+Q,L+Ng

Certain terms may be neglected, however. The axis of the propellers
is, in fact, parallel to the plane of symmetry so that one may put:

Ty =0 gy =0

Lh =0 %y =0

When the airplane is symmetrical, one has N, = O; however, there

exists one important case: that of a multiengined airplane flying with one
outboard engine stopped where one has

Ny, # 0

One can approximate wy with  and neglect ay and w,. Hence

the gyroscopic moment possesses only two components:

Mg = =Tur

N

g = Iwg
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2. Factors at the Disposal of the Pilot
The motion of an airplane may be studied in the following cases:
(2) Nonpiloted aircraft, flying with controls fixed

(b) Nonpiloted aircraft, flying with free controls (if the latter
are reversible)

(c) Piloted aircraft, with the controls being manipulated according
to a certain law, either by the pilot or by a mechanical device called
automatic pilot.

This will lead us to an analysis of the means the pilot has at his
disposal for influencing the motion of the airplane.

We should like to remark right now that the second case is a parti-
cular case of the third: the displacement of the controls then is the
one which occurs in the course of the maneuvers of the airplane if the
force applied to them is zero.

5. Equation of Motion of an Airplane Flying with Controls Fixed

The motion of an airplane is determined as a function of the external
actions, by the six fundamental equations of dynamics.

Assume m to be the mass of the airplane; A, B, C its principal
moments of inertia.

By virtue of the selection of axes, the product of inertia: E = O.
Due to the symmetry: D = F = 0.

Referring the motion to the axes fixed to the airplane, the equations
of motion are written:

m(dY + qw - rv) = ZX
dt

m(é! + ru - pw) =Y
dt

dw )
m{— + pv - qu) = X2
CREAE



20

dp _
AE‘FQ_I'(C-B)—ZL
dq
B —= + A-C) =M
= rp( )
dr
c &+ B-A) =N
m pa( )

where m represents the mass of the airplane; A, B, C its three
moments of inertia.

Since the projections of weight are functions of ¢ and 6, the
preceding six equations constitute a system comnecting the linear veloc-
ities u, v, w, the angular velocities p, g, r, and the angles of
orientetion ¢@ and 6 with the independent variable 1.

We must therefore complete the system by means of eguations which
connect the angles with speeds of rotation. We have at our disposal the
relations:

dp sin ©

=P+ oos e(p sin ¢ + r cos @)
a8 _ cos sin
dt—QOCP-I‘ P

ay 1 .

3t = oos 9(q sin ¢ + r cos Q)

The two first ones are sufficient for completing the system. If
one wants, moreover, the azimuth, one must utilize the third equation
which then introduces the variable V.

The motion is thus characterized by nine equations with nine
dependent variables.

The instantaneous values of the externmal actions must be introducedl
in these equations, and we shall have to investigate to what extent these
actions are known as functions of:

(a) The instantaneous values of the variables wuw, v, w, p, 4, T
(or V, @, B, ®, X, p) which define the motion of the airplane
s b4 2

(v) Their derivatives

(c) In certain cases, of the previous history of the motion of the
airplane.
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One difficulty arises in connection with the power plant: With A
the constant throttle setting, we may assume the engine torque Q, to be
constant, but the resistant propeller torque depends on its speed of
rotation o and on the forward speed of the machine:

Q = f((l),V)

The speed of rotation of the power plant is therefore connected with
the translational velocity of the airplane by a relation:

d
Id—f= G - T (w,V)

where I designates the moment of inertia of the propeller.

If one wants to proceed rigorously, one has to add to the system a
new variable, the rotational speed of the propeller, and also a new equa-
tion, and must then combine the study of the motion of the airplane in
space with the study of the rotational motion of the power plant.

This mode of procedure would increase the complexity of the system
still more. We point it out only for the record. The system of the
nine equations must, on the contrary, be simplified in order to lead to
practical conclusions.

We shall make use of artifices which permit avoiding the introduction
of variations from the power plant regime into the equations of motion of
the airplane.

4, Separation of the Equations

The investigation of the motion of airplanes will be facilitated,
in numerous cases, by the possibility of splitting up the system of
equations into two systems independent of one another which define the
longitudinal and the transverse motion, respectively.

The longitudinal motion contains the displacements along the axes OX
and 02Z, and the rotations around the axis O0Y; it corresponds to the
equations:

m(%% + pw - rv/ =X+ Ty + Psin 6



- (/W \\
mlz— + pv - quj| =2+ T, - Pcos 8 cos @
- \ / ?
1ooe B M+ My + M
Jeo * dt h g
[ X ]
» L ]
.
dae
at ¢
This motion is considered to take place with constant values of v,
p, r.
The external effects are functions of the above constant values and
of the magnitude of the variable quantities u, w, q, 6 (equivalent,
as we have seen, to V, a, X, and 8).

) The transverse motion comprises the displacements along the axis O0Y
and the rotations around the axes OX and 0Z. It corresponds to the
equations:

fav ) .
m\d—t+ru—pw)—Y—Pcosesmcp
‘ A é;E—)-+ qr(C - B) =L + Q
‘ at
dr -
- + B-A) =N+ + N, +
Cd‘t pa( ) Nh g Q
do . + (r cos @ + q sin )Sin9
it - P rcoserq ?leos ©
dy _ _ cos @ sin @
i Tt " T cos e " Ycos e
It is considered to take place with constant values of u, w, q, 6.
. The external effects are functions of the above constant values and of

the magnitude of the variable quantities v, p, r, @, and V¥ (equivalent
to B, w, p, 9, and V).
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5. The Accelerations

Let us note that the three equations of translation may be written:

fdu g )
m}== + W - sin 6/ =T, + X
ldt (v - & |7

i
[

fav .
mlgg + (ru - pw) + g sin @ cos ©

an%% + (pv - qu) + g cos 6 cos %} =T, + 7
If we represent the quantities between brackets by Jy, Jy, Jdz,

we obtain:

md =T + X
X X

mJy =Y
nd, =T, + 2
The gquantities Jg, Jy, J, are the sum:

Of the linear accelerations
Of the centripetal accelerations
Of the projection of the acceleration of the force of gravity.

Tney may be considered as constituting the components of the total
acceleration and are hence in close relation with the sensations experi-
enced by the pilot and the passengers.

The quantities J, ;y’ J, may receive another physical interpre-

tation. FEvery one among them is equal to the effect which the apparent
gravity exerts along the negative direction of the corresponding axis.



ok

6. Equations of Motion of an Airplane When the

°°. Controls Are Manipulated
| e
3 [ ]
r:: In these cases the preceding systems of equations must be completed
.’ by the relations giving the deflection of the control surfaces as a func-
tion of time; the external actions must be expressed as functions of the

deflections of the control surfaces.

These questions will be developed further on.
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CHAPTER III

THE EXTERNAL ACTIONS
1. Utilization of Dimensionless Factors

We take up again the enumeration we made in the first section of
the preceding chapter regarding the various external actions.

In the course of this chapter we shall describe the means utilized
for investigating, defining and predicting the magnitude of the external
actions.

The necessity of making comparisons between airplanes showing
considerable differences in weight, dimensions, and speed, has led to
defining all external effects acting upon an airplane by dimensionless

factors.

We shall set up here the indispensable definitions.

2. Density of the Airplane

In the investigation of the motion the mass of the airplane will be
replaced to advantage by the dimensionless relation:

om
b= —

pSc

called the density of the airplane.

In this expression:

p denotes the specific mass of the surrounding air

S the lifting-surface area

¢ a characteristic dimension, the wing chord

The density of the airplane is the ratio between the mass of the
airplane and the mass of an air volume equal to half the product of its

lifting-surface area and the length of the chord.

It results from this definition that the density of the airplane
varies with the altitude.
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5. Projection of the Aerodynamic Actions on the Axes
Fixed to the Airplane

The components X, Y, 2, L, M, ¥ will be expressed as functions
of':

The lifting-surface area S

The mean chord ¢ of that sufface
The span b

The dynamic pressure pV2/2

Six dimensionless factors.

We shall put:

2 2

- .5 V5 - eve
X = CyS &3 L = C;8b &5
2 2

= ev- M = CySc £V
Y = Cys &7 Cy 32

Z = CyS 9‘2’—2 N = CySb B~

The factors Cxs Cy, Cg, C1s Cyy Cy are ordinarily called coeffi-
clents. The nomenclature "coefficient" seems to indicate that these

factors are constant. This is not true, however; these factors are
essentially variable and their value depend. on a great number of variables.
L. Projections of the External Actions on the Axes

Referred to the Relative Wind

It is clear that one can refer the external actions also to the
axes 0x, Oy, Oz constituting the aerodynamic orthogonal system of axes.

We shall call:

Resistance Fx or drag, the projection on the direction of the
relative wind, that is, along the negative direction of Ox.

Trensverse force Fy, the projection on the axis Oy.

Lift Fz, the projection on the axis Oz.
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These components may be defined by factors analogous to the preceding
ones, generally denoted in the technical literature in French language
by Cx, Cy, Cz, with the subscripts written as lower-case letters.

. The components of the moment around the three axes Ox, Oy, 0z are
defined by corresponding factors which one may write Cl, Cm, Cn.

5. Actions Exerted by the Propeller

Any propeller is defined by its exterior form. Among the parameters
on which this form depends, there is the angle at which the blades are
set, which determines the pitch.

With the exterior form (and consequently the pitch) fixed, it will
be possible to determine uniquely the thrust T and the moment Q as
a function of the peripheral velocity wD/E of the propeller and of the
velocity V of the airplane, or as a function of one of these gquantities
and of their ratio.

We shall put:

v

7 T m

where n denotes the rotational speed, expressed in revolutions
per second, and D the diameter of the propeller.

The ratio of the velocity of the airplane and the peripheral velocity
of the propeller is indicated, except for the factor l/ﬂ, by this
characteristic 7:

In practice, the thrust T and the moment Q are expressed, as
functions of one of the two velocities, by dimensionless factors the
numerical values of which are functions of the advance ratio 7.

One may utilize one or the other of the two series of factors KX
or C.

If one expresses T and Q as functions of the rotational speed,
one has:

T = K'TpneDJ1L
KQpngD5

O
H
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If one expresses these quantities as functions of the velocity of
the airplane, it will be of advantage to use as ratios the dynamic pressure
and the surface of the disk swept by the propeller. One then obtains:

2 72
_ . PVS D
T=Cr 5% 5
2 .12
pV= nD
=Cq =—"=—0D
TR

For a propeller of prescribed form the factors KTKQ and CTCQ

are uniquely functions of 7.

The factors Cgp and Cq express the action of the propeller in a

menner analogous to the one utilized for denoting the force exerted on
the airframe; they show the inconvenience of being represented as func-
tions of ¥y by curves which possess, for small values of 7, an infinite
branch.

The following relation exists between the factors C and the
fectors K:

The moments M, and N, exerted by the thrust of the propeller if
its axis does not pass through the center of gravity will be expressed as
functions of T and of the corresponding linear dimension. One has, for
instance:

My = Th = CghSupV/2

with 5g denoting the surface of the disk swept by the propeller.

Remarks: (1) It may be useful to complete the notations, showing,
how one can express the power absorbed by the propeller.

One has necessarily:

Hence:
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or
W = C SpoV[2
with, according to definition:
K, = EnKQ
c, = K, =
17

(2) The effective power is equal to the absorbed power nultiplied
by the efficiency n of the propeller. Thus it will be possible to
define the effective power by the factors C,, or Ko unigquely func-

tions of 7 and analogous to the previous ones.

(3) The factors Cp, Cq, C, or Kp, Kg, K, characterize a
given propeller and are functions of the advance ratio 7.

If the angle at which the blades are set is variable, there exist
as many relations (or curves) Kp, Kg, K, or Cp, Cg, Cy as func-

tions of 7 as there are different blade-angle settings.
The described propellers of variable pitch are therefore characterized
by a family of these curves.
6. Variables Defining the Steady-State External Forces

The forces exerted by the surrounding medium on an airplane in
motion with controls fixed are functions of a large number of variables.

Having agreed to represent the forces by dimensionless factors, one
rmust now necessarily determine on what variables these factors depend,

and how they depend on them.

The conventional hypothesis of similitude consists in admitting that
the factors Cy . . . Cy are independent:

(a) Of the physical characteristics of the atmosphere
(b) Of the aerodynamic velocity

(c) Of the absolute dimensions of the aircraft.
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The external forces are then determined for steady-state conditions,
by factors which are uniquely functions:

.

Of the angles of attack and of sideslip a and B

Of the rotation ratio o, X, p, and of the ratio 7 which deter-
mines the effect of the slipstream of the propeller on the aircraft.

Actual experiences show that the aerodynamic forces depend in addi-
tion on a certain number of other variables.

Certain characteristics of the surrounding medium - viscosity,
turbulence - exert a considerable effect on the aerodynamic forces in
steady state.

In setting up the reactions an element dependent on the airplane,
the roughness of the surface in contact with the atmosphere, also plays
a role whnich must not be neglected.

In the present report we shall make the assumption that it is always
possible to determine the aerodynamic reactions in steady state either by
means of laboratory tests or by means of theoretical or empirical calcu-
lations. This implies that when our knowledge is based on laboratory
tests, carried out on scaled-down models under conditions of viscosity,
turbulence, and roughness different from those existing far full-scale
models, the development of the factors CX o« .. CN’ as functions of these

characteristics, is supposed to be known.

The determination of the aerodynamic forces in steady state is
completely outside of the scope of the present report, and we shall
discuss the test methods only when this will be useful in making the
mechanical significance of one or the other characteristic understood.

Besides, the experimental possibilities of investigation are not
the same 1if the state of motion consists of a pure translation or of
a translation accompanied by a rotation.

T. Tests in Pure Translation
The tests corresponding to motions comprising only translation can
be carried out in wind tunnels. We shall here not enlarge upon test

technique.

The number of wind tunnels throughout the world is such that for
any new aircraft project, one can arrive at an experimental determination
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of the factors Cx -« . Cy for the principal steady states of transla-

tion, and for different configurations of the airplane.3

Wind tunnels are generally equipped for measurement of the forces

along the trihedron Oxyz (taking into account the remark made before
regarding the positive sense of the drags).

If one wants to introduce experimental results into the foregoing
equations of motion, it is necessary to make use of the transformation
formulas which permit passing from one system to another.

We have given before the table of the direction cosines.

It is well to remark also that the direction used most which serves
as reference for the definition of the angles of attack is not the same
in the wind tunnel and for the actual aircraft. Since the angle of

attack in the wind tunnel is referred to a chord fixed to the profile,
one has:

when the axis of inertia is raised with respect to the said chord.

When Cx and Cz are defined as functions of this angle of attack

in the wind tunnel, the usual case, one obtains for example for zero
sideslip:

Cx = -Cx cos(ag + €) + Cz sin(ag + €)
Cz = -Cx sin(ag + €) + Cz sin(ag + €)

The tests yield serviceable results only when the models are provided
with electric motors driving the propellers at speeds determined for each
test by the conditions of similitude (equality of the values of 7).

This leads us to say a few words regarding the moments M and
Mhp = T h.

If M is the longitudinal moment of the aerodynamic forces exerted
on the airframe:

Mp = Th is the moment exerted about the center of gravity by the
thrust of the propeller, and constitutes the direct effect of the propeller
on the longitudinal moment.

5One calls configuration of the airplane the external form c?rre~
sponding to a prescribed position of the movable elements which will be
discussed in the following chapter.
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In fact, the propeller modifies by its slipstream the velocity and
the direction of the airstream striking the horizontal tail surfaces and
certain parts of the wing. It acts upon the aerodymamic reactions and
exerts an indirect effect on the moment M.

It is almost impossible to isolate the direct effect from the indirect
effect. The latter is frequently of opposite sense, and one is inevitably
led to visualize a total moment:

M‘t =M+ Th

defined by a total-moment coefficient:

Sih
r = l—
CL_t M + CT Se

It is easy to determine in the wind tunnel the CMt for all combi-

nations of nngle of attack a and advance ratio y (for a given blade-
angle setting) so that the CM% can be characterized by an experimental

diagram the shape of which 1s represented in figure 12 or in figure 13.

The following considerations permit an interpretation of these
diagrams.

Any change in the magnitude of 9y modifies the thrust exerted and
alters the slipstrean.

At small values of 7y, the propeller operates in the neighborhood of
static thrust. The thrust developed is large, and the ratio of the slip-
stream velocity of the propeller to the aerodynamic velocity is maximum.

Both the thrust exerted and the relative magnitude of the slipstream
decrease when 7y increases.

For a certain value of 7y the propeller does not exert any thrust,
and the propeller slipstream does not exert any influence on this moment.
The figures are plotted under the hypothesis that the thrust becomes zero
for ¥ = 1.7.

If —t 0 (fig. 12), everything takes place as if the preponderant
4

effect were the direct effect exerted by a propeller the axis of which
passes below the center of gravity.
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dCy
If —a;i-< 0 (fig. 13), the sense of the phenomenon is that exerted
by the direct effect of a propeller the thrust axis of which passes above
the center of gravity.
In view of the prescribved fact that CMt is a function of a and v,

and that in the course of maneuver which changes the angle of attack the
velocity of the airplane generally varies, one has necessarily:

dCMt B aCMt s aCMt dy

da da dy da

where the derivative dy/da has to take into account the manner in which
the advance ratio of the propeller varies in the course of the maneuver
considered.

8. Tests in Translation Accompanied by Rotation

The tests reproducing steady-state conditions which comprise at the
same time a translation and a rotation can be performed in the wind
tunnel if the radius of rotation is small (spin), as whirling-arm tests
if the radius is large.

Actually, only the second case is of ‘nterest to us.

The aerocdynamic whirling-arm test is a means of investigation utilized
at the beginning of aviation which had, however, practically disappeared
toward 1925-1930. It has been taken up again these last years, and a
modern whirling-arm apparatus has been constructed at the N.P.L. at
Teddington.

We shall describe a possible experiment which shows the effect of a
continuous and constant rotation X upon the factor CM.

Assume a model, the moment coefficient Cy of which has been measured,

for given angle of attack o and control-surface deflection 1, in the
course of a tunnel test where the relative motion contains only translation.

The same model is placed at the extreme end of a whirling arm of the
length R, with the model axis OY being parallel to the axis of the
whirling arm.

The rotational speed of the latter is . Hence, the velocity V
of the model is (R, its angular velocity q = Q, and the ratio:

X =

<<
1
joe] O
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The aircraft is placed on the arm, in such a manner that it presents
itself at the angle of attack «. Dynamometers which permit measurement
of the moment Cy are placed on the arm.

This experiment leads to the statement that the moment Cy, realized
on the whirling arm with a rotation ratio X is different from the one
found in simple translation, for the same angle of attack o and the
same control-surface deflection 7.

The cause of this difference is easily found. Even though the anglec
of attack of the wings is the same in the two tests, this does not hold
true for the angle of attack of the tail surfaces.

ILet o be the angle of attack of the tail surfaces during the
translation test.

In the whirling-arm test, this angle is altered by the effect of
the angular velocity and becomes a' - X.

The rotation q = {§ actually subjects all points of the airplane
to complementary velocities:

Au = zg Aw = -Xg
The distance x of the tail surfaces is negative and equal to

a - 1; the incremental velocity is equal to ql; it gives rise, by com-
bination irith the translation V, to an incremental angle of attack:

There results an incremental reaction on the tail surfaces:

aCc!
AZ' = -S'pVef2 —Z X
da’

which in turn produces an incremental moment:
N = 1A
One obtains finally:

dCy s'tac’,

ax -~ T S da’
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which determines the order of magnitude of the effect of the rotation on
the Cpy.

For instance, for S' = % S

1 = 3¢

since the gradient of the 1lift coefficient of the tail surfaces with
reference to the actual angle of attack of the tail surfaces is

ac',
da!

=3

one obtains

The minus sign indicates that one deals here with a damping effect:
a moment acting in a sense opposite to that of the rotation.

The other parts of the airplane - fuselage, wings - exert, for their
part, an effect which contributes to increase this damping. Although
it is not quite as easy to roughly evaluate this effect, one may say
that, with a normal machine, the dCM[dX due to these elements is of

the order of -0.20 to -0.15.
One nust add this effect to that of the tail surfaces.

In steady state, the development of the Cjy could be determined as
a function of the ratio p, with the aid of a whirling-arm test where the
axis 0Z of the model is placed parallel to the axis of rotation of the
whirling arm. This simple remark is sufficient for explaining the signi-
ficance of the derivative BCN/Bp which defines the damping of the

motions of yaw.

9. Aerodynamic Derivatives

Since the forces and moments realized in steady state are continuous
functions of the variables uw, v, w, p, 4q, T, they possess derivatives.
We shall have to use the latter constantly in calculations later on and it
will be convenient to discuss them right away.
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In the investigation of logitudinal motion, we shall encounter
derivatives such as Xty o o - M'q which we shall define by dimensionless

in accordance with the table:

factors a‘l e e e 05

X1
u

MYy,

Ml

—a'lSV % whence a'l

o]
= —blSV §

o

—aESV

S}

-b,5V

noJo

-C2SY:V

|

S o)

—aSSCV
- e

p
-CBSC'LV ]

by

¢

as

|

2y
p3V
2X'w
pSV
]
2X q

pSLV
22,

pSV
EZ'W
pSV
ozt

(=92

q
pSLV

2M’u
pScV
My
pScV
ml

q

pSclV

These faciors are determined as functions of the coefficients Cx»

Cz, Cy and their derivatives with respect to the variables

a and X:

For the derivatives with respect to the linear velocities, one

obtains:

aoc
- <_z

u

>
v + %‘i— cx>s
| P
v+ 20X>SV 5

e
2
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now:
Xx _ Cxda _w Xx _ o Fx
du da du u© V da
whence
aC
X
a'., = o —= =-2C
1-® da X
ac
X
' = —
X', = <aw )SVQ/B = -bySV §
nows

taking into account that u = V, one obtains:

_ oG
b 7 5e

Likewise, the determination of Z'y, and Z', leads to:

3c,,
da

oCy
b. = 2%
2 da

Finally:

<60Mt e CM)

/
(o]
=( >SCV§

—as

When the propeller is of fixed pitch, CMt depends on two variables

SeVp/2

a and 7y. Both are functions of the velocity of translation V. One
obtains therefore:
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d aC C
My Mpae | Oy oay

ou da du dy du
g ¥ g 3y

W
+ ——
da ul dy du

however, in order to determine dy/du, one must know, in addition, the
variations of the velocity of rotation of the engine.

If this velocity of rotation were constant, one would have:

An expedient, studied in appendix I, permits taking this variation
in velocity into account by introduction of a dimensionless factor n',
so that one obtains finally:

When the propeller is of variable pitch, the variation in velocity u
modifies the propeller blade-angle setting, but the number of revolutions
is constant. The a can still be determined but knowledge of a certain
nunber of characteristics is necessary.

The determination of M't’w is easy and leads immediately to:

oC
. -
da.

As to the derivatives with respect to the angular velocity g, one
assumes generally that:
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now:

and

is the only coefficient to be determined.

A\

2

, 3

%

My = (:Tchych%= -c5Sc1V9-
X = qZ/V whence dx/dq =1V
.

One obtains
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In the investigation of the transverse motion, we shall encounter
derivatives such as Y', . . . N'r.
made separately, there is no inconvenience in utilizing the letters
8y . . - C3 for defining them, in accordance with the table:

Y, = -aySV 5
¥ = -bySsV g
Y' = —cq8sV %
L' = apSbv &
L', = bpSbsV

L'r = C2SbSV

r|o

¥ = TE.
N'y = agSbv &

N'_ = bz SbsV

e o

1 —
N'.. = CBSbsV

al=

bl=

Cl‘

an

2Y'v

pSV
2Y'p
pSsV

2Y' .
pSsV

2L’

pSbV

]
2L b
pSbsV

L',
pSbsV

Ay
pSbV
2N'p
pSbsV
2N'p
pSbsV

Since the two investigations are



| The factors a) « - - C3z corresponding to the transverse motion are

determined as functions of the coefficients Cy, C;, Cy and of their

derivatives with respect to the variables B, &, p. They are calculated
. in the same manner, but since p = v/u instead of a = -w/u, the quan-
tities a1, ap, and az are preceded by the minus sign.

One assumes likewise that the derivatives of the force Y with
respect to the angular velocities p and r are zero.

Calculation of the others leads to:

oCy
al = - $

3y, Xy, 3cy
aN = - —— A = - —— Ch = = ——
2 38 2 3 2 s

oCy oCy, oCy

a5=—~é—B—- b3—-—$- 05=-S—

Let us recall here a conventional result.

An elementary calculation shows that the role of the wings in the
terms b2, c and ¢ of the transverse motion is of the order

2 Pz 3
of magnitude:

_,T=“D T em —
Aw 2 8 da
ac oC
N - oy, =1 22X
% 5785
S 2Ty
BCN_ _ 1
s T

Added to this effect, of course, is that of the other surfaces of the
aircraft.
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Remark: The factors ay, Dby, etc., have the same significance as
the factors x,, x, or Yp etc., defined in "Nomenclature for Stability

Coefficients" R. & M. 1801, but they differ from them sometimes by a
constant factor 2 and by the sign. This last difference results from
the use of a dynamic trihedron the axes of which are differently oriented.

We did not want to use here the English notations in order to avoid
the confusion which would result from these differences.

10. Influence of the Attitude Parameters on the

Aerodynamic Effects

The aerodynamic forces and reactions are independent of the angles @,

8, V¥ which define the orientation of the airplane in space.

On an airplane flying with controls fixed, the derivatives M‘e,
L'¢, and L'W’ N'Q’ and le are necessarily zero. However, we shall

see that thk=y can cease to be zero if the airplane is provided with an
automatic pilot so that it will be useful for symmetry of the calculations
to define the following notations immediately.

Longitudinal Motion

M'g = -dzScVe & a5 = - :%
Transverse Motion

L'y = ~4p56V2 5 a, = - 2%1'-

L', = 4556V 5 a5 = - %%

N'@ = —eESbV2 % e, = - ggy

Ny, = -e5SbV2 5 ey = - g%i
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11. Derivatives of the Propeller Thrust

In the course of the calculations we shall have to use the derivatives
of the thrust T with respect to the varisbles u, v, w, p, aq, T.

In a first treatment of the problem, only T'u is assumed not to
be zero.

Putting:

~ 2T,
a
1 cSv

one must calculate a

In the case of the constant-pitch propeller one has:

y2 4

dac
T,u:ShT—é—I'i- 2CTSh—V
It is shown in the appendix I that one may write:

ac dCrm 4
T 7dy _ 9Cp
"wm V' aty, R

whence

oS L
a 1 ‘5—— ')’ I_\IT/

The calculations may be carried further, and a'"y may be expressed,
if desired, as a function of Kp instead of Crp.

Remark: In the calculations, the quantities a'; and a"; are
always added. We shall put therefore:

12. External Forces in Unsteady-State Motion

Investigation of the various states of motion requires knowledge of
the aerodynamic forces for unsteady-state conditions.
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Theoreticel and experimental research has been carried out with a
view to determination of the transitory phenomena resulting from changes:

(2) Of the aerodynamic velocity
(b) Of the angle of attack a
(c) Of the angular velocities p, q, r
The situation is as follows:
(2) Accelerations dV[dt.— It has been possible to determine theo-

retically the effect of the accelerations for bodies presenting only drag
as well as for 1lifting elements.

(b) Changes of angle of attack.- The transitory phenomena which
accompany a change In angle of attack have been studied theoretically.
(Theories of Kissner, of ¥Armén and Sears, etc.)

In the domain where flow theory applies, the increase in 1ift corre-
sponding to an abrupt increase in angle of attack Ao is not instantaneous.

The circulation, and hence, the 1ift corresponding to the new angle
of attack o 1is established gradually.

On the other hand, the experiments have proved an important fact
relating to the flows at angles of attack in the neighborhood of maximum
l1ift. In the case of a rapid increase in angle of attack, the theoretical
state of flow is established in accordance with the theory, but the flow
separates after having been established, 1f the final angle of attack is
near that of maximum 1ift or exceeds it. As a result, the 1ift, under
these conditions, is apt to attain transitorily a value exceeding the one
it has at the same angle of attack in steady state.

(c) Effect of variable angular velocities p, g, r.- It has been
possible to establish in the tunnel data regarding the effect of a vari-
able angular velocity by making the models oscillate.

The motion of a model with the moment of inertia I, oscillating
freely about its transverse axis, satisfies the equation:

o
188458 4% =0

where I 1s the moment of inertia of the model, K a coefficient of the
restoring moment, and J a coefficient proportional to the damping
moment.
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The damping moment J %% is due to the effect of the rotation gq.

The experimental determination of the oscillation characteristics permits,
when I and K are known, to determine J, that is, a factor propor-
tional to dCy dyx, defining the effect of the angular velocity on the

pitching moment.

More complex oscillation methods, using especially forced oscilla-
tions, may be contrived with a view to establishing the effect of any
one of the angular velocities p, q, r on any one of the moments L,
M, N.

The methods utilizing forced oscillations yield much more accurate
results than those utilizing free oscillations; they are the only ones
actually in use.

The derivatives such as dCM/dX, dCNfdp, obtained for unsteady-
state conditions by the method of oscillations, differ considerably from
those obtained under steady-state conditions by means of whirling-arm

tests. They correspond, in fact, to a physically different phenomenon.A

13. Introduction of Our Knowledge of Unsteady-State
Phenomena into the Calculations

We think that a step forward would be made by introducing into the
calculations our knowledge of unsteady-state phenomena, if we could add
to the expression of the aerodynamic forces as a function of the instan-
taneous values of the variables u, v, w, p, g, r realized in
steady state, factors expressing the influence of the derivative of each
of these variables.

We show in chapter IT what are the extensions to be made to the
methods of calculation using the flight conditions.

The ideal procedure would be to introduce into the calculations the
expressions of the external forces which take into account the entire
previous history of the motion. This result has not yet been attained
at the present time.

}

It is impossible for us to treat this question here in detail. TIts
investigation could give occasion to & complete report, independent of
the one given here.



14. Imtroduction of the Mach Iumber into the Theory

One can study the behavior of aircraft controlled by autcmatic
pilots, flying at speeds of 300 to 500 km per hour without taking into
consideration the changes in the aerodynamic forces which are produced
when the critical value of the Mach number is approached.

At the values indicated above, the abrupt change of the aerodynamic
forces is not yet present.

However, there is no getting away from the fact that the flight
investigations of aircraft using automatic pilots are fregyuently intended
to predict the behavior of guided missiles, travelling at speeds reaching
sonic velocity and even surpassing it.

However, establishment of a complete thecry of automatic flight in
largely subsonic regions seems to us a preliminary condition, realization
of which is necessary before it can become possible to undertake in a
useful mammer investigations of flight in the transonic and supersonic
regions.

In the present report, we limit ourselves to the flight in the
subsonic region and we do not attempt to introduce into the calculations
the influence of the changes in the external forces due to the variations
of the Mach number regarding which our knowledge is still rudimentary.

The study of autometic flight in completely subsonic regions is in
itself of sufficient interest, owing tc the development taken by this
type of flight, to justify the present report; besides, we reserve the
right to supplement it later on by introduction of the effects due to
the compressibility of the air.
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CHAPTER IV

THE EFFECTS OF THE PILOT

1. Intervention of the Pilot

The motion of an airplane in space is generally not that of an
indeformable solid body free in space. The airplane is guided by a
pilot whose intervention makes itself felt in flight by various actions.
The principal ones, involved in the handling of the aircraft, are:

The mzneuver of power-setting for the engine
The deformations voluntarily imposed on the airplane.

The changes of throttle setting produce variations of the engine
torque. They must be balanced by a corresponding variation of the
torque-opposing moment.

If the propeller has constant pitch, an increase in engine torque
can be balanced by an increase in the torque-opposing moment only when
the rotational speed increases.

If the propeller is adjustable which imposes a reasonably constant
speed of rotation, an increase in engine torque will be balanced by an
increase in pitch.

In both cases, a change of throttle setting which increases the
engine torque prcduces an increase in thrust force.

The modification of the conditions for operation of the propeller
(modification of the parameter 7 or of the pitch) exerts an influence

on the slipstream of the propeller, and the reactions X, Z, M exerted

on the airframe may be altered by this fact.

The modification of these reactions constitutes a secondary effect.

The changes in the external configurations of a glider modify either
one of the aerodynamic moments L, M, or N, or one of the components of

the reaction X, Y, Z, or several among them.

The pilot possesses means of action upon the external forces and
moments applied to the airplane, which means, he 1s able to affect the
flight path.
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2. Principal Controls

The surfaces, displacement of which produces a modification of
moment, are the controls.

In an aircraft of conventional form the pilot can apply moments
about each of the three axes; he has for this purpose the following
three controls at his disposal:

(a) The ailerons
(b) The rudder
(c) The elevator

which constitute the main controls.

(a) The ailerons are intended to produce moments about the longitu-
dinal axis. They are situated on both sides of the wing and their motion
is generally linked together. Their deflection, defined by the angle ¢,
will be considered positive when the left aileron is lowered while the
right aileron is raised by an equivalent amount.

(b) The elevator produces a moment about the lateral axis. The
deflection, represented by 1%, is considered positive if it is made down-
ward, for an elevator’ situated at the rear (usual case).

(c) The rudder is intended to produce moments about the yaw axis.
The deflection { will be positive if the rudder is deflected to the
left.

The movable surfaces of the controls are rather small in proportion
to the wing surface and it is generally assumed that their displacement
exerts only an insignificant effect on the forces.

It would be desirable that a maneuver performed with the purpose of
exerting a moment about one of the axes should not have any effect about
the two other axes. This is not always the case. Maneuvering of the
ailerons exerts a secondary effect about the yaw axis which, generally,
cannot be suppressed.

The control mechanism of the principal controls is reversible on
small and medium airplanes.
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3. Magnitude of the Control Forces

When a control surface is displaced, it modifies one or the other
forces or moments exerted on the airplane. The derivative of the force
or moment exerted with respect to the displacement or deflection, char-
acterizes the effectiveness of the control surface.

A. Effect of throttle setting.- The throttle setting, represented
symbolically by the variable o, exerts on the forces applied to the
airplane effects represented by the factors sy, sy, and s3.

The change in drag opposes the change in thrust and its effect may
be incorporated in sq

p
T'U = SlSV2 E

The modifications in the forces Z and M are given by:

Aol ol

o)
'y = 5,5V

_ anyl 2
M' = ScV 5

so that:
dCT

8§, = —

1 do

dCz,
do
ol
-
°3 % 3o
For the performance of numerical calculations, o must be given

concrete significance. A useful definition of ¢ may be given by the
manifold pressure.

B. Effect of the elevator.- The deflection 17 of the elevator exerts
on the total moment My an effect represented by h5:

vz 2 e
M N = h3ScV 5
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so that

C. Effect of the lateral controls.- We characterize them by:

aC

L'y = hpbSV2 5 or hp = S—L-
3
aC

L

L', = ksbSve & k, = —&
¢ 2 2 2 5{,

D P oCy

N' = h bSVh_ - ¢ = —
3 ) 2 BE

~ ACq+

N't = ksbSV© & kg = 65—9—11

4. Control-Hinge Moments

Knowledge of the control-hinge moments is essential in any study
of handling qualities.

We shall denote by L, M, N the moment exerted by the aerodynamic
reactions about the hinge of every one of the three control surfaces.

These hinge moments will be defined by the coefficients Ce1s Cem?

C by means of the following relations:

cn’

For the ailerons:

_ oV
L = Ce15yn o

For the elevator:

=C, S8'c¢' —
cm® m"m T,

=
!

For the rudder:

= CenS'me'm P

1=
|
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where S, S',, s", represent the areas of the movable elements, cp,

¢'y, c"p the chord of these movable elements.

Knowledge of the hinge moments permits finding the corresponding
force to be exerted by the pilot, taking into account the mechanical
advantage of control linkage and in some cases the weight of the movable
surfaces if their center of gravity is not situated on the axis.

For the ailerons, the moment L 1is positive when it tends to raise
the left aileron, that is, when the control stick tends to be displaced
toward the left.

For the elevator, M 1is positive when it tends to raise the movable
surface, that is, when the control stick tends to push forward in the hand
of the pilot.

For the rudder, N is positive when it tends to oppose a deflection
to the left, that is, when the rudder bar pushes against the left foot
of the pilot.

The coefficients C.y, Cgop, Cop are functions not only of the

aileron deflection angles &, 1, §, but also of the angles of attack
and of sideslip a and B, and even of the rotation ratios @, X, p.

They can be measured in the wind tunnel for all the cases corresponding
to steady states of translation.

While the control surface is in the process of being deflected, the
coefficients are functions of the rate of change of deflection, that is,
of dt/dt, dn/dt, at/dt.

Even though we can take this fact into account in setting up the
equations, it is unfortunately difficult to fix the numerical values for
this effect.

5. Compensating Devices

When the dimensions of the aircraft lead, under certain conditions,
to excessive values of the moments L, M, N, it is necessary to use
compensating devices the purpose of which is a reduction of the coeffi-

cients C.7, Cops Cen-
These compensating devices can be utilized if one requires achievement

of a hinge moment zero, for a given condition. Most frequently they are

made by providing at the trailing edge of the movable control surface a

supplementary degree of deformation, controlled by the pilot.
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The portion of the horizontal tail surface, considered as fixed, may
in general be adjustable, with its setting controlled by a worm gear. It
constitutes in this case an auxiliary control of the pitching moments.

Likewise, the action of the rudder can be modified or reinforced by
the trimming of the fin which is sometimes adjustable in flight.

Finally, there exist aerodynamic surfaces the displacement of which
by the pilot has the purpose of modifying the aerodynamic forces.
Properly speaking, these parts of the airplane are not control surfaces:

(1) Certain airplanes are equipped with aerodynamic brakes, permitting
modification of the component X.

(2) Of grecter importance are the lifting devices permitting, at
equal velocity, increasing of the component Z.

These devices generally consist of flaps extending over considerable
portions of the wing span. The majority of lifting flaps affect equally
the component ‘X and modify the drag; the latter does, generally, not
constitute an inconvenience.

Tt is always desirable that the maneuvering of the surfaces intended
to modify the forces should have as small an effect as possible on the
moments.

In our investigation of aircraft motion, we shall content ourselves
with studying the motions resulting from the displacement of the reversible
controls which we have called the principal controls.

We shall assume that the deflection of the irreversible controls
modifies the airplane once and for all and defines in some way another

airplane which could be investigated, if necessary, by the same means
as the first one.

8. Specialization of the Controls

We divided the investigation of motion into two distinct problems:
longitudinal motion and lateral motion.

On the other hand, we retain four controls as fundamental controls.

The longitudinal motion will be studied as & function of the displace-
ment of two controls:

The deflection 7 of the elevator

The power setting of the engine which we represent symbolically by o.
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The lateral motion will be determined by the movement of the two
other control surfaces:

The deflection ¢t of the ailerons

The deflection { of the elevator

9. Mechanical Deformations

In our investigation, we take into account only the voluntarily
prcduced deflections &, n, { and we assume the rigidity of the air-
plane to be sufficient to enable us to neglect any other structural
deformation.

It is important to draw attention to this hypothesis because elastic
deformations of the airframe always take place under the sction of external
forces.

Every time the forces to which an aircraft is subjected show a
variation, its frame undergoes deformations. The amplitude of the elastic
deformations depends on the rigidity of the construction.

One may reduce the amplitude of the elastic deformations, but one
cannot suppress them completely. A perfectly rigid aircraft does not
exist.

The elastic deformations play a large role in the vibrations of
airplane frames.

Between the vibrations of two components of an airplane, for instance,
between wing and aileron, there may exist an aerodynamic coupling which
can increase considerably the amplitude of certain deformations and which
leads no longer to simple oscillations, but to real flapping, corresponding
to the phenomenon generally called "flutter".

The elastic deformations of the frame, whether they are oscillatory
or not, may play a role in the determination of the trajectory of the
airplane.

The hypothesis we made consists in assuming this effect to be
sufficiently weak to be neglected.



o o
TN

CHAPTER V

EFFECT OF THE CONTROLS ON THE CONDITIONS OF EQUILIERIUM
1. Action of the Controls
An investigation of the motion of airpl-nes which forms the object
of the present report, assumes several facts resulting from the condi-

tions of equilibrium to be firmly established.

We shall recall below the essential principles defining the effect
of the controls in the course of flights in steady state.

dition of Longitudinal Equilibrium for a
Rectilinear Flight Path

Using for this particular problem axes fixed to the flight path,
one may write the equations of equilibrium:

V2 - Gsin T

V2 - Gcos T

[l
o

T cos ot - C,S

rojo

]
o

T sin ay - CZS

N

Mg e o o000 0 =0

where o is the angle between the thrust axis and the trajectory, and

T +the slope of the trajectory, assumed as positive when the airplane
climbs.

Writing
Cos ay = 1

cos T =1

neglecting T sin-at in the presence of G, one obtains, multiplying the

first eguation by Vi

CugSe 5 V2 = 0



The first condition expresses the equilibrium of power. The second
condition expresses the equilibrium of 1lif+. The third condition expresses
the equilibrium of moment.

The moment coefficient CMt is a known function of the angle of

attack a, of the deflection 7 of the rudder, and of the advance ratio
of the propeller 7y = V/nD.

The 1ift coefficient is uniquely a function of «a.

Eliminating o between the second and third equations, one obtains
a relation:

which may be written also:

The control surface called the elevator determines the flight velocity
or the angle of attack at which a state of equilibrium is possible. It
constitutes the control for the flight speed.

Let us now examine the first and second equations.

We put TV = W, useful power

V sin 7 = Vi, rate of climb, positive when the airplane
goes up.

We eliminate V Dbetween these equations and obtain:

Cx
Wy = GVy + G 75 G,/G/s,/e/p
CZ

Cx
CZ3/2
indirectly, of the velocity.

The ratio is a known function of the angle of attack and,

The effective power W, depends on the power setting o, on the
flight velocity, and on the density of the air.

One may plot the curves of effective power as functions of the
velocity, for different values of o.



Let us plot as a function of the velocity, for prescribed weight and
altitude, the curve of:

C}3(/2 G\/%m

Cz
which determines the power required for horizontal flight.

These curves permit determination of the excess power AW or GV&.

Hence, they determine the rate of climb.

It is found that, at constant velocity, the only means of influencing
the rate of climb, that is, the slope of the trajectory, consists in
increasing the engine power.

It is the engine power which makes the airplane climb, and the
throttle setting is the control which directly affects this power.

However, maneuvering of the elevator exerts an indirect effect.

Let us suppose that an aircraft flies horizontally, at the speed Vp,
with the power setting o,.

If the pilot places the airplene in equilibrium at a speed Vi< Vy,

by means of a deflection -m, he frees a certain excess of power which
permits the airplane to climb.

This secondary effect of the elevator justifies the name given to
this control.

dCy
When —= > 0 (normal effect of the elevator)

on

oC
M 5 0 (aircraft having static stability)

da

and when one examines operating points at a speed higher than the minimum
necessary for 1lift (so-called high-speed flight), all effects are in accord.

A negative displacement An exerts a tail-down moment and determines
a position of equilibrium at a larger angle of attack.

At this new position of equilibrium, the power required for horizontal
flight is smaller, and a power nirgin, "unfrozen" as it were, allows the
aircraft to mointain an equilibrium of power on an ascending trajectory.
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If one of the preceding conditions is not satisfied, either because

3G,
the airplane is statically unstable Ba¥»< 0] or because the intended

point of operation lies at a velocity smaller than that for maximum
power (slow regime), at least one of the effects is reversed.
3. Turning Flight

Let us assume an airplene describing a curve with angular velocity
about a vertical axis.

The vector Q, directed upward, defines according to our conventions
a curve to the left.

This vector is projected on the following dynamic axes:

p = -0 sin 6
q = sin @ cos ©
r = 0 cos @ cos ©

We shall suppose that the airplane axis OX 1s sufficiently close
to the horizontal to permit neglecting { sin ©.

