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VOLUME I

INTRODUCTION

The purpose of the present report is the theoretical study of auto-

matic flight control of aircraft.

The report starts with a presentation of definitions, conventions,

and generalities; it is important to have them determined before broaching

the subject. This presentation comprises the first four chapters.

Chapter V is devoted to a sumr.ary investigation of the effect of the

controls on the conditions of equilibrium of an airplane for steady state.

Following, the present report takes up the cla:sical theory of the

motion of airplanes which is based on the linearized equations. In the

summary of that theory which is contained in chapters VI to XI we attempted

to show to what high degree employment of dimensionless coefficients

systematizes the problem, and we have stressed the physical aspect of

the phenomena which in the greater part of previous reports has been made

only insufficiently clear.

We believe, besides, that the exposition we give here of the line-

arized theory, which is today classical, contains a certain number of

new original points, notably the explanation of maneuvers of an actual

pilot by means of the Duhamel integral, and the ensuing graphical con-

struction (chapter XII).

Once the essential points of the theory of motion of airplanes are

established, it becomes possible to go into the study of automatic pilots.

The properties of airplanes provided with ideal equipment acting without

inertia and following simple laws, are easily obtained by a simple gen-

eralization of the linear theory.

*"Etude Th_orique du Pilotage Automatique des Avions." Memoires

de la Societe Royale Belge des lngenieurs et des Industriels, Serie B,

No. i, 1950.
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This investigation, presented in chapters XV and XVI, lead_ to

valuable indications. It was made during t_e occupation, and the con-

clusions reached were not published. After the liberation we learned to

our pleasure that similar work, resulting in analogous conclusions, had

been carried out during the war in Great Britain and in the United States.

One of our general conclusions was that the properties of an auto-

matic pilot for use with a prescribed airplane must depend on the char-

acteristics of the motion which the airpl_le performs with controls fixed.

This idea now seems to be universally admitted; consequently, an

importance it did not have formerly is attributed to the study of the

relative motions of the airplane.

However, the "idealized" theory of automatic flight control consti-

tutes only a first approximation and the indications it furnishes require
extension.

Taking into account the inertia and frictions, one may set up the

equations of motion of the automatic-flight-control instrument, and com-

bine them with the equations of motion of the airplane.

However, setting-up the equations according to the conventional

methods of mechanics leads to insuruuoantable complications; to continue

the investigation, it is necessary to resort to methods analogous to those

used in the field of electricity. The most efficient approach seems to

be the study of the response of the system when it is subjected to har-
monic or sinusoidal excitations.

The last chapters of this report serve to indicate the possibilities

offered by this method of investigation, that is, the study of the fre-

quency response.

The present investigation is, above all, of theoretical character.

As regards the practical verifications, we are forced to refer to tests

which have been carried out abroad and made the object of publications
there.

An attempt made before the war (with highly valuable collaborations)

to establish experimental methods permitting a kinematic analysis of the

trajectories was stopped by the events and could not be taken up again.

This attempt has shown that the mesas necessary for experimentation in

flight considerably exceed ever/thing which we should have been able to

set up.

Information we acquired regarding the magnitude of the means used

in research centers abroad entirely corm_irms this point of view.
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Our contribution to the solution of the problem of automatic flight

control is presently limited to theoretical work. Nevertheless we believe

that the publication of the present investigation might attract the atter-

tion of organizations who have at their disposal the means for investiga-

tion in flight, taking advantage of theoretical studies related to the

dynamics of flight.

In the course of discussions we held with French engineers on the

problems which form the object of our study we have found that certain

airplane designers shared our opinion regarding the usefulness of a

simultaneous investigation of the airplane and of the apparatus for auto-

matic flight control.

We wish to express here our gratitude to the officials of the

'Research Center for the Mechanics of Flight" for regularly keeping us

up-to-date on their work. We also thank the National Society of Aeronautic

Constructions of the South-East anff the Airplane Society Br4guet for the

information their technicians were authorized to communicate to us.
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without subscript: moments of inertia of an airplane

with subscript: coefficients of the characteristic

nond_mensiona! equation

with subscript: aerodynamic coefficient

diameter of the propeller

duration for decrease to half-value

weight of airplane

moment of inertia of a propeller
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with subscript: coefficients of the characteristic equation

in dimension_l form

components of the aerodynamic moment

engine torque

S lifting su_face
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e
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h
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period of an oscillation
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power
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without subscript :

aerodynamic coefficients

wing span

wing chord

with subscript: chord of a movable surface (control)