One sees that an airplane in a regular turn is subject to permanent
angular velocities g and r.

q comes into play in the conditions of longitudinal equilibrium
and acts upon M.

r comes into play in the conditions of lateral equilibrium.

Let us briefly investigate the latter.

L4, Conditions of Lateral Equilibrium in Turns
We shall assume:
(a) That the angle of attack and the velocity, known and determined
by the conditions of longitudinal equilibrium, constitute the given

factors of the problem

(v) That the 1lift coefficient realized at this angle of attack is
independent of the sideslip B
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(c) Tat the effect of the propeller slipstream and that of the
engine torque have been compensated

(4) That the thrust axis lies in the plane of symmetry.

The pilot may influence the selection of the position of equilibrium
by means of two controls, that of the ailerons and that of the rudder. He
modifies thus the factors Cj and Cy which define the aerodynamic forces

acting upon the airplane.

oC

S_L characterizes the principal effect of the ailerons
£

Ly : .

SE— characterizes the secondary effect of the ailerons

oCy . .

gg— characterizes the principal effect of the elevator

3y,

SE_ characterizes the secondary effect of the elevator

We write the secondary effect of each control as a fraction Xx
or z of the principal effect:

oy
x
R o
x

The conditons of lateral equilibrium number three. For steady-state
conditions they become, if one makes p = O:

£Y - mg sin ¢ = mrV
*L = gr(C - B)
N =0
or
%Y - mg sin @ = mVQ cos @
ZL = 0°sin @ cos 9(C - B)
IN =0




In fact, the numerical value of ( 1s small, and the second equa-
tion may in an approximate study be written:

LL =0

In the third equation, we shall neglect fhe gyrostatic moment Ng
which enters in ZXN.

Replacing fcos @ =r by p and writing the equations in non-

dimensional form, we obtain:

o HCE V2s + 51
= ——|—— p COs sin

CL = O

Cy =0

When the aerodynamic coefficients vary lincarly with B, ¢, €,
and p, one has:

BC_Y.B+QC_C

C -
LY e

because of the lateral component on the rudder, produced by the deflec-
tion, and

aCLB+§C._L§+.B_CLC+§ELp

C; = —=
L3 St e 3
oC oC oC oC
_ N N N °“N
Cy 35 B+ 5 £ + X t + 5

The conditions of equilibrium are finally written:

aC oC
fﬁ’f&l =V“—gg(‘—r—zﬁpcosq>+sincp)

BCL5+aCLg+aCLg+é?—L-=o

o R13 ot Jop

dy oy . oy, | Ly
-9

T R S
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This system depends on five varilables:

'ee® The angle of sideslip B
.. 4
e’ The lateral inclination @

L

The deflection of the ailerons ¢

The deflection of the elevator (.

There exists therefore an infinite square number of solutions. But
two of the variables, namely the deflections, are actually degrees of

The angular velocity of rotation replaced by the ratio of roll p
freedom at the disposal of the pilot.

For any arbitrarily selected value of the deflections & and , the
variables 8, @, and & are determined.

Remark: This conclusion is valid only as long as p = O, that is,
only for turns about a vertical axis in the course of which the axis OX
remains horizontal.

5. Discussion of the Ejuations
Taking the previous restriction into account, we cshall investigate

the conditions of equilibrium for three different types of turns, char-
acterized respectively by:

B = 0: perfect turn, sideslip zero
t = 0: +turn with action of the ailerons only
t = O0: turn with action of the elevator only

A. Perfect turn.- The two equations of moment give:

3y, ~p(acL . acL> 1

de \Op o /1 - xz

\1
O o S
ot \3p ap‘,l - Xz

On the usual aircraft,

o, O

The and —— are positive
B oB
™ oCy, . L o1
— nega
e 5 an > are negative
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For p >0, when x and 2z are small, deflections & and { are
positive.

In order to maintain the airplane in a perfect turn, one must apply
continually a deflection of the rudder in the direction of the turn, and
one must hold up the inside wing.

oC
These facts are easily understood. The ——y»p is a resistance to

dp
the turn. In order to overcome it and to maintain the turn, one must
apply a continuous moment Cy which is done chiefly by the deflection
of the rudder.

The —L is a secondary or disturbance moment which results from

dp

the decrease of 1ift on the inside wing, and tends to depress it.

In order to overcome this disturbance moment, one must hold up the
inside wing which is done chiefly by the deflection of the ailerons.

The exact inclination @ will be calculated by means of the trans-
lational equation of equilibrium according to 0Y, possibly taking into
account the lateral reaction developed by the deflection of the control
surface.

B. Turn effected under action of the ailerons only.- A steady-state
turn can be maintained by means of deflecting one of the two lateral
controls while maintaining the other in neutral position.

The turn ceases to be perfect, a sideslip being necessary in order
to maintain it.

We make § =0 in the preceding equations and eliminate B between
the two equations of equilibrium of moment.

We obtain:

X
B
% Xy %

3B oB

with
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On an airplane possessing static stability, the factors SEL and
B

oc aC oC
SEH are both positive, the factors S—L an S—H are both negative.
p p

The quantity D resulting from the differences of the two products
may be positive, zero, or negative according to the respective values of
the preceding factors. It constitutes an important characteristic.

. oc ac
Since the secondary effect is small, SEH -X SEL > 0, and the

deflection ¢ which ensures maintenance of a correct turn will be

Negative when D > O
Zero when D =0
Positive when D < O.
Let us assume a turn for which p > 0, that is, a turn to the left.

On an airplane of the first type, one must lower the left wing, that
is, lower the wing on the inside of the turn.

On an airplane of the second type, one need not do anything: a turn
once started maintains itself even if the two lateral controls do not
undergo any deflection

On an airplane of the third type, one must hold up the inside wing.

The system of equations permits also the determination of p. The
calculation of B shows that the turns effected under action of the
ailerons alone can constitute a state of equilibrium only if they are
accompanied by a continual sideslip B +toward the inside.

This sideslip develops the moments LB and NB which replace the
moments Lg and Nt produced in the preceding case by the deflection
of the two controls. However, in the preceding case, the two deflections

were independent and could be adjusted in such a manner as to produce
separately moments which eguilibrate exactly the opposing moment Np and

the disturbance moment Lp.

Here, the sideslip B can only accidentally produce moments LB
and Ng exactly equal at the same time to L and to N. This occurs
when D = O.
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This is only rarely the case. In general, D # O. When the Ng
due to the sideslip opposes and compensates the resistance to the turn
Nb, the produced LB does not have the exact value required for the
rolling equilibrium: one must adjust the rolling moment by a deflec-
tion ¢ 1in one or the other direction.

C. Turn effected under action of the rudder alone.- Let us make
E = 0 in the equations and calculate {. We obtain:

BCN _ D
R

3 -

Since = 1is small, the denominator of the second number will be positive,
and the deflection € necessary for the turn to the left will be

Positive when D > O
Zero when D =0
Negative when D <O.

On an airplane of the first type, one must deflect the rudder toward
the side of the turn which has to be maintained.

On an airplane of the second type, the turn maintains itself without
any deflection of the lateral controls.

On an airplane of the third type, one must deflect the rudder in the
direction opposed to the turn which has to be maintained.

Here also steady-state conditions are not possible unless the airplane
shows a continual sideslip toward the inside. This sideslip furnishes the
largest portion of the necessary yawing and rolling moments. The rudder
deflection is applied only to adjust the moments in such a manner that the
airplane may simultaneously satisfy both conditions of equilibrium of
moment.

6. Numerical Application

It will be useful to illustrate the previous conclusions by a numer-
ical example.

We assume an aircraft flying at 50 m/second and describing a turn
of 450 m radius.
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3,
B

Rolling moment due to the turn

Inherent stability in roll ggli

Inherent stability in yaw ggL

The execution of a turn takes:

2t X 450

= 56.6 seconds
50

and

|,
| Q= _o.1m
| 56.5

The lateral inclination in a perfect turn is 29.30° whence
cos ¢ = 0.87

r = 0.111 x 0.87 = 0.0965

For an airplane of a span of 20 m:

r X 10
p = - = 0.0193

This ratio would be p = 0.02 for a span of 20.35 m.
p = 0.02 is the value for which we shall perform the calculation.

We shall suppose that:

Heg
e 0.60

and shall consider three airplanes characterized by certain common values
and certain differing values.
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(a) Elements common to the three airplanes:

Lateral force due to the sideslip: g%l = -0.008
Ly
Lateral force due to the deflection: X = -0.0024

Principal effect of the ailerons: = +0,003

Ly,

of
e . BCN

Principal effect of the rudder: gg—-= +0.0012

Secondary effects of the conirols: x =z = 0.

(b) Elements varying between the different airplanes:

Airplane No. 1 Airplane No. 2 Airplane No. 3
0.0010 0.0012 0.001k4
0.0008 0.00075 0.0007
-0.18 -0.16 -0.14
Cy
Resistance to the turn = -0.,08 -0.10 -0.12
P
Characteristic D 6.4 x 1077 0 +7 X 10~

The numerical values of the derivatives with respect to the above
angles are expressed by taking the degree as unit.

They must be multiplied by 57.3 in order to obtain the derivatives”
of the forces and of the moments if the angles are expressed in radians.

The problem amounts to investigating which are the values of the
deflections and of the sideslip which maint2in a turn at p = 0.02.

The result of the calculation is as follows, with all angles
expressed in degrees:

Airplane No. 1 Airplane No. 2 Airplane No. 3

+1°20 +1°06 +0°93
= +1°32 +1°67 +2°00

UTE vy
i
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Airplane No. 1 Airplane No. 2 Airplane No. 3
Turn maintained by ailerons alone

B = +2°00 +2966 +3°46
t = +1°07 o° -0°66

Turn maintained by rudder alone

B = +3°60 +2°66 +2°00
t = -1°07 o° +0°835

The inclination @ which ensures the translational equilibrium can
be calculated. In the turns due to the action of one control, this
inclination exceeds the one necessary for a perfect turnm by 2 degrees
to 3 degrees.

We state two important facts:

1. The deflections required for maintaining a continuous turn are
very small whatever the type of turr which is adopted.

2. Besides the perfect turn, without sideslip, there exist turms
somewhat more inclined than the perfect turn, and accompanied by a
slight sideslip toward the inside.

The effect of this deflection is to force the airplane into the
turn, and to decrease the deflections to be applied by the pilot.

These turns may be maintained by the operation of one single control.
From the viewpoint of piloting, these last turns may be considered correct,
but the airplanes require continual deflections the direction of which
varies according to the sign of the characteristic D.

If one is content with qualitatively observing the position of the
control surfaces in flight, it is impossible to establish the distinction
between the different types of turns described above. It is not without
reason that instructors tell their pupils: "Once the turn is started,
put the controls back in neutral position . . N

Nevertheless, a distinction between these types of turns, in flight,
may be made by means of appropriate measuring instruments, and the anal-
ysis of the conditions of turns is of considerable importance in the
investigation of automatic flight control.

The turn with insufficient inclination and with sideslip toward the
outside is, on the contrary, entirely faulty.
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We return to the numerical example and calculate the deflections
and the sideslip, prescribing a lateral 1nc11nat10n of 24© and of 18°
(with the inclination of a correct turn being 29°30); we find in fact
the following results:

Deflection & of the ailerons

Inclination ¢ 1st airplane 2nd airplane 3rd airplane
29°30 1%2 1°06 0993
240 40 L0u 4©8
18° 701 8°1 P
Deflection f of the rudder
29°30 1932 1967 20
2l,0 6°9 6°9 699
18° 13° 12°50 12°01

Corresponding sideslip B

29930 o° o° o°
210 -8%40 -8°40 ~80L0
18 -17°65 -17°50 -17°35

It is clear that a turn with insufficient inclination is dangerous
because of the large increase in drag due to the sideslip.
7. Initiation of the Turn
For the start of a turn, it is necessary to:

(1) Incline the airplane toward the center of the turn by the
angle @

(2) Impart to the airplane the angular velocity r about the axis
One may attain this result by several methods:

1. Acting simultaneously upon the ailerons and upon the rudder, that
is, acting simultaneously upon control stick and rudder pedal

2. Using first the control stick and then the rudder pedal, that is,
first inclining the airplane and only afterwards beginning to make it
turn

0Z.
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3. Using first the rudder pedal and only afterwards the control
stick, that is, beginning to make the airplsae turn before inclining it.

Theoretically, the first maneuver is the best. By skillfully com-
bining the movements of control stick and rudder pedal it is possible
to effect the entire initiation of the turn without a sideslip of the

airplane.

The lateral inclination will be obtained by pushing the control
stick toward the inside. On the other hand, we shall see that, once
the state of rotation is attained, the pilot must hold up the lower
wing. An inversion of the lateral movements of the control stick is
therefore inevitable if one wants to produce a perfect turn by the
conventional maneuver of the two lateral controls.

The angular velocity r will be produced by the deflection of the
rudder. )

The pilot must overcome the inertia of the airplane. If he wants
to obtain the motion of a turn rather quickly, he will accelerate the
initiation of rotation of the airplane by giving transitorily to the
rudder a larger deflection than is needed to maintain the turn once it
has been started. The pilot will also perform a reverse motion of the
rudder pedal.

The second method of inducing the turn is frequently used. It
consists in starting the turn by a sideslip (that is a skid toward the
interior) the effect of which on the airplane contributes to putting it
into the turn.

The amplitude of the maneuver to be carried out with the rudder
pedal is thereby decreased.

Carrying this method of piloting to the limit, that is, accentuating
the maneuvering of the control stick with a view to reducing that of the
rudder pedal, one would arrive at putting the airplane into the turn by
means of the ailerons alone. This method of action is conceivable in
view of the fact that a continual turn can be maintained by a maneuvering
of the ailerons.

The third maneuver induces a skid of the airplane toward the outside.
Owing to the static stability of the airplane, this skid produces a rolling
moment which tends to incline the airplane toward the inside.

The amplitude of the maneuver to be applied to the control stick is
then reduced.

This method of piloting is, theoretically, very bad. Skidding toward
the outside constitutes fundamentally a serious fault in piloting to be
avoided under any circumstances.



CHAPTER VI

THE LONGITUDINAL MOTION
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1. The Equations of the longitudinal Motion

Let (1) be the system of equations of the varied motion:

R[4 gr o rv)=X+ T, + G sin 6

\at /
/q \

mLa% +pv -qu' =2+ T, - Gcos 6 cos @
N !

dg _
Ba—t—M_t‘l“I(lR"

as _ .
ko

The external forces and moments T., T,, X,
supposed to be known as functions of:

(1st) The characteristics of the motion:
u, w, g, variables
v, P, T, supposed constants

(nd) The parameters:

1 deflection

(1)

Z, and My are

o power setting dependent on action of the pilot

The general problem consists in calculating the motion as a function

of time, that is, in determining

u = Fy(t)
w = Fo(t)
g = F3(t)
6 = Fy(t)

(2)
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if one knows the initial conditions of the motion and the actions carried
out by the pilot, defined as functions of time by the functions:

n = 9 (t)

g = mg(t)

In the development that we make here, we shall assume the surrounding

medium to be excited by invariable displacement motions.

The theory may be generalized and extended to include the case of
variable displacement motions.

The equations of the motion may be written in the form:

Z—‘é = fl(u,'vf,q,e,TbU)1
i—: = £5(u,v,q,0,1,0)
(3)
%% = £3(u,v,q,8,1,0)
%% = 1), (1,%,4,8,7,0) |

The two principal cases to be studied are:

A. Aircraft flying with controls fixed (n = Ct, o = C%) the motion
of which has, however, undergone an initial disturbance, defined by the
value of the variables u, w, q, 6, at the instant t = O at which
the disturbance is assumed to have occurred.

The motion then is a return motion toward the initial state, and
the problem is that of the stability of a motion.

B. Aircraft subjected to actions of the pilot.

The most elementary action is the following: a deflection passing
abruptly, at the time +tgp, from

n to 1+ 4n
and the power setting of the engine changed from

0 to o+ Ao
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The desired motion is the response of the airplane, that is, the
motions the airplane carries out in order to attain the state determined
by the new values of deflections. The problem is that of the maneuver-
ability of the airplane.

The solution of the two problems is facilitated by the process of
linearization of the equations.
2. Linearization of the Equations
We assume as a hypothesis that there is an equilibrium condition
possible. This will be, in general, the condition which exists before
the time tgp.

Assume u, W, q, © to be the values of the variables corresponding

to this condition and 1, o to be the positions of the controls.

One has necessarily:

fl(ﬁ,ﬁ,q,ﬁ,ﬁ,ﬁ =0
fg(ﬁyayaygyﬁ;a) =0

S L
f3(u,w:q,§ﬂl,0) =0 ( )

£, (,vw,q,8,n,0

I
O

A. Let us examine the case of motions with controls fixed.- In the
course of such a maneuver, the variables take on the values:

u =1u+ du

W =W + O

_ (5)
q=p+8q
8 =0 + 56

u, W, gq, 6 are the values corresponding to a steady state. B®u, B&w
dg, ©®8 represent the difference between the instantaneous value and
the value corresponding to this steady state.



The system (3) may be written:

%% - %%u = £1(T + du, W+ 6w, q + 5g, § + 56)]
%%-: %%E = f,(u + Bu, W + dw, g + bg, 6 + ©6)
(6)
%% - %%S = £5(T + Bu, W + bw, q + ba, 8 + 56)
%% = %%9 = f),(u+ du, w+ 8w, g +5q, 6+ 86),

The differences du, &w, &g, &8 become the variables of the
system.

We shall proceed by means of Tayler's formula, stopping at the
first derivatives.

With (4) taken into account, the derivation is reduced to:

dsu Ofp ofy of1 ofy . ]

at - au du - aw 5w - g Bq_ - ge—- 56 =0

adw _ 2y oy 2 5q - M2 46 - o

dt du ow oq 08 g 1)
ddg _ of’3 - of3 - éié &, - éié 56 =

dt ou ou ow ow dq L 36 ©

of of of of
ase _Ofy o Ofy . Ofy o ofy o
at 5w M TSy Moag Yim %070

The partial derivatives are those corresponding to the values u,
W, q, 8 of u, w, q, ©, (they have constant values and the system
has become a system of linear equations with constaent coefficients,) in
which the increments ©®u, ©®w, 8q, 66 about the equilibrium condition
are the variables.

B. Action of the pilot.- In the course of a flight in equilibrium,
the elevator and the throttle undergo displacements An and Ao at the
instant tp; from this instant onward at which the displacements are

applied, the ®u, B&w, &g, &6 originate.




>

8 + A8, 0o+ Ag must be introduced into the system (6). Under
these conditions, the system (7) is written:

adu  Ofy 3fy ofy 3fy Jf of; |

it Tow VT M5 g Yty Mt A

dSw 5f2 afg afg 8f2 Bf2 2

GOW 2 8y - —2 W - —28q - —2 8O = —=2 —=

dt du bu ow ow oq 54 06 ° on o+ do Ack 8)
ddq af} Bf3 af5 6f3 Bf5 5f3

—_— - —= Bu - —= BW - — 6q_ - —= 58 = —= A‘q + —= Ao

at du ow dq 36 d 30

T L N AR

dt ou ow 3q 36 |

We can immediately write O in the fourth equation because of the
particular form of f) which gives necessarily:

Bfu

o, Sy _
o

=0 —t =0
do

We have here a system of linear equations with second term.

If the Ay and Ao are constant (independent of time), the inte-
gration of the system presents hardly any difference from that of the
preceding systemn.

If the An and Ao are arbitrary functions of time, the problem
may be solved analytically, without insurmountable difficulties, for
certain particular forms (sinusoidal ar exponential) of the functions.

If the latter are of any other form, graphical methods or methods
of iteration still permit arriving at the solution.

The device which permits a replacement of the variables u, w, qQ,
8 by their increments ©®u, &w, dq, 06 about a position of equilibrium

u, w, q, 0, is called linearization.

Unier the assumption that in linearizing one writes the aerodynamic
actions as functions of the instantaneous values of the variables by
means of a term proportional to the increment, the linearization assumes
either that the second derivatives of the forces with respect to the
variables are zero, or that the increments are sufficiently small to
make their effect negligible in the terms of higher order where they
appear as the square, cube, etc.
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The derivation shows explicitly that the method can be used only
under the supposition that the aerodynamic actions are constantly deter-
mined by the instantaneous value of the variables of the problem.

Nevertheless, we shall show in chapter XI that 1t is also possible
to apply the method if these actions are at the same time functions of
the said variables and of their first derivatives.

3. Integration of the Linear Equations

A. Equations without second term.- The conventional theory states

that the general solution of a system of linear equations has the

following form?:

du

ow

5q

36

Lagrange's
factors 1, m,

= Clexlt + Cgeth + 05exat + Caexut

X
llcle

i

]

1t

x2t
+ 12028

x5t
+ 15056

+ thueX

ht

x1t x2t x3t xht
mlcle + m2C2e + mBCBe + mucue

nCeXlt 4+ n Cex2t + n ¢ ex3t +nC exlit
171 27 33 Lok

; (9)

method permits determination of the x and of the

n.

The four values of x are the roots of:

ofy ofy ofy ofy
S 5w dg 20
of 5 of 5 of 5 of 5
-X
ou ow oq 06 o (10)
BfB 6f3 5f3 BfB
-X
du ow dq 00
ofy, ofy, ofy, of), N
ou ow ogq 06
DThe exponents of e must read X%, Xot, x5t, x,t. Physical

difficulties have prevented the numbers appearing as subscripts.

The same remark applies to similar expressions occurring later on in

the text.
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This expression is an equation of the fourth degree in x.

<+ le5 + Kpx2 + K5xl +K, =0 (11)
and constitutes the characteristic equation of the system.

The four groups of factors 11, my, Dy, lu, m,, Ty will be

obtained by means of any three of the four equations of the system (12)

where one introduces successively the four roots X5 Xp, X3’ X, of
the characteristic.

o, of of of

(——l -x} + 1 1 + m L + n - L O}

 du ) ow dq o8 |

/; \ i
‘a&+lgaf—2-x;‘+maf—2+na—f—2=0i
du ow / dq 08 [
\ 12)

of of of ] of (

s B B R B S

ou W dq o j

of of of or),

il i e S et SRS

du Sw 3¢ |08

The four factors C C C

l) 2) C}?
one determines by introducing the initial conditions of the movement
considered into the general solution. It is possible to calculate them
2s functions of the values (Bu)., (6w)o, (Bq)o, (59)0, of the initial

v

y are integration constants which

disturbance at the time t = O when the factors . .. n), have been
preliminarily determined.

The roots of the characteristic equation may be real or complex
quantities.

Fach pair of complex roots defines an oscillatory motion.

In the case of the longitudinal motion, the four roots are generally
complex. When such is the case, the total motion results from the super-
position of two oscillatory motions.

B. Lquations with constant second term.- We shall visualize only the
case of abrupt deflection of the elevator An. The effect of a change in
the power setting would be established by an analogous argument.
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It is known that the general integral of a linear system with second
term is equal to the general integral of the same system without second
term plus a particular solution of the equations with second term.

In the visualized case, the second term of each of the equations is
a constant.

of oC 2 AX
—LIap =1 X g Y—-Aﬂ =220
on o on 2 m
of oC 2 N7,
on m on 2 m

S ac 2
O3 = L g W2 5 - B0
B o 2 B

Since the principal effect of the deflection is to produce a modifi-
cation of the moment, one may take:

X,

0y _ 3
an on

=0

Only the third equation possesses a constant term at the time of
the displacement of the control surface.

In order to determine the particular solution, one notes that there
exists necessarily a system of constant values Au, Aw, Aq, A6 which

SaUiol 20

%Au+§f%&w+§§l—Aq+g—§]:-Ae =0
g%g-éu + ggg-Am-+ gg?-Aq + ggg-Ae =0
g%é-éu + ggi Aw + ggé-Aq + ggi NO = é%g
ggg-Au + ggg Aw + gg%-Aq + ggE-Ae =0

Application of these Au, Aw, Ag, A8 to the aircraft would have
the effect of placing in equilibrium the aerodynamic forces and moments
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produced by the deflection. These quantities constitute the desired
particular solution, and the general solution of the equations may be
written:

Bu = Au + 0¥l 4 CpeXPh 4 0 X3t 4 g eXht

dw

B + 1,0, eXIY 4 150,02t 4 1,0,eX5t 4 ) 0) Xt

x1t x2t x3t xbt
8q = Aq + m,Cje + mC,e + m,C,eX3t + m Cye

373

= x1t x2t x3t 4 xht
80 = A9 + nlCle + HECEe + nBCBe 3t + nhCue

The terms Au, Aw, Aq, A9 represent the difference between the
final state and the initial state.

Xt

The terms in e represent the transient part of the response.

The integration constants will be determined by writing that at the
time t =0 the (Su)o, (6w)o, (6q)0, (68)0 defined by the general

solution are zero, that is, by calculating the C C C

1° 02 3 CJ+ corre-

sponding to:

-t = CreXlt + CoeX2t + Czex3t + Cyexit

i = 19C1eX1t 4+ 150,eX2t 4 13C3eX3t + 1),0)exkt
-Aq = mlCleXlt + mecgexgt + m305ex3t + mhcue“ht
-A8 = nyCyeXlt + n,CoeX2t + n503ex5t + nﬁCuexut

It amounts, in fact, to considering the final state as steady state
and to writing that at the initial instant, after application of the
deflection An, when the variables still have the values characterizing
the former state, everything happens as if the airplane would deviate
from its new state of equilibrium by an initial perturbation equal to
-Mu, -OMw, -8,

Remarks: 1. It is clear that the result obtained is not due to the

of] of, .

fact that we have taken 5—_ = S—— = 0. We should have arrived at the
| M

same conclusion if we had kept these derivatives # O.
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2. The case of a modification of the power setting could be investi-
gated in the same way, but here the Principal effect would be a modifica-

tion of thrust, and gﬁl would become the important term.

)

C. Equations the second term of which is a function of t.- The
general solution is also formed from the general solution of the equa-
tions without second term plus a particular solution of the system with
a second term which is a function of +t.

Although the integration is possible in certain particular cases,
we can avoid this investigation, since a general formula, Duhamel's
integral which we study in chapter XII, gives us the possibility of
calculating the response to any maneuver of the pilot, whatever the law
of deflection may be, as soon as we know the response for a constant
deflection of unity.

k., Types of Motion

The motions determined by eXt are aperiodic when the roots x
are real; they are oscillatory when the roots are complex.

In the equations of the longitudinal motion, the four roots are,
in general, complex.

= +
X1,0 7% o T8 ot

= } + i
x5 = k3 Ts, 04

The transient part of the solution is formed from the superposition
of two oscillatory motions.

The investigation of the stability of the motion of the airplane
appears as follows:

1. If one attempts to determine uniquely ﬁhether a motion is dynami-
cally stable, that is, whether the airplane tends toward its state of

equilibrium, it suffices to make sure that all the eXt decrease when
the time increases, whatever the factors Iy « o n; and the integration

constants may be.

It is not necessary to solve, for this purpose, the equation of the
fourth degree. One must make sure (and this is sufficient) that the roots
are negative when they are real, or that their real part is negative when
they are imaginary,
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- Routh has shown thet if an equation of the fourth degree is written
.. in the form:

et xl“+le3+K2x2+K3x+Ku=o

the roots will have a negative real part, or will be entirely negative,
if the following conditions are satisfied:

Ky > 0

K2>O

These conditions constitute a criterion of dynamic stability.

- ». Tf one desires to know the characteristic period and damping of
the motion which results after a perturbation without determining the
amplitudes, it is necessary (and sufficient) to solve the characteristic

equation.
The values Xk and s determine the periods and the damping.
For any oscillatory motion, the period T 1s given by:

T2
5

The duration D required for the amplitudes to decrease to one
half (or to double) is:

_ 1n0.5 _ 0.692
Tk k

D

The logarithmic decrement & depends on s and k. In fact:
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From the practical view point, one uses sometimes, instead of the
decrement, the ratio:

‘ R = T/D
This ratio is equal to:
ok _6.2832 k
in0.5 s 0.692 s .

It is connected with the logarithmic decrement by the relation:

- R=-—2 - 1.4
in0.5
- In all cases, the period and the damping are independent of the

performed maneuver and of the initial conditions.

3. If one desires to lknow the amplitude and the phase displacement
of the various motions which follow a prescribed initial perturbation
or a unit maneuver of the controls, one must determine the factors 1,
m, n and the integration constants Cl’ Cg, C

~

Uy,
3 O

The factors 1, m, n are Independent of the considered initial
perturbation, they depend on the aerodynamic characteristics of the
airplane.

In contrast, the integration constants Cl « e Cu depend in every
case on the initial perturbation visualized.

If the fogr roots are complex, the transient part of the solution
may be written®:

6In order to simplify the notation, everything connected with the
pair of complex roots 1, 2 is represented without subseript, and every-
thing connected with the pair 3, 4, is provided with the sign '.

»
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Bu = eX¥ay sin(st + Oy) + ek'tar | sin (s't +9'y)
Bw = e¥tay sin(st + @y) + X't sin(s't + ')
5q = ekta q sin(st + 94) + ek’ tA' (s't +91y)
56 = ektA 51n(st + me) + f Ae 51n( s't + @'e)

The factors A represent the largest possible amplitude.

The terms @ represent the phase displacements.

The calculations connecting the sixteen factors A and ¢ with the
sixteen factors C, 1, m, n have been placed in appendix II so as
not to encumber the derivation.

Importent remarks: 1. Since the equations are linear, the amplitude
of all motions is proportional to the causes which produce them (initial
perturbations or deflections).

2. For the same reason, the motion produced by several simultaneous
causes is equal to the sum of the motions which would be produced by
each of these causes acting separately.

5. The method of integration is simple in theory but leads to very
long numerical calculations.

It is useful to replace it, in practice, by a method derived from
operational calculus.

These procedures are investigated in chapter XVIII.

4. The preceding problem is frequently treated by taking as variables
du/V and Bw/V instead of ®u and bdw.

The variable Bw/V is practically equal to -ba.

This does not introduce any change in the characteristic determinant.

5. The problem may also be treated by writing the equations of
equilibrium of the forces along the flight path and normal to the flight
path.

The variables then are:

The velocity V

The slope of the flight path T (generally supposed to be positive
when the airplane climbs)
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The angle of attack «
The angular velocity q = - iﬁggtgll if one maintains the definition
of the positive sense of the pltching rotations.

The angle of trim 6 = -(a+ 7) 1is no longer one of the fundamental
variables.

This manner of notation permits introduction of the derivatives of
the lift and of the drag, and does not require the transformation of
these forces into components along the axes fixed to the airplane.

It is, however, less suitable to the goal we have set ourselves, the
investigation of automatic flight control, since the reference employed
there most frequently is precisely the angle of trim 6, and not the
inclination of the flight path T which occurs only in devices intended
to produce an entirely automatic landing, not yet in general use.



CHAPTER VIT

THE LONGITUDINAL MOTION

1. Transformation of the General

We take up again the

ddu
dt

ddw
dt

ddq
dt

ase
at

It is

clear

of-
du

~

ow
of

afl
36
of
o

af]_
do

_ﬁaw_afl 5q_afl
ow dq 08
3, 3, 3
" TN Y%
of of of
5 ow - —2 Bdq - 3
ow dq 08
of of of
b4 4 L4
" 5 T w
that:
Moy xy)
= 1 1 1
-q + m(x wtT w)

general equations:

— _]; . ,
-w+m(xq+Tq)

g |-

[ od

cos 6

56
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Equations

g |-

8-



of of
3 _ 1., L
Sn B u Sa - °
of of
2. E'M'w ko 0
ow B ow
._a_f_iz.];M' af_h',_—_.].l
dq B a dq
of of
2Ly g
08 B 0
of of
_5:_]:1\,1' _)izo
on B T o
o5 1y g
5 -
do B do

As we visualize the stability for rectilinear motion,
q=0

(It would not be the same if we wanted to investigate the longi-
tudinal stability during turns.)

The derivatives X'q, T‘q, Z’q are small and we shall assume
them to be zero.

It will be the same with regard to T'y.

If one wanted, nevertheless, to take these derivatives into account,
it would suffice to add the corresponding terms to the set of equations.

As to the terms of the second member which define the action of the
controls, we shall suppose that the elevator acts exclusively upon the
moment, whence:

X' =2' =0
n 1

The derivatives of the aerodynamic actions X'y . . . M'Tl have been
defined in chapters III and IV, by dimensionless factors a'y . . . hs.
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Let us write the mass and the moment of inertia as functions of the
density of the airplane as a nondimensional quantity:

m = uSe %
o 2a P
B = ur~Sc 5
Let us put, moreover:
of
I R
Cl &I-XV WV
of
1 pe pe
dy = - =— X = = -g cos & =
1 6 v & v
c2__.a_f;2_)(-u—-c-::_u£
dq \'s '
Bf (] c
d2 = - _2 X g -g sin © il
36 ' v
o oL ue | pe
b q v A
We have furthermore: a =a'y + a'y.

The equations of motion become, when these substitutions have been

made:
%; %%E + ajdu + bydw + c18q + 486
%; %%E + a,bu + b Bw + ¢,Bg + 4,58
%%J’%336u+}9§b36w+%c58q+1c~—2m566
*;fg_iiel+o+o+c,+5q+0=

slVAU

sZVAn

I—%(thAq + 55VAd)

In these equations all terms appearing in the first and the second

equation have the dimensions LT~l, in the third:
in the fourth: the dimensions O.

the dimensions T‘l,
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Let us note, furthermore, that:

cy and Co have the dimensions L

d; and dp have the dimensions LT-!

cu has the dimension T

2. Factors Depending on the Aerodynamic Characteristics
of the Airplane

We have seen that it was possible to calculate the factors 8y« + +C3
starting from the aerodynamic coefficients found in wind tunnel tests.

Let us recall the expressions:

1 "

al=al+al

OCx
[0 &’-— - ECX

o
1

1
a"l = q %?(g%z n'y = 2C )
oc,
ay = aE -2,
oC

b2=a—aE

cz = - égfg
One would also have:

9

if the angle of trim would exert a direct effect on the moment M.
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This effect is zero because the aerodynemic reactions depend only
on the linear and angular velocities. Nevertheless we maintain the term
in d3 in the equations in order to give them the generality necessary

for the investigation of automatic flight control.

Finally, the factors characterizing the effect of the controls are:

oCy,
-
S, = Ly
2 Jg
o . Lu
5 3 do
Y
h5—-an—

3. The Aerodynamic Time

An examination of the equations shows that a new simplification may
be used.

So far, the unit of time Uy was the second.

Let us express the time by means of a new unit U; related to the
second by

C
U =5

T v Uf

An interval of time equal to t seconds will be expressed in the
new system by a nunber

The quantity T is dimensionless. It constitutes the aerodynamic
time.

Replacing in the first term of each of the first members of the
equations

g1

&Ci
v oy

&le
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we obtain:

%SE + ajdu + bydw + c¢y6q + 4188 = sVAg
ggz + a26u + b25w + 025q + d286 = spoVAO
%Br-‘l + ;92 a,bu + ;‘:2- bv + % c,8q + l-f-’é- Va,50 = I‘f—e h VAN + I—% 5,VAG
%%9 +¢,8q =0

The characteristic determinant of the first members of the system
becomes:

ay + A by cq d1

an by + A o do
c c cl c =0
2 az ;§ b3 ;§ Cz + A ;5 Vdsz

0 0 cy + A

The roots of the equation
i 3 2 _
A+ Alk + AoNT + A5k +A, =0

permit writing the solution of the differential system without second
member, by means of four expressions of the form:

du = Cle?\lT + Cge}\gr + C5ex§T + Cae?\l*"r

with, (in the general case):

>
I
S
i+
Q
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Since this quantity AN is dimensionless, the period T and +he
duration D required for reduction to one half of the amplitudes given
by:

T =

an
o

are expressed in the unit of aerodynamic time.

They must be multiplied by uc/V to find T and D expressed in
seconds.

It is important to remark that the change from t +to T made at
the end of the calculation does not affect the unit of time by means of
which the velocities u, w, q are measured. One continues measuring ;
these velocities utilizing the second as unit of time.

L. Development of the Determinant

Developing the determinant as a function of the last line, we obtain:

al + A bl Cl al + A bl dl

an b2 + A 02 _ C)+ 8.2 b2 + A d2 -0
c c cl c c c

= a = b =~ ¢z + A = a = b = Vd

w2 D r2 D 2 2 2 5 2 D 2 3

Let, arranging with respect to terms of subscript 3:

i
W

. c _ ;
Az 3 2(b102 - bgcl + dlclJr) + b5 5 (agcl alc:2 + dgch) +
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We replace the quantities c¢y, dy, c¢p, dp, c) by their values,
and obtain:

cl
Al = (C}.l+b2) +;2-€3
2 /= 2 /T 2
- _ S ] S et e
Ag = \alb2 aebl) + 8.5 r2 Mo V) + b5 r2 HKV#’, + C3 r2 \al + b2) + d3 r2 [V
2 = = 2 v a
Az = (S O N TR W 8ic c_ hud 4
3 =+ a3 N ‘1<tﬁ.v b2 v + cos © V2 + b5 r2 “’é? 7 + ay V’+
\
g BC cl b ) ¥ s S
sin V—- + 05 ;é-\al o - an l/l + 3 I'E i <al + bg/)
2

Ay =+ az “5 M %—S(bg cos 8 - bl sin e> +
r Vv
b3 a ——C—f'al sin 6 - aoCcos 6) + b3 -—

It can be immediately verified that:

The transformations may be carried still further; however, the
preceding expressions suffice for finding the essential facts.
A

The coefficients A Au depend:

l’ 2? 5’

(1) On seven purely aerodynamic parameters, functions of the angle
of attack, namely: four parameters dependent on the derivatives of the
forces 2y, bl’ s, b2; three parameters dependent on the derivatives

of the moments agz, b5, 3

The parameter d5 is zero because the aerodynamic actions are

independent of the orientation of the airplane in space, but it is
provisionally maintained in the equations with a view to a subsequent
generalization of the theory:

(2) On the density of u of the airplane
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(3) On the distribution of masses in the airplane, characterized
by c/r.

(4) On a purely geometric ratio 1/c which is introduced only
because we used in the definition of the pitching coefficient X a unit
of length 1 other than ¢

(5) Considered flight regime, characterized by:
w/V = -a (e = angle of attack)
The angle ©

The 1ift coefficient Cz = &

5. Discussion of the Characteristic

It is difficult to establish, by discussion of the characteristic
equation, how the solutions A will vary when each of the parameters
mentioned above varies, and it is completely impossible to determine how
the terms which define the amplitudes of the motions will vary in the
general solution of the differential system.

We collide here with the practical inconvenience of a complicated
expression. The result depends on particular numerical values.

Consequently, we obtain from this calculation only information
regarding the periods and the damping of the motion for the particular
values assigned to the characteristic equations.

If we find that the system is unstable or possesses undesirable
characteristics, the calculation does not provide us with any immediate
indication of the manner for making it stable or satisfactory.

Actually, these inconveniences are not too serious. The number of
characteristics which the designer can influence is very limited.

Certain elements such as the b, = dCZ/da, are fixed by the general

properties of the flows, and only the discussion of the density p and
of the ratio c/r as functions of the three derivatives of the moment
(that is, az, bz, cz) gilves results of direct interest for the designer.

Numerous reports, consisting of calculations of numerical examples
where one of the elements varies systematically, have given very definite
indications on the direction of the development of the phenomena.
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There exists already a considerable documentation regarding this
subject.

The derivatives

3y b
e A

are the most important ones.

b5 > O expresses that the airplane, which is supposed to oscillate

around an axis fixed in space, has the tendency to maintain its equilibrium
angle of attack. A positive sign defines, in fact, a diving moment for an
increase in angle of attack.

A similar tendency is presented by an airplane possessing the charac-
teristic called static stability, that is to say, weather-vane stability.

The procedures are perfectly well known which permit making an air-
plane statically stable and even giving it a predetermined degree of
static stability. The displacement of the center of gravity from the
rear toward the front is the factor having the greatest effect.

c3z > O indicates that a positive speed of rotation gives rise to a

negative moment, proporticnal to that speed. The term C3 defines the
damping in pitch.

One may carry the investigation up to the three stages described in
section 4 of the preceding chapter.

(a) Verification of the criterion of stability.- One fixes one or
several values of az. For each of them, the Ay, Ap, . . . are linear

functions of b3 and Cz.

Directing the b5 and c3 along the axes, one plots the straight

lines:

Al=0
Ay =0
AB =0
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and the curve

which separates the regions of stability from those of instability.

It is easy to recognize which sides of the lines correspond to
stability and to instability: one determines which is the boundary
common to all regions of stability.

(b) Investigation of periods and damping.- The solution of the
equations is necessary. There exists, however, an approximation method
which, though not giving the exact roots, furnishes approximate roots
knowledge of which is perfectly sufficient to define the nature of the
phenomenon.

The equation

Rh + A17\5 + Agxg + ABX + Ay = 0

can, in fact, be put in the form

[ N
2 V2 (A3 Ay Ayt
()\ + A l)\ + A 2) AT+ [\\AL—2 - A—ET ‘ + '—2 =0

Each of the equations of the second degree defines an oscillatory
motion: one is a motion of short period, rapidly damped; the other is
a motion of long period, slightly damped.

(c) Calculation of the amplitudes.- If one carries the calculation
as far as determination of the amplitudes, one sees that the short-period
motion consists primarily of an oscillation about the center of gravity
whereas the long-period oscillation corresponds to a succession of rises
and falls in the trajectory of the center of gravity.

These motions are accompanied by considerable variations in the
velocity V or uj; the airplane accelerates in descent, and vice versa.

This completely differentiates the slow oscillation from the rapid
oscillation which takes place without appreciable modification of the
speed.

An analysis of the motions is easily made by examining the solutions
of the system of equations, put in the form of curves.
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As an example, we give such dlagrams for an airplane the character-
istics of which would be:

ay = +0.125 by = +0.345 csz = +1.37

ay = -0.80 by = +3.75 p = 28.8

az =0 bz = 0.3h4k c/r = 1.53
l1/c = 2.6

for a flight regime corresponding to:

a =0 8 =0 c, = 0.40

Z

The calculated motions are those that follow:

(2) An initial perturbation corresponding to the effect of a hori-
zontal gust coming from in front

(du) . = 0.25V
0
(b) An initial perturbation:
N - .a o
(5w)g = -0.20V

which corresponds to an ascending gust producing at the initial instant
an increment in angle of attack:

(aa)o = +0.2 rad

(c) An initial perturbation formed by the superposition of:

i

(Ba)o +0.2 rad

(88), = -0.2 rad

that is, an angular displacement in space of the aircraft.
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(d) The application of an abrupt deflection producing

ACy = -0.015

which is intended to establish the airplane on a flight path ascending
more steeply, travelled at larger angle of attack and at lower speed.

(e) The suppression of the thrust due to stopping of the engine -
extreme case of a variation in throttle setting.

One can find the following facts in the diagrams:

() Effect of (Su)o > 0.- The first consequence of the perturbation

is the appearance of an excess of 1ift. Under its effect the trajectory
becomes ascending.

The inclination of the trajectory has the effect of diminishing the
angle of attack.

The aircraft which due to its static stability tends to maintain
a constant angle of incidence will perform a nose-up motion depending
on the rapid oscillation.

The airplane which has very nearly found again its incidence of
equilibrium condition now follows an ascending trajectory where the
conditions of equilibrium of power are not satisfied. Tt will find its
pover equilibrium again through the effect of the slow oscillation.

(b) Initial perturbation (®w)y.- The perturbation (8w)g, of nega-

tive value, becomes manifest by an increase in angle of attack, at the
instant t = O; this increment in angle of attack tends to decrease
through the diving motion due to the static stability, and through the
undulation of the trajectory of the airplane resulting from the excess
of 1lift.

The diving motion is the more energetic the greater the static
stability. It depends on the rapid oscillation.

When the equilibrium of moment has been reestablished and that
oscillation has ended, the airplane follows, however, a descending
trajecteory. The cenditions of power equilibrium are not satlisfied, and
the airplane accelerates. An oscillation of long period originates; its
amplitude is the larger the greater the inclination of the airplane has
been in the course of these phenomena, that is, the greater the static
stability.
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(c) Abrupt pull-up motion.- An initial pull-up motion modifies at
the same time &a and 6@ as long as the trajectory itself has not been
modified.

The diagram shows that the initial perturbation is opposed partly
by the diving motion (which will increase with the static stability and
which depends on the rapid oscillation), partly by a modification in
the inclination of the trajectory.

This inclination creates a lack of equilibrium of power which in
turn causes the beginning of the slow oscillation.

(d) Effect of the deflection of the elevator.- The initial effect
is a motion which tends to make the airplane nose up. However, this
motion which depends on the rapid oscillation is visible only at the
beginning of the diagram of the angle of attack.

Since the airplane is required to settle itself on a trajectory
which greatly differs from the initial trajectory as to the speed and
the trim of the airplane, motions which depend on the slow oscillation
are produced.

Inspite of a considerable degree of static stability, the slow
oscillation does not arise strictly at constant angle of attack.

At a constant deflection 7, one has dCy = 0, but

Xy 4y 4y

3C o)
aCy = =M gq + M S5
7

da ox

dy +

If BCM/By = 0, the amplitudes of da and dyx will be in the ratio:

aa

Ix  30y/on

The oscillation in a, opposed to that of g, that is, at the
derivative of 0, will lag behind that of 6 by =n/2.

(e) Suppression of the thrust corresponding to the stopping of the
engine.- Since the calculations have been carried out with doCy/oy = O,
the suppression of the thrust does not produce any direct effect on the
equilibrium of moments. The airplane will slow up and the motions which
will be produced will all depend on the slow oscillation because they
result from the airplane's pursuit of power-equilibrium conditions.



The complete stoppage of the engine corresponds to an initial
rerturbation:

C
96 = - arc tg X
Cz

It is well to remark that, in the case b, the phenomenon is greatly
schematized. The diagram corresponds to the roughest calculation one can
possibly make; it supposes, in fact:

That the gust arises abruptly

That the airplane is, from the first instant onward, in its entirety
subjected to this gust.

6. The Total Damping

The motion of the airplane results from the superposition of two
motions:

The rapid oscillation is strongly damped; the duration D of
decrease t0o half-amplitude is a fraction of a seconda.

The slow oscillation is slightly damped; D is of the order of
30 seconds.

The damping of each oscillation is proportional to the real part
(necessarily negative) of the corresponding root.

Now the sum of the roots = ‘Al'

The coefficient Ay, with changed sign, may therefore be regarded
as the total of available damping.

One can influence the total damping only by means of the para-
meters a;, by, and C3.

The other parameters do not affect the total of available damping.
They can influence only the distribution of the damping between the two
components of the motion.

If one succeeds, by the effect of a5, b3, or d3’ in increasing

the damping of the slow oscillation, one diminishes that of the rapid
oscillation.
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Let us recall

N =x'"tTo'i

where the pair of roots 3, 4 relative to the slow oscillation, takes on
the sign prime.

Since « > k' vwhen we make a small quantity n pass from « 1o

k', D' which has become 0.2 is little modified, whereas D' which
K -1
has become 1a0.5 is strongly reduced.

K'+ n

Any alteration in the airplane which increases &' at the expense
of « 1is favorable, since the damping of the rapid oscillation can
generally be somewhat diminished without disadvantage.

Remark: It is clear that the method of approximate solution pointed
out above does not give exact results since it leads to attributing to
the rapid oscillation a damping equal to the total available damping.

7. Remarks on the Expressions Al’ A2, AB’ A N

A. The factor p always multiplies the terms in az and b5, but
does not multiply c5:

bj is a restoring moment
c5 is a damping moment.

The increase of the airplane density u will have an unfavorable
effect; an airplane of high density (that is, with a high wing loading)
will necessitate a larger damping coefficient BCM/BX (in absolute value)

than a machine with small loading.

b a b

1’ 1’ 27 2
have such values as to make the term in alb9 - a2b1 appearing in A2

B. At normal angles of incidence, the factors a

positive.

On the other hand, the factors which multiply az, b5’ cz in Ao,
A5’ or A)Jr are generally positive.
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The only factor which can become negative is the one which multiplies
b5 in the expression Aﬁ.

Ascending trajectories may lead to values such that sin 6 gives
its sign (negative) not only to the term in b5 but also to the entire

expression A5.

This fact explains that the stability of ascending flight paths 1is
always more precarious than that of horizontal or descending flight paths.

Pursuit planes endowed with normal characteristics become frequently
unsteble in the case of steeply ascending trajectories at full engine
speed because the term in b3 which appears in A5 has become negative

and gives its sign to the entire A5'

One finds therefore that the increase in static stability of the
air frame can only increase the instability of the motion.

The instability considered above always affects the slow oscillation.

C. The sense in which T, D, T and D' develop if a3, b5 or
c5 are altered can be established in a general manner only by treating
numerical examples and the conclusions are, on principle, of value only
in the particular case considered.

Anyway, we shall indicate the conclusions at which we have arrived
airplane with the same characteristics as the one to which refer the

curves of figure 24).
Effect of aze

1et us recall that az can express:

oM, XMy,
e = — - — - 2C
8y = %75 7 Mg

The parameter a5 exerts only an insignificant effect on the rapid

oscillation, but a considerable one On the slow oscillation.

At small angles of attack (e in the neighborhood of zero) its
variations stem exclusively from the effect

oC
My o
- 57n7
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An increase in the velocity of the aircraft diminishes the thrust
of the propeller.

When the propeller axis passes above the center of gravity, the
thrust reduction produces a nose-up moment. An increase of V produces
a negative ACyM; the airplane is characterized by:

oC
Mo
dy

Such a characteristic is favorable for the stability. As a result
of the form of Ay a machine which is statically unstable for slow condi-

tions may be made dynamically stable by:

Sy

oy

It must, however, be noted that the stability produced by this means
does not correspond to very desirable flight-path characteristics. The
period of the slow oscillation decreases whereas the duration D
increases: oscillations of this type may become inconvenient.

Inversely, an airplane in which the thrust axis passes below the
center of gravity is generally characterized by:

My,

dy

Such a characteristic tends to make the slow oscillation unstable.
If the flight path of an aircraft has become, for any reason whatsoever,
a descending one, the plane will necessarily accelerate. The moment M
becomes positive, that is, nose-down and tends to oppose the levelling-
out of the flight path and to maintain or accentuate the diving condition.

A statically stable airplane may become dynamically unstable if:

The calculations show from what value of az onward this instability
may manifest itself, taking into account the value of the other parameters.
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It is interesting to note that a machine characterized by
BCMt/dy < 0 has necessarily the tendency to nose-up when the engine is

stopped. A machine characterized by ath/ay > 0 tends to become nose-
down. This last reaction is favorable for safety.

The airplanes fall into different classes regarding the effect
of the BCMtlay according to whether one considers the phenomena

occurring when the motor turns normally or those which accompany an abrupt
stopping.

9
Effect of b3 = oMy, |
da

The period of the rapid oscillation (motion of rotation about the
center of gravity) is necessarily linked to the magnitude of the static
stability, or the restoring moment.

This period decreases when b3 increases.

It increases when b5 decreases, and, for a low degree of static

stability, the rapid motion ceases to be oscillatory and becomes the
sum of two aperiodic motions.

Nevertheless the roots ANy and M\, remain negative and the corre-

sponding aperiodic motions remain stable, even for a negative static
stability.

The mechanical cause of this phenomenon is easily found; it is due
to the undulations of the flight path produced by the increase of 1ift
(b2 > O) which accompanies any increase in angle of attack.

The damping of the rapid motion as long as the latter maintains its
oscillatory character is independent of bz.

The period of the slow oscillation decreases also when b3 increases.

Its damping also decreases.

When bz decreases, the period increases; then the motion ceases to
be oscillatory.

When b§ = 0, the instability 1limit Ay = 0 1is easily surmounted.

This instability goes back to one of the components of the slow
oscillation and the duration of amplification of the perturbations is
long.
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The flight of an airplane affected by a slight instability of the
slow motion is no longer possible with controls fixed but remains possible
when the pilot makes the necessary corrections.

Effect of ¢ = oM

The factor cxz uniquely exercises an effect on the damping. It
increases the total damping, but the increase relates almost entirely

to the root having to do with the rapid motion.
8. The Accelerations

One of the quantities to which the occupants of an airplane are the
nost sensitive is the normal component J, of the total acceleration,

opposed to the apparent gravity.

In the course of a varied motion

J, = J, + 8J,

where JZ = g cos O cos @ represents the steady-state component and
dJ, the increment.

The hypotheses adopted permit us to write:

ody = %%E-— @5u + u6q> - g sin © 6%
— ]_~ t l 1 1: 1
== Z',0u + z Z'.ow + - Z qu

Since q and Z'q are supposed to be zero, we can adopt either
one of the expressions:
adw
T mm— - - i 9 69
6JZ i udq - g sin
or

8, = {2 ou + 4" )

As soon as we know the development of the &u, &w, 8g, 56 in
the course of unsteady motion, we can determine at every instant the
increment of acceleration &J,.
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CHAPTER VIII

LINEARTIZATION OF THE EQUATIONS OF THE LATERAL MOTION

1. What Lateral Stability Consists of L

The lateral motion is determined by:
The equilibrium of the forces following the transverse axis OY
The equilibrium of moments along each of the axes OX and OZ.

Just as in the case of longitudinal stability, the destruction of
one of the states of equilibrium gives rise to forces and moments which
in turn act upon the other equilibria.

The sequence of phenomena which take placz may in certain cases be
established by simple reasoning.

Let us assume an airplane to which one has imparted the two static
stabilities of roll and yaw, satisfying the two conditions:

oc oC
_L _N
5 >0 5 >0

We suppose that the machine is inclined toward the left &p < O.
The machine will deviate in this direction, under the effect of gravity.
and a perturbation 88 > 0 will originate.

This perturbation constitutes a lateral translation which will have
two effects:

(1st) The airplane will have a tendency to level out under the
action of acIJaB; the skidding to the left will tend to incline the

machine to the right.

(2nd The airplane will have a tendency to veer to the left since
it behaves like a wind vane, with BCN/BB being positive.

Thus a new perturbation arises, a turn ®r > O. 1In this motion the
right wing will be at the outside of the turn and will be displaced more
rapidly than the left wing.

The 1ift will be stronger and will tend to increase still more, thus
to emphasize the lateral inclination. The moment L 1is, in fact, a
function of r.
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The derivative BCL/Br is negative and the turn ®r has a tendency

of straightening out the outer wing, n the case considered the right wing.

Two opposite effects are produced and, according to the proportions
of the machine, one or the other predominates.

If the effect of the static stability of roll prevails, it will be
possible that after a turn the airplane will resume its initial state;
nevertheless it will fly in another direction than before the initial
perturbation.

If the effect of the angular velocity r on the rolling moment L
is larger than the effect of the skidding B, the second effect prevails.
The inclination of the machine increases, the airplane starts on a more
and more inclined turn and describes a spiral trajectory.

The machine is then dynamically unstable; the instability affecting
it is called spiral instability.

The dynsmic study shows that a machine which satisfies separately
each of the two conditions of static stability (of flight path and of
yaw) may be unstable if the first stability is too highly developed in
proportion to the second.

Likewise the motion of an airplane may present unfavorable charac-
teristics if the rolling stability is too high in proportion to the
flight-path stability.

Let us imagine that the machine skids to the left, with the axis OX
of the plane oriented to che right with respect to the flight path.

If BCLIBB is high, the machine will be forcibly inclined to the

right, and the rolling will be positive. The tendency toward a leftward
turn will on the contrary be slight since BCNIBB is, by hypothesis,

supposed to be small. The secondary rolling moment which might develop
due to this turn will tend to incline the machine to the left, but it
will remain weak since the turn is little pronounced.

The motion of the positive rolling, to the right, will predominate.
Since nothing opposes its action, the airplane will lean to the right.
The resultant of forces along the transverse axis will at this moment
make the airplane skid to the right, and the same phenomena, in the
inverse sense, will occur.

One can see how there arises the possibility of a yawing motion on
which a continuous balancing is superposed. This motion becomes unstable
and the amplitudes will increase for too small values of BCN/GB.
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2. Setting-Up of Equations by the Method of

o Linearization of Equations
*
* =
‘: The equations of the variable motion are:
o.,
m dv + ru - w\ =Y - G sin
(dt P ) ?
- ap
C =+ B-A) =IN
e pa( )
dr
A — + gr(C - B) = ZL
P ( )

One must add two geometric relations connecting the angular veloc-
ities p and r with the derivatives dp/dt and a¥/dt and resulting
from the definition of the rotations:

dp d

- v .
P=F - sm®
- -4 cos 6 cos a8 sin
r—dt O(P'dt q)
; which may be written:
99.— sin ©

TP+ 66§—§(q sin @ + T cos Q)

dy —-—(q sin @ + r cos Q)
dt cos ©

We shall be able to assume q = O when we investigate the lateral
stability of a rectilinear motion.
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" The system of the five equations has the form:
(X )
»e
.o. = dv
»e a‘t‘ = fl(V,P;r,Q),W)
i d
E:_% = fQ(V)P)r’q);\V)
|
| dr
i at = fB(V)P:r:q):W)
do

]

at fbr(V,P,I‘,q),\V)

d
% f5(V)P’r’cP;W)

i

It can be linearized as in the study of longitudinal stability, with
the perturbations ©®v, ©&p, ©°r, ©&p, &y now becoming the variables.

- The integral system depends after linearization on an algebraic
equation of the fifth degree in x, instead of an equation of the fourth
degree.

This equation will be:

s RV 1 ¥ 231
iy ov op or op oy

v > or 3 3
oty dry dry ok Xy |
ov op or op oY
ov op dr op oV

. R R -
ov dp or P oV

" One notices immediately that the derivatives of the five functions

with respect to the variable ¢ are zero.
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The equation of the fifth degree admits a zero root:

x. =0
2
This circumstance facilitates the analytical investigation since the
characteristic equation becomes one of the fourth degree if one eliminates
this particular solution, and the mathematical investigation will be
carried out by methods similar to those used for the study of the longi-
tudinal motion.

The existence of this particular root corresponds to a well-determined

mnechanical fact.

In the study of the longitudinal motion one states that certain
projections of the external forces depend on the angle 6.

If © 1is not zero, the axis of the airplane is inclined upward or
downward, with respect to the horizon, and the gravity exerts along the
axis OX a component which is to be subtracted from or added to the
propeller thrust.

When an aircraft is dymamically stable, it reverts, after a series
of oscillations, to its initial state. The forces acting upon it must
reassume their initial value. This result can be obtained only if the
airplane recovers its original trim.

In the study of the lateral motion we shall encounter two angular
guantities ¢ and V.

The component of the forces along the axis OY depends on the
angle @ since the gravity exerts a lateral component when the airplane
is inclined. If the airplane is dynamically stable, it reverts after
any perturbation whatsoever to its initial state and must therefore
assume again its initial inclination.

This does not apply to the angle V. Whatever the final position
of the airplane may be, the projections of the weight on the axes are
independent of the azimuth V; no force and no moment exists which would
be a function of V.

If, consequently, a dynamically stable aircraft returns after a
perturbation to its initial state, it has to reassume a motion charac-
terized by the same velocities and the same angles © and @ as the
initial motion, but not necessarily by the same angle V.

After a perturbation, a machine does not possess any stability of
heading. The existence of a solution Xg = O is only the mathematical

consequence of this fact.
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Momentarily setting aside this solution, we write the characteristic
equation as for the longitudinal stability:

X+ Apd 4 Ax® + Agx + By = 0

The integral system will be written:

v = CleXIt + CgeXZt + C3ex5t + CueXMt

t Lt

2
Bp = 1907™ % + 10,67 + 150560 + 1,0,e%
or = mlcleXlt + m202exgt + m503ex3t + mucuexut

- x1t X2t x3t L
5 = nqCye + nsCoe + n3C5e ot 4 nuCuex t

To obtain the perturbation &Y, will be possible only by the
integration:

ad 1
sy = | 30% - / ; .
U} " dt | &5 6(Sq sin @ + ®r cos @)dt

The characteristic equation in x always admits in the study of the
lateral motion one pair of imaginary roots X1 o and two real roots Xz
,L_

and XYy .

The motion will therefore result from the superposition of an
oscillation and of two aperiodic motions.

3. Motion Effected by the Action of the lateral Controls

The moments produced by the lateral controls will be introduced in
the second term of the equations, and the solution of the system with a
second term permits determination of the effect of the ailerons or of the
rudder on the lateral motion.

The principle of the method is the same as for the longitudinal
motion, but it is well to point out immediately that the integration can
be accomplished much more easily by the operational method described in
chapter XVIII than by the classical integration procedure.



CHAPTER IX

THE LATERAL MOTION
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1. Transformation of the General Equations

Let us write the general equations in the linearized form:

ddw  Ofq of ofy Ofy
TS TR PR

of of of of
p 2., Fo . o of

dt ov op or o

i dFf df ot df
@_J&v__igp__iar__i

dt ov op or op

= of of of of
@_._uav_—_hsp_isl'_—_)t

dt dv dp or X
) daw_é?_zgv_éf.‘_ﬁ_sl),a_fs_s:r_.arj

a* ov dp or op

The derivatives of

o,
ov

oy

dp

Bfl

or

the functions

Y',

B -

£
+

of of
- -1 - 1
oQ S &Y S5t
of of
B - 2 By = 2
oy ot
of of
D ey = 2
59 - > oY St
of
50 - — 5y = 0
oV
af5 5 0
w—a\l{ W"'
f have the form:
of
1
—= = -g CcOos
- P
o
oy
M1y
o m £
1 1,
% m ¢

AE + égl

S Ta'd
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‘ of 5 of
P2 _ 1l 25 .1
KL v ALV dv CNV
2.8 ofr 4 ofz 4
..:’ é;—:_Lp 'a'p—='C-Np-q(B—A)
of _ of
SoCRbr-EC-mo gEepwy
o _1q. 3 Ly
» A @ X < @
of 5 ‘ ofs 1
S ATV S clw
) ar
T2l T
ot A ot c ¢
a of of
2 _ 14 —J_ Ly
% A S % ¢ &
o _ %5 _
v v
of of
b 5 _¢
op dp
oy _ cos 5 coso
or cos 6 dr cos O
a_fliz_;sinesin ?f_j_z_;sincp
op cos 6 ® op cos 8
afl+ 6f5
. 5 " ° 5 °
We have moreover: )

which have not even been written in the preceding equations.
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The following calculations are devoted to the study of the recti-
linear system for which q = O.

If one wanted to'investigate the dynamic stability of a curvilinear
trajectory, one would have to maintain this term.

The derivatives of the aerodynamic actions Y'p .« e N‘r have been
defined in chapters III and IV by factors ay . . . k5.
We shall assume that the derivatives Y'p and Y',. are zero, like-

* 1 1
wise Y £ and Y ¢

The moments L and N are independent of the attitude of the air-
plane in space. The factors d2, d5, €, e5 are normally zero.

However, one can, by means of instruments for automatic flight control,
make the moments functions of the angles, and we will temporarily keep
the terms d, . . . ez in the equations.

Let us again replace:

e
m by uSc 5

>
o’
<
B
no
0

uSc

o o
o

Q
o
<
B
|.i
'

e = MSc

When all substitutions have been carried out, the equations of the
motion, written with a second term, become:

pe ddv o a -0

v o + a16v + bléﬂ + clﬁr + 16@ + elaw =

uc dop —g— asdv + b%— bodp + 9%— c br + bg— a,59 +
V dt re, T, roy roy

Eg‘ €0y = %,‘ hy5E + Eg‘ k86

T a Ta Ty

Be Q§£_+ = a_bv + bs_ b_dp + bs_ c_br + bV _ d +
Vat g2 3 r2, 3 P 2, 5 2 500

bV bV bV
DY e.sy =B nose + DYy 5t
2, 3 2, 3 2, 3
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c d
.. ‘;——§+au6v+bh6p+ch6r+du5q> + eydy =0
L 1]
Seet
pc ddy
e — — + a bv + b.bp + ¢ B8r + 4 + =0
-~ Voax T 20t PPt esdr v ame ke
in which:
a O bec Bfu 0
= ecause —- =
. 4 ov
of
‘ 2
1 =0 —% =0
%5 ov
_gue
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> Vv cos 6
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If the aerodynamic characteristics are not modified by a mechanical
device:
d2=0 92::0
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Finally, e =ey =eg = O, since the derivatives of the corresponding

L. functions with respect to V¥ are zero.

| *

F'.. dh and c), are zero for a horizontal trim since sin 6 = O.

e

3*‘— Practically there remain only seven factors connected with the aero-

dynamic characteristics of the airplane and four factors characterizing
the action of the controls, namely:

- ~ BCY
al——g—
o - - %L 0 - _ L
2 op > 3
) oCy, oCy
by = - — by = - —
o oD
. X |y
C2——-a—p— C3_-ap
i Finally:
aC oC
by =5 e
- k2=a_C.Ii k5——§‘gﬂ

2. Characteristic Determinant

We shall make the same transformation of the unit of time as in the
study of the longitudinal motion and search for the solution in T.

Let us write the characteristic determinant of the equation system
without second term. We obtain:
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al + A bl cl dl 0
b bs bs bV bV
R S Peth e 2% N
T g T g Ta r g Tg
b bs bs bV bV
— 8 b = cz + A =4 = e =0
rec 3 1"2c 3 rec 3 rec 3 rec 3

0 by, c, d) + A 0

0 0 d A

‘s 5

Let us assume an equation of the fifth degree in A:
5 . 3 2
N + ByA + BoN + Bjx + ByA + By = 0
However, if one takes into consideration only the aerodynamic

characteristics of the airframe, without equipment for automatic flight
control:

and the equation is reduced to:

Kn + Al?\3 + Agkz + ABK + A, =0

It is no longer possible to write the Ay, Ap, A3, A) in the form

of linear functions of the six factors a5, bo, c¢o and az, b3, C3
which define the derivatives of the moments of roll and yaw.

In certain terms of the development the derivatives of one moment
are multiplied by those of the other.

For ¢, =4 =0 (horizontal trim),

d2 = dB = 82 = 85 =0
one may write the development (replacing b by 2s, in order to avoid
the coexistence of the letter b, span, and of the b's with subscript

which designate the derivatives of C(p):
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1 1 r2a 2 re, 3
2
A,=a, 28 ¥, g, 28 U, 4, p 25 a5 +
2 2 r2a v 3 I.2c Vv 2 rza 1
2 sl
s
¢, 2 —a_ + (b c c )
3 r2e 1 273 372 2 r2c
A, = -a 2sc cos Q@ gic H+a ASBC (% b, + 2 ¢ ) vl
= o 1= dodl - -
3 e Ve 2 r2ar2c V 3 vV 3
kse (ﬁ hs)+
= + =D )u + (b c, - b,c a
3 r2ar2c Vv 2 V2 273 3 29 r2ar2c
. bsde 2 ge
A, = (a c, - a.c >——-———-p =
4 32 273 r2arEC Ve

Let us note that all factors c¢ (chord) appearing in the expressions
are multiplied by up. They stem from substitutions of u for m.

One could write:
CyH = sV

which would eliminate the factor c¢ and would replace it everywhere by
s, under the condition that the density p be replaced by another density
equal to:

oo
R

Ss

©

In this case every airplane would be characterized by two densities:
The one, u, utilized in the study of the longitudinal motion

The other, v, utilized in the study of the lateral motion.

We have preferred using only one single expression for the density.

We state that the Ay, A,, Az, My are functions:

(1) Of dimensionless factors a1 « + + C3 dependent on the aero-
dynamic characteristics of the airplane



(2) Of geometrical characteristics such as s/ra or s/rc dependent
on the moments of inertia

(3) Of the angle of attack -w/V and of the 1ift coefficient:

_ uae
Cz = V2

(4) Of the density p of the airplane.

Let us remark that the aerodynamic factors 81 - . . C3 vary, for
a given airplane, with the angle of attack.

3. Characteristics of the Motion

The discussion ought to be carried out as a function of six quan-
tities. One can proceed with it only by treating series of nmumerical
examples. On the other hand, this investigation should be made for
different angles of attack.

Finally, it would be useful to investigate the effects of variations
of the density p and of modification in the mass distribution - which

determine modifications of s/:ra or s/rc.

We shall be content with recalling the essential facts which have
become classical.

The solution of the characteristic equation contains always a pair
of complex roots, determining an oscillatory motion, and two real roots,
determining two aperiodic motions.

Following, one of those two motions will be called spiral motion,
the other strongly damped motion.

We shall write the subscript 3 for the root A corresponding to
the spiral motion, and the subscript 4 for the one corresponding to
the motion called "strongly damped."

These roots are easily distinguished. The root determining the
strongly damped motion is of large absolute value and always negative.
The root determining the spiral motion is much smaller in absolute value,
and may be positive or negative.

Because of the large number of variables we shall investigate first
the influence of the derivatives an and az which constitute the static-

stability coefficients.
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We shall examine successively:

(a) The criterion of stability

(b) The period and the damping of the motions
(c) The amplitudes.

These three problems correspond to the stages we pointed out in the
study of the longitudinal motion.

(A) Criterion of stability.- We shall write the coefficients A
as functions of an and az for normal and constant values of the other

parameters, and trace, taking ar and az 8as axes, the lines:

separating regions of the diagram where each of these expressions is
> or < 0.

In fact, the curves A; =0 and A, = O pass outside of the

trimming limits, the useful part of the diagram is alweys on the stable
side, and only the lines A5 =0, A, =0, R =0 have to be considered.

There is one region where these three expressicns are all simulta-
neously > O.

The airplanes, the static-stability coefficients of which fall into
this region? are all dynamically stable.

The condition Ay > 0 1is nothing else but:

8.5C2 - 8.2C3 >0
or
3y 3, g Cy

- > 0
OB Op OB ap'

which is precisely the expression D > 0 of chapter V.
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If D = 0, an airplane which is making a turn when the two lateral
controls are neutral (£ = 0; { = 0), continues with this turn indefinitely.

If D <0, a similar turn will have the tendency of becoming more
pronounced because the inner wing must be supported in order to maintain
the lateral inclination and to prevent it from increasing.

The machine presents spiral Instability. Any flight path travelled
with € =0 and { =0 is finally transformed into a spiral.

If D > 0, a turn without control deflection has a tendency to stop
because the airplane must be maintained in the turn by an appropriate
deflection of one of the controls. The rectilinear flight path consti-
tutes the stable trajectory.

Since the BCN/BB and BCLiBB are habitually positive, and BCN/Bp

and BCL/BQ are habitually negative, the stability condition may be

written:

Cr, Xy
Ly .38 3
oB Xy,

The static stability about the axis 0Z must be inferior at a
certain l1imit which is a function of the static stability about the
axis OX.

We recall that the principal factor producing the first is the magni-
tude of the vertical tail surfaces and that the one producing the second
is the dihedral of the wing.

These two characteristics are connected to one another.

However, the diagram shows us certain unexpected facts. The region
of stability extends sometimes below the axis of the abscissas.

A directionally unstable airplane may be dynamically stable if the
instability remains slight. Finally, the area of stability may present
a pointed region (of very much reduced area) corresponding at the same
time to a slight static directional instability and to a slight static
rolling instability.

In the figure the line A) is a straight line because we plotted
it under the assumption that the derivatives BCL/Bp and BCN/BQ are
constant. In reality, it would be difficult to vary the static directlonal
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stability in significant proportions without exerting an influence on
the area or the lever arm of the vertical tail surfaces.

Any increase of 8CN/BB then entails an increase, in absolute value,

of GCN/Bp.

of BCNI BB.

The line Ay = 0 will cease to be a straight line

a curve.

In order to keep to effectively realizable
have to take into account the modifications of dCy[dp

cases, one would

accompanying those

and will become

NUMERICAL VALUES USED FOR THE EXAMPLES CONCERNING THE LATERAL MOTION

Chapter IX, Chapter IX,
Chapter V Sectfons 3 and 4 Section 5
Airplane 1 2 3 A B c A! B! ct
8, = - 291 +0.45  +0.45 +0.45 |+0.60 +0.60 +0.60 [+0.40 +0.40 +0.40
B
8y = - SEL -0.0573 -0.069 -0.080} -0.080 -0.040 -0.020|-0.120 -0.060 -0.120
B
oC
by = - Sﬁ% ___________________ +0.2% +0.24 +0.24 |+0.42 +0.42 +0.42
ep = - LL 1018 40.16 +0.14 |+0.056 +0.056 +0.056|+0.06 +0.06 40.06
op
ag = - gcﬂ -0.046 -0.043 -0.040| -0.0K0 +0.010 -0.040| -0.048 -0.02% -0.0k0
B
oC
bs = - 55§ ------------------- -0.017 -0.017 -0.017|-0.03 -0.03 -0.03
Cs = - ggﬂ-+o.08 +0.10 +0.12 |+0.045 +0.045 +0.045|+0.072 +0.048 +0.072
D
Cp 0.62 0.4%0 0.20
T 28.2 10b/c
o - —— 0.10 0.06
e fs? e 0.2k 0.12
gEL‘ in degrees: 0.003 ggﬂ in degrees: 0.012
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(B) Period and damping of the motions.- Solution of the character-
istic 1s necessary. Performing the calculations for three airplanes
called A, B, and C 1in the table on the preceeding page, we state:

(1) That the root N, maintains a practically constant value

(2) That the root %5 is positive on one side of the condi-
tion Ah = 0 and negative on the other. It determines satisfactorily
the spiral stability

(3) The* the complex root determines a sufficiently damped oscil-
latory motion when the static directional stability is normal, but that
the period increases and the damping diminishes when the directional
stability decreases.

Exceeding the 1imit R = O makes the instability of the oscillatory
motion manifest.

(C) Amplitudes.- One can obtain a conception of the amplitudes by
examining the return motion of the airplane toward its initial state
after an initial perturbation of each of the four variables ©&v, &p,
dr, and O&@.

In making these calculations, one finds the following facts:

(1) A perturbation of the lateral inclination fosters especially
the spiral motion. It excites the oscillation only slightly and exerts
practically zero effect on the damped motion.

(2) An initial perturbation of skidding excites the oscillation in
a high degree, the spiral motion in a low degree. The amplitude of the
damped motion is negligible.

(3) An initial perturbation of the angular velocity p goes back
almost entirely to the motion called "strongly damped.” The perturba-
tion ©®p stops quickly but leaves the airplane with a lateral inclina-
tion & which, in turn, may be considered as the initial perturbation
which excites the return motion,

(4) An initial perturbation of the angular velocity ©&r produces
a skidding in the same manmer as a perturbation &p creates the lateral
inclination.

It does not exert any effect on the damped motion and is afterwards
reabsorbed like the motion of skidding it had created.
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Actually only the initial perturbations of skidding and of lateral
inclination are typical.

The motions to which they give rise are indicated as functions of
time in figure 26 for the three airplanes considered before.

Knowing the amplitudes one can state that the oscillatory motion
constitutes a real balancing, formed by the superposition of a rolling
and of a yawing motion; it is called "Dutch roll" by Anglo-Saxon engineers.

L. Effect of the Other Parameters
Numerous points ought to be investigated.
We shall point out some well-established important facts:

(a) For a given airplane the aerodynamic characteristics vary when
the sustained angle of attack increases, but the variation takes place
in a sense always unfavorable to stability.

(b) When the density of the airplane increases as do the radii of
gyration (relation such that s/ra becomes smaller) one finds that the

region of stability shrinks considerably because the curve R = O rises.

On modern aircraft it becomes more and more difficult to realize
degrees of static stability (and to endow the airplane with them) which
ensure stable trajectories for controls fixed.

Even though for several years now there has been a tendency to con-
sider spiral instability as a rather serious defect, at present one is
forced to admit it if there is no way of avoiding it.

In case of a slight spiral instability, the speed of increase in
initial perturbations is tolerable and leaves :he pilot sufficient time
for intervening.

(c) Nevertheless, it is useful for the continuation of this study
to investigate the effect of modifications of the parameters b,, Cos

b5, and C3, that is, of the derivatives of the moments in proportion to
the angular velocities.

Increment in b2:
oCy,

b, = - —
on

2
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* The parameter is a damping factor. Any increment in b, augments
» oo the coefficient Ay, that is, the total of available damping.
% The greatest part of this increment goes to the root MNy; the two
[ XX 1] .
o oo, other roots receive only a very small part.of it.
] Increment in b5:
oC
b3 = - —tﬂ
OB
The factor b5 does not affect A;. It can produce only an exchange
between the different roots. This effect is absolutely insignificant.
Increment in co:
-
oC
c2 = - ___L
dp
The factor cp does not affect Ay, but it produces an exchange
between the damping of the oscillatory motion and that of the spiral
motion.
Tt does not exert any influence on Nj.
, The exchange results from the form of Ay :
Ah = a3c2 - a2c5
where the values of a3 and a, are frequently of the same order of
magnitude.
Since the stability condition is written (with consideration of the
signs):
cy <C3 gg
. 3
. or
%y 5 C 9 O
. op dp OBp OB
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one sees that a reduction of cj, (increase of BCL/Bp in absolute
value) is favorable to the stability of the spiral motion. This improve-

:°::' ment will be obtained by borrowing from the real part of 1.2, that is to
%% say, by borrowing from the damping of the oscillation.
L XX 1]
j'.':. Increment in c3:
C} = - ﬁ
dp
The coefficient Al depends on Cz. Any increment of c3 augments
the total damping available.
This increment never applies to K4 but is distributed between the
oscillatory and the spiral motions.
5. Motion of the Airplane Under the Effect of a Control
* If we place in the second term the moment produced by the deflection
‘ of the ailerons or of the elevator, it is possible to determine the motion
caused by this deflection.

’ We give on the diagrams which follow the result of the calculation
for the three airplanes A', B', and C' +the characteristics of which
are indicated in the table.

Fach of the controls is supposed not to exert any secondary effect.

The moment applied by the ailerons tends to lower the left wing; it
is taken equal to:

Cy, = -0.006
which corresponds to a deflection of -2 degrees when the efficiency of
the control BCLlag is equal to:
0.172 (angles expressed in radians)

or

. 0.003 (angles expressed in degrees)

The moment applied by the rudder tends to cause rotation to the
left; it is taken equal to:

Cy = +0.002k
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which corresponds to a deflection of +2 degrees when the efficiency of
the control BCNIBQ is equal to:

0.069 (angles in radians)
or
0.0012 (angles in degrees)

Under the action of the rolling moment developed by the ailerons,
the airplane immediately is inclined to the left.

However, it starts out by turning to the right, due to the effect
of N'p, but this motion changes rapidly its sense and the airplane then

turns to the left.

The rotation to the left is due to the skidding toward the left which
originates as a consequence of the lateral inclination. This skidding
produces a yawing moment due to the directional static stability with
which the considered airplanes are supposed to be endowed.

Under the action of the yawing moment toward the left, the airplane
starts a rotation r to that side; but since the trajectory is not
immediately modified, the airplane skids toward the right, that is, toward
the outside of the turn.

Under the effect of this skidding the airplanes which possess lateral
static stability are inclined toward the inside of the turn. An airplane
which is characterized by OCp[0p = O is not subjected to this rolling

moment .

The diagrams show that, if one wants to start a turn by means of
aileron action alone, the airplane with spiral instability is the one
with the most rapid changes of course BYV.

If one wants to induce a turn uniquely by maneuvering of the rudder,
the airplane with spiral instability is the one which turns most unsatis-
factorily because it is not inclined toward the inside under the action
of the skid toward the outside.

One can understand immediately that the simple maneuvers consisting
of an invariable deflection of one or the other of the two lateral controls
do not lead to placing the airplane into a regular turn.

We studied in chapter V the equilibrium-type conditions of turms. If
the flight path corresponds to 6 = O, one has necessarily p = O once
the steady state has been established.
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CHAPTER X

EXPERIMENTAL RESULTS

1. Development of the Preceding Theory

The linearized theory of the motion of an airplane is due to the
research of G. H. Bryan whose report: "Stability in Aviation" constitutes
a major work.

Published in 1911, at the era of the "Paris-Madrid," "Paris-Rome,"
etc., races the theory went completely unnoticed and did not exert any
influence on the development of aircraft. This development occurred in
a semiempirical manner, up to the time in 1916-1918 when Bairslow in
Great Britain and Hunsacker in the United States took up again Bryan's
theory and introduced into it the numerical values of the derivatives
which the progress of aerodynamic knowledge permitted one to evaluate.

One became then aware that the linearized theory permits an explana-
tion, (along general lines), of the particularities presented by the
motion of airplanes.

From the period 1920-1923 onwerd, experimenters were busy recording
the trajectories of aircraft flying with controls fixed, that is, behaving
in accordance with the fundamental hypothesis of the preceding theory.

The experiments made in the United States by Norton, Warner, and
Allen, in the course of the years following the first World War, gave a
qualitative and partial confirmation of the theory.

For a long time, however, it was not possible to observe the rapid
oscillation depending on the longitudinal motion. This is not at all
surprising. It is sufficient to visualize the aspect an oscillation
assumes when its damping is such that the duration D for decrease to
half-value becomes 1/20 of the period, in order to perceive that such
an oscillation must lose its customary appearance (fig. 28).

A quantitative study of a particular type of aircraft, the Bristol
Fighter, was begun in Great Britain, toward 1920. Laboratories attempted
measurement of the aerodynamic derivatives by means of a series of models:
several airplanes of this type were subjected to experimental verifica-
tions. These studies lasted until 1926; they enhanced the repute of the
theory but were not reviewed. No other type of aircraft was ever more
the object of a complete investigation with the aim of a determination
of the derivatives and verification of the theory.
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The laboratory tests, carried out for the first time on a Bristol
Fighter, gave a result which, since then, always has been reconfirmed.

In the neighborhood of maximum 1ift, the derivative acM/ax

decreases considerably and becomes zero (sometimes even changes its sign).
Under these conditions the rapid oscillation must become perceptible.
And that is what actually happens.

Recordings (R. & M., Nr. 1367) of the flight path of the Bristol
Fighter, flying at approximately maximum 1ift, permitted recordings of
the rapid oscillation (period of 3" on this type of airplane).

Toward 1930, the NACA was able to announce that the theory of longi-
tudinal motion had formed the object of quantitative verifications in
level flight (with the T' and D' of the slow oscillation corresponding
to those deduced from the theory); however, the correspondence of results
was not attained for flight with engine in operation.

The reason for this lay probably in insufficient knowledge of the
effect of the propeller on the serodynamic actions undergone by the air-
plane. These effects are still only incompletely known, and an important
part of the experimental work of the American wind tunnels during these
last years aimed precisely at an investigation of this action.

2. Usefulness of the Theory

For many years the methods of calculation which permit forseeing
the motion of an airplane did not play a part in airplane-design studies.
One did not attempt to numerically predict the characteristics D and T,
and one even did not always make measurements of those existing once the
airplane had been built.

For the designer, a theory can be of use only when it permits fixing
in advance the characteristics to be obtained.

The American NACA and the technical authorities of several countries
posed themselves the question: "What are the dynamic characteristics
which must be realized?"

In order to solve this problem as far as the longitudinal motion is
concerned, the NACA proceeded by statistical means. It had a series of
pilots test airplanes with known characteristics T' and D' of the
slow oscillation, and asked their, necessarily qualitative, opinion
regarding the flight properties.

The answers did not permit establishing any correlation between the
valuations of the pilots and the characteristics T' and D', with
controls fixed.
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Other factors determined the judgment of the pilots; these factors
referred, above all, to the magnitude of the reactions of the controls,
to the flight properties with free controls and to the response of the
airplane to theaction of the pilot in the neighborhood of maximum 1ift.

The determination of the desirable characteristics regarding the
lateral motion has likewise given rise to divergent opinions.

At one time one tried to avoid at all costs spiral instability even
though the instability, or even the insufficient damping, of the swinging
motion constitutes a much more serious inconvenience.

Nevertheless, the theory has been valuable explaining the motions
and making the character of the phenomena comprehensible which otherwise
would have remained mysterious.

3. Study of Flight With Free Controls

The theory of flight with free controls may be established by
investigating the flight of an airplane subjected to a particular law.
of deflection, namely that which ensures constantly a zero hinge moment.

This problem does not constitute the object of this report; never-
theless we shall show how its study could be undertaken, and we shall
find that it constitutes a particular development of the preceding theory.

In 1936 the development of our knowledge had progressed so far that,
for the first time, the specification of the conditions of stability and
maneuverability to be realized in a new airplane contained requirements
relative to the dynamic characteristics.

Millikan's publication of the technical specifications which the
Douglas DC 4 had to satisfy (the studies of which began at that time)
constituted, from this point of view, an important event.

Aside from stipulations relative to the static conditions (for
instance, deflection of the controls and their reactions in flight) the
following requirements were to be found:

(2) The airplane will be placed in a dive until its speed has
increased by 40 km per hour, and at that moment the control will be
released.

The oscillations which will then be produced will have a period of
at least 35 seconds and their damping will have to be such that the
amplitude will be reduced to 20 percent of the initial value in four cycles.
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(b) With the course (azimuth) of the airplane modified by 10° by a
deflection of the rudder, the control will be released and the airplane
will stabilize itself according to an azimuth varying by not more than
50 from the one at which the airplane was at the moment where the control
was released.

The amplitude of the first oscillation in azimuth must not exceed
12°, and after three cycles this amplitude will be reduced to a maximum
of 3°. The period must be at least 20 seconds; the ailerons are used
during the maneuver for constantly maintaining a horizontal position of
the transverse axis.

(c) The airplane will be inclined laterally 150 by means of the
ailerons, and these will then be relecsed.

The airplane must recover, and its inclination must be less than 20
after 15 seconds. The rudder is maneuvered so as to cancel the skidding.

4, Airplane with Simplified Flight Control

An American engineer, Mr. Weick, has devoted himself to the reali-
zation of a simplified flight control, using only one organ of lateral
control instead of two. After years of studies and tests, he succeeded
in realizing an airplane where the aerodynamic derivatives are propor-
tioned in such a manner that the pilot can make the airplane perform
correct maneuvers, using only one single organ of lateral control - a
linkage the displacement of which determines at the same time the motion
of the ailerons and that of the rudder; the respective deflections

£ = fl(x) £ = fg(x)

are two different functions fl and f, of the motion realized by the

pilot but determined once and for all. The airplane in question is the
Ercoupe, well known in Belgium.

It is impossible for the pilot of the Ercoupe to hold the plane
level in the turn, that is, to hold up the inside wing. The connection
existing between the two controls prevents the pilot from making a flat
turn.

The turns are probably carried out with a very slight sideslip (a
few degrees) toward the inside which may be considered as practically
correct.

The realization of an airplane carrying out such maneuvers with a
single control organ for the two lateral controls should, in our opinion,
be credited to the theory of the lateral motion.
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An examination of the successive achievements of Mr. Weick shows
clearly that they were not simply a matter of chance but the result of
patient work.

Like several others, Mr. Weick had at first tried to completely do
away with one of the lateral controls (the rudder). However, he has
obtained results only by maintaining the latter but doing away with the
independent control organ.

5. Extension of the Method of Linearization

A. Action of the derivatives.- The four preceding chapters have
been devoted to the study of the motion with controls fixed under the
hypothesis that the aerodynamic actions are dependent only on the funda-
mental variables

u, v, g

v) p)r

The range of the linearization method can be extended. The intro-
duction of supplementary terms permits taking into account what occurs
when the external actions depend on the derivatives of the fundamental
variables.

In the following chapter the argument will be presented for the
longitudinal motion but it could be integrally reproduced in the case
of lateral motion.

This extension of the method is of interest only when the manner in
which the external actions depend on the said derivatives is known. In
fact, this dependence is little known, and only the effect of lag in
attaining the deflection is easily evaluated.

Most of the recent presentations of the investigation of the longi-
tudinal motion incorporate this effect in the equations set up initially.

However, we have preferred to carry out first a study of the motion
in the simplest case and to show then, in a general manner, how the effect
of all the derivatives u', w', q' on the external actions may be
introduced into the calculations.

An elementary presentation is sufficient to give an understanding of
the gencral behavior of the airplane in flight.
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The introduction of the effect of the derivatives of the fundamental
variables on the external actlons into the calculatinn is, on the contrary,
indispensable if one wants to carry out a complete comparison between the
conclusions of the theory and the numerical characteristics noted in flight.

We should like to remark, however, that such an investigation can be
undertaken only by organizations which have elaborate test facilities at
their disposal.

The study of the effect of the derivatives of the fundamental
variables on the aerodynamic reactions is, at any rate, interesting with
a view to automatic flight control under the assumption that it is easy
to imagine devices sensitive to the derivatives of the fundamental vari-
ables, and for application of known aerodynamic moments under the action
of these derivatives.

B. Inertia of the engine.- We have indicated, ever since chapter II,
that we assume that the engine instantaneously reached its steady speed.

This hypothesis permitted us to write T as a function of V.

It is evident that a more detailed analysis of th2 phenomena should
lead us to take into account alsc the translent phenomena due to the
inertia of the propeller, since the speed of revolution of the engine is
connected with the velocity of translation V, but does not, in the case
of variation, take on immediately the magnitude it possesses in steady
state.

At the present time, the absence of exact data concerning the effect
of the propeller on the external aerodynamic actions makes such an
improvement in the calculations rather impractical.

If we possessed the necessary data, it would be possible to introduce
them in the form of the effect of dV/dt, and it seems that it would be
possible to avoid the introduction of a supplementary equation of a moment
about the propeller axis into the system of equations.
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- CHAPTER XTI

MOTIONS WHEN THE AERODYNAMIC ACTIONS
DEPEND ON THE DERIVATIVES

1. General Theory

v We shall now abandon the hypothesis we have made so far: that the
forces are completely determined by the instantaneous values of the
variables u, w, gq, ©. We shall now investigate what becomes of the
motion when the aerodynamic reactions depend on the derivatives du/dt,
dw/at, dgqfat.

The reactions are assumed to be expressed as functions of the
. velocities wu, w, @q; but to the functions used previously, supple-
mentary terms have to be added which express the effect of the deriva-
tives on the aerodynamic actions.

- We shall simplify the notation by representing the derivatives by

1 1 1
u', w', q'.

The system of equations of motion has the form

u' = gl(ﬁu,Sw,Sq,ée,u',w',q')

! w' = go(du,dw,dq,86,u',w',q")
q' = g5(6u,5w,6q,66,u',w',q')
0' = Bq

After linearization, and taking into consideration that the deriva-
tives of the functions g are equal to those of the functions f defined
before:

agl afl agu afl+

du  du [ Y- R 1>
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one obtains:
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of of of of d ) k)
| 1 1 1 g1 . €1 €1
= —= BU + —= Bw + —= 8q + —= B0 + —L y' + —L y' 4 =L
T OTTE YT YT dut - T Y Tagr ¢
of 5 of of of og og dg
W' = S Bu+ —2 By + —2 Bg + —= 56 + —= u' o+ —2 y' 4+ —2 g
du w T 3q 7 3e u’ ' 3’ °
of'3 8f5 af5 6f3 ag3 8g5 8g3
"=~ Bu+ ——BW+ —=08qg+—=00+—=u"+—=2w' +—=g'
R S T3 PUT Se - T a Y T
8' = 8q
We write:
of of of f
—Lsu+ —Low+ —Losg+r—Lso = F (5u,6w,5q,50)
Ju ow dq 08 1
of 5 of 5 of 5 of 5
S Su + 5o oW + ST 5q + 55_'59 = F,(bu,dw,5q,506)
of 3 of 3 Of3 Of 3 (
—= du + —= + —= + — %6 = F,(%u,5w,5q,560
57 ou 5o dw 5 dq 55 ) 5(8u,8v,5q, )
and the system becomes:
t ( 56 agl 1 agl ! agl 1
u = Fl du,bw,dq, ) + a_u—' u + a—'— v o+ -&T
og og og
w' = F2(6u,5w,8q,69) + g?— u' + ﬁ w' + a—%— q'
og e og
- p) 3 )
qQ' = Fj(i)u,Sw,Bq&e) + gu—,— u' + S—w"— w' o+ ga"- q'
Solving with respect to u', w', q', 6', one obtains:
ad
u' = E{E = hl(au,Sw,Sq,Se)
ds
w' o= EEK = h,(bu,dv,5q,50)
as
q' = (T:b—q = h5(6u)6W,6Cl)69)
8' = %%9 = hu(6u,6w,8q,88)
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The functions hy, hp, hz, h) are linear functions ani of the
first degree in &u, ©®w, 08q, 08. The system may therefore be inte-

grated by the same methods as those applied before.
2. Solution when the Aerodynamic Actions Depend
on the Velocity of Variation of Incidence

We shall treat the case where the effects X, Z, M depend, aside

from the usual variables, on the velocity of variation of incidence da/dt,

that is, on the derivative dw/dt = w'.

An argument analogous to the one that follows here could be estab-
lished if the aerodynamic forces depended on u'.

In the case considered, the system is reduced to

Bgl
u' = Fy(du,dw,bq,86) + oy

]

wl

£
]

)
' F2(6u,5w,6q,66) F 22

ow'
885
q' = F,(5u,dw,5q,50) + —= w'
3 ow'
with
g, 1 P
——l = — 3 ’ ' 1 —1 - —
S - X w! and X w SV 5 zl
og
2 _ 1 o1 ' = _ e
ow' m Z w! Z W' SV > %2
og
5 _ L1l v _Scyep
ow' B M w' M w' e v 2 %3
whence:
%8 _ v,
&;' pe 1
3
% o,
ow' e
8g5 -V,
TR 3
ow r2 pe
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‘ These expressions will be useful only in so far as we can express

r.. the effect of the accelerations by means of the factors Z1s 2p, 23-
pe
t:" We obtain after solution for u', w', q', and ©'
>,
-z
; 1
% u' =F, + F, ———
1 2 (ne/V) + 25
’
_22
w'=F, +F, ——-——
E 2 (HC/V) + 2o
-(c/rg)z5
'=F, + Fp —m———
. 4 > 2 (ue/V) + zo
Putting
-z
b = 1

X (ue/Vv) + Z,

b —_—
(ue/V) + Zo

z3

T (ue/V) + 2o

we shall write

o
I

! Fp + bFp

w' = Fy + b,y

o)
fl

C
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Thus the system to be integrated is written when there is no second

term (case of an initial perturbation)

of of of of
@- .._1+bx-—§>6u-(—-];+bx 25w-
dt du du ow ow

ofy of 5 ofy of 5
<£+bx§(1—_>5q-<aT+bx-aG_66 =

3
da_w_<_fa+bz §2>5 (a_fg_+b 8&)&,_

|
(@

dt du W 2 dw

of OFf df S
-2 2 . (=2 -2 =
(aq + bz a)&(l <59 + bz 30 56 0

at du m 2 3y v m 2 Jv
of of of of

_3 c 2l _ |3 LS “2lsg =
\ T P aq>5q (ae * P 2 08 )69 °
dse _

gt— - 8q 0

The characteristic determinant for the solution in terms of T
written, with all terms multiplied by uc/V

(al + ‘::Xaz) + A (bl + bx‘nz) (cl + bxcg) (dl + bxdg)
{ag + bZa2> (b2 + bzbg) LR bzcz) (d2 + bzde)
'r%(aB + byao) -I%(bB + bybs 55(103 + byes)+ A ;%@v + Bydp)
o] 0] (:)+ + A

is

This determinant may be developed without difficulty and leads to

an equation of the fourth degree in A.
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It is necessary to replace by, b b, by expressions which take

z7 m
into account the effect of the aerodynamic phenomenon on the motion which
we are investigating. '

The modifications of w which take place at constant V correspond
to modifications of the incidence a.

Since
Q= - =
v
da _ _dw1l
dt dat v
w! = - Vao!
one states that
o GCX
1 b
oC
Zy = + —2
2 o
z —+acz
37 dat

which permits determining the by, bz, by.

The 2, 25, 23 have the dimensions T Just like ue/V.

3. Effects of the Velocity of Increase in Incidence
on the Aerodynamic Forces

The following effects exist:

(a) Iag in the establishment of the 1ift and of the deflection.,

When the incidence undergoes an increase, the corresponding circula-
tion is not immediately established, and the 1ift develops only with a
certain lag.

In a phenomenon where the incidence increases progressively, the

instantaneous 1ift will be smaller than the one corresponding to the same
instantaneous incidence, realized in steady state.
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These phenomena have been studied theoretically by Kussner, Kuethe,
Sears, etc,

The presence of a systematic lag in the establishment of the 1ift
permits predicting that in the course of a phenomenon where the incidence
varies progressively, the instantaneous 1ift will be a function not only
of the Instantaneous incidence but also of its speed of increase,

The CM to which an airplane is subjected, the incidence of which
varies, will be influenced by the phenomenon described above, therefore:

(1) By the lag in the establishment of the 1ift of the wing
(2) By the lag in the establishment of the 1ift of the tail

(3) By a lag in the deflection which necessarily accompanies the
lag in the establishment of the 1lift

(b) Leg in the break down of the flow.

In the neighborhood of maximum lift there appears, aside from the
lag in the establishment of the theoretical circulation, a lag in the
break down of the flow.

A rapid increase of incidence may transitorily carry the 1ift up
to a value exceeding the maximum value that it has in steady state.

However, the flow is unstable and deteriorates rapidly, causing a
reduction of lift.

Taking as a function of the incidence the instantaneous 1ift realized
in the neighborhood of and beyond the critical incidence, at different
speeds of variation of incidence, the NACA has obtained a series of dif-
ferent curves,

The phenomenon investigated here is different from the previous one.
It occurs only at large incidences whereas the preceding one may take
place at all incidences,

A positive speed of increase of incidence leads to a higher transitory
1lift than the steady-state 1ift at the same incidence, whereas it produces
a transitory lift lower than the steady-state 1ift as in the case of the
previous phenomenon.

The lag in the break down of the flow is a true hysteresis phenomenon,
If one obtains a polar starting from an incidence larger than that at

maximum 1ift and descending, one obtains frequently in the neighborhood
of the maximum 1lift a polar different from the one obtained in ascending.
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(¢) Lag in the onset of downwash at the tail.

The lag in the onset of downwash at the tail constitutes a phenomenon
the mechanism of which is clear and indisputable. It is easy to find for

it the physical cause and the analytical expression.

4, Effect of the Lag in the Establishment of Lift

Let us suppose that an increase in incidence has occurred corre-
sponding under static conditions to an increase of C, equal to one.

The diagram of Sears indicates how the 1ift increment varies effec-
tively as a function of time - this time being estimated by means of a
unit of time s equal to the time taken by the airplane for traversing
half the chord.

2V
unit s = 7?-seconds

Between the measurements of the same time interval there exists the
relation

C

As = — At
2v
(o]

At _§\7AS

By means of the graphical construction of Carson (defined in the
following chapter) we can investigate the development of the 1ift as a
function of the time s when we suppose that the increment Ao has
been realized progressively, with the duration of the increment being,
respectively, equal to

As = 10 or At = 10 ¢/2V seconds
As = 20 or At = 20 ¢/2V seconds
As = 30 or At = 30 ¢/2V seconds

We find that during the period of increase in incidence the C, has
a smaller value than it would have if the 1ift would correspond to the
instantaneous incidence. The order of magnitude of the phenomenon is
taken into account by replacement of the instantaneous curve C, by a

straight line.
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Thus one finds a constant difference of

AC, = 0.11 for At =15 c¢/V seconds
ACy; = 0.165 for At = 10 ¢/V seconds
XCz = 0,33 for At =5 ¢/V seconds

The correction of 1ift AC; to be applied to the C, corresponding
to the instantaneous incidence, in order to have the C, real, is nega-
tive and its absolute value is inversely proportional to the duration
which is necessary to bring the wing to the final incidence. It is
therefore proportional to the speed of increase in incidence da/dt

- x i
Az = KT

When the incidence corresponding to C, =1 is attained during a
time At = 15 c/V seconds, the speed of variation in incidence is

da 1 1

X
dt  Xzfda 15 c/V

the difference in 1ift is AC, = -0.1l.

This permits fixing the value of K

BCZ/Ba is of the order of k.

For C = 3 meters and V = 100 m/sec, one would have

K = +0.20

whence

3C, /! = -0.20
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The previously given relations between the 1ift and the force 2
show that one may write almost without error

C, =0y
whence
aCz aCZ
22=-_=-—_-
da' Oda’
which permits calculation of the factors bx’ bz, bm.

Remark: The preceding argument constitutes an attempt to introduce
into the frame work of the linear equations a typical value for the lag,
in the establishment of the 1ift.

The factor b, will be >1 when pc/V is larger than -z, which
the general case.

e
0

The result obtained is therefore rather paradoxical; the term
by = BCZ/Ba of the determinant is multiplied by a factor > 1 although

it would rather seem that the lag in the establishment of the 1ift should
be expressed by a reduction of bo.

The calculations have been checked several times in order to make
sure whether this result was not due to an error in sign, but the sign
found has always been confirmed.
=C

Since C + 0.25C,

m mo

because of the wing and independently of any action of the taill, one
should admit at the same time

oCpy
Z5 = a—a‘—'- = -0.05

5. Effect of the Lag in the Break Down of the Flow
This phenomenon occurs in the neighborhood of maximum 1ift.
The method of linearization of the ecquations is basically no longer

applicable in this case, in view of the fact that the second derivatives
moy no longer be neglected.
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The investigation of flight in the neighborhood of maximum 1ift must
be excluded from the present report.

There 1s therefore no reason for visualizing here the consequences
of the lag in the appearance of the separation.

6. Effect of the Iag in the Arrival of the Downwash at the Tail

One can easily find the physical cause and the analytical expression
of this phenomenon.

Let us try to express it by a simple argument. In the static inves-

tigation of the moment CM, one takes for the angle of attack of the
tail ag:'

a =a+d - ¢
e

where a 1is the incidence of the wing
€ the downwash due to the wing
5 the final decalage fixed by the design

This relation serves as the basis for the calculation of the (Cy in

steady state, but it ceases to be exact when the airplane undergoes a
pitching motion in the course of which the angle of attack varies.

At an instant t the stream lines which strike the tail have
actually not been deflected by the angle €y realized at that moment
but by the angle €' which existed at a previous instant t!'.

t' =t - 1/V

where 1/V is the time for the flow to traverse the distance which
separates the wing from the tail.

The real angle of attack of the tail at the time t is therefore

T
Since a' = da/dt is to designate the derivative of the incidence
of the wing, we shall use in what follows:

ade for the real angle of attack of the tail

CZe for the 1ift of the tail
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that is, it is equal to the angle of attack given by the static relation,
plus a correction e4 - €'

Now
et =9€¢ 1y - de L
- &' Tatt-t) =5
or else

€ _e'—g.e..d_g_‘l
t t T dadt Vv

Introducing this correction of the angle of attack into the static
expression of the moment, we see that there exists actually a supple-
mentary moment, proportional to the derivative Ba/dt and equal to

= S't éSELS.E de al
Sc e V da

Hence
aCM S'l BCZ’e l,d_€_

57 3%  S¢ dwe Vaa

and one finds thus that the lag in the arrival of the downwash at the
tail has the effect of bringing about a oCM/da' which can be casily

calculated.

The phenomenon considered here does not produce any effect on the
Cx and Cgz. If one lim!ts oneself to the effect of the lag in the

arrival of the downwash, one has therefore

It can be easily verified that the sign of the expression BCM/BG'
is correct.

When o increases, the calculation carried out with the static
value et leads to a too large downwash, that is, to an angle of attack
ae which is too small. The correction must augment ., that is, the
normal reaction on the tail surfaces and the diving moment.

The correction must be positive.
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In the characteristic determinant which gives the solution in T

only the third line is modified.

- We introduce into the system the values of
We obtain
by = 0
- b, =0
_ JL.BC
bn = - ok 5

Zl,

Z

2}

and

Z

5

c c
The term = 8 becomes ;—2-(a5 + bmag)
c c
—=b --(b + b)
2 o\ D bybo
cl cl
—_c —5(cz + byco/l
2 3 r ( 3 m //
o c
£ 4,V —(d V+bd
. = D 2\ 0 m-2)
with d5 = O.
What happened was:
(1) The terms 35’ b3, and 03 underwent appreciable modifications

(2) The fourth term of the third line ceased to be always zero

Let us examine first the quantity which has been Jjust added to 03.

We have
OCy pe
Cz = - S;— Cp = -V'v— since u =7V
" Hence
. byco _ oM .\ Stl BCZ,e d_e
. > 3  S¢  du. da

e
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For steady conditions, an important part of the BCM/BX is produced
by the 1ift on the tail; one had

aCM s'z 2,0
Sc Bae

One finds that everything takes place as if the part due to the
horizontal tail in the damping of the pitching were multiplied by
1 + (de/aa).

Since Be/da is of the order of magnitrde of 0.5 and, since on the
other hand, the effect of the tall is predominant in the damping of the
pitching, the correction which is to be introduced into the calculations
if one wants to take the effect investigated into account, is important.

The correction terms to be added to a and b5 are less important
but they are, nevertheless, not negligible.

Actually, what happens is

az became a3 + bma2
b3 b3 + bmpe

It is easy to evaluate the order of magnitude of certain factors.
If one takes

1/c =3 s'/s = 1/5
one obtains

by = -1/u X 3 X 1/5x3x3x1/2=-2.7/u

On the other hand, a, = a(3Cz/da) -2C, is of the order of magnitude
of -1,

by = 3C,/a 1is of the order of magnitude of +i.

The factor u, on the other hand, 1s always represented by a high
number, of the order of 100,
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Hence, everything happens as though:

az was increased by a quantity of the order of a hundredth

bz was reduced by a quantity which could reach several hundreths

Since the term a3 is itself very small, and the term bz = ACM/da

is normally of the order of a tenth, it can be necessary to take the
corrections indicated into account.

Finally, there appears in the fourth column a term c/re(dBV + bmdg)
but, do = -g sin @ X pc/V so that, if the trim of the airplane is

horizontal, this term remains zero.

T. Solution of the System when the Moments Depend on the
Linear Acceleration dV/dt or on the Angular Acceleration

It is possible to repeat the calculations of the sections 2 and L
with the assumption that the aerodynamic actions depend on the derivative
u' or q'.

We shall be satisfied to indicate the formulas pertaining to the
effect of u'.

We assume three coefficients which characterize the effect of the
derivative

These coefficients lead to the factors

_ X1

T e/ Xy
- -X2

8z = {ue/V) + xq

(ue/V) + X1
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which are introduced into the characteristic determinant in the same

manner as the by, b,, bp.

If only the moment depends on u'
ay =0 ay; = 0 ap = -(V/uc)x3

and only the third line of the determinant is modified.

It is written

< \ L

r2(a3 + am?l/ r2(b5 + ambl)
cl c c

— Cz + —— & Cq + A —(d=zV + d

2 3 2 anc1 r2( 3 it} n

We shall see later on that the fourth term may exert a notable effect
in the case where dl is different from zero. '

The formulas concerning the effect of gq' would be established in
the same manner.

8. Lateral Motion

It is obvious that analogous calculations could be carried out in
the course of calculation of the lateral motion.

However, these calculations would be useless (except in the case of
automatic stabilizers) in view of the fact that nothing is known about
the aerodynamic effects exerted.
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CHAPTER XII

EFFECT OF THE CONTINUOUS DISPLACEMENT OF A CONTROL
1. Continuous Displacements
In the preceding chapters we calculated the motion which follows
upon the abrupt displacement of a control.
The general expressions set up before determine the motion of the
airplane when a control is being deflected by An (longitudinal motion),
by At, or by A (lateral motion), and maintained in its new position.

In theory, the problem is solved in the same manner for a change
Ao of the power setting.

In fact, the pilot acts by continuous and progressive displacement
of dé, dn, and df as a function of t or T, and it is necessary
to determine the resulting motions of the airplane.

2. Duhamel's Integral

The response of the airplane to a variable movement of a control
may be determined by Duhamel's integral.

For an abrupt deflection equal to unity applied at the time t = O,
the general solution of the system is

Bu = Au + =CeXt = Fy (t)

Bw = Aw + 5/Ce*T = Fy(t)

5q
50

N + smCeX? FB(t)

26 + mnCeX® = F (1)

the E, X, 1, m, and n are successively provided with the subscripts
1 to 4.

If the deflection 1, applied at the origin of the time scale is
different from unity, we shall have

and so forth.




149
At the instant tg, for example, we shall have

Buag = noFy (ta)

We shall write only the expression of one single variable which will
permit us to eliminate the subscript 1 from Fi.

Let us assume an instant tp subsequent to tg. If the deflection
has not changed, we shall have

duy,

nOF(tb)

t
Nohu + qOZCeX b

it

If, in addition, the defiection changes at the time t, and assumes
at that moment the value Mg + dn, we obtain

duy, = nphu + nOZCeth + dn Au + anCex(tb-ta)

or else
Bup = ngF(tp) + dn F(ty - tg)

If the deflection, instead of undergoing one single increase dy
at the instant tg, is modified regularly from the instant t, to the

instant tp, according to a law 1 = f(t), an increment dn will be
added at every one of the points between ty, and ty, and one will have

t
bg

dup, = ngF(ty) + /; d—fg; F(tp - tg)dta
a

in this expression t; 1is the variable of integration.

On the other hand, if the deflection is varied starting from the
origin, the lower limit of integration 1tz = O.

We can finally omit the subscript a and we obtain, representing
the deflection by f(t)

wtb
du, = £(0)F(ty) + / f'(t)F(tb - t)dt
.JO
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This formula constitutes Duhamel's integral. It permits calcula-
tion of the response of the airplane to a deflection developing according
to an arbitrary law f(t), if the response of the airplane F(t) to unit
deflection is known.

Duhamel's integral determines the value of the variables, such as du,
at the arbitrary instant ty by an integration carried out between the
limits O and ty.

Remarks: 1. The same argument permits determination of the effect
of external perturbations, such as gusts arising no longer in an abrupt
manner, but progressively.

2. The argument is independent of the selection of the unit of
time. We made it assuming the solution of the differential equations
written in the system x and t. Obviously it is also applicable to
the solution containing A and T.

3. Other Expressions of Duhamel's Integral

The application of the formula
fu av = uv —/v du

shows that the two expressions

rty
duy = £(0O)F(tp) + |  £'(t)F(tp - t)dt
‘0
and
rty
dup = £(ty)F(to)+ | F(L)F'(t, - t)dt
JO

are equivalent.

One may furthermore write the integral in the forms

s
By, = £(0)F(ty) + J £'(tp - t)F(t)dat
and
[ tb
dup = £(tp)F(0) + i f(tp - t)F'(t)at
0
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4, Graphical Construction
A simple graphical construction permits us to find the value of
[*o

J f'(t)F(‘tb - t)dt
0

Let us plot, by means of a first system of axes, the curve (l),
defining F as a function of t.

With a second system of axes, placed with respect to the first as
indicated in the drawing, let us plot the curve (2) which defines f(t)

as a function of +t.

Let us now choose the value 1ty for which we calculate Bdu,. Let
us register this time ty on the time scale of the two diagrams.

et us assume, for instance, tp = 10 seconds. Let us then divide
the interval contained between O and t;, into n equal parts (10 on
the drawing considered).

Iet us plot an auxiliary curve (3) which connects the values of
F(tp - t) with the values of f'(t) realized at the same instant.

This curve (3) is plotted on a system of axes where the values
F(t, - t) represent the abscissas and the f(t) the ordinates.

It is constructed by associating:
the point (n) of the curve (1) with the point (0) of the curve (2);

the point (n - 1) of the curve (1) with the point (1) of the
curve (2), and so forth.

It is clear that under these conditions:
*p £
JF F(tp - t)%g dt
0

is represented by the area under the auxiliary curve.

One must therefore carry out a quadrature in order to find the b&u
at the time t,,.
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Since one attempts to find the curve &u as a function of time, it
will be necessary to repeat the construction for a sufficient number of
points.

Finally, one generally wants to know ®w and 88 as well; the
construction will have to be applied to these variables.

The application of the graphical method takes a relatively long time
even though artifices are rapidly discovered (employment of movable
tracings, for instance) which permit systematizing and greatly acceler-
ating the constructions.

5. Actual Piloting

The theoretical study permits an explanation of ~ertain peculiarities
of actual piloting.

A. Piloting with respect to elevation.- The pilot desires to pass

from the rectilinear flight condition Ri(Vl, % and 61 are determined)

to the rectilinear flight condition RQ(VE, as, and 8, are determined)

by maneuvering of the elevator alone, without modification of the throttle
setting.

The characteristics of the airplane are such that to a given
displacement

there correspond

2 1 1
o - ap = +3°

o]
62-91=—5

If this deflection An 1is applied abruptly, the &V, 8&a, and 56
vary as functions of time according to the expressions given previously
which are produced by the curves given in the plate 24 of chapter VII.

A skillful pilot will try to rapidly attain the flight condition Ro

and then to stabilize the airplane in the corresponding position, avoiding
the long-period oscillations.,
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He will not apply the deflection An abruptly but will utilize
another law of deflection. He will start from 1, at t= 0, and will

necessarily terminate at Nos but within a determined time and after
having followed an indetermined path.

The graphical method permits us a trial-and-error investigation of
the laws of displacement which stabilize more or less rapidly the vari-
ables 8V, B8a, or %@ at their final value.

The piloting will be precise when the pilot, in an intentional
change of flight condition, rapidly attains the final value of the vari-
ables &V, b&a, and &6, without oscillation.

An examination of the diagram shows us that the motions &V, bda,
and ©8, produced by an abrupt deflection, are out of phase during their
transitory period. The &V and 506 are obviously squared.

Thus it can be predicted that it will be impossible to suppress, by
a continuous variation of the deflection, simultaneously both deviations
6V and ©6. Different laws of deflection will be applicable according
to the variable the pilot wants to establish first at its final value.

The inclination © is the variable the modifications of which-the
pilot can most easily appreciate in visual piloting.

Conducting step by step the search of the 1 which brings &6
rapidly to approximately its final value, we find that the law of deflec-
tion represented by (1) imposes on 56 & variation represented by (2).

The variables &V and ba then undergo an imposed variation,
corresponding to the curves 3 and 4. They tend to reach much less
rapidly their final value, but the oscillatory character of the behavior
corresponding to an abrupt deflection has disappeared.

One could, again by trial and error, find laws other than (l), to
improve the shape of the curve (2).

The various possible laws satisfy the following characteristics:
The deflection to be applied at the start of the motion is greater than
the one corresponding to the final state (this is done with a view to
accelerate the starting of the rotation of the airplane); then, after a
very brief time interval, the control must be deflected in the opposite
sense in order to avoid overshooting of the position of equilibrium.

Then the control should be brought to the final position of equilib-
rium by a slow progressive displacement.
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The pilot must therefore carry out a double motion in order to avoid
overshooting the position of equilibrium.

B, Starting a turn.- Let us take up again the considerations of
chapter V sections 5 and 6 on the conditions of equilibrium in turns.

Let us investigate, for the airplanes examined in chapter IX
section 5, the conditions of equilibrium during a turn to the left,
effected with a lateral inclination @ of the order of 39°.

We shall assume that the semispan of the airplane has a length of
10 m, that the airplane flies at a speed of 80 m/second, and that it
traverses a circle of 800 m radius.

We then have

Q=0.1 r=9Qcos @ =0.08 p = 0,01

The conditions of equilibrium show us that the theoretical turn
corresponds, on the three airplanes considered, to
0

-38°40
-0.67 rad

£ = +0.2° B

+0.5° o)

[V
1

The response in B, &, @, p, and V¥, under the effect of an
aileron deflection -2° and of a rudder deflection +2° is given for the
three airplanes in plate 27.

The maneuver to be carried out, if one wants to realize in practice
the theoretical turn, consists in manipulating the two controls according
to the laws

e
|

= £;(¢) or f£y(7)

e
\

£5(t) £, (1)

such that after the shortest possible time the motion corresponds to
the constant values.

= -38°40 o = +0.01
= -0.67 rad

w
"
o
&
I
o
e
!
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for the final values of deflection

£ = +0.5° ¢t = +0.5°

The calculation of this maneuver may be made by trial and error by
means of graphical construction.

In practice the pilot performs only maneuvers which lead approxi-
mately to the desired result.

The conditions of equilibrium under the action of one single control
have been given in order to show that they are the attainable-accuracy
limits.

Figure 33 indicates the result of the graphical construction carried
out for the airplane B' under the assumption of a priori fixed laws of
deflection as functions of time.

The motion of the airplane has not been stabilized at the desired
values, but it is not far remote from them.

By trial and error, one would arrive at finding laws of deflection
which would lead more exactly to the desired turn.

The figure shows that the motion of the rudder is a little too
important with respect to that of the ailerons, for it produced tempo-
rarily a sideslip to the right, toward the outside.

We have indicated previously that the conditions of equilibrium in
the course of a turn, realized with a steady deflection of a single con-
trol, would differ only slightly from those corresponding to a theoret-
ically correct turn.

For the airplane B', the conditions of equilibrium during a turn,
at an angular velocity p = 0.01, under the effect of one control, are

Aileron deflection -0.07 0
Rudder deflection 0 +0.4
Sideslip +0.95 +0.3

Inclination -39.50 -39.0

These results show that the conditions under which a turn can take
place are not invariably fixed but that there exists, on the contrary,
a certain domain of variables and of possible maneuvers.

8Im.portant note.- In the figure 33, the positive sideslip B is shown
directed upward. A positive B corresponds to a sideslip to the left, not
to the right, as erroneously indicated in the cliché.
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CHAPTER XIII

THE AUTOMATIC PILOT

1. Statement of the Problem

The pilots who, after laborious and prolonged tests, first achieved
instrument flying, without external visibility, did perhaps not suspect
that they demonstrated the possibility of automatic flight.

Yet, giving this matter a very little thought is sufficient to
realize that, if the readings of one or several instruments, combined
according to a law established once for all, uniquely determine the
control deflections capable of producing under all circumstances correct
flying, there is only one more step to designing a machine "ad hoec."

This step has been undertaken, and numerous devices for automatic
flight control have appeared.

For reasons which will become clear in section 3, these apparatus

are sometimes called "automatic stabilizers."
2. Essential Elements of the Apparatus for
Automatic Flight Control

Any device of automatic flight control comprizes one or several
detectors of perturbation, actuating a control through the intermediary
of a servomotor.

At the begimning, certain apparatus have been constructed with
detectors sufficiently powerful to actuate the corresponding control,
without servomotor. This is the case of the Constantin wind vane and

the Eteve anemometer wind vane.

Howaver, this solution has been completely abandoned, and the servo-
motor has become an indispensable organ.

This servomotor can be:
A compressed-air device
A hydraulic device

An electrical device.
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In most cases the signal given by the detector is not even suffici-
ciently powerful to directly control the servomotor; it must be amplified.

The flight parameters which one can use as references are:

1. The variables which define the kinematic flight elements, that
is, the fundamental variables:

Velocity V

Angle of attack «

Trim 6

Angular velocity of pitch g
for the longitudinal motion,

Sideslip B

Lateral inclination ¢

Course or azimuth

Angular velocity of roll p

Angular velocity of yaw
for the lateral motion.

2. The derivatives of these variables.

3. Measurable characteristics which are direct functions of these
variables, such as the components of the apparent weight.

. Elements dependent on the position of the alrplane, as functions
of terrestrial reference points.

One can see immediately that the possibility of resorting to several
flight variables, of utilizing servomotors of different types, of adding
amplifiers if necessary, will give rise to various types of apparatus for
automatic flight control.

If we want to avoid an excessive extension of the present report, we
cannot study all suggested or tested combinations or even describe the
apparatus which have been actually put to uce.
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Let us be content to point out among the actually utilized apparatus:
In the United States: Sperry, Bendix, and Honeywell devices

In Great Britain: Smith

In France: Alkan

In Germany: Siemens, Patin, and Askama

3. Progran

The automatic pilot is required to perform a certain number of tasks,
concerning

A. The improvement of the flight paths

B. The pacsing from one flight condition to another

C. Action in case of engine fallure

D. Flight following a bean.

A. Improvement of the flight paths.- When an airplane has been
made the object of careful aerodynamic study, the designer is generally
able to make it dynamically stable. This airplane then presents flight

characteristics which may be considered normal but which exhibit never-
theless certain unavoidable defects. These defects are:

(a) Failure to hold the course
(b) Insufficient damping of the longitudinal long-period oscillation

(c¢) Decrease in the damping of the short-period longitudinal oscilla-
tion in flight at very reduced speed

(d) In certain special cases, for instance tailless airplanes, insuf-
ficient damping of this oscillation in normal flight conditions

(e) Major vertical accelerations in flight in bad weather

(f) Insufficient maintenance of the three parameters 6, @, V¥
which must keep up rigorously constant values in military airplanes which
constitute a gunnery platform

One can require of an instrument for automatic flight control to
improve these characteristics; this consists, in some measure, in modlfylng
the "natural' reactions of the airplane.
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If the aerodynamic study has left more defects than the unavoidable
ones in existence, one may extend the task of the automatic pilot and
assign to it the masking of these abnormal characteristics. However,
this seems to us admissible only if an improvement in the "natural"
flight path were attained at the cost of a considerable reduction of
performance.

Besides, we should like to note that in our opinion there is no hope
of reducing the accelerations due to vertical gusts by employment of
instruments acting upon the controls. Only more deep-seated changes
brought to bear upon the structure of the airplane cun lead to an improve-
ment in this respect.

B. Pascing from one flight condition to another.- The automatic
flight-control devices should execute the changes in flight condition
which the pilot prescribes in manipulating the buttons.

The changes in flight condition consist in:
Making the airplane climb

Making it descend

Making it turn.

Manipulation of the push buttons consists, in fact, in changing the
ad justment of the instrument: by shifting the zero point.

ia) Longitudinal motion.- Assume an airplane provided with an
automatic stabilizer dependent on the angle of trim, ensuring for instance
the relationship:

8 1
o° o°
-20 +1°
-4° +2°
-6° +30
We have necessarily
oC OCy
Ay = —2 an + —= da
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Let us suppose

oC
—M - 0.018
- an
> oC
2 - 0.006
da
- At the deflection 17 = O, the airplane flies horizontally (Tt = 0)
at the angle of attack o« = 0, and because of the trim condition 6 = O.

The pilot desires, without changing the throttle setting, to estab-
lish an ascending trajectory characterized by

AT = 20 Ax = 30 N8 = -5°

values which satisfy the condition of power equilibrium.

Realization of the equilibrium of moment demands, in the final state,
a deflection Ay = -19.

N One must therefore modify the adjustment of the automatic pilot in
such a manner as to realize the relation

o° _3'50
20 -2,50
-4° -1.5
-6° -0.5°

In the preceding chapter, we determined an example for a deflection
law, leading to a progressive realization of the desired flight condition.

One sees that abrupt passing from one adJjustment to another would
entail an excessive deflection at the initial instant.

: The automatic pilot should therefore be conceived in such a manner
that the modification of adjustment would be carried out progressively
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and would lead, if possible, to laws of deflection reminiscent of the one
which the application of Duhamel's integral had led us to consider as
favorable. One can see immediately that one may come close to the desired
design by adding a component 17 = k q@ which will oppose the previous one,
that is, by making the automatic pilot sensitive to the angular pitching
velocity.

(b) Iateral motion.- The amount of adjustment of the automatic
stabilizer required for putting an airplane into a turn, will likewise
be determined by the equilibrium conditions in steady turn and by the
necessity of proceeding progressively.

Let us assume an airplane provided with an automatic stabilizer,
dependent on the parameters ¢ and YV, regulated in such a manner as
to produce, in the course of a rectilinear flight, the deflections

&E = -0.549 & = -0.54¢

The rectilinear flight constitutes the initial state.

The circular flight, at constant angular velocity, constitutes the
final state.

It is clear that throughout the entire duration of the flight corre-
sponding to the final state:

(a) The connection between the angle V¥ and the deflection { must
be interrupted.

(v) The relationship between the angle @ and the deflection ¢
must be completely changed since the airplane may settle itself, in
banking, in a condition where @ 1is of the order of magnitude of 30
to 4O (for the examples calculated above) whereas the steady-state
deflections are insignificant.

The aerodynamic characteristics of the airplane permit determination
of the deflections necessary for the execution of the turn and, conse-
quently, choice of the setting imposed on the instrument.

For this, we may act with a certain latitude because there exists a
whole series of possible turns, of the same radius, corresponding to
inclinations which differ relatively little from one another, and to
deflections which are still small, owing to the tolerance which permits
the consideration that a slight sideslip toward the inside does not
prevent the turn from being correct.
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Whatever the solution adopted, the unbalance of the aileron control
will be reasonably equal to the inclination of the desired turn. Abrupt
application of such an unbalance would lead, starting from the moment
when the airplane is made to turn, to excessive deflections which would
no longer have anything in common with the motions which Carson's con-
struction permits us to consider as normal.

The designer of instruments for automatic flight control should in
some way add a special device intended to introduce a sufficiently pro-
gressive action in the modification of the adjustment. The result to
which this device should lead has been determined at the end of the
preceding chapter by graphical constructions.

The modern automatic pilots utilize as flight reference conditions
not only the angles @ and V¥ but also the angular velocities of
roll p and the angular velocities of yaw r.

The introduction of the components

£ = -kp = -kr

acts on the deflections during the period of starting a turn and tends
to approximate the actual law of deflection to the desired law.

(c) Actions in case of engine failure.- Formerly, at the time when
the single-engined airplanes were those in use most widely, it was demanded
that, in case of engine failure, the stabilizer should rapidly put the air-
plane into a descending attitude.

This requirement led to recommending the employment of stabilizers
sensitive to the velocity V, or possessing at least a component sensi-
tive to the difference in velocity. It delayed the employment of sta-
bilizers sensitive to 6 which do not satisfy it.

At the present time, in multiengined aircraft, the failure of one
engine does no longer impose the immediate execution of a maneuver
involving the longitudinal motion, but instead that of a maneuver involving
the lateral motion. In fact, one must oppose immediately the moment of
yaw which accompanies the stopping of an outboard engine.

The control of the rudder seems effective against a perturbation AV,
from this point of view.

(d) Flight following a beam.- The development of automatic flight
led to the requirement that the piloting equipment should make the air-
planes follow flight paths materialized in space by electromagnetic
fields produced by means of radio beams or radio beacons placed on the
ground.
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This objective poses new problems which will be examined specifically
in chapter XVII.
L. Points to be Studied

We propose to study more particularly the improvement in maintaining
the flight path.

This problem comprizes:
A. The study of the instruments of detection

B. The calculation of the motion of the telecontrol, transforming
the indication received into a deflection

C. Investigation of the reaction of the airplane under the effect
of the deflection

The point A will be summarily examined in the following section.

The preceding chapters have furnished all the elements for a solu-
tion of the problem C.

It remains therefore to be examined to what an extent it is necessary
to set up, and to know the theory of, the control mechanisms.

5. The Detectors

The study we are making here postulates the existence of instruments
which permit detecting any difference between the actual values and the
mean values one attempts to realize, by mears of measuring the instanta-
neous values of the variables of reference.

These differences must be transmitted to the utilizing apparatus,
without decrease in precision of the instruments of measurement by the
necessity of conveying a certaln energy to the control apparatus.

The operation of the measuring instruments calls for the following
comments:

(A) Velocity.- The apparatus which are sensitive to the velocity
furnish a measure proportional to the density of the air and to the square
of the velocity. They may set an appreciable energy in action.
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(B) Angle of attack and sideslip.- The position of the airplane with
respect to its flight path is determined by the angles of attack and of
sideslip. Both may be measured:

(1) By wind vanes
(2) By the pressure difference along a spindle-shaped body

1. A wind vane articulated around an axis has a tendency of estab-
lishing itself in a position which is constant with respect to the direc-
tion of the airstream lines.

It may make the direction of these airstream lines with respect to
the airplane perceptible if the friction about the axis is sufficiently
small. Since this is an apparatus where in equilibrium position the
moment is zero, the indications of the wind vane are independent of the
velocity.

The wind vane requires employment of a relay removing from the
detector as little energy as possible: it has the main disadvantage of
detecting the direction of the airstream lines at the location where it
is placed; this direction may differ from the flow direction, at infinity
(opposed to the relative speed of the airplane).

2. Since the distribution of the pressures along a spindle-shaped
body is a known function

Of the velocity
Of the density of the air

Of the angle formed by the axis of the spindle-shaped body and the
wind direction,

one may measure the angle of attack or of sideslip by comparison of the
measurements carried out at conveniently located points.

This method gave rise to the creation of visual indicators; their
use has not become general, however.

(C) Orientation of the airplane in space.- The three parameters to
be measured are the angles 6, @, and V.

Trim ©: The conventional means for determination of the angle of
trim consists in using a cardan-mounted gyroscope which thus constitutes
a gyrostat.
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The axis of this gyrostat may be placed along the axes 0Z or OX.
In both cases it will permit detection of a change in trim © corre-
sponding to one rotation about the axis OY.

The arrangement employed most frequently is that of the gyrostat
with vertical axis.

Whatever the chosen solution may be, the gyrostat moves slowly
relative to the airplane even when no change at all occurs in the trimming
angle of the airplane. .

(a) If the instrument remains in a given place, the axis has a
tendency to describe, within 24 hours, the cone corresponding to the
motion of the fixed star which is to be found in its extension.

(b) The terrestrial coordinates of a fixed star, at a given point,
are functions of the time but they vary also if one changes position on
the surface of the globe.

If the airplane which carries the gyrostat goes from one point to
another, there occurs, as a result, in addition to the apparent displace-
ment defined above another one which is due to the variation of the
terrestrial coordinates of the star considered.

(c) In addition to these apparent motions of the axis which result
in fact from the displacement of the case of the apparatus, there occur
the actual displacements of the axis produced by precission, that is, by
the disturbing moments to which the gyrostat is actually subject because
of the imperfections in its construction.

It results from these phenomena that one must always control the
direction of a free gyroscope and bring it back to the selected position.

If the direction to be maintained is the vertical, one has an impor-
tant reference point at disposal: the grevity. The problem to be solved
is: bringing the axis of the gyrostat back into the direction of the
latter if it has deviated from it.

The difficulty stems from the impossibility of determining, in a
mobile device, the direction of the true gravity: all apparatus sensitive
to gravity indicate the apparent gravity.

One must therefore make use of a correction, applying in a continuous
menner and with a very small power, and one must count on it that its
action, determined by the mean direction of the apparent gravity, will
produce after a certain time the same result as if this correction had
depended, at every instant, on the true gravity.
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Every gyrostat must be brought back to its position by such a mech-
anism, applying a slight moment in the direction determined by the laws
of the gyroscopic effect.

We shall here not describe the devices used for this purpose; we
indicate only that they are indispensable.

Lateral inclination ¢: A cardan-mounted gyrostat the axis of which
lies in the direction along the axes 0Z or OY is capable of detecting
a change in the lateral inclination .

The gyrostat with vertical axis is the one used most frequently: the
same apparatus which then permits measurement of the angles 6 and .

Every gyroscope stabilized according to the integral of the differences
with respect to the apparent gravity presents an important property:

If there exists a difference of constant direction between the apparent
and the true gravity during a sufficiently long time (for instance in the
course of a series of turms in a given direction), the axis of the gyrostat
wanders in the direction of this apparent gravity, and the instrument
becomes deviated,

Azimuth ¥: A gyrostat with horizontal axis, placed in motion in
any direction whatsoever, will continue to indicate this direction with
respect to the device on which it is mounted, but this property is subject
to the previous restrictions, and the axis must be stabilized with respect
to a physical reference which can be nothing else but the horizontal
component of the terrestrial magnetic field.

Since the functioning of compasses (magnetic) is subject to many
irregularities, one can stabilize the gyrostat only with respect to the
mean indication of a compass, taken over a sufficiently long time interval.

This problem has obtained numerous practical solutions. The most
recent ones make use of an electrical compass called "fluxgate" which
we cannot describe here and which seems to eliminate part of the Irreg-
ularities of the magnetic compasses.

Let us indicate another important point.

The cardan-type gyrostat, being a zero apparatus, furnishes an
indication independent of its rotational velocity. However, one cannot
oppose its displacement by an opposing moment without falsifying its
indications.

Employment of a cardan-type gyroscope necessitates, therefore,
employment of a relay absorbing infinitesimal power. Great ingenuity
has been used for accomplishing this.
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(D) Angular velocities.- The angular velocities p, q, r are
measured with the aid of gyrometers.

The gyrometer is an apparatus based on the properties of a gyroscope
subjected to a forced precission.

The rotor is no longer cardan-mounted but undergoes the rotation
to be detected: 1t measures this rotation by the magnitude of the
opposing moment it provides.

Since the sensitivity of the instrument is proportional to the
angular velocity of the gyrostats, this velocity must be controlled.

Remark: Though one needs to know for the realization of an auto-
matic pilot at the same time the angular deviation about an axis and the
corresponding angular velocity, it is not necessary to use both instru-
ments described above: gyrostat and gyrometer. One alone is sufficient
under the condition that, if the gyrostat is employed, a differentiator
must be added; if the gyrometer is used, an integrator.

(E) Function of the preceding variables.- The preceding variables
are the intrinsic variables of the motion of the airplane. They are
independent of terrestrial references and of entrained motions of the
surrounding medium.

Certain of their functions are easy to measure, and their employment
should be considered from the start in setting up a program for automatic
flight control. These functions are the three components of the apparent
gravity which are indicated by pendulums or accelerometers.

(F) Radioelectric reference coordinates.- By means of electromagnetic
fields, it becomes possible to produce in the atmosphere reference lines
fixed with respect to points on the earth, not situated at infinity.

By means of special receivers, the airplane can evaluate its distance
from the reference lines mentioned.

let us prescribe for the airplane a rectilinear flight path coinciding
with an electromagnetic reference line.

Assume z to be its vertical distance, y 1its horizontal distance,
with respect to this reference line.

Let us suppose, in order to simplify the treatment, that the refer-

ence line is horizontal and directed along the origin of the aszimuths.

One will have necessarily

dz V sin 7 dt

V sin(y + B)dt

1

i

dy
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with
T =-(6+a)

One has therefore

z = jF-V sin(8 + a)dt
y =[V sin(y + p)dt

and if we deflect the controls as a function of the indications z or
y, we effect, in fact, a piloting as a function of the integral of the
differences of the elementary variables 6, o or ¢ and B.

Piloting as a function of the integral of the differences leads to
special properties, the study of which forms the object of chapter XVII.

6. The Mechanical Automatic Servocontrol

The purpose of autcmatic servocontrol is to produce a deflection of
a control which will be a predetermined function of the indication of
the deviation detector, or of a combination of the indications of several
detectors.

Let us visualize thils problem from a general point of view.

We shall call "input signal" an angular quantity x, varying as a
function of time; "output signal" an angular position 2z of a secondary
axis, which we call the controlled axis; "automatic servocontrol" the
mechanism which imposes on the secondary axis displacements such that
z 1is a definite function of x.

In fact, the chosen function will be simple and it will often be
required that the output signal follow the input signal as exactly as
possible, except for a factor of proportionality.

In order to produce the displacement of the controlled axis, it may
become necessary to overcome opposing moments proportional to 2z, inertia
moments, and friction moments.

The automatic control system will therefore utilize work furnished
by a local-energy source, the servomotor.

To arrive at this result, the servomotor actuating the controlled
axis can be controlled as a function of this deviation.
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One frequently improves the functioning of the system by adding to
a control proportional to the deviation €, an action proportional

L. de d(x - z)
to the derivative of this deviation EE = —-TEE-_-

to the derivative of the response -dz/dt or

to the integral />e dt of the deviation.
J

The automatic servocontrol may, on the other hand, be conceived in
several different ways:

(a) One may visualize the employment of a servomotor turned on and
developing its maximum moment (or its full power) as soon as the devia-
tion €, its derivative or its integral attains a sufficient value for
actuating a relay and controlling the servomotor.

As an extreme, (and this arrangement is incorporated in the Honeywell

automatic pilot) one may imagine a servomotor rotating constantly and a
relay actuating a clutch in one direction or the other.

(b) One may visualize a servomotor the moment (or the power) of
which would be a continuous function of the deviation, its derivative,
or its integral.

This continuous function méy be a proportionality. A servocontrol
of this type will be linear.

Between the on and off automatic servocontrol and the linear auto-
matic servocontrol, one may imagine intermediate cases where the moment
follows the deviation € but varies by steps.

7. Classical Theories of the Linear Automatic Servocontrol
The theory of automatic servocontrol i1s easily set up if one can
assume that the engine torque applied to the controlled axis is strictly
proportional to the deviation, to the derivatives, or to the integral of
the deviation.
Let:
J be the moment of inertia of the controlled axis

f a friction coefficient

k a factor defining the resisting moment of the controlled axis,
proportional to the displacement.
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The motion of the proportional automatic servocontrol is determined

by
2
Jd—g-+fg£+kz=K(x_ 2)
at dt

The calculation of the motion toward the position of equilibrium

corresponding to a constant increment Ax, applied abruptly, is a classical

problem.

It is well to remark that, starting from an equilibrium position for
which x =0 and 2z = 0, it is impossible - when k 1is not equal to
zero - to make =z remain equal to x when x varies. The necessity
of developing a steady moment kz 1in all equilibrium positions other
than x =0 and 2z = O makes the presence of a steady deviation
€ = X - z unavoidable.

The automatic servocontrol, proportional to the deviation, permits
z to follow x only if the resisting moment is always zero.

If one adds to the moment proportional to the deviation a moment
varying with the derivative of the deviation

d(x - z)
dt

Kl

or with the derivative of the position of the controlled axis alone

dz
| ke
K=

the oscillations of the system are reduced.

The addition of a moment proportional to the integral of the

deviation
K! /;dt

()

permits the realization of equilibrium positions characterized by =z = x
even when a resisting moment, proportional to the displacement, opposes
the motion of the controlled axis.

The value of these calculations depends on the degree of accuracy
of the hypotheses on which they are based, and it is therefore necessary
to see how certain controls are actually realized.
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8. The Sperry As; Automatic Servocontrol

Let us examine the Sperry Az automatic pilot. This instrument
attempts to produce a control-surface deflection proportional to the
inclination of the airplane. Tt comprises a gyrostat or rotor, cardan-
mounted, placed in an enclosure (case), kept at very low pressure by a
vacuum pump.

The rotor is shaped in such a manner as to form blades, and its
rotation is obtained by directing toward these blades the Jjets of air
which enter the case.

Outside the rotor but inside the case there is a casing E perforated
by several apertures and capable of undergoing angular displacements under
the action of the "follow-up" cables.

Two of the openings made in the casing are pressure inlets and
terminate on two sides of a membrane.

The rotor - through the agency of a stop-valve system connected
with it, and represented in the diagram by the blocks B - closes more
or less the pressure-inlet openings in the casing. When the rotor
occupies its mean position, it closes these openings equally, but it
closes them differentially, when displaced with respect to the casing
one way or the other from its mean position. Hence, any displacement
of the gyrostat produces a pressure difference on the two faces of the
membrane and a deformation of it.

The membrane, in being deformed, displaces, by means of a rod, the
piston valve of a distributor which controls the entrance of the oil
under pressure into the control servomotor. When the membrane occupies
the mean position, the piston valve cuts off any communication between
the 0il pump and the servomotor; however, when this piston valve leaves
this position, in one direction or the other, it connects one side of the
piston of the servomotor with the oil pumps, and this piston is displaced
as long as the connection is not cut.

In the position shown in the figure, the airplane has a nose-up
position, a pressure difference has been produced on the membrane, and
the distributor has led the oil pressure onto the front (Left) face of
the servomotor.

The piston will displace itself in the desired direction; however,
its motion will have to be stopped when the control surface will have
displaced itself by an angle corresponding to the relative displacement
of the gyrostat. A connection between the casing E and the control

surface permits this result to be attained.

The motion of the control will displace the casing in such a manner
to bring the uncovered aperture back into contact with the shut-off
device. Therefore the control surface, by its displacement, reacts on
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the sensing mechanism in a manner tending to establish equal pressure

on the two forces of the membrane, and to stop the motion. This "follow-
up" mechanism permits, in short, impressing on the control surface a
displacement proportional to that of the gyroscope.

Any displacement of the casing produced by a control independent of
the follow-up mechanism (not shown in the figure), constitutes a change
in adjustment which modifies the law linking, as an end result, the posi-
tion of the control surface with that of the gyro, with respect to an
axis fixed to the airplane.

Such a control at the disposition of the pilot allows him to modify
the flight path of the airplane through the agency of the automatic pilot.

The Sperry A3 automatic pilot utilizes two gyrostats for operating
the three controls by means of three pneumatic relays and three servomotors.

The first gyrostat, with vertical axis, detects the deviations of
trim © and of lateral inclination @; the second gyrostat detects the
deviations of azimuth V.

This apparatus is used very much and it functions regularly. It
requires, of course, filters and accessories not represented on the
diagram of its operating principles.

Moreover, it must be noted that the practical construction of the
casing and the shut-off device is slightly different from the fundamental
description given above.

Tt suffices to examine the operation of this apparatus for under-
standing that it does not yield a linear automatic servocontrol.

The input signal x is here the angle of trim.

The output signal =z is the deflection B8 which reproduces itself
in the angular motion of the casing B. The distribution of the pressures
on the membrane does depend on the deviation 6 - B, but the description
shows that the pressure finally exerted on the piston of the servomotor
will by no means be proportional to @ - B.

If one neglects the load losses which vary according to the degree
of opening of the apertures of the distributor and according to the flow
of o0il, the pressure acting on the piston of the servomotor will be the
pressure of the oil pump, and one can see that the automatic servocontrol
will act in a manner which is much more nearly "on or off" than according
to the linear law.

9. Linear Automatic Servocontrol

We shall now describe a classical mechanism having linear charac-
teristics as long as a certain limit of moment corresponding to the
saturation of the magnetic cores has not been attained.
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A control crank (1), in being displaced by x, makes a contact (2)
slide on a potentiometer powered by an independent source.

The driven axis (4) is actuated by a motor M;. Any rotation of
this axis produces, by means of a return device, the displacement of
another contact (3) along the same potentiometer.

The connections are such that when the response (3) of the axis (k)
occurs in the direction corresponding to the requirement x, the
contact (3) tends toward (2).

This return permits proportioning of the displacement 2z in
accordance with x.

Let us designate equally by:
X the position of the slider 2
z the position of the slider 3

The electromotive force X(x - z) which one finds between 2 and 3
is used with a view to actuating the motor M;; but, since it is insuf-
ficient, it must be amplified. For this purpose it makes a current ip
pass into the excitation circuit of a dynamo D driven at constant
speed by a completely independent motor Mg.

Under the action of the electromotive force produced in this dymamo,
there originates a current 1i;. This current is sent into the motor Ml‘

Since the intensity 17 1is considerably higher than iy, the appa-
ratus constitutes a power relay.

One can assume that the motor torgue developed by Ml is propor-
tional to il.

One sees immediately that, if the motor M; 1s to overcome a
resisting moment proportional to 1z, it is not possible to realize the
equality between 2z and x since, im order to maintain a deflection z,
one must apply a motor torque equal to the resisting moment. One must,
therefore, maintain an intensity il different from zero which implies

that the values x and 2 cannot ccincide.

The Sperry Ay, automatic pilot utilizes an electric control, applying
the principle described above; however, it is complemented by various
organs, one of which is a control for compensation of the hinge moment.
The input signal x governs simultaneously the motor Ml actuating the
control, and a motor M, of small power actuating - somewhat more
slowly - the compensator for the control-surface hinge moment; this

compensator is displaced in such direction that, for the desired deflec-
tion z, the hinge moment becomes again zero.
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CHAPTER XIV .

THE AIRPLANE AND THE AUTOMATIC SERVOCONTROL

1. Equations of the Linear Automatic Servocontrol

The description just given shows us that the input signal x and
output signal =z are connected by equations more complicated than those
we have given in section 7 of the preceding chapter.

We shall establish here a more exact theory of the electrical servo-
control.

The excitation circuit of the dynamo offers the impedance

d
R+Ld—t-

It is subjected to an electromotive force K(x - z), and the current
ig 1s determined by

dio
K{(x - z) = Riy + L —
( ) 0 m

The circuit which produces the excitation of the dynmamo and the
motor M; are subjected to an electromotive force Cio and to an elec-

tromotive force A(dz/dt); A 1s a coefficient dependent on the windings,
and dz/dt is the angular velocity measured in units of the displacement
of the contact 3.

If R, 1is the resistance of the circuit, I, its inductance, one
has as equilibrium condition of the electromotive forces

di
. 1 dz

Finally, with Ml furnishing a motor torque Bi, proportional
1o il (motor with independent excitation), one has as the equilibrium
condition for the moments about the controlled axis:
2
Bil=Ji%+f9-z-+kz
dt it
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with
J moment of inertia of the axis 4
f friction coefficient
- k factor defining the resisting moment assumed to be proportional

to the displacement

We shall write dz/dt = z'.

We find that the output signal =z is determined, as a function of
the input signal x, by four linear equations

di

0 . _
L'dT'l'RlO‘l-KZ-—KX
) dig _
Ll at—+ Rlll+AZ' - Clo =0
. dz' 1 s
Jwi'fz +kZ—B11—O
dz '
"2 =9
. We find here again a system of equations analogous to those which deter-

mine the longitudinal motion of an airplane; here the variables are ig,
il’ z', and =z.
When no control order is given, x = 0 and the system will be in

stable equilibrium if the characteristic determinant satisfies Routh's
criterion.

If x wundergoes, at the time t = 0, an abrupt increment Ax, the
motion of the axis 2z = f(t) can be determined - when the position of
equilibrium is known - by the methcd used to calculate the motion of the
airplane unaer the effect of an abrupt displacement of a control surface.



176

2. Development of the Equations of the Linear System

Let us consider again the system

dig
at L

which we shall write

dig . .

T + alio + blll + clz + dlz = dlx
di,y . .

Fr + 3210 + b21l + cgz + dgz =0
dz! s 1 _

a-t— + 8.310 + b5ll + C5Z + dBZ =0
dz . 1 =

T + auio + bhll + chz + dhz =0

One has therefore

_R - - K
a; = I b1 =0 cl =0 dl =1
c l A
8 = —- = by = — c. = d-, =0
2 Ll 2 Ll 2 Ll 2
B F k
= T e - (] = = d, = -
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The system possesses a characteristic equation

ap+AN O 0 dq
as bs+ N cp 0
=% bs cs + N dz
0 0 cy, A

The development in the form of

7\u+A1)\5+A27\2+A37\+Au=0
gives
Al =a) + b2 + 03
A2 = alb2 + alc5 + b2c5 - Chd3 - b3c2
A3 = albec5 - alchd5 -'bgch_d3 - albac2
AM = —a2b3cudl - albgchd3
where we have c¢) = -l.

Routh's stability conditions permit us to verify whether or not a
given system characterized by particular values of each one of the
11 characteristics L, R, I, R, A, B, ¢, J, X, k, and f, is

stable, but they do not lend themselves to a general discussion.

Let us remark, however, that the condition

52 ) A1A1+

R=b -5~ °

leads immediately to an important conclusion. Assuming that it is satis-

fied for the four primary conditions Al >0 . .. Ah > 0, the sensi-

tivity K cannot exceed a certain value.
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In fact, only A, contains dy or K/L. When K increases A

must increase and the fifth condition of stability will cease to be
satisfied.

There will always arrive a moment where the servocontrol described
above will be umstable if one increases its sensitivity by an increase
in the coefficient K (for instance, increasing the voltage of the
battery).

Just as the longitudinal motion of the airplane results from the
superposition of the irregularities of the flight path (switch back)
with the oscillations of the airplane about its center of gravity, the
motion of an automatic control system consists, in the most general case,
of the superposition of the oscillatory motions of the amplifying system
and of those of the so-called mechanical control system, resulting from
the equilibrium of the moments about the controlled axis.

In general, the oscillations of the amplifying system have a shorter
period than those of the controlled axis,and, although the two oscilla-
tions necessarily interact, one on the other, it is possible to find in
the solutions the influence of each of the component motions.

3. Control of the Applied Moment by the Angular Velocity

In the simplified study made in section 6 of the preceding chapter,
we pointed out that the characteristics of the effective motion of the
controlled axis improve if the moment applied to the axis is a conven-
iently selected function of the angular velocity =z' of displacement
of this axis.

This result is easily found also in a study taking into account the
existence of the amplifying stage.

Let us briefly investigate what happens when the voltage applied
to the first circuit becomes K(x - z) - K'z' instead of being equel
to K(x - z).

Since the application of a command Ax > O tends to produce a -
Az > 0, there appears also a 29 > 0 as soon as the response has started.

The complementary term reduces, at this instant, the applied voltage
which helps prevent the new position of equilibrium from being exceeded.
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In the general theory to write

K(x - z) - K'z!

in the second term of the first equation amounts to taking ¢y = +K'/L
instead of ¢ =0

A simple examination of the determinant shows that only a single
new term has been introduced, namely the term

+a2b5cl%

which modifies the value of the single coefficient AB'

Since a2b5cl is > 0, the coefficient A5 is increased and the
danger of instability, from too great a value of AlAu/AB due to an

excessive sensitivity, is reduced.

In spite of the danger of having R become negative through an
increase of AB/Al’ making the moment a function of the displacement

velocity of the controlled axis is favorable.

4, System of the Third Degree

The problem of servo control has been expounded by several authors;
they took the characteristics of the amplification device into considera-
tion but assumed Ly = 0 1in the circuit of the servocontrol motor.

The characteristic equation is then of the third degree.

One has in this case

dig
La-:-—+ Rio = +K(x - z)

Az' + Rlil = Cio

dz! .
J T + fz!' + Kz = Bll
dt
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into the third equation so that we obtain

We can now write the characteristic equatione

dig
at

i

K

notations as before, we obtain

B ___2
Rl— b2
A _S2
Ry Dby

and the determinant is written

where

with

al + A
ap
b et
3 %,
0
A
Ay
Ay
Az

[

c2
Q:B——B—g-bB)‘l')\

-R
-i-io--i(x-z)

+A

The second equation gives 1y = l/Rl(CiO - Az') which we introduce

Maintaining the same
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A
There will be stability if Ay >0, Ay >0, Az >0, and Ay > A_3
1

Here again one finds that Az alone depends on the sensitivity
dy = K/L and increases with this sensitivity.

The servo system must become unstable if one increases the
sensitivity.

If the displacement 2z of the controlled axis takes place without
a restoring moment proportional to the displacement, one has, moreover,
k = 0, that is, d5 = 0.

The principles of the linear servo system studied above in a general
case, then in a particular case, have been utilized by Mr. Roccard in his
"Etude de la stabilite des systemes accessibles & des mesures" (Study of
the stabllity of systems susceptible to modifications") and have been
treated by him for the particular case L1 =0 and k = 0.

Response of Automatic Control Systems," with the difference that this
author assumes that the intermediary circuit (R, L, io) is powered by a
source of alternating current.

5. Combination of Automatic Control and Airplane

We can study the reactions of an airplane, a control surface of
which is actuated by a servocontrol, by combining the systems of equa-
tions relating to the airplane and to the control.

Let us assume that we are dealing with a simple automatic pilot
actuating the elevator as a function of the deviation of trim.

The motion of the airplane under the action of a continually variable
deflection 87m 1is given as a function of the aerodynamic time T by the
system

ddu

o a16u + blbw + clSq + d169 =0

10w

Tt a26u + bgﬁw + c26q + d266 =0

adq c c cl cV cV

Tt =5 2;0u + — b dw + =5 ¢,8q + —5 4,06 - =5 h_.8n =0
ar re D re 3 re 3 r2 re 2
.@.@.Q._.Lﬁﬁqzo

dr \Y
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in which the coefficients 8y o o - h5 relating to the airplane have
been defined in chapter VII. Let us note that d3 = 0.

The motion of the automatic control, in turn, will be defined by

an analogous system where the real nature of the input and output signals
will be taken into account.

In the case considered, the input is the deviation of trim ©50; the

output is the deflection &7n of the elevator. The deflections one
attempts to realize, and the deviations of trim must have opposite signs;
they are not necessarily equal, but simply proportional. One has therefore

w
|

= —h156

Z = 437

The resisting moment or hinge moment is, actually, not only a func-

tion of the deflection z = &7 and of its derivative z' = dn', but also

of the velocity of the alrplane V, of the angle of attack « (defined

in the equations by w), of the angular velocity q, and even of the

angle of trim if one takes the moment into consideration which is produced
by the weight of the control if its center of gravity does not lie on the

hinge.

The operation of the automatic control responds to the system

g .
Et— + allo + dl?)n + hlBG =0

diy . ,
Tt agio + b21l + 028n =0

d 4
a%n--+ a i + b,i, + ¢

310 31y 5t + d58n + e, du + £ 05w + g55q + h,50 =0

b) ) 3 )

20 gyt =0
at

The coefficients a1 « . o d), relating to the automatic control

system have been defined in section 2 of the present chapter.



183

The coefficients e5, f5’ gB, h5 are proportional to the deriva-

tives of the hinge moment, with respect to the variables defining the
motion of the airplane.

In order to treat this system simultaneously with the previous one,
the aerodynamic time must be adopted as the unit. The transformation
will be carried out by multiplying all terms of the four equations, except
the derivatives, by uc/V.

We shall represent each of the coefficients relating to the automatic
control system, after they have been multiplied by uc/V, by a'l « o o d'h’

e'5 .« o e h'5; this will avoid confusions with the factors relating to the

airplane.

We thus arrive at eight equations: four equations of motion of the
airplane, four equations of motion of the automatic control, and of eight
variables.

The first group depends on the four variables ©du, bw, &g, &6
defining the motion of the airplane, but the third equation of motion
depends, moreover, on 07,

The equations of the second group depend on the four variables 10,
iy, dn', and 0®n determining the motion of the control; moreover, how-

ever, the first equation depends on 066, and the third equation depends
on bu, 0w, ©0g, and eventually &6.

The complete system gives rise to a characteristic determinant of
eight lines and eight columns,

c c cl c
0 0 e 0 0 0
Vv =0
O 0 1 t 1
0 0 0 h 1 B 1 + A 0 0 d 1
0 0 0 0 a'2 b'2 + A c'2 6]
]
e's £'s g's b’z O pls el + A dls
pe
0 0] 0 2 0 -— A
0 \'
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The characteristic determinants of the airplane and of the automatic
control constitute minors of this new table but the total determinant is
not reduced to the simple product of the two.

Even in a simple case - assuming that the resisting moment of the ¢on-
trol is independent of the flight conditions (e'5 = f'3 = g'3 = h'3 = 05

the principle of setting up equations prevents one from writing

hz =0

and with the method used it is not possible to separate the study of the
motion of the airplane from that of the motion of the servocontrol.

Remarks: 1. The argument carried out in the case of a control sur-
face actuated by a servocontrol dependent on the deviations of trim may
be extended to a control actuated by deviations in velocity, angle of
attack, etc.

Terms with e'y, f'y, g';, on the fifth line of the determinant
would result.

2. An exposition analogous to the preceding one could be given for
the study of the lateral motion under the effect of servocontrols actuated
by the deviations of the variables defining this motion.

3. It has been assumed in the previous chapter that the detectors of
perturbations acted without inertia, and communicated to the amplifying
device an input signal rigorously equal to the perturbation.

If that were not so, one would have to write the equations governing
the functioning of the detecting instruments, to add them to the system
examined, and to raise the degree of the characteristic still higher.

6. Possible Simplifications

The general theory leads to complicated expressions which are almost
useless due to the impossibility of making the influence of the different
variables apparent.

The foregoing exposition has been given with the purpose of showing
that the different problems, treated by a certain number of authors, are
actually particular cases of the general problem.
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The choice of the simplifications determines in a measure the problem
investigated.

The following questions have been treated.

(A) Study of the motion of the airplane under the assumption that
the control surface is actuated by a servomotor the moment of which is
proportional to the perturbation.

This first investigation amounts to eliminating the study of the
amplification stage, and to examining a system of six linear equations.

A report, in accordance with this train of thought, has been written
by Welss.

The setting up of the equations leads necessarily to a characteristic
equation of the sixth degree the solution of which is quite laborious.
Weiss evades this difficulty by an artifice.

It can actually be admitted that the characteristics of the slow
oscillation will not be in any way affected by the moment of inertia of
the control.

Let us therefore perform the calculation for the first time under
the assumption that the control is without inertia, according to the
procedure B below. The characteristic equation is of the fourth degree;
it leads to solutions determining a rapid oscillation and a slow
oscillation.

In pursuance of the hypothesis made above, the solution defining the
slow oscillation in the system of the fourth degree is also a solution of
the equation of the sixth degree. Dividing this last equation by the
cormon solution, one arrives again at an equation of the fourth degree
which determines the rapid oscillation and the motion of the control.

One can also study the influence of the characteristics of the con-
trol: inertia, power of the servomotor, hinge moment, on the motion of
the airplane.

Thus one supposes that these characteristics have an influence solely:
on the rapid oscillation.

It is evident that this manner of reasoning is awkward and indirect.
(B) Study of the motion of the airplane under the assumption that

the control is actuated by a servomotor without inertia, producing at
every instant a deflection proportional to the perturbation.



Such a hypothesis eradicates the effect of the mechanical character-
istics of the automatic control; it retains only - but showing up their
full importance - the mechanical characteristics of the motion of the
airplane.

Since the automatic control is supposed to produce continually
Z =X
or, in the case where the control is a function of the trim
on = -hlﬁe

it suffices to replace the term in 87 in the equation of equilibrium
of moments of the airplane by a term in 586 -~ which amounts to attributing
to d5 a value different from zero.

If the comtrol is a function of another parameter, it will cause a
simple alteration of the corresponding coefficient 83, bj, or csz.

The characteristic equation remsins an equation of the fourth degree
in the study of the longitudinal motion. It is of the fifth or of the
fourth degree according to the law of control adopted in the case of the
lateral motion.

The two following chapters are devoted to the study of automatic
piloting carried out under this hypothesis.

(c) Study of the motion under the assumption that the control is
movable but that there is neither a servomotor nor a detector of pertur-
bation present.

In this case, the control assumes, by itself, the position which
ensures the equilibrium of the hinge moment, and the system of equations
determines the motion of the airplane flying with free controls.

The fifth and sixth equations of the general system (section 5),
likewise the variables iy and i; must be eliminated.

In the seventh equation one eliminates the terms a3i and bziy,
and writes the rotational equilibrium of the control.

The product of the moment of inertia of the control and the angular
acceleration dq'/dt must balance the hinge moment at cvery instant.

The problem is determined by a system of the sixth degree. The
lateral motion of the airplane flying with two free controls is determined
by a system of the eighth degree.
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The possibility of obtaining a usuable solution depends, above all,
on the knowledge of the hinge moment and of the derivatives of this moment
with respect to the different variables.

The problem of flight with free controls is not the one we have posed.
This problem has already formed the subject of numerous theoretical

investigations - which differ especially by the simplifications which have
been introduced with the purpose of reducing the degree of the equations.
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CHAPTER XV

EFFECT OF THE AUTOMATIC PILOT ON THE LONGITUDINAL MOTION

1l. Indirect Effect

on the

Let us assume that there

of the elevator, proportional
of wvelocity bBdu

of angle of attack &a =

of angular velocity ©dq

of trim 590

of the Four Elementary Variables

Longitudinal Moment

exist devices producing a deflection dp
to the deviation:

- (8w /V)

It will be possible to obtain the effect of these devices on the
stability of the airplane motion, on the periods and the damping by
introducing into the determinant the desired complementary term:

ACy

a3 becomes a3 aﬂ g% V = a5 + aBS

b3 becomes

3 becomes

b3t S da T B3t P3s

ac

d5 becomes d3 - =M dn = d5 + st

on as

The quantities a3, b5s, C3gs d}s characterize the effect of

automatic stabilizer,

We have previously (Chapter VII) written the expressions for the

coefficients A

’l 2 ‘A‘E 2 ‘Ak5 J

A

tions of the four derivatives of the moment CEY bj, c3,

n of the characteristic equation as func-

d3.

These expressions lend themselves, without modification, to the
prediction of the effects of a stabilizer which is a function of one of
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the fundamental varilables. It suffices to replace a, by a3 + a5s, etc.

>

The discussion carried out previously shows that, in general, positive
values of azg, st’ C3gs dis lead to stability.

- These values are positive when:

(an increase in the angle of attack mekes it nose down),

_a..C_M.Eaﬂ.(O

~ -
on dgq

(an angular acceleration, in the nose-down direction, makes the airplane
nose up),

Cuag g,
on das

(a displacement in trim, in the nose-down direction, makes the airplane
nose up).

The linear theory easily permits clearing up the question of the
automatic stabilizer, making a preliminary selection among the possible
solutions, and research - along general lines - regarding the effect
which this or that law of piloting will have on the characteristics of
the motion.

Many unfruitful tests could have been avoided, at the cost of a few
hours of calculation. It is curious to see how completely the first
designers of automatic-control instruments neglected the indications the
theory could offer.
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2. Numerical Value of the Complementary Terms

ve' Let us show, as an example, to what numerical values the likely

re, laws of deflection will lead.

(1] -

.. A. Piloting as a function of the velocity.- Assume a device producing
*. a ®n of -1° when the airplane accelerates by dV = 0.1 V.

Such a stabillizer will be characterized by

ac ac
B, = -v@AM_ oM
3s av an an

A value of dCM/dq = 0,015 (angles in degrees) is normal.

The corresponding value of azg would be 4+0.15.

In fact, the detectors are generally sensitive to the square of the
velocity. It may be seen easily that the apparatus for which the deflec-
tion 1is -l leads to the same value of 23 when the airplane accelerates

by dve = 0.2 V2

B. Piloting as a function of the angle of attack.- A detector of
. perturbation in angle of attack set so as to produce a d4n = 1° when
da = 29, gives

dCy

- by = 1/2 7 X 57.3

if we express, as above, the dCM/dn in degrees.
For dCm/dn = 0.015, one obtains bzg = 0.43,

C. Piloting as a function of the angular velocity.- An apparatus
which would deflect the elevator by an angle dn = +5°, for an angular

velocity q = -57.3° per second, would give
ac
. = _=Md ¥
: s on dq 1

essume for V/1 =6 (for instance, V = 60 m/sec, 1 =10 m.)

ez = + 0.015 X 5/1 x 6 = 045
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D. Piloting as a function of the angle of trim.- A detector of
perturbation producing a deflection dn = -0.5 46 leads, for the value

of ACM/dn assumed above, to

dzg = 0.015 X 1/2 X 57.3 = 0.43

3, Effect of Piloting Which Is a Function of the Deviations of a
Fundamental Variable

A first examination of the possibilities presented by the different
laws of piloting may be made by investigating the effect which the intro-
duction of increasing values of 835 b55’ C3gs st exerts on the

damping and on the period.

The solutions indicated as interesting by this first examination,
may then be investigated in detail later on, after the reactions of the
airplane corresponding to certain initial perturbations have been

. completely calculated.

The diagrams given previously show us, in fact, that sometimes the
initial perturbation (this is the case of dw) diminishes rapidly but
causes the appearance of secondary perturbations.

If a first examination shows that the period and damping character-
istics are satisfactory, it is necessary to make sure that the selected
law of piloting will not have the effect of increasing the amplitude of
one or the other of the secondary perturbations.

Let us consider hypothetical airplanes, characterized by numerical
values chosen arbitrarily for a certain number of given values.

Assume
ay = +0.125 Cz = 0.40
a, = -0.80 u = 28.8
by = +0.3L5 c/r = 1.53
b, = +3.75 1/c = 2.6

T = 1.63 sec
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Let us limit ourselves, on the other hand, to the study of horizontal

flight paths traversed at zero angle of attack

a =0 T =0

9 =

0]

.

For all airplanes corresponding to these given values, the coef-
ficients A;, A, A5’ A), are expressed as follows as functions of

the characteristics (a; + a}s)’ (b3 + bBS)’ (05 + 055) s (d3 + d3s):

Ay = 3.8747 + 6,19 (c3 + CBS)

As = 0.743 + 0 @3 + aag
+ 66k (b3 + b3
+ 23.7 @3 + c5g
+ 66.8 @5 + dBS)
A3 =0 + 3,74 @3 + aBQ
+ 8.34 (b3 + b3s)
+ 4,55 (05 + ch)
+258.5 (i3 + dzg)

Au =0 + 99.8 (aj + a3s)

+ 213 (b3 + Dbzg)
+ 42,8 (d3 + djs)

Let us recall that 4, = O and suppose, moreover, that the airplane

corresponds to

a3=0

Cz +1.37

In the case where the piloting is a function of the perturbation of
the angle of attack, we must take

a3s—0 CBSZO d38=0

and give variable values to (b3 + st) .
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Iet us now investigate the effect of a series of values varying
regularly from -0.23 to +0.46,

The roots AN and A' are then given by the following table:

(b3 + bBS) A A?

0.46 -6.095 t 4,921 -0.0665 t 0.3881
0.34k4 -6.092 * 4,151 -0.0674 t 0.362i
0.23 -6.09 t 3,031 -0.0713 t 0.310i
0.11k4 -6.08 t 1.51i -0.0828 t 0.230i
0.057 -T.45 - L.65 -0,091% t 0.15 i
-0.057 -9.13 - 2,94 -0.376 + 0.122
~-0.114 -9.715 - 2.38 -0.473 + 0,207
-0.172 -10.11 - 1.79 -0,692 + 0.285
-0.23 -10.60 - 1,048 +0.346i + 0.38

For the other three laws of piloting considered we shall examine
some cases by investigating how the law considered modifies the motion
of an airplane possessing a static stability zero (b3 = 0) and a rela-

- tively high static stability
bz = 0,006 X 57.3 = 0.3438
We shall find as roots:
Variable parameter: a

. 3s

case b3 =0

@5 + aBQ A A?
-0,10 -8.65 - 3.37 -0.732 + 0.334
-0.05 -8.65 - 3.40 -0.569 + 0.301
0 -8.65 - 3.43 -0.208 0
+0.05 -8.54 - 3,64 -0.0712 t 0.4011
+0.10 -8.50 - 3.81 -0.042 t 0.555i
case b3 = 0,3438
) -0.10 -6.07% + 4,131 -0,086 * 0.23751
-0.05 -6.078 * 4,131 -0.0815 t 0,191 i
0 -6.092 t 4,151 -0.0674 t 0,362 i
: +0,05 -6.100 t 4,201 -0.0600 T 0,460 1
+0.10 6,105 * 4,151 -0.0560 t 0.56 i
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Variable parameter: C3g

case b3 =0
(c3 + c3$ A A
0.9 -5.842 - 3,6825 +0.2 0
1.15 -7.01 - 3.71 +0.2 0
1.37 -8.,69 - 3.h1 +0.202 O
1.63 -9.947 - 3.70 +0.202 O
1.96 -11.834 -~ 3.834 +0.202 O
case b3 = 0,342
0.9 -4.313 t 4,731 -0.0568 t 0.3971
1.15 “5.396 T L4 L51 -0,0561 t 0.381i
1.37 -6.092 t 4,151 -0.0674 t 0.3621
1.63 -6.85 t 3,601 -0.0715 t 0.3421
1.9 -7.86 + 2,23i -0.0756 t 0.3201
Variable parameter: st
case b3 =0
Az A At
0 -8.60 - 3.43 -0,208 0
0.05 -7.90 - 3.84 -0.4165 -0.1625
0.10 -7.60 - 3,70 -0.865 -0.149
0.20 -5.35 ¥ 0,031i -1.455 -0.175
0.30 -5.05 £ 2,181 -2.033 -0.181
case b5 = 0,344
0 -6.092 t 4,151 -0.0674 t 0,362i
0.05 -5.979 t k.36 i -0.1812 t 0.3751
0.10 -5.87 tL.u5i -0.2895 t 0,188i
0.20 5.67 t5.,141 -0.485 t 0,031
0.30 -5.55 * 5,601 -0.762 - 0.546

Knowledge of the roots N permits picking out of the cases of
instability (positive roots) and determining the period T and the
duration D of the damping of the motions.
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Let us recall that, having
A=k + oi

the T and D, expressed in aerodynamic time, are given by

2n
T = —
o
D = In 0.5

K

Although the tables given in the preceding pages, and the conclu-
sions we draw from them, apply to a particular case, they are in good
agreement with the results obtained by other authors regarding other
particular cases.

Remark: Since it is a matter of indifference whether the variations
of aB, b3, and c5 are produced by the particular aerodynamlc shapes

of the airplane or by the deflection of the elevator, acting without lag
or inertia, under the effect of a detector of perturbations, these tables
Justify the results given qualitatively in section 7, Chapter VII.

4, Practical Effects Obtained

A. Piloting as a function of the velocity.- An airplane which is
dynamically unstable due to negative values of az or of b3 (Ah < 0),

could be rendered dynamically stable by an apparatus for piloting as a
function of the velocity.

The stability attained by increase of az does not, however, endow

the airplane with very good flight characteristics, since the damping of
the slow oscillation is, and remains, weak,

The stabilizer sensitive to the velocity will amplify the rotations
by which an airplane naturally seeks to maintain a constant velocity.
Hence, it amplifies the amplitude of certain secondary perturbations.

One of the current defects of airplanes is the insufficiency of the
damping of the slow oscillations. The stabilizer which is a function of

the velocity is incapable of improving this situation. One can easily
understand the reason.

Let us examine the varilation of the V, 6, and q in the course
of the slow oscillation.
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The stabilizer which is a function of the velocity produces the
maximum deflection - that is, applies the maximum pitching moment - when
the trim of the airplane 1s horizontal.

It 1s clear that it will not contribute to stopping the airplane in
this position - which is precisely what is required of it.

The stabilizer which is sensitive to the velocity acts too late;
that is the reason why 1t exerts a detrimental effect on the damping
of the slow oscillation.

B. Piloting as a function of the angle of attack.- Any apparatus
comprising a wind vane for detecting any perturbation in angle of attack
and actuating the elevator in the desired sense, does nothing else but
increase the static stability of the airplane, that is, its tendency to
maintain a constant value of the angle of attack.

The calculations show that b3 may vary between rather wide limits
without deterioration of the flight characteristics of the airplane.

There does not seem to exist a determined value of b§ (which could
possibly be realized artificially, by producing b5s by means of a

mechanical device) which ensures a flight path of clearly superior
characteristics,

On the other hand, one can make the coefficient of static stability
bz = dCM/da vary within wide limits by perfectly natural means: by

displacing the center of gravity of the alrplane along the axis OX.

This explains the practical failure of the attempts made with the
purpose of developing the use of instruments of piloting utilizing the
angle-of-attack parameter,

C. Piloting as a function of the angular velocity.- The utilization
of the angular-velocity parameter is expressed in the equations by a Czge

It augments A3l and increases therefore the total available damping.

However, the increment has a bearing solely on the rapid oscillation
whereas it is the slow oscillation the damping of which ought to be
increased.

The ineffectiveness of the stabilizer which is a function of q for
the damping of the slow oscillation can also be explained by examining
the figure. The peaks of the curve of the g's correspond to the peaks
of the curve of the V's, and the apparatus does not act at the right
moment.
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The "angular-velocity' parameter used alone does not seem to lead
to practical results, but it may be of interest if combined with the
"trim'"-6 parameter.

It is curious to find that one of the oldest devices studied - the
Lucas-Girardville stabilizer, designed in 1911 - used the parameter q.

D. Piloting as a function of the angle of trim 6.- In contrast to
instruments sensitive to V and q, the stabilizer which is sensitive
to 6 assures a maximum deflection at the moment when the ailrplane is
the most inclined and a zero deflection at the moment when the airplane
is horizontal.

This situation is favorable for damping the slow oscillations. The
calculation confirms this conclusion.

The equation in A comprises a term in d3; this term does not

increase the value of the coefficient A;, but it acts effectively on
the distribution of the available damping.

The numerical table shows the following facts:

(a) Apparatus mounted on an airplane with neutral stability.- Without
stabilizer, the airplane is actuated by a motion the four components of
which are aperiodic, The addition of a stabilizer makes the rapid motion
oscillatory when the sensitivity of the stabilizer is iIncreased.

The slow motion remains made up of the superposition of two aperiodic
motions, within the limits of imaginable sensitivity.,

The stabilizer causes a retention of the real part of the root of
the rapid motion and transfers this quantity to the root of the slow
motion. This transfer cof damping increases with the sensitivity of the
stabilizer.

(b) Apparatus mounted on a statically stable airplane.- The rapid
motion 1s oscillatory for all hypotheses of sensitivity of the stabilizer,

The slow motion ~ at first oscillatory -~ becomes aperiodic for the
highest imaginable sensitivity.

The transfer of damping from one root to the other is practically
equal to one half of what it is on the statically neutral apparatus.

(c) General conclusion.- The stabilization sensitive to the inclina-
tion © possesses a valuable property which the apparatus studied pre-
viously do not possess: the high rate of damping of the slow oscillation.




198

Any occurring initial rerturbation will therefore show a rapidly
diminishing amplitude - when it concerns the rapid oscillation as well
. oo as when it concerns the slow oscillation.
......
2 %% The same result has been found in the United States where a calcula-
oooe tion analogous to the preceding one has been carried out by A. Klemin,
2e"%e P. Pepper, and H. Wittner, of New York University.

The effect of the stabilizer has been investigated for variable
sensitivities. The maximum sensitivity corresponds to a deflection dn

of -3° per degree of inclination 8.
The conclusions of the American reports are:
(a) The damping of the'slow oscillation is considerably improved.

(b) If the airplane is stable, the slow oscillation is transformed
into two aperiodic motions as soon as dn/de = -0.5.

(c) After a study of stabilizers up to dn/dé = -3, these American
reports state that, if a stabilizer of high sensitivity is placed on the
airplane, the characteristics of statically stable and statically neutral
airplanes tend to become indistinguishable. In other words, the effect
of b3 disappears before that of d35 when the latter is sufficiently

large.

(d) After having combined variations of c3 with d3s, they state
that the influence of the damping factors Cz on the characteristics of
the motion disappears in view of the effect of the factor dzs.

Airplanes which would present unfavorable characteristics, due to
insufficiency of c5, show perfectly admissible characteristics when

they are provided with stabilizer sensitive to the inclination 6.

5. Stabilizers as Functions of the Derivatives

The calculations presented in Chapter XI permit predicting the
action of a stabilizer which is a function of the derivatives of the
fundamental variables.

. A. Piloting as a function of U'.- Let us characterize the mechanism
- by

aC
M _d1 _ ¥ of dimensions L~1T°
on du'
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It suffices to use again

noting that

where

aCM a
) N VN
on du' v kv

az became az + apay

b3 bz + apby

Cs C3 + 8,Ccy l/Z
Vdz (zero) Vdz + apdy
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the formulas of Chapter XI, Section 7,

The action of the mechanism is the same as that of four equivalent
stabllizers, respectively sensitive to the variables u, w,

of power

2

KY'-al
pe
2

Kk L by
ne

haz

AbB
AC5 =K—"’lcl

1
Ad5 = v:K — d7

On a normal airplane, one has

Il

0 (of the order of 1/10)

q,

0, and
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On the other hand, we take K< O because it is normal to make the

.:.". airplane nose up when it accelerates.
o0

[ o9

“ecee’ Hence

e o

® o L]

] [ ]

V2
Aa.j'-'-KE-c-al(O

b =k Lbo <0
- A 3 = ;E 1 <
A
Ac5 =Kw T zero when w =0
Ad5 = -Kgcos b6 >0

Of these four equivalent stabilizers replacing the one which is a
function of u', the two first ones exert a negative effect (unfavorable),
the third exerts zero effect in the course of a flight at zero angle of

. attack, the fourth - namely the stabilizer which 1s a function of the
trim - exerts a positive effect.

B. Piloting as a function of w'.- Let us characterize the mechanism

- by
oC
Man_ _ ¢ 4imensions L1 T2
on  dw!'
We refer to Chapter XI
o
23=___CM—TL‘1 V= KV
on dw'
2
b3=--V—25=y—K
e pe
where
az became a3 + bma2
1 b5 b5 + bmb2
C3 03 + l/l bm02

) Vd3 Vdz + bydo
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° that is, as if there were four equivalent stabilizers, of the power
o oo V2
Haz = K — a
o et
fedes? V2
»e eo Ab3 = K — b2
A ne
) _x¥1
AC5 K eI o
2
1.,V
==K —d
. Ad5 vV K pe 2

On a normal airplane

bo > 0 (of the order of +k)

c2=-u}§,—c
. d2 = -g sin © %%

On the other hand, one will take K < O Dbecause it is normal to
. make the airplane nose down when a' increases, that is, when a nega-
tive w' appears.

Hence
>
Aa5 0
Dby < 0O
AdB = -K g sin 6
BV
= -K— >0
Ac 3 7

The equivalent velocity stabilizer exerts a positive effect. The
equivalent angle-of-attack stabilizer exerts a negative effect. The
equivalent angular-veloclty stabllizer exerts a positive effect. The

’ equivalent trim stabilizer produces zero effect when 6 = O.

C. Piloting as a function of q'.- It is well to present a direct
arguments:




The equation of rotation is written

ofee® Lol latan
‘ op q = e= N — —— c— q
-1 B B 57] dq'
:.....
gy -1 )1y
B on dq' B
Let us characterize the stabilizer by
-a-—C-M dn_ . -K K - of the dimensions - T2
on dq'
K will be positive if it causes the airplane to nose up when the angular
3 acceleration is positive.
Hence o
M dn pV
— — ._K C  —
. on dq'

Inserting this value into the equation of equilibrium of the
rotation, one obtains

2
1 pV 1
1 — —— | = ! =
q<l+BKSc 2> q(l+C) BM

r 1 1. _L
Q' =g Mg = f5(6u,8w,6q,66) T
in writing:
v KV
c=Lksge oo —
B 2 p.r2

On an airplane not provided with an automatic pilot, we had

of
2 -V ¢
. du uc;535
- Bf5_V S
ow _uC;g 3
of
-2 - Y cl
dq -p.c;?c5
of3

|
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The addition of a stabilizer semsitive to the angular acceleration
will produce the same effect as that which one would obtain by multiplying

sieite 8y, Dy and cg by 1/1 + ¢ which is < 1 when K> O.
[ J e

‘.:...

e oo The apparatus considered would reduce the stability.
® @ [ ]

* ]

There is nothing surprising in this conclusion.

We have seen that a stabilizer sensitive to 8, defined by

a _ . gy
3s dn, deé

increases the stability of the motion.

. Now,
2
Q' =39 42
It~ ap2
’ The stabilizer defined by
K = - EEM dn
on dq'

is therefore sensitive to a variable which is opposed to 8.

The action of the visualized instrument will actually be opposed
to that of an apparatus recognized to be good. The result reached is
unavoidable.

D. Piloting as a function of d0/dt.- Application of the general
formulas makes us state again a fact obvious a priori: piloting as a
function of de/dt is nothing else but a piloting which is a function
of g, already examined previously.

E. Conclusion.- The foregoing investigation shows that practically
only one law of piloting as a function of the derivatives seems of
interest, namely the first.

This stems from the fact that the fourth of the effective stabilizers
which are equivalent to the apparatus utilizing the acceleration u'! is
a stabilizer which is a function of the angle of trim acting in the
favorable sense.

‘ We see actually that for a sensitivity such as Bu' = 5m/sec?
which produces a deflection B®n = -2°, we would have under the assumption
that OCM/dn = 0.015 (angles in degrees as before):
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BCM dy
- ' TN s = =Ue =
e’e’’ K aTl du! 0.015 X 2/5 0.006
:.:::. and
ee oo
Se e Ad3 = -g K' = +0.06

The sensitivity of the equivalent trim stabilizer is not negligible,
and the effect of this component can make itself felt.

R Obviously one must ask oneself if that effect will not be overcome
by the effect of the stabilizer which is a function of the velocity which
acts in the unfavorable sense.

We see immediately that this effect will be small.

In fact
) 2
faz = K L= o)
ne
2
L2=:gl_=gxi_
ue gic C,
whence
. K ajg
= >
8 T T,
for
K = +0.006
C, = +0.k

one obtains

-0.006 X 0,1 X 10
Naz = = -0.015
5 0.k

an effect which appears relatively small.

. It should be remarked that this effect can easily be cancelled by
compensating it by a component of piloting as a function of the velocity.

Actually, there does not exist any apparatus directly measuring the
p derivative du/dt. In order to obtain it one must detect u, then 4if-

ferentiate the obtained result, for instance with the aid of an electric
differentiator.
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Hence it is possible to extract from the measurement of u that
which 1s necessary to cancel eventually one of the four effects which

are functions of u'.
6. Calculation of the Flight Paths After Initial Perturbation

A comparative calculation of the theoretical flight paths, after
various initial perturbations, has been performed by Neumark.

We borrow from his report the figures which form the object of
plate 39.

These figures describe the behavior of an airplane:
(2) Flying with controls fixed
(b) Piloted by an instrument which is a function of ©

(c) Piloted by an instrument which is a function of u and u'
undergoing an initial perturbation

(1) of velocity Bug (horizontal gust)
(2) of velocity Swo (or angle of attack 6a0)(ascending gust)

(3) of angle of attack Bay and of trim 88, (actual
displacement of the airplane)?

The roots of the characteristic equation are characterized by the
following numerical values.

For the airplane without automatic pilot

kK = =3.165 k'

~-0.025

0.541

For the airplane with an automatic pilot which is a function of ©

o = 2.65% o?

x = -2.621 k' = -0.569

o= 3,793 o' = 0.341

i

The original report of Neumark gives the curves for one single per-
turbation &6. These curves are without physical significance, and we
prefer to add the curves resulting from the perturbations &q = -8w/V and
-86, in order to obtain an initial perturbation which is more complex but
has a physical significance: Displacement of the airplane in space,
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For the airplane with an automatic pilot which is a function of V
and dv/dt

[}
"

-2.610 k! -0.580

0.765

K

o = 2.816 a!

The curves relating to the airplane flying with controls fixed are
comparable to those we have calculated.

Those relating to the airplane provided with an automatic pilot
exhibit a transfer of damping from the rapid oscillation toward the slow
oscillation.

The examples calculated by Neumark show that:

() In the case of the initial perturbation Buo (horizontal gust),

the stabilizer which is a function of the trim opposes the nosing up which
constitutes the natural reaction of the airplane without stabilizer; hence
the perturbation ®u diminishes more slowly than it would if the airplane
were not provided with an automatic pilot, but the motions of long period
are, nevertheless, better damped.

For the same initial perturbation, the stabilizer which is a function
of the velocity and of the derivative gives to the secondary perturbation
of angle of attack a complicated form which the author has studied in more
detail in the original report.

(b) In the case of the initial perturbation (8ag) = -8wo [V

(ascending gust) the stabilizers both diminish the rapidity of the decay
of ba.

This is caused by the fact that the decay of ®a is produced by
the expcnzntial term e“t; the transfer of a certain quantity of «
toward k' diminishes therefore the rapidity of the decay of a
perturbation.

(c) In the case of a displacement of the airplane in space the
stabilizer which is a function of 6 adds its effect to that of the
static stability.

Remark: The appearance of the diagrams is in good agreement with
a fact verified by experience and easily explained by the theory.

The automatic flight control does in no way reduce the vertical
accelerations undergone by an airplane flying in bad weather.
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These accelerations stem, in fact, from increments in 1ift, produced
chiefly by the modifications in angle of attack Ba due to the vertical
gusts.

No instrument diminishes the maximum ©®a corresponding to an instan-
taneous gust. All airplanes would be subject to the same accelerations
in the theoretical case of the instantaneous gust, whether or not they are
provided with an automatic pilot.

If the gust ba is established progressively in a fraction of a
second (that is, during a time comparable to the duration of disappearance
of ®a by the damping of the rapid oscillation), the graphic construction
of Carson shows that the stabilized airplane - for which b®a diminishes
somewhat more slowly - is finally subject to perturbations of the angle
of attack (and consequently to accelerations) of a higher degree than a
nonstabilized airplane.

This is a consequence of the fact that one has attempted to transfer
the damping from the rapid oscillation to the slow oscillation.

7. Stabilizer Acting With lag
.
Principle: The detector, sensitive to an arbitrary variable Yy,
actuates the control by the intermediary of a servomotor.

In 2 simplified calculation one will write that, due to the inertia
of the apparatus and the free play, the control occupies at the instant t
the position determined by the magnitude the variable y possessed at the
instent t - n, that is, n seconds earlier.

One may write

dy

Yt-n™ Yt - g

The motion of rotation of the airplane is determined by

The first term of the second member correcpond
the airplane without stabilizer.

to the motion of

%]

The second term defines the effect of & stabilizer sensitive to the
variable y, acting instantianeously.
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The third term represents an effect proportional to dy/dt, that
is, to the derivative of the variable Y.

oC oC
y:nzf_l[_v_ﬂ@lr]y: =g_v_[v__r4.@_n_]y.

one sees that everything occurs as if the airplane were provided, in
addition to the stabilizer sensitive to y, with an instrument sensitive
to the derivative of y, and of the sensitivity

Writing

|
to| +
2lg
215

- BCM_ILV BCM_Tl v
on dy' "o ay

Let us examine this effect when y 1is replaced, successively, by
each of the variables.

First case: Lag in the action of a stabilizer sensitive to wu, of

the power aSs‘

This effect is analogous to that of a stabilizer sensitive to the

acceleration
v—2 =xv
dn  du'

the sensitivity of which would be equal to

BCM@_ B

-nV =éTdu—+naj

S

that is, for which

KV=+n 338

n 8.55
v

K =

The effect of an apparatus sensitive to u', of the power KX, is
given to us in section 5.
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Replacing K by its value we see that the lag exerts the same effect
as four equivalent systems characterized by

Aa5 = a
Ab3 = bl 8zg N ——

AcB = a}s ny

- - g
AdB a55 n v cos 6

The determintal effect of the lag stems, above all, from the fact
that Adz has become < O.

Second case: Iag in the action of a stablilizer sensitive to w,
of the power st (bBS is assumed to be > O).

The same calculation indicates that the lag in the operation of the
stabilizer is equal to the presence of four equivalent stabilizers.

\
AaB = 32 bBS n ;Z
\'
Ab5 ==-b2 bBS n a:;
\'
A£3 = 'b5s n T
_ g .
AdB = _b35 n V sin €

Third case: Lag in the action of a stabilizer sensitive to q.

The calculation shows that, in this case, there is only one single
equivalent stabilizer. It is of the type AC3. Its action is equal to

A?S = -n(g/V)CBS

and corresponds necessarily to a reduction in damping.
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Fourth case: ILag in the action of a stabilizer sensitive to the
angle of trim 6.

This lag is represented by the action of a stabilizer sensitive to
the derivative of ©

vMdy o yMdy
on dg nvan de
Then,
a2 LMani _, Mgy
g dxV dn dxV on de

Everything occurs as if one had a stabilizer which is a function
of the angular velocity q, equal to:

Aes = -n(V/Z)dBS

The lag in the functioning of a stabilizer sensitive to the inclina-

tion 6 1is equivalent to a reduction of the damping coefficient c3z of
the airplane.

This effect may be numerically evaluated.

For instance, for

n = 0.3
d3s = 0.10
vV = 100
1 =10

one would have a reduction in

C3 of 0.3 which a normal airplane can
generally stand.
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CHAPTER XVI

EFFECT OF THE AUTOMATIC PILOT ON THE LATERAL MOTION
1. Combinations to be Considered

The lateral piloting may be done by actuating the ailerons and the
rudder, either as a function of the deviations in the variables

angle of sideslip B = v/u = v/V

angular velocity of roll p

angular velocity of yaw r
or as a function of the deviations in the angles

@ lateral inclination

¥y course or azimuth
which define the angular position of the airplane in space,

Each of these piloting parameters can actuate one or the other of
the two controls, or even govern them both simultaneously.

Each one of the lateral controls exerts, on the other hand, an effect
around the two axes OX and O0Z.

For an aileron deflection Af, the rolling moment dCL/dg At 1is the

principal effect, the yawing moment dCN/dg NE 1is a secondary, nonneg-
ligible effect.

For a rudder deflection Af, the yawing moment dCy/df AL 1is the
principal effect, the rolling moment ch/dg N is a secondary effect.

As a result, one has to consider, in the general case, a large number
of effects.

When the piloting parameters are B, p, or r, the automatic
apparatus modifies effects naturally exerted upon the airplane, according
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to the aerodynamic characteristics of the plane. The actions exerted
are defined by the table:

,o*® oCy d oCy a ac
etes’ a. = - —L —é- + —k —C- because 8y = = —L
es % ap X% ap 3B
» L ]
) dCy d&  dCy d 3¢
a = - —-}-‘-—§+——N——C— because a = . =X
3s o dap X ap 3 B
) oCp, dg oC 3Cy
bog = - -Y(-——L— —g— + ad 8 d—g- because by = - —=
s'9t dp o 4B oD
Cy @ oCy d oC
b =—1——Il-—§+—ll— because b =-—7V-Ii
3s s\t dp X 4B 3 ow
oCy 4 oCy d aC
c2 =-l——L—-§-+—L—C because c2=-—L-
s s\o¢ dr o ap dp
oCy d oCy d oC
CBS=—BSL—-K—-§-+—N-—§- because c3=-—n
ot dr & ap 9
When the law of deflection depends on ¢ or V, the automatic
i stabilizer introduces effects which do not exist on the airplane flying
with controls fixed. These effects can be characterized by factors
which are written, in the most general case, when all effects add up:
d = - _af.li g_é_ + a_C_I.'. 9&
2s 3 dp of do
3s Ot dp of do
28 3t dy ot av
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In the preceding expressions, the first term of each parenthesis
represents the effect of the ailerons, the second represents the effect
of the rudder.

In each of the products, the first factor characterizes the aerody-
namic effect of the control; the second factor characterizes the opera-
tion of the automatic pilot.

The action of the different laws is investigated for each of the
two groups in the following sections.
2., Stabilizers Which Are Functions of the Variables
of the First Group

As an example, the order of magnitude of the complementary terms
is indicated below for a particular case.

Let us assume that the effectiveness of the controls is defined by

ailerons OCL/ot

0.005 (angle ¢ in degrees)
0.172 (angle in radians)

rudder OCy/3 = 0.0015 (angle { in degrees)

= 0,086 (angle in radians)

The secondary effects are always a fraction x or =z of the
principal effects:

XL _ 4 CL
ot ot
Sy _, Ex
o

X

we shall assume them to be zero.

If we suppose a displacement of 1/2o of the ailerons or of the
rudder for 1° of sideslip, we obtain

-0.172 x 0.5 = -0.036

i

8og

a -0.086 x 0.5 = -0.043

I

s
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- A displacement of the aileromns of 50 for an angular velocity of roll
of 57° 3' per second, and a displacement of the rudder of 50 for an
e angular velocity of yaw of 57° 3' per second give, respectively, for
o V/s = 10
rece:

p‘oo. b2

0.005 x 5 X 10 = 0,15

]

0.0012 X 5 x 10 = 0.06

CBS

The investigation of the automatic pilot which is a function of
- the variables B, p, or r will be reduced to a discussion of the
roots of the system, for modifications in the magnitude of the parameters

as and az b, and b5 cor and 3
In chapter IX, we have briefly indicated the effect of these param-

- eters. Let us now treat, as an example, the case of a hypothetical air-
plane which has a certain number of invariable characteristics but for

which each of the parameters 85 ai, b2, b3, o) 03 may vary
separately.
Invariable characteristics
A p o= 28.2
C, = 0.40
- sg/rga =10
sg/rgc =L4,2
s/c =3
Combinations investigated
an a3z bo b5 Co c3
variable -0.04 +0.24 -0.017 +0.056 +0.045
-0.04 variable id. id. id. id.
id. -0.04 variable id. id. id.
id. id. +0.24 variable id. id.
id. id. id. -0.017 variable id.

id. id. id. id. +0.056 variable
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. We find for the roots A:

.:.::. Variable parameter a,

"etes’ 0 -0.72 t 2,081 +0.786  -6.28

%% -0.02 -0.675 t2.14 1 +0.4% -6.28

vl -0.04 -0.620 * 2.23 1 +0.0162 -6.3k
-0.06 -0.57T7 t 2.30 i -0.011k -6.41
-0.08 -0.531 t 2.3571 -0.0354 -6.48

Variable parameter 83

| 4+0.02 +0.325 t 0.4131 -2.58 -6.34
! +0.01 +0.069 * 0.5%321 -1.38 -6.34
‘ +0 -0.431 * 0.9081 -0.378 -6.34
-0.02 -0.605 £ 1.67 1 -0.0341 -6.35
-0.04 -0.627 ¥ 2.23 1  +0.0162 -6.35
-0.065 -0.636 t 2,75 1 +0.0423 -6.36

Variable parameter bo

0.204 -0.55 t 2.38i +0.0182 -5.67
0.234  -0.629 t 2,031 +0.0162 -6.33
0.264 -0.627 * 2,221 +0.0147 -7.12

Variable parameter b3
Completely insignificant effect
-0.0108 -0.617 t 2,221 +0.0165 -6.35
-0.0168 -0.620 + 2.23i +0.0162 -6.33
-0.0228 -0.622 t 2,261 +0.0158 -6.32

Variable parameter co

2.22i -0.00364 -6.35
2.23i +0.0162 -6.33
2.251 +0.0355 -6.30

0.0413 -0.600
0.0563  -0.620
0.0713 -0.64

i+ o+

Variable parameter c3

0 -0.31 T 2.72,11 +0.090 -6.31
‘ 0.03 -0.515 t 2,051 +0.035 -6.33
0.4k -0.627 t 2,231 +0,0162 -6.33
0.60 -0.738 t 2,204 -0.005 -6.33
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The practical cffects would be as follows:

(a) The automatic pilot as a function of the angle of sideslip.-
This mode of piloting will produce the same effect as an increase in
dihedral of the wing or in the power of the vertical tail depending on
vhether the ailerons or the rudder are actuated.

This mode is little used.

If one had to deal with a badly designed airplane represented by
a coordinate a, and az situated in a zone of instability or only

too closely to the limits, one could visualize a correction of the
defects by an appropriate stabilizer 8pg O azg.

However, so far one has always preferred to modify the airplane
itself.

(b) The automatic pilot as a function of an angular velocity.- In
principle, byg and Czg iacrease Al, that is the total damping avail-

able - but whereas b2s increases particularly the root %h which can-

not make any use of this increment, the effect of C3g is distributed

between the oscillatory motion and the spiral motion, and can exert a
useful effect.

The terms b3s and Cog Which are not to be found on the diagonal
of the determinant and do not affect Aj, are only of little interest.

3. Automatic Pilots Which Are Functions of The
Variables of the Second Group

We shall first define the order of magnitude of the complementary
terms.

Let us assume that the aerodynamic effectiveness of the controls
is the same as in the preceding section.

We shall limit ourselves at first to simple cases:
Ailerons deflected by 1/20 for 10 of lateral inclination;

Rudder deflected by 1/2° for 1° change in azimuth
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* One has
‘L?::‘ dp = 0.172 X 0.5 = 0.086
:.:..' ez = 0.086 x 0.5 = 0,014.3

Iet us write the characteristic determinant of the system of equa-
tions of the lateral motion in its general form, that is, incorporating
in it the terms in d2, d3’ €5) e3 which are zero when the airplane

flies with controls fixed but which cease to be zero when the lateral
- controls undergo deflections which are functions of @ and V.

Iet us recall or set

- uC
by = -w —
1 v
= 4 Ec—
Cl 1 V
- c He
d] = gcCo8 Q= =g —
\'4
L]
. by, = - —
b v
- _ HC
05 v
i The condition
al+}\ bl Cl dl 0
b bs bs b
S8 bt A  H-cp Ha, e
g T'a T'g T a T a
b bs bs bv bV =0
— a — b - cz + A —_— d3 — e
2D 2 2 2 5 2 2
c c "¢ T e ¢
0 by 0 A 0
0 0 C5 O A
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is identical with

2 7\h 7\5 B)\2
?\+Bl +B2 +3 +B)+)\+B5=O

Comparing with the development carried out in chapter IX, and

replacing b by 2s, one obtains

Bp=4
2sc 2sc
B2=A2+u——2—d2+uTe5
a e
_ 2sc 2s? 2sc 252
B5-A5+u—2——(e\1+-é—b3>d2+u-—2——<al+—2—b2>e3+
Tr ¢ r c Tr ¢ r-a
250( 2s° >d N 250 Eseb
g —m—\|-—2=c - == c
2 2 72 2 2 2
%\ 'a 3 r g\ % 5
= A+ 2sc 2s° 28 axca)dns +
By = Ay + 15— 5 C3 - 5830 %2
rcg rce r“e

r.\ra T g
2sc (2s 252

¥ -—= azb, - a, T b,le. +
r2 <r2c 371 1. 3> 2
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by writing directly

- . HC uc e = -
c5dl = v g v V2 guc Couc

The presence of the factor c¢ (chord of the wing) gives rise to
the same remark as was made already in section 2, chapter IX.

Let us remark immediately that the equation is of the fifth degree
only when at least one of the quantities e, or ez is different from

zero, that is, when one of the external actions is a function of V.

On the other hand, none of the terms in d,, dj, ep, Or ez is
to be found on the diagonal.

These terms do not contribute to an increase in total damping and
can only produce transfers of damping from one root to the other.

Let us retain, as the only variables, the quantities dp, d5, €p,
€z and write the coefficients Bi’ BE’ B3’ Bh’ and 35, giving to

the other characteristics the values of the previous example.

We then obtain

By =7.55

B2 = 13%.15 + 1736.2 + 10)4'63

By = 33.h1 + 224.5d, - 155d3 + 46.hey + T710.kez
B, = -0.544 + 785.2d2 - 787.7d3 + 27.8e2 +

Bg = -288e, + 28863 + 5080(d2e5 - e2d3)
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Let us study the characteristic equation in the following cases:
d, =0 0.04 0.08 0.16

d3=0

eee oseoe o see oo see s sss e ees o 08 @08 e ees s

d, = -0.04 -0.02 0 +0.01

see eece ss e S GE See P ee S0 EEs s ee S0P G066 o8 ° 60 sees seoe

e, =0 +0.05 +0.10 +0.20

ep = 0 0.025

The roots of the characteristic equation are:

Variable parameter do

dp M2 A5 Ny

-0.627 t 2.231 +0.0162 -6.33
-0.742 £ 2,251 +0.845 -6.915
-0.845 * 2,171 -2.932 1.731
-0.770 t 2.021 -3.007 4,201

locNeoNeoNe

= O
N
1+ 14 1+
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Variable parameter d3

ds Moo A3 SN
-0.04 -0.1385 t 2,281 -0.93%8 -6.33
-0.02 -0.3575 t 2.21i -0.510 -6.33
0 -0.627 t 2,231 +0.0162 -6.33
+0.01 -0.750 t 2,251 +0.263 -6.32

Variable parameter ez

ez IS A3y A5
0 -0.627 t 2,231 +0.016 O -6.33%
0.05 -0.512 ¥ 3,021 -0.133 t 0.416i -6.33
0.10 -0.43%F ¥ 3,861 -0.176 t 0.517i -6.32
0.20 -0.41 *5,00i -0.212 t 0.488i -6.32

Variable parameter en

1,2 p) L 5
0 -0.627 t 2.231 +0,016 0 -6.33
0.025 -0.56 t 2,201 +0.84 -1 -6.32

These roots correspond to the following practical effects:

Effect of do:  When the stabilizer which is sensitive to @

operates the ailerons and these latter act without secondary effect,
we find:

(1) That the oscillation subsists while undergoing progressive
modifications.

(2) That the root Ny which determines a strongly damped rolling

motion and hence is negatlve begins to increase in absolute value - which
is normal because the visualized mode of piloting consists precisely in
opposing the rolling motion. But since the sum of the roots is to remain
constant, the root %3 which characterizes the spiral motion must undergo
positive increments, and the pilotage visualized must necessarily produce
spiral instability.

For sufficiently large values of dp, the roots A3 and N, are

combined into a pair of complex roots, and one then encounters a damped
oscillation. -
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Effect of dx: The dz corresponds in principle to the maneuver
of the rudder under the effect of the lateral inclination .

d5 > 0 corresponds to a maneuver in the direction tending to make
the airplane rotate about the wing which is lowered - which is unfavorable.

The direction in which such a control should act corresponds to

d3 < 0. 'The calculation verifies this fact.

An effect d5 may also be produced as a secondary effect of the

ailerons when these are actuated as a function of the deviation in Q.
This d5 is then > 0 and is unfavorable.

Effect of e5: This effect is perhaps the most important one that

can be produced by the automatic pilot.

In fact, the airplane does not have any sense of azimuth, and the
pilot, in flight, must constantly correct the heading.

A stabilizer applying to the rudder a deflection which is a function
of the change in azimuth imparts to the airplane a new sense which it
does not ppssess naturally.

One knows that the equation has become an equation of the 5th degree,
The calculation shows that the root Ay of the airplane without stabilizer

appears again in the equation of the 5th degree.

This is an interesting finding which facilitates the calculations,
for when this root is known, one can immediately reduce by 1 the degree
of the equation of the airplane provided with the automatic pilot.

The root %5 which defined the spiral motion is combined with the

new root introduced by the stabilizer to give a new oscillatory motion
which is rather slightly damped.

In proportion as the power of the stabilizer grows, the damping of
the former oscillatory motion decreases.

The characteristics we are setting up here for a particular example
have been encountered in other particuler cases by other authors, notably-
by Imlay.

One may assume that for an airplane which presents normal charac-
teristics, the phenomena found above are general.
’
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Effect of ep: The maneuvering of the ailerons as a function of

the change in azimuth would produce and effect ep.

An effect eo > 0 produces a detrimental action because there

exists a positive root much larger than that found for the same airplane
when not provided with a stabilizer.

The reason for this fact is easily found: for an increment 4y > O,
the stabilizer furnishes AL <O.

If the airplane has turned to the left, the effect e, would make

it incline toward the left. It may easily be seen that this effect
necessarily contributes to an increase in spiral instability.

An effect e, > 0 may be produced as a secondary effect by a rudder

controlled by the change in azimuth. This effect exists 1f the vertical
tail is very aigh.

4, Secondary Effects

We state that the two normal types of automatic pilot, namely
do> >0 and ez > 0, can both produce an unfavorable action due to the

secondary effect of the controls.

It may be useful to verify that these secondary effects are always
less important than the favorable principal effect.

Let us examine the roots corresponding to two combinations:

1]

do = 0.08 with (as secondary effect) ds = 0.01

e 0.10 with (as secondary effect) e 0.025

>3 2

and let us compare them with the roots correspondlng to the same principal
effect, without secondary effect.

In the case of the ailerons maneuvered as a function of ¢, we find
-1.13 t 2.2251 -2.647 T 1.321
while we had, in the absence of a secondary effect

-0.845 ¥ 2,171 -2.9%32 £ 1.731



pe

The reduction in damping of the first oscillation is noticeable.
In the case of the azimuth stabilizer we find
-0.44 ¥ 3,861 -0.175 t 0.451i and -6.32
while we had, without secondary effect
-0.434 * 3,861 -0.176 t 0.517i and -6.32
The difference is imperceptible.

These findings show that - at least in the example investigated -
the secondary effect of the controls is not of a nature as to modify our
conclusions.

5. Stabilizers Which Are Functions of the Derivatives

The problem of the lateral stabilizers sensitive to the derivatives
of the variables determining the lateral motion may be treated like that
of the longitudinal stabilizers.

One finds again absolutely parallel results: one sees for instance
that the stabilizer which is sensitive to the derivative of the angle of
sideslip is equivalent to four elementary stabilizers which are functions
of the angle of sideslip, of the angular velocities p and r, and of
the lateral inclination.

The most interesting result to which this examination leads concerns
the effect of the lag of the stabilizer which is a function of the
azimuth V.

A lag n in the operation of the stabilizer e3 produces the same

effect as if one were adding a stabilizer which is a function of the
angular velocity r, and of the power

It is equivalent to a reduction of the damping coefficient. This
effect could be considerable. In fact, for n =0.2, V =100, s =10
ez = 0.10 we would have:

Acz = -0.2

while we know that the c3z is of the order of +0.05.
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There is therefore reason to ask what the effect of a reduction,
or even of a change in the sign, of the damping coefficient c3 will be,

in the case of an airplane provided with a stabilizer of the type eﬁ,

sensitive to the azimuth.

We performed the calculation for ez = 0.10, taking a series of
values of (c5 + AC3)'

The result is as follows:

Coefficients of the equation of the 5th degree

+0.04k4 7.55% 23.512 104.28 38.456 28.8
0 6.84 18,742 101.862 36.51 28.8
-0.005 6.40 15.5 100.50 35.3 28.8
-0.05 6.04 13.23 98.75 34,2 28.8
-0.10 5.24 7.78 95.77 32 28.8

One of the roots is necessarily real; its value is practically the
same in the five equations. Assume %5 to be this root.

Dividing by (% - %5), one obtains an equation of the Lth degree
which leads to the following roots:

Oscillation arising Rolling
Value

Pure oscillation from the spiral motion

of (cz + AEB) motion A5
0.045 -0.434 T 3,861 -0.16k t 0,552i -6.30
0 -0.1 *t 3.85i -0.176 t 0.517i -6.32
-0.025 +0.08 T 3841 -0.165 t 0.5251 -6.32
-0.05 +0.295 t 3,83 -0.164 t 0.53 i -6.31
-0.10 +0.694 T 3,751 -0.165 t 0.53 i -6.30

The two oscillatory motions are determined by the equation of the
Lth degree. These equations are characterized by a coefficient Aj

continually diminishing in proportion as c5 + Ac5 decreases

The total available for the damping of the two oscillations keeps
on diminishing, and the pure oscillation may become unstable.
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This example shows that a lag in the operation of the directional
stabilizer will impart to the airplane a steady yawing motion.

S % If this instability is of a high degree, it will not suffice to
sede attempt to modify the distribution of the damping between the two
E’.':. oscillations. .

After extracting from -B; the root )5, the remaining available

§ amount is not sufficient to damp the two oscillations, whatever the law
‘ of distribution.

It would have to be possible either to reduce the root %5, or to
increase the total available damping.

Unfortunately, it does not seem possible to reduce the root K5,

and the most effective solution consists in increasing the c3 by
adding a mechanism for controlling the deflection of the rudder as a
function of the angular velocity r, that is, by augmenting artificially
the damping of the rolling motions.

- The characteristics which the calculation indicates for the motion
of an airplane provided with an automatic pilot sensitive to the
azimuth ¢ (whether or not there is a lag in the operation) show that
there always exists a serious risk of undulatory motion.

The well-known practical difficulties encountered in creating and
operating these instruments constitute a very clear demonstration of
the theoretical conclusions.

Iet us remark finally that when the instability is not too pronounced
and it is sufficient to modify the distribution of damping, several experts
suggest utilizing the effect of the component dz > O for this purpose.
This exerts a powerful effect on the transfer of damping from the spiral
motion toward the oscillatory motion; and this means is usable for sta-
bilizing the latter motion after the spiral instability need no longer
be feared - which is the case of an airplane provided with an automatic
pilot of the type ez .
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CHAPTER XVII

THE AUTOMATIC PILOT AS A FUNCTION OF THE
INTEGRAL OF THE PERTURBATIONS

1. Statement of the Problem

The piloting parameters studied so far were parameters in some way
intrinsic to the airplane.

The airplane piloted according to these parameters is insensitive
to certain factors which are, however, very important - namely the
entraired velocities of the surrounding medium, if these velocities have
a constant magnitude.

The airplane which passes abruptly from a zone Zl where the atmos-
phere is motionless to a zone 22 where the air has an upward velocity W

is, at the instant of this passage, subject to a perturbation ®w and
reacts abruptly; however, when the transitory period has come to an end,
the plane will return to a position of equilibrium characterized by the
same relative velocity, the same angle of attack, and the same trim as
in the initial state. The entrainment velocity simply adds to the rela-
tive velocity, and the trajectory becomes an ascending one without dis-
turbing the power-equilibrium conditions.

If the airplane is provided with instruments of automatic flight
cantrol sensitive to the perturbations ©®u, ©®w, and 6, this equipment
will give rise to reactions during the transitory period but it will be
incapable of discerning a difference between the final state of equilib-
rium and the initial state.

Everything we said here about the lateral motion applies likewise
to motions with respect to the surrounding medium. If that medium is
possessed of a horizontal entraimment velocity - the wind - the motion
of the airplane with respect to the ground is the sum of the motion with
respect to the surrounding medium and that of the entrained velocity,
and the instruments sensitive to the perturbations examined so far are

incapable of detecting the effect exerted on the flight path by a constant

wind.

By means of electromagnetic fields, it is possible to set up in
space reference lines fived to the ground. It is possible to detect the
deviations with respect to these reference lines and to maneuver the
controls accordingly.
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Thus one realizes a new class of instruments for automatic flight
control.

2. Flight Controlled by Radio Reference Lines
One may visualize:
(a) Flight followirg a parallel beam
(b) Flight in a beam converging at a point

In the case of parallel reference axes, the airborne receiver gives,
by hypothesis, an indication proportional to the distance y between
the airplane and the axis.

In the case of a converging beam the center of which is at the
distance D from the airplane, the receiver furnishes frequently the
angle €; however, since tan e = y/D, this indication is equivalent to
that furnished by a receiver which gives the deviation y but is of a
sensitivity varying with the distance D.

We shall not attempt to find out by what means the intensity of an
electromagnetic field can be transformed into an input signal x of the
servocontrol. If we assume that this part of the operation takes place
without lag, the functioning of the servocontrol will be determined by
the characteristics of the power relays and of the servomotor used.

The point we are investigating in the present chapter is the effect
of the piloting which is a function of references fixed to the ground on
the motion of the airplane.

3. Longitudinal Motion

After a line of reference has been set up, the problem posed is to
fly along this line, utilizing the indications of an instrument which
detects the deviations in height 2z with respect to the latter. (See
fig. 35.)

This deviation =z constitutes a new varieble, defined, in the case
of a horizontal reference line, by

dz = V sin 7 dt

z =b/\V sin T dt
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It is proportional to the integral of the angular deviation of the
flight path.
Now
T =-(0 + a)

Approximating the angles by the sines, we have

dz
22 = V(8
V( + a)

In automatic flight control, the deflection of one of the two longi-
tudinal controls is linked to 2z by a law of proportionality. If the
actuated control is the elevator, the moment M 1is a function of the
new variable =z, and one has

d
a% = f}(u)W)Q)e;z)

On the other hand, the expression

dz

T -v(e + a)
becomes a new function f5
dz
== f5(u,w,6)

and the motion of the airplane is determined by a system of five linear
equations.

Since the derivatives

af3 af5 af5 Bf5

3z ou ow P

are different from zero, the characteristic equation is of the fifth
degree and is written
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of of of of

1 _4 _1L L L 0
du dw dq de

af2 af2 af2 Bf2
£ —_ - X — — 0
du dw dq as
3 o) of

) s 5 TV S|
du dw dq de dz
0] 0 -1 -X 0
s o5 0 R
du dw ade

The type of piloting which operates by actuating the elevator, as
a function of the deviations in altitude, with respect to a reference
line, is, in fact, not very logical, for the varisble directly controlled
in the steady-state condition by the elevator is the velocity along the
flight path.

The slope of the flight path is determined by the elevator, in the
equilibrium condition, only in an indirect manner, through the effect of
the excess of power. The piloting with a view to maintaining the airplane
on a flight path defined in altitude should logically take place by acting
on the control the effect of which determines directly the upward velocity,
that is, the control of the engine power setting.

Such a law of piloting would be necessarily defined by a relation
between the thrust T and the deviation 2z detected; it will produce
a modification of the moment M only if the engine power setting exerts
a secondary effect on the Cy-

For an airplane piloted in this way, the function £y will depend
on z,

du

at = fl(uyw:(be)z)

the derivative afl/BZ will always be different from zero; the deriv-

ative Bfilaz also will be different from zero when the secondary effect

is not zero. The characteristic equation likewise will be of the fifth
degree.
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4. Lateral Motion

The detected deviation y <1s the horizontal distance with respect
10 the reference line.

Let us assume that this indication is utilized for the control of
the rudder.

In the case of an ideal control mechanism
=kXxXy

the moment N 1is a function of y and the equation of equilibrium
about the axis 0Z 1is written

d
a}'t" = fa(V;P,r;(P,W;Y)

The derivative dr/dt is a function of a sixth variable, the dis-
tance Y.

In order to simplify the notation, we assume that the azimuth of
the axis of the beam is the origin of the V; we have therefore, taking
into account the possible sideslip:

V sin(y + B) dt

JfV sin(y + B) dt

dy

"

y

and we achieve a piloting which is a function of the integral of the
perturbations of the variables and B.

We may write, on the other hand

%y‘f =V Sin(v + B) = f6(v,p,r,CP,¢f,y)

ani we have a sixth equation connecting the derivative of the varisble ¥y
with one of the five other variables.
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The characteristic determinant becomes

ov dp or P oy
.a_f_g_ éf_‘g-x _a_ﬁg .ai‘?. .a_fg. 0
dv op or P oy
ov op or o oy dy
=0
. W T
ov op or P oy
dv Jdp or P oy
of of
6 0 0 0 _6 -X
v 5
ofz  Ofg ofg
—= are different from zero, the character-

and since

5 v My

istic equation is of the sixth degree.

5. Principal Properties of These Types of Piloting

The piloting as a function of the references fixed to the ground
has three essential properties:

1. It is equivalent to the piloting which is a function of the
integral of the deviations of one or of several intrinsic variables.

2. It raises the degree of the characteristic equation by one.

3. It permits removing the airplane from the influence of the
entrained velocities of the surrounding medium. The flight path may -
within certain limits - be rendered independent of these entrained
motions.

The study of the properties of the airplanes piloted in such a man-
ner could be made by development of the characteristic equations. How-
ever, a superficial examination is sufficient to show the defect of any
piloting which is a function of the integral of the deviations: the
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motions are insufficiently damped and become easily unstable if the sen-
sitivity of the instruments is too high.

In fact, let us examine what takes place in the case of the lateral
motion.

If the airplane is at a given instant to the right of the axis
(Ay < 0), the sutomatic pilot will receive a command (AN > 0) propor-
tional to 2y under the effect of which it will turn to the left.

This command will be cancelled only at the moment when the airplane
is on the axis. Under the effect of the previously accumulated commands,
the airplane will have carried out a considerable rotation, and it will
not again contact the axis tangentially with an infinitely small V.

Tt will, on the contrary, intersect the axis at a rather large angle 1V,
resulting from the integration of the &y, and will pass to the left of
the reference line.

After the airplane has passed beyond that position, the same phenom-
ena occur in the opposite direction, and the motion may be amplified.

The experience acquired in the execution of blind landings shows
that this is really so. One may consider that the human pilot who
attempts to maeke a blind landing by deflecting the rudder according to
the indications of the vertical needle of his ILS receiver, achieves
manually the piloting defined above, since the needle indicates the
lateral deviation Y.

An airplane thus piloted frequently takes up a flight path which
becomes more and more undulatory in proportion as the airplane approaches
the destination. This stems from the fact that the sensitivity of the
receiver grows in proportion as the airplane approaches the transmitter.
Equal deviations of the needle correspond to increasingly small devia-
tions B®y, and when the pilot endeavers to fit his movements to the
indications of the needle, he finally makes the airplane execute an
unstable motion as a result of excessive sensitivity.

The theoretical study of such an apparatus could be made by keeping
the system of equations in the linear form but giving to the sensitivity
factor included in 6f3 Jdy a series of increasing values corresponding

to different degrees of the progress of the airplane along the landing
flight path.

The search for a general expression for the sensitivity factor as
a function of time would make Bfi/ay a function of the independent

variable, and would change the type of the equations.
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6. Possible Combinations

The type of piloting sensitive to the distance relative to a refer-
ence line can be combined with a type of piloting sensitive to the angu-
ler deviation of the airplane with respect to the direction of this
reference line.

Several cases can be considered for longitudinal piloting: hori-
zontal alinement, angular alinement.

Tte case of horizontal alinement is rather theoretical; actually,
the case of angular alinement is the real case. If the adjustment of
the controls and instruments is such that the conditions of equilibrium -
when the airplane follows exactly the prescribed flight path - are satis-
fied by deflections zero, one can visualize the following effects:

Control of elevation dependent on the deviation &8;

Control of power setting dependent on the deviation ®&z; or else,
control of elevation dependent on a combination of the deviations &6
and bz.

For the lateral piloting, the case realized in practice is the one
where the rudder is actuated as a function of &y and B&y.

Under the assumption that the origin of the V¢ corresponds to a
particular reference line, and that the y «re positive when the air-
plane is to the left of the reference line, the law of piloting becomes

8¢ = Kby - Kby

The theoretical study shows that one can realize favoresble flight
paths by a suitable choice of the sensitlvities Kl and KE‘ These

trajectories improve still more if one adds & pildting component which
is a function of r.

However, we see immediately that in case of lateral wind of a
velocity W the law of piloting does not permit maintaining the air-
plane on the reference line. In fact, since W/V is the crab angle,
the rectilinear flight aiong the reference line, at a distance y = o,
is not feasible unless the airplane adopts a course equal (in absolute
value) to the angle of sideslip W/V, and maintains this course
constantly.

This implies the combination

dt = 0 By = W/V 8y = 0
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which can be realized only if the pilot = knowing the velocity component
W of the wind and the angle of sideslip - modifies the adjustment of
the instrument by displacing in some manner the zero point of the V.

Without an adjustment of the automatic pilot to take the wind into
account, the airplane will necessarily follow a flight path showing
constantly deviations &y and Bdy. )

T. Automatic Landing

Piloting as a function of terrestrial references has the principal
aim of permitting the realization of automatic landing.

From the longitudinal viewpoint, the problem consists in following -
with deviations in height not exceeding 10 meters - an inclined reference
line which one can, in a first solution, assume to have constant slope.
Actually, this slope is not necessarily constant, and 1t would be better
to define in space a trajectory identical to the one the pilot imposes
on his airplane when he makes a visual landing.

Experience has shown that it is actually not practical to control
the slope of the flight path by means of the elevator, because the start
of the descent of an airplane can be accompanied by an increasse in veloc-
ity along the flight path which is sbsolutely inadmissible in the course
of the maneuvers preceding landing.

The devices which have been built avoid these variations in speed
by controlling the engine power. This control is indispensable if one
prescribes a constant velocity on a flight path of variable slope.

From the lateral viewpoint, the problem consists in guiding the
airplane along the axis of a runway, even in the case of a cross wind.
Since the width of the runway is of the order of from 80 to 100 meters,
the admissible deviation on either side of the axis cannot exceed
20 meters. ‘

Knowledge of the crab angle is indispensable, the heading imposed
on the airplane being equal to the azimuth of the runway, corrected by
the crab angle. However, this manner of proceeding 1s admissible only
when the correction to be applied does not exceed 6° to 8°.

We reproduce the recording of an automatic landing, effected by
means of a Lancaster airplane. Thiu disgram is taken from the report
published in 1946 by H. O. Pritchard.

The control apparatus was sensitive to by and ®y. At a distance
of 7 miles from the entrance of the runway, the airplane deviated fram
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it by approximately 1 mile, but its axis OY was reasonably parallel
to that of the runway. After the automatic flight-control apparatus
had been put in action, the airplane effected a change in course of
about 45° and approached the axis of the runway.

The curve seems to indicate the existence of an oscillation of very
long period (of the order of 2 minutes), which agrees rather well with
the concept of piloting as a function of the integral of a perturbation.
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CHAPTER XVIII

‘. *

oo APPLICATIONS OF SYMBOLIC CALCULUS
00

*% TO THE PRECEDING PROBLEMS

1. Usefulness of the Symbolic Calculus

The solution of the preceding problems is greatly simplified if
one resorts to operational or symbolic calculus.

(a) The integration of the differential equations defining the
motion as a function of the given initial conditions by the classical
method of Lagrange is simple in theory, but, actually, gives rise to

- very lengthy numerical calculations. The operational calculus leads to

a much speedier method.

(b) In the symbolic calculus, Duhamel's integral is, in general,
- replaced by an equivalent, but simpler, expression.

(¢) In a particular case, for example when a system defined by lin-
ear equations is subjected to harmonic, that is, sinusoldal excitation,
- the solution of the steady motion is found immediately, thanks to the
‘ symbolic calculus.
2. Principle of the Symbolic Calculus

Consider a function f(t) of the real variable t.

We put

o(p) = pf e Plr(t)at
0

an integral which is found in the second member being assumed convergent.

- This formula defines a correspondence between the functions £(t)
and ¢(p) and is symbolically represented by

o(p) c£(t)



238

It constitutes Carson's transformation.
The function @(p) 1s called the image of the function f£(t).

To Carson's transformation there corresponds an inverse relation-
ship: the formula of Bromwich

Ct+io

.1 pt 9(p)
£(t) ”2::1]0_100 e A

where the integral is extended to a line of the complex plane going from
¢ -ol to ¢ + i,

The function f£(t) is called the original of o(p), and the rela-
tionship is represented symbolically by

£(t) 2 o(p)

Any treatment of the symbolic calculus leads to the setting up of
tables of correspondence between lmages and originals.

If one treats a mechanical problem, one must, in general, determine
an unknown function of time f(t). The statement of the problem permits
the writing down of one or several relations between this unknown func-
tion f(t) and the given data of the problem.

The symbolic method permits the solution of such a problem by means
of three successive operations.

The first consists in translating the equation which defines the
devised function f(t) into symbolic language.

After this translation has taken place, the equation which trans-
lates the phenomenon into symbolic notation does no longer contain the
variable t. The latter is replaced everywhere by the variable p, and
the function to be determined is replaced by a function o(p).

The second stage then consists in determining @(p).

Finally, after the form ¢(p) has been found, one must proceed to
the third phase, that is, to find the original £(t) which corresponds
to it which can be done either with the aid of a table of correspondence
established once for all, or with the aid of the Bromwich-Mellin formula,
if the function ¢(p) and its original are not indicated in the tables.
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Since the purpose of the operational calculus is to simplify the
calculations, its employment is justified only if the determination of
o(p) 1is easier than that of £(t).

This is not necessarily the case but does occur always, if the func-
tion f(t) is a sum of exponentials.

Since the functions f(t) which are of interest to us are precisely
of this form, the operational calculus is a valuable expedient in the
investigation of the dynamics of an airplane.

The use of Bromwich's formula requires a thorough acquaintance with
the theory of analytical functions and the practice of manipulating com-
plex integrals.

It is generally not necessary to use this formula for the return
to the original. This return is achieved either by direct utilization
of the tables of correspondence, or - and this happens in the majority
of cases - by application of Heaviside's formula which we shall demon-

strate further on, without resorting to Bromwich's formula, by the simple
use of the table of correspondence.

Important remark: Carson's transformation (with its inverse formula)
does not constitute the only transformation one can visualize.

The relationship

F(p) =/;w £(t)e-Ptat

defines a transformation different from the preceding one, namely
Laplace's transformation.

Its inverse formula
Ct+ic
£(t) = él—f ePUr (p)ap
15 S .

is Cauchy's transformation

One notes that the formulas of Laplace and of Cauchy differ from
the formulas of Carson and Bromwich by a factor p.
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§ one has
) oo
P e
R £1(+)3[p #(p)-£(0)]
N In order to show this, let us write
‘ (o8]
- p9(p) = pzh/ﬁ e"Pte(t)at
0]
Let us integrate the second member by parté
2] [>0]
po(p) = [}pe'Ptf(ti] + pu/\ e PLei(t)dt
0 0
The term between brackets is equal to -pf(o).
- Hence

0

) po(p)-pf(0) = pdﬁ; e~Pr1(t)at

The second member is nothing else but Carsca's transformation
applied to the derivative f'(t). One has therefore exactly

£1(t) 2 p[o(p)-£(0)]

This formula expresses the essential property of the transformation
of Carson: The operation of the differentiation of f(t) is reduced
) to the multiplication of the image by p; however, this product is
- diminished by pf(o).

6th) Integration:

L d

If £(t)>9(p)
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image by
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0

f(t)dt

t

image of Jf
0

[+¢]

P f e-pPt
0

t

pfo £(t)at

us integrate by parts.

t
-e"Pt\‘/r £t
0

first term is zero.

integration of f(t)dt
P.
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o(p)

(t)dt = >

is written by definition

t

;

f(t)dt)dt

oo

f e~Plat
0

We obtain

(e ]
)dt

t
+ f e-Ptr(t)at
0 0

The second term is

o(p)

b

corresponds to the division of the

two preceding properties:

differentiation and integration, are

in which the entire interest of the operational calculus centers

to an algebraic calculation.

because it permits reducing the integration of a differential equation
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4, Operational Table

The calculations are, in general, rcmarkably simple.

Let us iIndicate

the following rclationships:

Original Inage
0 p-In!
t D
e 5o T
ealb 1Y
D -a
eat _ 1 a
P -a
2
cos wt S
P2 + af
2
sin wt I
P2 + uf

5. Value of the Function For a Negative Time

The problem whi
a system as the cons
of equilibrium.

ch we pose consists in predicting the behavior of
equence of the modification of one of the factors

Generally, this modification starts at the instant + =0 and up
to that time the system was in equilibrium.

If the vamwiables of the problem are the perturbations about the
position of equilibriwn, they are functions of the time, but functions
of a particular typc - becausc tliey are, by hypothesis, zero for t <O
and start varying only at t = O.

This particular characteristic can be expressed in several ways -
either by admitting explicitly that all functions of time investigated
will be zero for t < O - or by assuming that the expression describing
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the variation of the variables contains as a factor Heaviside's unit
function; this function has the value
0 for t <O
1 for t >0
We do not intend to study the theoretical consequences of this
concept.

Tt suffices to point out that Carson's transformation applied to
the function

f(t) =0 for t <O

f(t) =1 for t >0

il

gives

o(p) =1

A function f£(t) which satisfies the preceding condition (value
zero for t = O) possesses an important property if one displaces the
origin of the time.

Let us find the image of f£(t - s), that is, the image of the
function displaced by the gquantity s with respect to t.

Assume
o
o(p) = pf e Pte(t)at
0
We want to calculate

7(p) = p\jﬁ e~Ptr(¢ - s)at
O
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Let us put
*ee
!:::’ ®© ,t
beo® p1(p) = pe‘Psf e PYLf (41)aty
|® o. -S
|
1
Since f(t) 1is zero for the negative values of t:
00 o0
Lo )
- whence
9, (p) = e~PSq(p)
or else
e PSp(p)c £(t - &)
= The operator e-PS5, multiplying a function @(p), is equivalent to

a displacement of the variable t by the quantity s.

6. Application of the Operational Calculus to the
Solution of Linear Differential Equations

The operational calculus permits rapid solution of” systems of linear
differential equations.

Assume a system of four equations, in four dependent variables x,
Y, 2z, s, and the independent variable 1.

dx =
i + aix + byy + ¢z + dys = hy

L
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% 91-+ + by + ChzZ + 5 =
) oe gp * %X * Doy +cpz + dps =y
) e
L X ]
e @
PO OEn dz .
l..:. a;- + 8.5}( + b3y + C}Z + d}S = h3
%% + g x + bhy'+ cyz + 4ys = hy

The quantities h; . . . hy appearing in the second member are
constants (case of the equations encountered previously).

The integration of the system has the purpose of determining four
unknown functions of time

X = Fl(t)
) y = Fg(t)
) Z = F5(t)
S = F)-i-(t)

Let us write that
Fl(t) is the original of an unknown function &(p)

Fo(t) 1is the original of an unknown function 7(p)

FB(t) is the original of an unknown function {(p)
Fh(t) is the original of an unknown function o(p)

One has therefore

x>¢
yon
z2¢
. sJo
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according to what has been said previously.

& 5pg - pxg
e -y,
g—i:pﬁ - pzg
%Dpc - P8,

where X5, Yo, 20, Sp are the values of the functions x, y, =z,
s at the time t = O, that 1Is, the initial conditions.

Let us write the equations to be integrated by going to the images

(al + p)g + by + 98 + dq0 = hy + pxg
ant +(b2 + p)n + c2§ + dpo = hy + DPyg
a3§ + b3q +(c3 + p)g + d30 = h3 + Dz
a)k + by + ¢ € +(db, + p)o = h) + psy

It suffices to solve the algebralc equations for finding the images
€, M, §, and o as function of the initial values X0, Yo, 20, S0

and of the constants hj, by, hz, and hy.

The introduction of the initial values x5, ¥g, 20, Sg 1s equi-

valent to the determination of the constants of integration because the
latter are -~ in the conventional methods - determined by introducing
into the solutions the initial values corresponding to the time t = O.

The solution of the algebraic equations by determinants gives
expressions such as
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hl + PXg bl cy dl
hy + PYo by + P o dp
bz + Pz b3 cz + P dz
hy, + psg by, cy d, +Pp
E =
a; + P bl cq dl
ap by + P 2 dp
a3 b5 c5 + P d5
a) bh cl+ dh + p

Let us call Z(p) the denominator. This polynomial in p 1is
jdentical to the characteristic equations in A written in chapters VII
and IX; it is sufficient to replace A by p.

Let us designate the minors of the numerator by

Hy 1(p) By, 1(p) Hz 1(p) H, 1(p)

with the first subscript designating the suppressed line; with the sec-
ond subscript designating the suppressed column.

We obtain the following symbolic expression

Hy 1(p) Hp 1(p)
E = (hl + pr) __;_’;)p_. + (h2 + pyo) _-;zll)')p +
i3 1(p) B, 1(p)

(h3 + pzo) 7(-;)__ + (hh + pso) —E’E—

it remains to find the original of this expression.
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7. Heaviside's Formula

The theoretical treatises solve the question by application of the
formula of Bromwich-Mellin. However, there exists a method which permits
finding directly the expression

F1(t) 2&(p)

when the numerators are polynomials of a degree lower than or equal to
the polynomial of the denominator.

The expressions we have to deal with satisfy precisely this
restriction.

Let us limit ourselves to the study of one single term

iy 1(p) pHy ,1(p)

Pel Z(p) O z(p)

and let us, in order to simplify the notation, provisionally drop the
double subscript of H.

When the equation Z(p) = 0 does not possess multiple roots (the
usual case in practice), the rational fraction may be decomposed by purely
algebraic means, in a sum

with A designating the roots of the equation Z(p) = O.

The image £ may consequently be represented by

n n
_ HQA) A s BN _p
£ = hlzl?\Z'(?\) o - X + %) lZ' |z")\5 D - A

Each of the terms which constitute the second member is a product
of which only the factors
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. o0 A and P
' ®ee’ P - A P - A
» (X ]
> o [ ]
(X XY ]
%% are functions of p.
) These two quantities appear in the table of correspondence
A cext -1
P - A
D Cekt
p -
which permits to immediately come back to the original x
. n n
H()) H(A)
X = Fl(t) = hlzl WVALEN (e?\t = l) + xozl 710N €

We can transform the solution, noting that, if we make p = 0 in
the expression H(p)/Z(p), we obtain

n

Bo) " )
z(0) 1 AZ'(A)

This permits, in fact, writing, again making use of the subscript

for H:
nH A H 0 ng A
% = Fl( 1 1( ) eXt N 1,1( ) 1 1( ) e%t

R B o O N I O

the expression known as "Heaviside's formula."” It is generally written
in the particular case where xg = O.

The £, from 1 to 4, affects the four roots A but does not apply
to the subscripts of the minors.
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The complete solution x will contain also analogous terms
in hy and y,, with the minor to be used H2,l

h3 ZO HB;l

by, 55 H 5

The solutions in y, 2z, and s will be obtained in the same man-
ner; the second subscript of the minors H will become, respectively,
2, 3, or L.

The differential system the solution of which we have studied just
now is identical with the systems we had established previously for
investigating:

(a) The response of the airplane to an initial perturbation which
occurs suddenly at the time t = O, under the assumption that the air-
plane 1s flying with controls fixed

(b) The response of the airplane to an abrupt displacement of a
cont:rol surface carried out at the time t =0

(¢) The response of an automatic control system to command, of con-
stant amplitude, applied at t =0

In the first problem, tne h are zero, but at least one of the
quantities xg3, yg, 29 Or Sg 1is different from zero.

In the second problem, at least one of the expressions h 1is differ-
ent from zero. The x,, ¥y, 2o and sy are zero unless one superposes

the first and the second problem.

In the third problem, only the expression hj 1s different from

Zero.

It is clear that the application of Heaviside's formula works rapidly

when the n roots of Z(p) = O are real.

8. Trigonometric Transformation of Heaviside's Formula

When one has to §gal with imaginary roots, the calculations are
longer ana it will be of advantage to use graphical constructions.

A complex root may be written
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A=+k+ ic=Relr =Rcosr + iR sinr

hence

H(A) . #(Relr)
' () ReirZ'(Reir)

the polynominal H Relt is a complex gquantity which can easily be

represented vectorially. We shall denote this quantity by Hell where
H is the modulus, h +the argument.

Likewise, Z' Relr will be designated by 7'elz' where 2Z' 1is
the modulus and 2z' the argument.

We obtain therefore

HA) _ _H eir(h—r-z')
AZ'(N\) Rz!
We shall put
H
mzr - M

h-r-2"'"=28

Then

H(A)

At _ MelBcRelTt
AZ'(N)

e

and, for the pair of complex roots

2

5 BQ) M[é(ie+Reirt) . e(—ie+Re'irtﬂ

1 NZ'(N)
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which leads, after a few calculatlons, to the simple expression

e = oMet cos(ot + 6)

Let us write, in order to recapitulate this calculation, the response
x = du to a deflection of the elevator, producing hj = hy = hy =0

. and h5 = 1, applied at an instant % = O where no other perturbation

pertains.

This response is, when one has at the same time real roots and com-
plex roots

) H5’l(0) H3’l(x)

X = + = eMt 4+ ToMekt cos(ot + 6)
z2(0) VARG

Hz 1(A)

—ka——— is the transient damped response corresponding to the real
. z'(n) roots of Z(p) = 0

Hz 1(0)

—éfi——l is the response at infinity, that is, the change in steady
- z'(0) state imposed by the manipulation of the control

2MeKtcos(ct + 0) is the transient oscillatory response which corre-
sponds to the imaginary roots

The sign X 1is applied to pairs of conjugate roots: for one pair
of conjugate roots, the Z 1is not needed.

Let us note, as a conclusion, that the method of solution we have
Just described does not contribute a single element not already con-
tained in the general method described. in chapter VI; however, the exe-
cution of the method above is infinitely more rapid.
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9. Theorem of the Product

Assume ¢;(p) and 9p(p) to be the images of the functions f1(s)
and f,(t)

o (p) pf(; e"PSf, (s)ds

P, (p) p]; e-Ptf,(t)at

There then exist between the products of the functions of s fl(s)
and fo(t - s) and the products of the images ¢;(p) and o(p) the
relationships

t
5 ®(P)ox(p) cfo £1(s)f(t - s)ds
and
t
L g (s)oy(p) fo £ (6 - s)r,(s)as
From
@Q(P)sz(t)

we extract, for t > s (by displacement of the origin)
e-ps(PQ(P) Cfg(t‘ - s)

Let us multiply the two members by f£i(s)

e=psty (s)@y(p) oy (s)£,(t - 5)
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Let us integrate for the variable s

u/\w e"PSf; (s)gpo(p)ds cu/\w £1(s)fa(t - s)ds
0 0

RO NEXOEA RS

When s 1s larger than t, the quantity (t - s) represents a nega-
tive time, and the function f, 1is zero for these values of the varia-
ble. Hence there results that

P t
u(; fl(s)fz(t - s)ds = l“/; fl(s)fe(t - s)ds

and the first formula is therewith demonstrated.

The second will be demonstrated in the same manner.

10. Image of Duhamel's Integral

Let us write the preceding relationship, replacing f2 by Fl and
designating by o5 the image of the following function

do (p) cF(t)

Let us write, moreover, that the function fl(s)

is the derivative
of a function f(s)

Let us put

#1(p) c£(s)
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We have, by definition

91(p) €f'(s)

on the other hand, by virtue of the rule of differentalation

p[#,(p) - £(0)] c£'(s)

whence

o, () = ¢ () - £(0)]
Substituting this into the first formula of the product:

t

[?l(P) - f(O)]¢2(p) Cf £f'(s)F(t - s)ds

0

however

£(0) @, (p) c£(0)F(¢)

Let us add, term by term

t
9, (0)¢,(p) € £(0)F(t) + fo £'(s)F(t - s)as

The second term is nothing else but Duhamel's integral which gives
us the response of a system to an arbitrary perturbation f(s) which

is variable as a function of the response F to a constant perturbation
equal to unity.

Thus we see that the image of the response to an arbitrary pertur-
bation is equal to the product of the image of the perturbation and the
image of the response to the unit perturbation.

The symbolic representation of Duhamel's integral considerably
simplifies this expression.
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11. Application of Duhamel's Integral to the Study
of Automatic Flight Control

Let us apply the methods of operational calculus to the solution
of the following problem.

An airplane is provided with an apparatus which detects the pertur-
bations of any arbitrary variable, for instance 5u, and produces
instantly a deflection of the elevator proportional to this deviation.

One has therefore
57] = +kdu

In practice, k will be negative in the case considered because
one would choose such a direction for the maneuver that the control sur-
face would tend to make the airplane nose down when the speed diminishes.

What is then the behavior of the variations B&u, ©b&w, ©05q, &8
following an arbitrary initial perturbation (6n)0?

Solution of this problem is possible if one knows:

(a) The reaction of the airplane - which is supposed to fly with
controls fixed - under the action of the initial perturbation

(b) The response of the airplane, under the action of a constant
deflection 7 egqual to unity

(c) The law 87m = kbu characterizing the automatic apparatus.

Let us write the equations, denoting, in a general manner, the time
by t.

(a) The response of the airplane which is flying with controls fixed
to the initial perturbation is

du = G1(t)
8w = Go(t)
8q = Gz(t)
56 = G),(t)
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These functions give rise to the images

%:..- 71(P) CGl(t)
.. 7(p) €5, (t)
. 73(p) CG5(t)

7, (p) €6, (£)

(b) The response of the airplane under the effect of a deflection

n =1 is
du = Fy(t)
. dw = Fy(t)
0q = F}(t)
56 = Fh(t)

| These funtions give rise to the images

’ ¢, (p)eF, (t)
¢y(p) € F,(t)
@5(13) CF}(t)
9, (p)EF, (¢)

The unknown motion

su = x(t)
5w = z(t)
5q = aq(t)
56 = 6(t)

is the superposition of the normal return motion of the airplane, after
the initial perturbation, and of the response of the airplane under the
- action of a deflection which is at any instant proportional to the
- deviation ©du.

bR
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e The functions x(t), z(t), etc. have as derivatives x'(t), z'(t),
oo’ etc., and as images1O
b ee £(p) ex(t)
e £(p) cz(t)
| X(p) eq(t)
- 6(p) co(t)

The deflection 7 1is, at any instant, given by
1 = kx(t)

under the assumption that the piloting is a function of du.

Duhamel's formula permits determination of the component of the
motion which is due to the action of this variable deflection. If one
superimposes the return motion of the airplane with controls fixed and

the response under the action of the variable deflection, one obtains,
at the instant ty

T
. x(ty) = G1(by) + Fy(ty) x(0) + fo KFy (ty, - t)x'(t)at

t
2(tp) = Ga(tv) + Fo(ty)x(0) + J[o ° KFp (b, - ) x'(t)at

ty
a(ty) = Gz(ty) + Fx(tp)x(0) + fo KFs (ty, - ) x'(t)at

If one assumes the integration of the second term to have been
carried out, one may eliminate everywhere the subscripts b.

lOOne may represent the original and the image by the same letter if

. one indicates that the one is the function of t, and the other of p.
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Going over to the images, taking into account the symbolic trans-

position of Duhamel's integral, one has

t(p) = 7,(p) + ko (p)t(p)
t(p) = 7,(p) + kg, (p)&(p)
X(p) = 75(p) + k95 () €(p)
o(p) = 7,(p) + ko, (p)E(p)

Hence there results that the desired functions are

75(p) + k[9x(p)yy(p) - () 7,(p)]
1 - ko (p)

t(p) =

The expressions of X(p) and 6(p) will be obtained by substitu-
tion of the subscripts 3 or 4 for the subscripts 2.

If the automatic pilot were a functlion of the deviation 56, instead
of the deviation ©®u, one would have
N =ko

and the symbolic expression of the resultant motion would be

e(p) = oy (p) + ko (p)o(p)

.........................

-------------------------

8(p) = ¢,(p) + xp,(p)e(p)
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which would give expressions such as

o (p) + k[@y(p) 7, (p) - @u(p)rl(giL‘

t(p) = T o (D)
o(p) = P, (p)
1 - ko, (p)

12. Usefulness of These Formulas

It seems at first sight that the employment of these symbolic expres-
sions would necessitate the return to the original and therefore lead to
long calculations.

We shall show in the following chapter that this is not the case if
one examines sinusoidal perturbations.

Thus it is interesting to develop these formulas.
Let us take the general equations of the preceding chapter, replacing

X, ¥, 2, s by bdu, dw, bdq, 86, and writing the coefficients of
the third equation in the form

.9._3, L v E.Z'.c ﬂd
2 3 2 2 2 ) 2 0
and the independent term in the form
c
_Vh3

re

In the most general case the initial perturbation which we assume
to be arbitrary can be considered as a sum

dn = (6u)o + (6w)o + (6q)o + (59)0
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[ 1]
‘ a, b + p co dp
z(p) =

c o cl cV
— a B == cz + D — d
2 D e 2 2 2
a, bh cu dh + P

Hence, representing the principal determinant by Z(p)

the images of the response to an initial perturbation are

p(Bu)O by cy 4

p(Sw)O by + P o do
71(P) i c cl cV g 2%57

p(3dgd)g = bz ez = ds

p(86)4 by, c), d, + D

a; + P p(&u)o cy 4

as p(dw)g co dy

- 1

72(p) B f% az P(Bq)o i% €3 + P f% dz " 2(p)

ay p(bB)O cy 4 +p

and so forth in the same manner.

The symbolic response to the deflection,
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1, will be given by

the following expressions in which the term h3 = dCM/dn.

»
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0] bl Cl dl
0 by + P o ds
1
- X
7 (p) 6]
< Vh Ly €L ey + p ¥ gy
2 2 r2 r2 2 r2
0 bh cy, d, +p
a, + 7P 0 cy dl
an 0 o d2
1
os(p) = X
2 L 33 jL Vh3 El c5 + p EX d3 Z(p)
r2 2 2 2
a4 0 c dh + P

and so forth in the same manner.

In all these determinants we have:
d3 =0

g, =b, =d, =0 (see the reasons above)

For simplification, we shall content ourselves to search for the
response to an initial perturbation (6w)o.

We assume therefore: (Bu)y = (8q)g = (868)g =0

Let us again denote by H the minors of the determinant Z, with
the first subscript designating the suppressed line, the second desig-
nating the suppressed column.

The functions 7y are of the form

p(BW)OHg,l(P)
71(?) = Z(p)
(o) - P(8v)gHo 2(p)
5 =

z(p)
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The functions ¢ are of the form

¢, (p) = 200)
52 h5H5’2(P)

Let us assume that the automatic pllot is sensitive to the pertur-
tation in trim 5&6.

One obtains expressions such as

By, 1(p) + k 55 33 1(9)Hp 14(p) - B3, 4(p)Ep, ()] ]

e(p) = P(BW)O
2(p) - k & Hzlts (p)

c e o0 e D I R I I I I I I I O I I A I I I I A S LI

R R R I I I I I R I I R N R N R I I A A A A N N A R I B I B SR N N A I

Hp 14 (p)

. ¢V
2(p) - x = bsfz . (p)

6(p) = p(dw)¢

Al]l these expressions will have the same denominator.

This denominator is nothing else but the characteristic determinant
of the motion of the airplane flying with controls fixed, plus the term

cV

If we now examine the development of the determinant Z(p) as a
function of the terms of the third line, we find that this development
contains a term

cV

r_2 djﬂj’u(P)
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We see therefore that the periods and the damping of the motion
Investigated will be determined by the roots in A of the characteristic
determinant in which one will have replaced

ds by dg - khg
Since

h3 = BCMlan
k

dn/ae

everything occurs as if the term in d5 of the characteristic deter-
minant became

a5 - oM
on 6

with the mechanical connections imposing the sign of 0n/06 which will,
in fact, be negative.

The application of the operational calculus justifies the method of
calculation which we have used in chapter XV for the calculation of the
reriod and of the damping of the motion of an airplane provided with an
automatic pilot operating without lag.
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CHAPTER XIX
ee® FREQUENCY RESPONSE
e 1. Definition
; let us examine the general properties of the oscillating systems.
| il Let us assume two quantities x and =z, connected with one another
by a mechanical system. These quantities are functions of time.
The quantity x 1s the command or input signal.
The queantity 2z 1s the response or output signal.
The command x varies as a function of time, following a law of
input
. X = fl(t)
The response 2z 1is determined by the law of output
- z = 1,(t)

An airplane constitutes a particular case of such a mechanical
v system. The deflection of a control (for instance of the elevator 7)

constitutes the input signal x. FEach one of the quantities which define
the motion of the airplane - especially the variables u, w, 6 - con-
stitutes an output signal. The entrained motions of the surrounding
medium also constitute input signals; the vertical gusts are identical
to initial perturbations ®w, the horizontal gusts are identical to
initial perturbations Bu.

Another special case is presented to us by the servocontrols. In
such an arrangement the displacement of a control constitutes the out-
put signal; it is a function of an input signal which can be either a
command given by the pilot; or the indication given by a detector of

perturbations.

In this last case, if one chooses x as input signal, the differ-
ence ®n existing between the instantaneous value n of a variable
and its steady-state value n will be

; dn = n - n
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and if one adopts such a direction of deflection that the control imparts
to the airplane & moment which tends to reduce 5n, the arrangement real-
ized becomes an automatic pilot.

In the previous chapters we investigated the methods which give us
the response of the system for an input signal changing abruptly from
zero to a constant value. If the system is stable, this response is a
transient motion: namely the motion by which the system passes from the
position of initial equilibrium to the position of final equilibrium.

It will be of advantage to study the effect of an input signal equal
to unity.

We have remarked on the existence of Duhamel's integral which per-
mits calculation of the motion of the system caused by an input signal
constituting an arbitrary function of time, if one knows the response
to the abruptly applied unit signal.

There exists another means for studying the systems considered.
This means consists in determining the effect of an input signal, assumed
to be zero for t < O but constituting a sinusoidal function of time
for t > 0O:

X = Xy 5in wt

When a system is subjected to such an exci*tation, a transient motion
is established at the beginning of the phenomenon, but it disappears
gradually, and the motion tends toward a steady state which 1s constituted
by a sinusoidal motion of the same period but different amplitude and
phase.

The system undergoes a forced oscillation, of the same period as
the excitation. This oscillation is the frequency response.
2. Calculation of the Frequency Response

Duhamel's integral is a genersl formula. Solved for a sufficiently
large time 1y, it furnishes the characteristics of the steady motion.

Let us apply the method to the calculation of the frequency res-
ponse of an airplane subjected to a deflection 7 varying according to
a sinusoidal law

N =Ty sin wt = £(t)

where Ty represents the amplitude of the deflection, w the circular
frequency of the excitation.
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Let us write the response du to the displacement An = 1 in its
sinusoidal form

F(t) = Mu + efPA) sin(st + @) +
ek'tA'u sin(s't +¢')
and Duhamel's integral in its form

t
duy, = £(0)F (ty) +\/; ° £ (tp - t)F(t)at

Since f£(0)

0, we obtain

duy T]m\/.‘tb - o cos (tp - t)Eﬁu + £AeXtsin(st + mi]dt
0

The only part of the integral of interest to us is the one corre-
sponding to a very large 1.

The solution of this integral appears in the appendix.
The calculations lead to an expression of the form
Buy, = -(C sin wty + D cos wtb)qn
with '

wlcos Py

k2 + (s + w)2

sw sin @, - kw cos @,

lw)
]

K2 + (s + w)®

The factors A and B which define the frequency response are functions:

(a) Of the circular frequency w of the excitation

(b) Of the characteristics of the response of the airplane under
the effect of the deflection An = 1, arplied abruptly.
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3. Complex Expression of the Frequency Response

The preceding method supposes that the characteristics Ay, @y,

s, and t of the response to the unit signal have been determined.
This calculation is lengthy and it requires especially the numerical
solution of the characteristic equation.

It is possible to determine the steady-state part of the response
in a more rapid manner, aside from Duhamel's integral.

Iet be:
Ry the response at the time 1y
F(t) the response to the unit perturbation

£(t) a sinusoidal excitation

eiwt-e

2

-iwt
£(t) = 1 sin wt = 7y

The conventions usually agreed upon for the representation of
sinusoidal motions by rotating vectors permit writing symbolically:

sin wt = eﬂ”t

an expression which we shall utilize below. Besides, it would be suffi-

cient to make the calculation complete by using the two exponentials in
order to find the complete analytical expression of the result at which
we shall arrive.

Let us this time write Duhamel's integral as follows:
T
Ry = £(O)F tp +f £1(t)F (tp-)at
0

There follows necessarily
£(0) =0

Let us temporarily omit the factor m,, that is to say, let us
suppose an exciting motion of unit amplitude.

R =ftb 1welObF (4, - t)at
b ty = t)
0
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Iet us put t =ty - s
whence
dt = -ds
ty -t =38

Let us replace t by s and take the new limlts into account.
We obtain

I

0
Ry, /; - 100 (%79 p(s)as

b

iwt tp -iws
= iwe D e F(s)ds
0

Iy

o0
and “/\ is zero because the transient motions are regarded as having
t

b
ended within 1. (We concern ourselves only with the steady-state
response. )

The integral

One has therefore
. t m
Ry = iwelw'bdf e~WSPF(s)ds
0

F(s) is, by definition, the response to the unit excitation. Its
Carson transformation is

=]
o(p) = p\/p e P5F(s)ds
0
Let us replace p by iw

?(iw) = imh/Mo e~1wsp(s)ds
0
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As a result,

Ry, = ¢(iw)e ?to

and we see that the original of ths steady-state part of the response
to a sinusoidal perturbation is obtained from the image of the response
to a unit perturbation, substituting iw for the operator p, and
multiplying by elwt

This expression represents a sinusoldal ot on of the frequency w
and the complex amplitude @(iw).

When the phenomenon investigated is represented by linear equations,
the image of the response 1s given by a gquotient of polynomials in D-.
By substitution of 1w for p one will find the complex amplitude,
that is to say, the magnitude and the phase displacement of the response.

This result is obtained by elementary calculations or constructions
which no longer necessitate the finding of the roots of the character-
istic equation.

Assume that one has to find the response
su = x(t)

of an airplane (not provided with an automatic pilot) to a sinusoidal
excitation consisting:

of a motion, of amplitude 17, of the elevator

or of variations, of amplitude n, in the entrained velocities of
the surrounding medium (atmospheric swell).

The response to an abrupt perturbation, in symbolic notation, is
of the form

t(p)

"
=

or

H(p)
z(p)

1

np

t(p)

according to whether it is a matter of the one or the other cese.
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The minor H must be affected by the desired subscripts (see sec-

tion 12 of the previous chapter) and incorporates, if it takes place,
%% the constant factors.

Ses’ ' In view of what was said above, the complex amplitude of the original
. of the response 1s obtained by replacement of p by iw. It is written

1wH( iw)
z(iw) © % z(mus)

is always of the form

Xn + iYn
Xq +1¥4

where X;,, Y,, X3, Y3 are polynomials in w.
The amplitude or the modulus M of the response is
2 2
V + Y
M= —————Xn L= fl(w)
4 Xd2 + Yd2

. The phase displacement of the response with respect to the excita-
tion is

. = — - L= 1 (a)

Y
tg| 2 tg 4
Xn X3

An identical reasoning permits the calculation of the frequency
response of a linear automatic control system.

For command x = 1, the symbolic response in 2z is

¢ - Ep)

z(p)
where H(p) is the minor L
t 8o bo +p Co
0 b3 C3 + D
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corresponding to the fourth term of the first line (fourth variable
calculated - unit action applied in the first equation only) in such
a manner that

g 1 a_etji
z(p)

and the complex amplitude of the response is nothing else but Z(iw).

4. The Transfer Function

The expression H(p)/Z(p) = Y(p) in which one substitutes after-
wards P = iw characterizes an oscillatory system which transforms an
input signal - the deflection of a control - into an output signal:
perturbation of one of the variables defining the motion of the airplane.

The expression Y(p) 1s called: “transfer function" by the
American authors, "admittance" by the French authors.

If the input signal were a perturbation of the surrounding medium,
one would have

¢ —3 M
Y(p) 2(p)

The concept of transfer function is extended to the case of auto-
matic control mechanisms.

The inverse of the admittance

I(p) = 2

is the "impedance" of the system.

5. Graphical Representation of the Frequency Response

The characteristics of the system subjected to sinusoidal excitation
can be represented graphically, either by Cartesian diagrams giving the
emplitude and the phase displacement as functions of the excltation w,
or by a polar dlagram.

In this last case, the locus of the frequency response is the locus
of the extremity of & vector the length of which 1s the ratio of the
amplitudes of the response to the command, and which forms with the
axis OX an angle representing the difference in phase. This locus is
graduated according to the values of the frequency.
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In order to trace it, it suffices to plot, on the plane of the
complex variable, the admittance function Y(iw).

The curve of admittance, traced on the plane of the complex vari-
able, is actually nothing else but the curve of the frequency response,
in polar representation.

Any curve of this nature presents the following characteristics:

For o = 0, the angle @ is zero. There is no phase displacement;
the period of the input signal is so long that the system may be con-
sidered as being in a static state.

For ® = =, the curve passes through the origin which means that,
for an infinite frequency of excitation, the amplitude of the response
of the system is zero.

For intermediate frequencies, the response vector lags with respect
to the excitation.

One may visualize an inverse curve, called frequency-demand curve.

The locus of the frequency demand is the locus of the extremity of
a vector the length of which is the ratio of the amplitudes of the com-
mand to the response, and which forms with OX an angle which is the
difference in phase between the command and the response.

This locus is nothing else but the curve representing the impedance
in the plane of the complex variable.

The frequency-demand curve is deduced from the curve of response by
an inversion of the modulus 1 with respect to the origin, and a symmetry
of the angles with respect to O0X, with the demand leading the response.

When the demand vector is large, the system requires a large exci-
tation in order to furnish a prescribed response.

Figure 45 represents the demand curve and the corresponding curve
of response.

The natural frequencies of the system are those where resonant
phenomena are produced which amplify the response. They correspond to
the parts of the curve for which the amplitude of the vector goes through
a maximum in a diagram of response, or through a minimum in a diagram
of demand.
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6. Equality of the Two Concepts

Knowledge of the transient motion of a system subjected to an abrupt
unit excitation, and knowledge of the frequency response of the system
realized in steady state by a sinusoidal excitation are equivalent.

The frequency response may be deduced from the response to the unit
excitation, by means of Duhamel's integral. Inversely, the transient
motion corresponding to the response to the unit excitation may be
deduced from the frequency response by a Fourier series.

let us replace the step function, that is

f(t) =0 for t <0

£(t)

]

1 for £+ >0

by a periodic function formed by a series of impulses £f(t) =1, of a
duration T/2 each, separated by equal intervals T/E during which =
£(t) = 0.

The period T will be chosen sufficiently large that after a time
of application of the perturbation equal to T/2 the response to the
impulse differs from its final value only by a negligible quantity.

One replaces therefore the continuous impulse by successive impluses
each of which is applied for a sufficient length of time.

Any series of successive impulses may be represented by a series of
the type

k
y = %F(sin.mt + % sin 3 wt + % sin 5 wt + . . .)

when a symmetrical function with respect to the t-axis is involved.

A change of the origin gives immediastely the Fourier series, repre-
senting steps the successive values of which are +1 and O.

2( .« 1 .. 1 .
+ ={sin ot + = sin 3 ot + = sin wt + . . .
x( 3 g 5 2 )

<
il
N |-

The frequency  of the fundamental harmonic is linked to the
period T (that is, to the duration of application T/2 of the excita-
tion) by

» = 2x/T
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The function represented by the series approaches the alternative
unit function the more closely, the more one augments the number of
harmonics.

The response to the unit excitation will be obtained by picking out,
on the frequency-response diagram, the characteristics of the response
to each of the harmonics and by adding these partial responses, taking
the respective amplitudes into consideration.

7. Milliken's Experiments

The preceding material contains all the information which permits
calculation of the frequency response curves of airplanes subjected to
a sinusoidal excitation. If the input signal is a motion of the ele-
vator, one can calculate the frequency response curve for each of the
variables «, 6, V as well as for the functions of these variables,
acceleration Jy or angular velocity q.

The given data to be utilized are those we have encountered in the
calculation of the dynamic lateral stability, but the solution of the
characteristic equation is not necessary.

Tests have been made in the United States, at the Cornell Leboratory,
for determining these curves in flight. Milliken applied, by means of
a convenient modification of the automatic pilot, an alternating deflec-
tion to the elevator and recorded the effectively applied deflection 1,
as a function of time, and also the variation of the 6, a, Jy con-

sidered as output signals.

We have plotted in a polar diagram the result obtained by Milliken
for the ratio 8py/fy- The measurements were made by means of a twin-
engired B-25J light bomber. Certain tests have been made using the same
automatic pilot: the Sperry Al2 at different flight velocities for the
alrplane.

The curves found vary according to the speed of the airplane, that
is to say, according to its &ngle of attack. This is normal since the
8] - - - C3 which determine the response of the airplane depend on the

angle of attack.

Other tests have been made with successive use of different automatic
pilots (the Honeywell Cj, Honeywell C1A, and Sperry Al2) but using the

airplane at the same condition of flight velocity.

These tests have led to curves differing among themselves; since the
pertinent known variables are the angle of trim © and the angle of



278

deflection 7 actually applied, one may be surprised, at a first glance,
that the experimental results differ when the manner varies in which the
displacement of the control surface has been produced.

This fact is explained, however, when one exasmines the automatic
pilots used. Although one may hope that the Sperry will cause & more
or less sinusoidal deflection when one of the elements of ad justment
varies according to a specific law, this is not the case for the Honeywell.
This apparatus acts in an on-and-off manner and is not linear. The
deflection is controlled by a coupling which intermittently connects the
control surface with a driving motor rotating at constant speed. It is
obvious that such an apparatus is absolutely incapable of producing a
sinusoidal motion of the control surface. Besides, the recording dia-
gram of 1 shows that the curve of variation in deflection is more
nearly saw-tooth than sinusoidal. Thus the motion of excitation contains
numerous harmonics, and the curve of the response is, under these con-
ditions, the response to a motion much more complex than a purely sinus-
oidal motion.

We do not pursue here the theoretical developments which Milliken
has given in his pub.ications.

The calculation methods he used seem more primitive than those
which we recommend.

Milliken introduced in his developments especially the hypothesis
of a constant V.

This means that he excluded systematically the influence of the
long-period oscillation.

This is compatible with the experiments made (since the tests were
carried out for an ® Dbetween 1 and 7 radians per second), but reduces
the generality of the conclusions.

The concept of frequency response applies also to the lateral motion
of the airplane, and tests aiming at the measurement of this character-
istic have been performed.

However, the results have not been published.

8. Automatic Control System Subjected to Sinusoidal Excitation

Let us again take up the investigation of automatic control systems
and seek for their response to a sinusoidal excitation.
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The arrangements for automatic control always contain an element
of return or of feedback, reproducing the response in z before the
indicator communicating the command x to the apparatus.

For the apparatus studied in chapter XIV, the equality of the res-
ponse to the command (ultimately defined, except for a factor of propor-
tionality) is obtained because the slider 3 catching up with the slider 2
stops the control motor.

In fact, one subtracts the output 2z from the input command x; the
amplification circuit and the servomotor are actuated by the difference
X - zZ.

Any automatic control system containing a means of return:
(a) Constitutes a closed-loop system
(b) May bve regarded as a system with negative feedback.

Iet us note explicitly that such a device exists in the Sperry A3;

the displacement of the blocking device which is governed by a displace-
ment of the control surface reestablishes the equality of pressure on
the two faces of the membrane when the deflection 1 has taken on the
value imposed as a function of 6. In short, it is the kinematic link-
ages making up the connecting elements between the control surface and
the instrument case which determine the magnitude of &7/80 = k.

We shall show in what follows that one can study the frequency res-
pronse and determine the transfer function of an automatic control system
which constitutes a closed-loop system in two different ways.

The first procedure consists in utilizing the system of equations
set up in chapter XIV, to send & sinusoidal input signal x, and to find
the output signal =z, either by calculating the transfer function of
the closed-loop system as it actually is, or by making experiments with
the system.

In the course of such an operation the amplifying circuit and the
servomotor should constantly function under the action of the difference

Hence there results that there exists a second method of examination,
consisting in cutting off the feedback path by immobilizing the slider 3,
in sending to the mecahnism - by the displacement of the slider 2 - the
totality of an independent sinusoidal signal €, and in calculating or
observing the response 2z of the system thus simplified.
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This amounts to putting

dl=O

into the system of equations and calculating 2z as a function of an
input signal €.

The system with the feedback path cut off will henceforward be
called open system.

Study of the closed-loop system with negative feedback and study
of the open system are equivalent since well-defined relations exist

between the curve of frequency response z/x of the closed-loop system
and the curve of response z/e of the open system.

9. Relations Between the Curves of Response for the
Open and for the Closed-Loop Systems

The definition

leads to

- _2z/e
1+ z/e

"N

or

In many cases the transfer function of the open system can be deter-
mined more easily than that of the original closed-loop system.

Once one has plotted the curve of frequency response or transfer
function of the open system, one can deduce from it the principal proper-
ties of the transfer function of the corresponding closed-loop system.

When the transfer function of the open system assumed to be known:
_ Xy + 1Yy

2t X
€ XD+iYD
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where Xy, Yy, Xp and Yp are functions of w =~ has been plotted

on the plane of the complex variable, one determines immediately the
loci of the points representing the same modulus z/x or the same phase
displacement @. These loci are, by definition, concentric circles
around the origin, or radif issuing from the origin.

The simplicity of the relations existing between z/e and z/x
permits the prediction that it will be possible to deduce, from the
curve of the transfer function of the open system, certain properties
of the corresponding closed-loop system.

One sees immediately that, if there exists a frequency for which
the curve of response of the open system passes through the point -1,
one has

z/e = -1
which entails

2/x =

z/x =0

An input signal of this frequency and of the amplitude zero excites
the closed-loop system and induces & response of finite amplitude. This
means that the closed-loop system becomes capable of free oscillation,
at a particular frequency, and indicates to us the possibility of finding
a criterion of stability of the closed-loop system according to the posi-
tion of the curve of response of the open system, with respect to the
point -1.

On the other hand, one may put into the complex plane serving for
the representation of the response z/e of the open system graduations
useful for the evaluation of the properties of the response z/x of
the corresponding closed-loop system.

In order to determine the loci of the same modulus z/x, let us
consider a vector V = z/e issuing from the origin, and a vector
Vl = z/e + 1 1issuing from the point 1.

The loci where these vectors terminate when their lengths are in
constant ratios M = V/V;, make up series of circles the centers of

which lie on the axis of the abscissas. This grid indicates, by its
intersections with the transfer function of the open system, the modulus
of the function of the closed-loop system. -
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Analogously, the phase displacement of the curve of response of the
closed-loop system 1s given by the loci of equal phase displacement trans-
ferred to figure 50.

10. Relations Between the Curves of Requirement for the
Open and for the Closed-Loop Systems
The demand curves have particular properties.

From

one deduces that the vector expressing the demand of the closed-loop
system is equal to the demand vector of the open system (for the same
frequency) increased by 1.

This means that the demand vector of the closed-loop system starts
from the point -1, to end at the point of the demand curve of the open
system corresponding to the frequency considered.

The point -1 then is the center of the circles of the same modulus,
and the origin of radii of the seme phase displacement.

The stability of the closed-loop system becomes critical when there
exists a frequency for which the demand vector has zero length, that is,
when the demand curve of the open system passes through -1.

This confirms the previous results, because it results from the
definitions of the curves of demand and of response that — if one of
them passes through the point -1 — the other one does the same.
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. CHAPTER XX
:.::- 1. Combination of Several Oscillating Systems by the Method
‘.3::' of Frequency Response

The methods used in chapters XV and XVI permit the study of the
effect exerted on the motion of an airplane by an apparatus for auto-
matic flight control acting without lag or inertia. These methods make

+ possible to determine the type of stabilizer one can advantageously
use if one wants to control the flight path; they show to what extent
‘ the law of piloting to be achieved by the automatic apparatus depends
| on the characteristics of the airplane.

If one wants to take the real operational characteristics of the
automatic control system into account, as they are defined in chapter XVI,
one must combine the system of equations of the automatic control with
that of the pilot.

Determination of the motions corresponding to abrupt perturbations,
- that is, to transient conditions, by the methods of classical mechanics
becomes impossible because of the complexity of the calculations.

In contrast, investigation of the frequency response remains possible
’ since it is easy to combine the conclusions of the study of the frequency
response of the airplane with the conclusions of the study of the frequency
response of the automatic control and to determine the frequency response
of the combination - without having to combine, in the course of the cal-
culations, the two sets of parameters among themselves.

2. Oscillating Systems Placed In Series

Let us imagine a chain formed of several open systems, placed in
series and controlling one another, and set up in such a manner that the
functioning of any one system does not affect the functioning of the
preceding system.

The transfer function of the total system will be the product of
the transfer functions of the partial systems.

- One can plot the curve of response of the total system by finding

. points at equal frequency @ on the curves of response of the partial
systems, by multiplying the corresponding vectors according to the rule
of multiplication of imaginary quantities and then Jjoining the points
thus obtained.

LR

The demand curve of a system formed by several systems in series
will be obtained by multiplication of the vectors corresponding to
points of equal frequency.
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These properties are obvious and do not require any demonstration.

The only restriction results from the rule: the functioning of any
one system must not have any effect on the functioning of the preceding
system.

3. The Criterion of Nyquist

The considerations of section 9 of the preceding chapter show that
the frequency-response characteristics of a closed-loop system are related
to the response characteristics of the same system considered as an open
system.

The frequency response of a system containing several elementary
systems in series, on the other hand, is obtained by forming the product
of the responses of the elementary systems.

Thus one observes that here appears a possibility of treating
complex systems by relatively simple methods.

It is, especially, possible to determine whether or not a closed-
loop system is stable or not by examining the position of the response
curve of the corresponding open system, with respect to the point -1 if
the output signal is subtracted from the input signal, with respect to
the point +1 if the output signal is added to the input signal.

In the case of negative feedback (output signal subtracted from the
input signal) the passing through the point -1 of the curve characterizing
the open system indicates a finite response for an input zero. It con-
stitutes therefore the boundary between stability and instability. The
only question which remains to be determined is, on which side are found
stability and instability.

The criterion of Nyquist answers this question.

Iet R(p) be the transfer function connecting an output signal z
with the input signal x:

z = R(p)x
where p 1is a complex variable,

To a value zero of x there corresponds a nonzero value of 2z when
R(p) is infinite.

The corresponding values of p are the poles of the analytical
function R.
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Instability of the system is produced if the real part of one or
several poles is positive; in contrast, stability is attained when none
of the poles of the function has a positive real part - in other words,
when not any one value of p represented on the plane of the complex
variable by a point situated on the right half-plane constitutes a pole
of the function R.

In a system called a system with localized (lumped) constants we
have

H

R(p) = 725

where H and Z are polynomials in p.

The stability condition is that Z(p) must not have a zero situated
to the right of the imaginary axis.

A theorem of Cauchy gives us an indication regarding the number of
zeros and poles of an analytical function, contained in a particular
region of the plane.

Let us consider, on the plane of the variable p, a contour C.
Let (F(p)) be an analytical function which does not present either zeros
or poles on the contour C.

Let us carry out a conformal transformation defined by

P = F(p)

This transformation permits us to plot in the plane of the vari-
able P a curve I' which is the transformation of C.

Let N be the number of revolutions of the curve I' around the
origin of the plane P when the point p describes the contour C.

The theorem of Cauchy states that this number N is equal to the
difference K - Q Dbetween the number K of zeros and the number Q of
poles of the function F(p) inside the contour C:

N=X-Q

As a result, we can - if we know the number of poles K of the

function F(p) within the contour C - determine the number Q of

zeros inside this contour by inspection of the curve T,

Let us apply this theorem to the problem we are interested in.
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Let us take as the contour C, in the plans p, the contour sepa-
rating the entire right part of the half-plane, that is to say, the

T imaginary axis from -oi to <+« and a circular arc of infinite radius
L joining, through the right part of the plane, the two extremities of the
poee imaginary axis.

» o0

The transformation of this contour by the function
P =F(p)
gives us:

(a) For the upper part of the imaginary axis, the curve F(iw) for
w variable between O and o}

(b) For the lower part of the imaginary axis the curve symmetrical
to the preceding one;

(c) For the circle passing through infinity, circles situated at

infinity.
- Let us apply this theorem to a system the transfer function of
which is
R
¢ z = 1 x
1+R

- that is, to a closed-loop system, with negative feedback where Ry is
the transfer function of the corresponding open system.

Let us examine the function Ry + 1. Let K be its number of zeros,
and Q the number of poles.

The number of poles of the function Ry + 1 situated in a closed

contour is necessarily the same as the number of poles of the function
Rij. Q represents therefore likewise the number of poles of the func-

tion Rl inside the contour considered.

If the system R; 1s stable, Q =0 for the visualized contour
enclosing the right half of the p-plane.

The number of zeros of the function 1 + Ry 1is then equal to the
number of turns about the origin of the transformed I' defined by

P =1+ Ry(p)
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or also to the number of turms around the point -1 of the transformation
defined by

P = Rl(P)

Therefore one must draw on the complex plane of the variable P
this transformation of the contour enclosing the right half of the
p-plane defined above. This transformation is a closed curve the number
of turns of which around the point -1 is counted.

Since the system Ry (open) is supposed to be stable, the corre-

sponding closed-loop system is stable if the curve I' does not encircle
the point -1.

This closed curve [ comprises a branch which is nothing else but
the transfer function R (iw), a branch symmetrical with respect to the
axis and, ultimately, circles, or parts of a circle of infinite radius.

If the open system is made up of several oscillators placed in
series, Ry 1is the product of the transfer functions of the elements.

It may occur that one of these elements is unstable, that is, presents
a pole in the right part of the plane. The condition of stability of
the corresponding closed-loop system will then be that the transforma-
tion of Rl must encircle once the point -1.

The relation which makes the stability of a closed-loop system
depend on the position of the point -1 with respect to a closed curve
plotted, starting from the transfer function of the open system, con-
stitutes Nyquist's criterion.

4. Application to Systems of Automatic Pilot and Airplane

The systems formed by an airplane and an automatic pilot constitute
systems with negative feedback. Their study constitutes a simple
extension of that of a simple automatic control system.

Let us examine a series of cases of increasing complexity.

A. Simple automatic control system with negative feedback.- Let
us take up again the linear automatic control studied in chapter XIX.

Let x be the input
z the output

We have shown before that the epparatus is actually sensitive to
the difference € = x - z owing to a device which subtracts the output
signal from the input signal.
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The airplane constitutes a first oscillating system. When it is

I subjected to a sinusoidal deflection, it transforms this input signal
%o’ and furnishes four output signals Bdu, ©&w, ©Bdq, 6.

L 1 ]
soee The automatic pilot is a second oscillator. It transforms any input
*e% signal received into a deflection 7. It is fed by the discriminator

“ which adds:

(a) The independent input signals X], produced by the pilot by
means of the device 3

(b) One of the output signals of the airplane, with the sign changed,
for instance

Xg = -0

Under these conditions, the input signal to the oscillator 2 is

- The airplane (oscillator 1) carries out the operations

The automatic pilot (oscillator 2) gives

n =Ro(xq - ©) (x; - 8) =Don

The total motion for the characteristics of which we are actually
seeking is that produced by the independent excitation X4

6 = RtXi Xi = Dte

The relation

may be written
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which gives, by means of several transformations
RpfRy = D1 + Rp

Rp RiRo
B =R T+ RE
1+ Ro 1R

and likewise
Dt = D1D2 + 1

Let us examine the principles of operation of the system. In fact,
we have simply formed - with respect to the quantities x; and 8 - a
closed-loop control system with negative sensitivity but where two
elements - the systems 2 and 1 - are placed in series.

We again find the expression of the characteristics of the closed-
loop system as a function of those of the open system which one would
obtain by cutting the reedback path, the response of the said open system
being determined by the product of the responses RijR, of two elements

placed in series.

The graphical criterion of stability will consist in tracing the
curve of the product Rle and in examining the position of the peoint -1

with respect to this curve.

In figure 55 the curves Ry and R, have been plotted. The

critical frequency corresponding to the appearance of steady oscillations
i1s the one for which RyR, = -1 or D{Dp = -1.

We state here the well-founded practical rule which permits esti-
mation of the stability of closed-loop systems. This rule consists in
cutting the loop at any point whatsoever and in constructing, by forming
the product of the two functions RiRp, the transfer function of the open

system containing the two elements placed in series.

C. Adrplane equipped with an automatic pilot and an independent
control which acts after tke output of the automatic pilot.- Let there
be a combination comprising:

(1) An airplane
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(2) An automatic pilot

(3) An independent control system acting after the output of the
automatic pilot

The schematic diagram is given by figure 56.
The airplane plays the same role as in the preceding case.
The automatic pilot receives only one single excitation: one of

the output signals of the airplane; it transforms this excitation into
a motion of deflection which we shall call Ty if the variable of refer-

ence is the angle of trim 6.

The independent control acts between the output of the automatic
pilot and the control surface. Let us represent it by x5.

If the control is accomplished by a connecting rod, one may for
instance suppose an eccentric inserted into the rod, linking the auto-
matic pilot to the control mechanism.

q=qp+xi

The automatic pilot produces
n, = R,(-8) -6 = Dny,
The airplane produces
8 = Rn n =D;8

and the response of the combination with respect to the indeperdent
control is

0 = Rtxi xi = Dte

A calculation analogous to the preceding one gives

R
Ry = 3_;
1+“1R2
and
D:Ds + 1
1-2
Dt=Dl+R2=

Do
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The expression of the response to an independent external control
is different from the preceding one, but the stability condition of the
system (flight of the airplane under action of the automatic pilot alone,
without any action exerted on the independent control, is the same as in
the previous case.

D. Airplane equipped with an automatic pilot which is & function of
two variables and an independent control.- Likewise, we shall distinguish
two cases, according to whether the independent control acts before the
automatic pilot or after it.

The airplane constitutes always an oscillating system under the
action of a simusoidal deflection of the control surface, but two of
the output signals, for instance 6 and V, are utilized by the auto-
matic pilot after having been changed in sign.

Figure 57 represents the schemetic diagram; the airplane forms the
oscillator system No. 1, the automatic pilot constitutes the oscillator
No. 2.

(a) Let us suppose that the independcnt contrel is applied before
the automatic pilot.

The automatic pilot receives:

x; and transforms this signal into 1n = Ryx

i i

® and transforms this signal into 7 = -Ro6

V and transforms this signal into 71 = -R'.V

2
so that 17 = Ryx; - Ry0 - R',V
Since we have for the system 1

6 = Rln n = Dle

V = R'lT] n = D]_V
and for the total system

06 = Ryxy Xy = Dte

V =R' x x, = D'V
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D. = D.R. - R, - R', 0t

% 1 ttx T 2T T2 Ry

eoo R

.o. ' _ ’ _ t - '
. D'y =D Ry - Ry g - R

which leads us, after all calculations have been made, to

R,
R' Ry

1 + R1R2 + R'lR‘2

R'
12

t+ "I+ RR.+R.R'

1 2

When the denominator is zero, there is a frequency at which the

airplane can oscillate freely. Hence one
the point -1 of the curve {RjRp + R'1R',)

To express the demand curves, let us
xi = Dy
]

"

...Dgrl

- V = -D'2q

One then has

sees that the passing through

dotormines the S‘t?bility .

W Uedaiaaa

agree to write

1
_DxDl(DD + D

+ DlD2 + D'lD'2>

D'

1 2

12
Dl = D Dl (l
1 x- 1

The output signals of the

u

<D
|

+ DD, + D'lD'2>
DD, + D'1D',

airplane are therefore
RAT] + RBWe

= RCT] + RDWe
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(b) If the independent control acts after the automatic pilot
(fig. 58), everything occurs as though Dy and R, are equal to unity.

Thus it is sufficient to make the substitution in the preceding
formulas.

Remark: We have examined a general casej; we have supposed that the
stabilizer treats the two signals received © and V differently and
transforms them with ratios Rpo and R's differing by the modulus and

the phase difference.

If the two signals are added up, before being applied to the auto-
matic pilot, they will both be transformed in the same ratio R2. One
may achieve such an operation by introducing a purely numerical factor k
which takes account of the fact that the scales with which one measures
the V and the 6 are different, and by replacing RiRy + R'lR'2 by

1§
(Rl + kR 1)R2'
The corresponding graphical construction is evident.
E. Response of an airplane equipped with an automatic pilot to

external perturbations.- So far, we have studied the response of the
airplane to the action of an independent control.

This concept is somewhat artificial. It had the advantage of leading
to cases which get progressively farther away from the simplest case -
elementary automatic-control mechanism - and of facilitating the argument.

The essential point does not consist, in general, in an investigation
of how the airplane responds to a sinusoidal excitation of an independent
control but, on the contrary, in making sure that, in the absence of any
independent control, the airplane's motion will be stable.

The stability condition follows readily from the argument. In the
determination of this condition, the manner in which the control acts
loses all significance: the stability condition is the same whatever
may be the location of the chain where the action of the control is
applied.

We shall show that the same arguments permit study of the reactions
of an ajrplane equipped with an automatic pilot under the effect of
external perturbation, for instance, gusts, assumed to be applied according
to a sinusoidal law.

Iet us imagine an airplane subjected simultaneously to two excitations:

An excitation due to the sinusoidal displacement 1 of the elevator
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An excitation due to sinusoidal perturbations, of amplitude Wes
of the entrained velocity of the surrounding medium.

By hypothesis, the airplane is provided with a device for automatic
piloting sensitive to the angle of trim 6. Figure 59 gives the basic
diagram of the system considered.

The airplane constitutes the system 1. It reacts differently under
the action of the input signals n and we.

Under the effect of each of these input signals, the system furnishes
four output signals u, w or a, 6, and q. It is therefore charac-
terized by eight transfer functions which we can calculate by the previ-
ously established methods.

Of these eight transfer functions, there are four of interest to us,
in the problem studied. We should represent the responses by R with a
first subscript 1 to indicate that it applies to the system 1 airplane,
and with supplementary subscripts indicating which is the variable of
interest for the response and which the variable considered for the
excitation.

We shall use a simplification by adopting a less systematic notation
and agreeing that:

Ry constitutes the response in u to an excitation in 17

Rp constitutes the response in u to an excitation in Ve
Rc constitutes the response in 8 +to an excitation in 1
Rp constitutes the response in © to an excitation in we
The automatic pilot constitutes the system 2 and is determined by
N =-R6 or 6 = -Dy
Let us replace © in the preceding equation, and obtain
-Don = Ren + Rpwe

Let us eliminate 1, taking u into account; we obtain

L [RB + (RgRy - RARD)REJ .

1+ R Ry
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which constitutes the expression of the total response in u to an
external excitation Wwg.

Since Rp is the same quantity which we have called Ry in the

problems B and C, we state that we find again the same stability con-
dition which was to be foreseen: +the stability condition, deduced from
the expression of the response to an external perturbation must be inde-
pendent of the variable, the variation of which constitutes the response,
and of the perturbation considered.

The total transfer function sought, response in u to an excitation
in w,, will be calculable if one knows the curve of the frequency response

of the automatic pilot and the frequency responses Rp . . . Rp of the
airplane. The latter are calculable and given by

R ooV, B3 1 (iw)
A 20 Z(iw)

Ry = (iw)Hp 1 (iw)
Z(iw)
_ev . Hz (i)
Re =21 2w
(iw)Hp ) (iw)
Ry = —_—ea

7. (iw)

The curve representing the frequency response of the complete system
can therefore be plotted, each point being obtained by calculating, for
the value of  considered, the different polynomials, and graphically
carrying out the construction.

Remark: In the theoretical case of an automatic pilot which does
not introduce any phase displacement, Rp is reduced to the comstant -k.

Inserting this value Rp = -k into

Rp + Ro(RgRe - RaRp)
n —)

X
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and replacing Ry . . . Rp Dby the expressions given above, one obtains

Hy 1(iw) + k % h5[H5,l(iw)H2,u(im) - 32’1(iw)33’1+(iw)]ﬂ23-—

Z-(iw)
- jx &L —l
! [k 2 hBHB,h(mE] z(iw)

R = (iw)we

This formula corresponds exactly to the expressions found in sec-
tion 12 of chapter XVIII, with p Dbeing replaced by iw.

In the case of the motion ®u, produced by a perturbation ©dw, with

an automatic pilot senstive to 80 but acting without inertia or lag,
the symbolic response is in fact

7, (@) + k[ml(p)m(p) - 7l(p)¢>1+(pﬂ

t(p) =
1- k¢u(P)
and since
ey Ba® ag®
1 273 z(p) 1 z(p)
cV Hz 1(p) Hz y (p)
=Sy 2= = 200
w2 T 7, = p(E¥o z(p)

onr would have

Hg’l(P) + k %% h;[%5’l(P)Hg,u(P) - Hg,l(P)H3,u(PE]E§%;;

e(p) = p(dw)g
1
- [ gt 0] 7y

a symbolic expression which permits passing to the frequency response by
substitution of iw for p.

5. Recapitulation of the Principles

For any transient state, the properties of a system are, in fact,
completely described if one analyzes the phenomena for the sinusoidal
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steady states at all frequencies contained between zero and infinity,
and the method of the frequency response leads thus to the investi~-
gation of the motion of airplanes in the cases that are insolvable
by the classical methods.

There exists equivalence between the curve of frequency response
and the curve giving the response under a unit action. We have seen
how one can go from one to the other.

If one is content with finding out whether a system is stable, the
criterion of Nyquist furnishes quickly an answer to the question.

The method of frequency response offers advantages which the clas-
sical method does not possess, because it permits:

(a) Analysis of the action of every parameter of the system sepa-
rately, on the resultant behavior of the whole

(b) Determination of the performances of the mechanism, even if it
is very complicated

(c) Eventual experimental study of certain elements of the mechanism
defying calculation, and introduction of the experimental result into the
theoretical calculation of the combined system by graphical method

(d) Guidance in the search for the modifications which would be
recognized as necessary for improvement of an existing system thanks to
the possibility of representing the effect of the elementary mechanisms
by graphical methods.,

6. Use of the Oscillating Table

If an element of a chain seems to defy calculation, one may consider
to determine from it experimentally the transfer function.

This procedure is especially suitable for elements the functioning
of which presents numerous causes of nonlinearity.

The Sperry A3, for instance, is in this case. It is not certain
that the difference in pressure acting on the membrane controlling the
distributor will be rigorously proportional to the angular displacement
of the gyroscope.

It is doubtful that the displacement of the slide valve constituting
the distributor will be rigorously proportional to the pressure difference
acting on the membrane.
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Finally, it is almost certain that the force applied to the piston
of the servomotor will not be proportional to the displacement of the
distributor. As soon as one port is uncovered by the distributor, there
is actually a tendency for a pressure on the piston to establish itself
which is equal to the pressure given by the oil pump, reduced by the
pressure loss in traversing the passageway; the resulting pressure is
certainly not proportional to the displacement of the slide valve.

But if it is not possible, due to the nonlinearity of the system,
to calculate with certainty its curve of frequency response, there exists
always a possibility of determining this curve experimentally.

In practice, one may actually subject the detecting organ, in the
laboratory, to a sinusoidal excitation, apply to the output of the servo-
motor a return moment varying according to the same law as the hinge
moment, and record simultaneously the excitation and the response for an
entire range of frequencies.

For an apparatus sensitive to the angle of trim, such as Sperry A3,
it is sufficient to place the detector on a table the inclination of
which may vary sinusoidally at increasing frequency.

For a linear system, the curve of response is independent of the
amplitude of the excitations because an essential characteristic of the
linearity is a rigorous proportionality between the excitation and the
response.

Repeating the experiment for different amplitudes of the excitation,
one will see from the spread of the curves of unit response what is the
effect of the nonlinearity.

We have not yet the possibility of performing such tests but we hope
to have it shortly.

T. Interposition of Filters or of Amplifiers in the
Case of Electric Controls

Since the transfer function of a chain of elements is equal to the
product of the transfer functions of the elements when none of the latter
reacts on any of the preceding ones, there exist possibilities of trans-
forming the curve of response by introducing into the chain filters or
amplifiers which act on certain frequencies.

Let us take up again the diagram of the linear control of chapter XIV.
Let us suppose the feedback path to be cut, so that

d1=0
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The transfer function z/x may be written with separate considera-
tion of the component systems

e o6
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) It is clear that the interposition of filters or amplifiers permits,
for harmonic state, modification of the transfer function il/i, and
improvement of the curve of total response if the latter possesses unde-

- sirable characteristics for certain values of the frequency.

8. The Frequencies

At a first glance, one may object that the natural frequencies of
the automatic pilot and of the airplane are sufficiently distant from
each other that the combination of the characteristics of the two systems
is not necessary.

We believe this objection to be unfounded because it is always useful
to verify, at the price of a few hours of calculation, that a theoretically
possible resonance is not produced.

. There are so many examples of accidents that have happened in all

branches of mechanics, because a possible resonance had been neglected,
that one cannot possibly say that application of the calculation methods
developed above is not useful.

We haye indicated that the oscillatory characteristics of servo-
controls can be modified by electric filters. The combinations of con-
densers, inductances, etc. generally produce an effect on frequencies
which are very high from the standpoint of the designer and hardly of
interest to him.

However, instruments have been created which modify the response of
electric circuits with large lags - that is, which act efficiently at
very low frequencies. They are the "chronotrons."

Such an apparatus is a Wheatstone bridge where the resistances placed
in the arms are subjected to the action of heating resistances through
which run the currents to be manipulated.

Due to the thermic inertia, the effects of the currents sent through
the heating resistances are manifested, in the circuits constituting the
bridge, with lags to be expressed in seconds, and it is thus possible to

: add effects of small period to the input currents.
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- In view of such possibilities, knowledge of complete investigation

. oo methods seems indispensable.

L X ]

Telee’ 9. Various Consequences of the Preceding Considerations

:O...

.‘ ° A. Theoretical case.- In chapters XV and XVI we made the assumption
that the deflection of the control surface took place by means of mech-
anisms without inertia. This amounts to supposing that the transforma-
tion R2, achieved by the automatic pilot takes place, in the case of

= harmonic excitation, with a phase displacement continuously zero whatever
the pulsation frequency o may be. One may again plot the curve R1R2,

but this curve is nothing else but the curve Ry all vectors of which

are multiplied by a constant.
This leads immediately to an interesting conclusion.

The airplane possesses as many curves of response or transfer func-
tions as the number of output variables considered.

If one of these curves looks as indicated in b on figure 60, we
are certain that, by addition of a device for automatic piloting which
is a function of the variable considered and has negative feedback, we
shall arrive at instability, if we choose a sufficiently high sensitivity

factor.

In fact, since the phase angle of the product R1R2 is never changed,

v there will always arrive a moment where the curve RlR2 will pass through
-1 when the constant factor Rp attains a sufficient magnitude. This

does not occur if Ry corresponds to a curve such as a.

By subtraction of output or negative feedback we stipulate a device
such that:

A positive AS (nose-down) makes the airplane nose up

A positive Ag (nose-down acceleration) makes the airplane nose up

A positive Au makes the airplane nose up

A positive Aa, that is, a negative Aw, mzkes the airplane nose down.

The directions of action described above are those we have visualized,
in chapter XIV, as standard directions.
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If we have a piloting apparatus the action of which is inversed,
that is, if we operate by adding or reinjecting at the input a part of
the output, we have a system of positive feedback.

The stability condition will be no longer determined by the posi-
tion of the curve RyRo with respect to the point -1, but with respect

to the point +1. One can easily verify that mechanisms of this type
will lead to instability when their sensitivity becomes sufficient.

B. Case of a constant lag in the functioning of the stabilizer.- If
we suppose that the automatic pilot acts with a constant lag, this lag
corresponds to an angular increment of the response Ry, increasing with

the pulsation frequency.

In the application of the graphical criterion of stability one sees
that this operation could lead the extremity of the vector produced to
describe a curve surrounding the point -1, if, at high frequencies, the
mcdulus of the vector Rp 1is not very small.

C. Airplane equipped with an automatic control which is a function
of the derivative of one of the output signals of the airplane.- It is
possible to study the harmonic motion of an airplane equipped with an
automatic pilot that is a function of the derivative of one of the out-
put signals of the airplane.

Let R; be the function defining the fundamental output signal,

for instance V, under the action of the input signal 7. We suppose
that the automatic pilot is excited by the derivative av/dt. Ry 1is

the function defining the output 7 under the action of dv/at.

The response Ry in V can be calculated and plotted. There

corresponds a vector to each frequency w. However, the transformation
defined by R, 1is to be applied not to this vector but to its derivative.

One must therefore proceed, first, to carry out the differentiation
of this vector - an operation which is carried out by multiplying the
modulus of the vector by  and by displacing it forward in phase by
ﬁ/2. This operation must be carried out on each of the vectors repre-
senting V, before performing the muitiplication by each of the vectors
R, of the same frequency.

One has therefore plotted the locus of the product

dR

1
._._R
at 2
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and the stability of the system will be indicated by the position of
this curve with respect to the point -1.

One sees immediately that this operation can contribute to deviating
the curve from the region occupied by the point -1.

We investigated in section 4, D, the functioning of the control
actuated by the indication of two variables. It is evident that one of
the two may be the derivative of the other and that, instead of detecting
it, one may produce it by means of a differentiator.

D. Airplane equipped with an automatic control that is a function
of the integral of one of the output signals of the airplane.- Let Rl’

R'l, . . . Dbe the functions defining the various output signals of the

airplane, for instance, in the case of the lateral motion, the angles
and 8.

We suppose that the automatic pilot is sensitive to the distance ¥y
between the actual flight path and a required flight path. R, is the
function defining the output { wunder the action of y. When the reguired
trajectory is obtained through radio alinements, the deviation with respect
to the latter can be measured on board of the airplane by means of receivers.

On the other hand, we can calculate this deviation as a function of
the intrinsic variables of the motion.

Since

dy = V(v + B)dt

)
y = [V(y + B)at

<
where ¥ and B are sinusoidal functions of the pulsation . Thus
we find that for any pulsation w the output vector y is nothing else
but the integral of the sum of the vectors ¥ and B, multiplied by V.

The integral of a rotating vector is obtained by multiplying the
modulus by l/w and by shifting its phase backward by n/2.

We can therefore construct the vector y for any pulsation w.

Plotting the curve Rle consists in finding the locus of the pro-
duct of this vector y and the vector defining the response R2.

One finds immediately that this construction always approaches this
locus in the region of the plane occupied by the point -1.
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The automatic landing depends, above all, on the possibility of
producing and of detecting, on board the airplane, beams which occupy
a position invariable with respect to the ground.

It is known that these beams undergo distortions which up to now
have been incompletely explained.

The first point to be improved is the stability of the beam, and
this problem depends solely on the technique of radio communications.

The airborne detection seems more certain than the production of
the beam; here also the problem depends on radio technique.

However, once these problems have been solved, the investigation of
the motion of the airplane must be made by combining all preceding factors.
Complete knowledge of the reactions of the airplane under all circumstances
is, of course, indispensable.

We want to stress a remark made in chapter XVII. In proportion as
the airplane approaches the transmitter, the effect is as though the sensi-
tivity of the automatic pilot increased.

But in setting up the equations, one introduces this sensitivity
by a factor which must remain constant.

As a result it will be necessary to investigate the reactions of
the airplane for a series of different values of the sensitivity factor,
corresponding to different distances of the airplane with respect to the
transmitter.

One may represent on the same diagram the transfer function of the
open system for different values of this parameter. One then finds that
the corresponding curves approach the point -1 in proportion as the air-
plane approaches the transmitter.

11. Conclusions

The investigation of the automatic piloting of airplanes by the
method of sinusoidal oscillations is a particular application of the
investigation methods of servo-mechanisms, established in the United
States during the war and developed very rapidly to a degree of high
perfection.

This method is much more powerful than the classical method; it
permits the study of complicated schemes of operation without leading
to inextricable calculations, but it presents its conclusions in the
form of curves called, according to the authors:
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curves of frequency response
transfer functions
locus of admittance or locus of impedance
the interpretation of which is not always immediately possible.

We have shown that, fundamentally, the transfer function contains
all elements necessary for knowledge of the motions of the system since
the elements which it defines, introduced in a Fourier series, permit
construction of the response to a unit impulse.

We have indicated that knowledge of the transfer function permits
the utilization of a criterion of stability in a simple application.
We have alsc attempted to show in the present report that these new
methods could be deduced from the classical theory by considerations
which constitute a transposition into the mechanical domain of calcula-
tion methods used by electrical engineers.

The present report does not yet contain any application of these

methods to the solution of particular problems, to the study of frequencies
of resonance, to the study of better combinations, etc. We hope, however,
to have convinced the reader that these new methods make a complete inves-
tigation of the automatic flight control of airplanes possible, and to have
communicated to him our certainty that, thanks to them, all arising problems

will be solved.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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APPENDIX I
» oo
» @0
.2::. In sections 9 and 11 of chapter III, we introduced a factor n'
. oo which permits expressing dy/dT when the rotational speed of a propeller
* . of constant pitch varies with the speed of the airplane as a result of
- changes in the resisting moment.
One has, by definition
- Q=kan2D5
whence
kq = R__ . i =1<1E
pD5n2D4 pDBV2 V2
Passing to logarithms:
log kQ =log K+21logy -2 logV
=41
log 7 - 5 log kQ + log V+C
. dlog7=%dlong+dlogV

or

d log V. 1 d log kq
d log vy 2 d log vy

1

Representing, by means of logarithmic scales, the curve of the kg

as a function of ¥, one can find the absolute slope of the curve and
thus determine

d log hQ
. d log vy - ®
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The curve of the 1log ky 1is - except for one constant - identical
with the curve of the log kg.

One may therefore utilize the well-known logarithmic power curves
for the determination of s.

One obtains

whence

It suffices to measure the absolute slope of the logarithmic charac-
teristic of the propeller to find n'.
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e e The solution
N du = CleXlt + C2eX2t + C3ex3‘t + Chexut

ow

1107eXLt 4 1,,6%2Y 1 150560t 4 1,0 X4t
etc., can be transformed into

su = ekt sin(st + Qu) + ek'tA'u sin(s't + cp'u)

|}
Bdw = ektAw sin(st + cpw) + et tA'w sin (s't + q)'w)

etc.

Since the roots Xy p are conjugate imaginaries, the factors 14
>
and 1o, m and my, etc., also are conjugate imaginaries.

Let us write

ll=L1+L21 ml=M1+I"{2i

The integration constants which one determines by identifying the
du for t = 0, with the initial conditions determining the kind of case
studied, also are conjugate imaginaries.

Let us write

A+ Bi

I

C1

Co=A- Bt

[

h The transformation of the solution in exponential form to the solu-
tion in sinusoidal form then takes place by means of the following
transformations:
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x1t x2t _ _kt . ! .
Zlcle + 12026 e [:(?'lcl + chg)cos st + 1\\1101 + 2202>S:Ln sti]!

L}

ekt [(21\1.1 - 2BLp)cos st - i (2AL, + 2BL))sin s{l

ektA.w sin(st + q)w)

with

A, =2 (ALl - BL2>2 + (AL2 + BLl‘;2

sin @y = 2(AL1A; BLQ)
2(AL, + BLy)
COos Py = A
w

For the solution in ®u where the constants Cl e o o Cu are not

multiplied by any of the factors 11 . . . ny, one obtains quite simply

A, =2Jr% + B2

. 2A
sin @, = ™
u

2B

cos @, = —

Au
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One calculates
b kt
Bu = + Mm@ cos w(tp - t;[Au + Ze” A, sin(st + q))]dt
o .

ery large tp and negative k, according to hypothesis.

Let us calculate successively

T
+Aun o J/ cos w(tb - t)at
0

% gy
etnma)J/ zeXteos a)(tb - t)sin(st - @)dt
0
For the first integral
~tp

coswtdt+sinwtbj sin wt dt
0

"ty
cos wty J
0]

cos w(tb - t)dt

It

b _ tp
cos asty (%Esin ayt_] + sin oty ul)[:cos wt]
0 0

cos wty, sin wty - %) sin wty cos wty + %) sin wty

il
gt

sin (Dt'b

1
g r

The first integral gives therefore

AU sin wty
For the second integral, we shall calculate one of the terms of <

rt

b

J e¥lsin(st + q))cos(wtb - wt)dt
0
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which is equal to

oo. thb
oo J’ ekt[§in st sin ¢ + cos st cos @] [cos wtb cos ut +
L X J
o’ 0
oo.
- or to the sum of
~t
PPkt
sin @ cos wty J; e~vsin st cos wt dt
- A O
t
b Kt
sin @ sin wty / e*’sin st sin wt dt
<0
ftb kt

cos @ sin wty ) e cos st cos wt dt
~0

cos @ cos wty u/ e~ “cos st sin wt dt
0

For the solution of these integrals we shall make
given on page 115 of the table of indefinite integrals
Service de Documentation et d'Information Aéronautique

sin wty sin wt]dt

use of the formula
published by the
(Trad. no. 4221).

c)cos(b + c¢)x
+

a sin(b + ¢)x - (b +
ﬁaxsin bx cos cx dx = % eax{ ) (

a€ + (b + ¢)?

a sin{(b - ¢)x - (b - ¢)cos(b - ¢)x . ote

a® + (b + c)°

This integral must be taken as definite integral with very large 1ty

as upper limit, O as lower limit.

Since a 1s negative by hypothesis, the exponential factor = O
when ty, 1is sufficiently large and the integral is zero at the upper

and we obtain

ty,
/ e3Xgin bx cos cx dx = - = ~(bt+c) - (b-c)_

limit. We have to concern ourselves only with the lower limit x = 0,

b

a2 + (b + ¢)2
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In order to find
/ e@Xsin bx sin ex dx
Jo

e?*®cos bx cos cX dx
q

we must transform these expressions.
Let us integrate by parts. We obtain

) r
[ ax . . ax
e Tsin bx sin cx dx

(ol o

R a ax .
e sin bx cos cx + E\/e sin bx cos cx dx +

e%%cos bx cos cx dx

!
)

ol

~

!ax ax . a [ax .
je cos bx cos ¢x dx e cos bx sin cx - < /e cos bx sin cx dx +
WJ

Il
ol

oo’

!
/eaxsin bx sin cx dx

Iet us introduce the limits of integration. We then have

tp tp
Eaxsin bx cos c%] = [éaxcos bx sin cé] =0
0 0
tp Ty
J[ e®*sin bx sin cx dx = & b S5+ b e®¥cos bx cos cx dx
0 © a2+ (b+c) ¢ Jo
.t ;.'t'b
e@Xcos bx cos ex dx = - & e + 2 /7 e®%gin bx sin cx dx
Jo Ca?+ (b+c)2 € J
whence one obtains immediately
tp
q/ e®*sin bx sin cx dx = 0
0
~t -a
/ e2Xcos bx cos cx dx =

Jo a2 + (b + c)?
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If one substitutes in these expressions

1

k2 + (s + w)

Taking into account the factors placed before theJ/éign, one obtains

2E~s sin @ cos wty - k cos @ cos wtp + w cos @ sin a)ta

as the total of the expression to be calculated

The Z indicates that one must take account of the rapid oscilla-

M, & sin wtb

+Np sin wtyZA

2

w~cos @

Y k2 + (s + w)@

sw sin @ - kw cos @

Ny, COs umeAu

tion and of the slow oscillation:

(s,

k, @ 1in one case,

If one defines

one obtains

C

2

k

'
5,

+ (s + w)2

k', @' in the other)

Buy, = (C sin wty + D cos wt)nm

afcos QP

Hu + Ay
X2 + (s + w)2

s®w sin @ - kw cos Q

k° + (s + w)2

+ At

AI

u

wfeos Q'
u
k2 4+ (st + w)°
s'w sin @' - k'w cos @

k'2 + (s' + w)°
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Figure 3.- Projections of the linear velocity.

Figure 4.- Projections of the angular velocity.
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Figure 5.- Relationship between the motions of the airplane and its
displacement with respect to the horizon.

Figure 6.- Aerodynamic orthogonal system of axes.
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. Figure 9.- Efficiency of a propeller.



. Figure 10.- Orientation of a model in the tunnel. Components measured.

Figure 11.- Definition of the angle of attack in the tunnel.



015

Cm? 1
Yy =1.5—
0.10 y=1.25— /
Yy = I— //
005 y =0.75 .
&= 7
0] //%)//
_//
—005—
dc
_0.10 d”'>c>
4
| a
-015
5% o 5% 0¥ 15F 20*

Figure 12.- Curve of the total-moment coefficient.

SRR
oos:::::::T<522g2;//
e
I

- M~y = 1.25
005 NS
dc
-0.10 Mt <0
dy
~0.15 | =

s* o 5% 0% 15% 20

Figure 13.- Curve of the total-moment coefficient.



L ] ... Y
e z |
N q
P
X "/'v/ R

Figure 14.- Whirling-arm model test.

Figure 16.- Schematic diagram of the three principal controls.
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Figure 17.- Reaction compensator.

Figure 18.- Forces acting on the airplane.

Figure 19.- Curve of the necessary and available power.
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Figure 21.- Deflection of the controls and sideslip.



Figure 23,- Stability domain of the longitudinal motion.
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Figure 25,- Stability domain of the lateral motion.
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Figure 28,- Characteristics of an oscillatory motion when D is small
compared to T.
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Figure 29.- Curves of Cz asa function of the angle of attack for
different rates of variation in angle of attack.
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Figure 31.- Graphical method for solution of Duhamel’s integral.

B e and



1O —

Sa
and 88
in degrees 20
0
3
5
0]
05
1.5
da
and 88
in degrees 20
o)
0
3
)

B ) Corresponds fo
Jsfeady flight
___________ k‘ﬁ— ——
(1
o/o\/ SV
-V
86 M) T or——__
Ao ) B
/ 5 0, 1By T
10 20 t

Figure 32.- Longitudinal motion produced by two different laws of
displacement of the elevator.
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along with axis

Figure 34.- Principle of a gyrometer developed by Mr. Bouny. The
angular velocity q causes a moment about OZ. The magnitude
of this moment is measured by the deformation of a spiral spring.
An oil damper makes the instrument aperiodic.
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Figure 35.- Relation between the distances z and X, with respect to
a reference line, and the angles 8 + « and v *+ 8.
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Figure 37.- Principle of a linear servocontrol.
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Figure 38.- Phase difference betweenthe V, 6,and q pertainingto
the slow oscillation.
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Figure 40.- Construction leading to the graphical calculation of the

increments in angle of attack produced at the times 1,2, 3,4 by a
gust the duration of buildup of which is 4 time units, The construc-
tion is made for three airplanes, characterized respectively by the
laws of reduction a, b, ¢ of the perturbation in angle of attack by an
instantaneous gust. One will note that the duration of the decrease
of this perturbation is of the same order of magnitude as the duration
of buildup of the progressive gust visualized here. The increments
in angle of attack at the times 1, 2, 3, 4 are proportional to the areas
0,1',1,a,b,orc; 0,2 2,a,b,or ¢c. One sees that this area is
always larger for the polygon characterized by a than for the cor-
responding polygons designated by b or c.
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Figure 41.- Flight of the airplane in zones of air having different
vertical velocities.

Figure 42,- Geometrical relation between y and .
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- Figure 43.- Flight path actually attained in the course of an automati-
cally controlled approach.
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Figure 44.- Function shifted by s.




Figure 45.- Curve R: Frequency response. Curve D: Frequency
demand.
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Figure 46.- Repiacement of the steady unit-impulse function by a
periodic function of a sufficiently large period T.
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Figure 48.- Curves of frequency response found experimentally at
three different velocities.



Curve of totfal frequency response R

Same speed 280 km/h \
outomatic pilot A 12

————-—— automatic pilot C |

—— ——— automatic pilot C IA

Figure 49.- Curves of frequency response found experimentally with
three different automatic pilots.



Figure 50.- Locus of equal modulus of -)Zg and locus of equal phase
displacement of 2 of the closed-loop system, transferred to the
diagram designed%or outlining the curve of response £ of the

open system.
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Figure 51.- Curve in the plane p and its transformation in the plane P.
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Figure 52.- Transformation in the plane P of the contour enclosing
the right half of the p-plane.

- € | servo! - z
motor

Figure 53.- Schematic diagram of a simple automatic control.

Automatic?
pilot
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Figure 54, - Scheniatic diagram of an airplane equipped with an auto-
matic pilot and an independent control acting ahead of the automatic
pilot.
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Figure 556.- Curves of response R1 and R. and corresponding curves
of demand D1 and D2 showing a critical frequency w.
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. Figure 56.- Schematic diagram airplane, automatic pilot, and independ-
ent control acting after the automatic pilot.
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Figure 57.~ Airplane and automatic pilot as a function of two variables,

with independent control acting ahead of the automatic pilot.
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Figure 58.- Airplane, automatic pilot as a function of two variables and

after the automatic pilot.
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Figure 59.- Schematic diagram of an airplane equipped with an auto-
matic pilot sensitive to the angle 6 and subjected to perturbations
of the entrained velocity w, of the surrounding medium.

Figure 60.- Forms of the transfer function leading to instability.
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Figure 61.- Airplane and automatic pilot sensitive to the derivative of
a perturbation.
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Figure 62.- Vectorial diagram showing that the presence of a derivative
deviates the vector product RqRo from the point -1.
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Figure 63.- Airplane and automatic pilot sensitive to the integral of a
perturbation.
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Figure 64.- Vectorial diagram showing that the presence of an integral
makes the vector product RlR2 approach the point -1.