acceleration of gravity
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intensity of a current

real part of the root x

distance from the tail unit to the center of gravity

Napierian log
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velocity of engine rotation expressed in number of

revolutions per unit time

symbolic variable

components of angular velocity

radius of gyration

semispan of wing

imaginary part of the root x
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time

velocity components

root of characteristic equation_ in dimensional form

general expression for an input signal

general expression for an output signal

angle of incidence

angle of sideslip

index of propeller operation

general expression for an increment

angle of deflection of current

angle of inclination between one direction with respect
to another

error or difference

angles determining the inclination of the airplane

root of the characteristic equation in nondimensional
form

real part of the root

density of airplane

reduced expressions of angular velocities

specific mass of air

imaginary part of the root h

symbolic expression for the degree of throttling

angle of inclination of the flight path

aerodynamic time

deflection of the control surfaces



angular velocity of engine

!
CO frequency of _u excitation

angular velocity of airplane



CHAPTERI

EI]V_4ATICSOFTHEAIRPLA/_E

i. Fixed Axes Referred to the Groun_

Q

Let a system of axes TX0, TYo, TZ0 be prescribed, originating

from a point T fixed to the ground.

The axis TZ 0 will be oriented vertically, positive upward.

The axes TX 0 and TY0 may be chosen arbitrarily, with the one

condition that the orthogonal system of axes should be right-hand
rotational.

The orthogonal system of axes TXo, YO' Z0 constitutes a system of

fixed axes, called in what follows, geodetic orthogonal system of axes.

2. Axes with Origin at the Center of Gravity of the Airplane

We shall utilize two systems of axes fixed to the airplane issuing

from an origin 0 _lich coincides with the center of gravity of the

airplane.

The first system is a system of axes OXo, OY0, 0ZO, restricted to

remaining parallel to the axes of the geodetic orthogonal system of axes.

This system constitutes the geoparallel orthogonal system of axes. Its

origin is the only one which is involved in the translational motion of

the airplane.

The second system is a system of axes 0X, OY, OZ fixed to the

airplane and involved at the same time in the motions of translation and

of rotation of the machine.

Th_s system constitutes the dynamic orthogonal system of axes.

Every airplane possesses a plane of symmetry. We shall agree to

place the mxes 0X and 0Z _n the plane of syrmmetry, attaching the

axis 0X to a significant direction of the airplane, defining its logi-

t Jdinal axis. _j convention, we shall direct 0X forward.



The orthogonal system of axes will be right-hand rotational, and
the positive directions of the axes will be as follows:

Forward for the axis OX

Upwardfor the axis OZ

Toward the left for the axis OYo

It remains to select the significant direction along which we shall
place the axis OX.

Wemay choose one of the following directions:

Direction of the propeller axis

Direction of the geometric chord of the wing (in its plane of
sy_etry)

Direction of the chord corresponding to zero lift

Direction of the central axis of inertia nearest to the directions
designated above.

In fact, these directions form between them, only angles of a few
degrees.

If we choose the direction of the chords, we facilitate the expres-
sion of aerodynamic forces along the axes, but we complicate the equations
of motion.

If we choose the direction of the axis of inertia, we simplify the
equations of motion but we £_poseupon ourselves the transformations
necessary for referring the expressions of the aerodynamic forces to
axes not fixed to the external forms of the airplane but to the distri-
bution of _sses in its interior.

Since our purpose is to study the equations of motion, we shall
choose the secondmethod.

The dynamic axes then coincide with axes of inertia.

The principal momentsof inertia will be A, B, C.

All three products of inertia are zero:

D and F due to the existence of a plane of symmetry

E as a consequenceof our choosing the direction OX,
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Remark: The positive directions of the orthogonal system of axes

are the ones generally used in investigations published in French l_nguage.

Each of these axes is opposite to that of the orthogonal system of axes

employed in English-speaking countries.

3. Position of the Airplane in Space

The position of an airplane in space will be defined:

(1) By the three coordinates of its center of gravity

to the geodetic orthogonal system of axes TXo, YO' ZO

O, referred

(2) By the orientation of the dynamic orthogonal system of axes O, X,

Y, Z, referred to the geoparallel orthogonal system of axes OXo, YO, ZO'

This orientation will be defined by means of three rotations 4,

to which one must subject the geoparallel orthogonal system of axes

in order to transform it into the dynamic orthogonal system of axes.

The rotations we use are not those utilized by Euler. We shall

actually accomplish:

(i) An amplitude rotation @ about OZo, _:hanging the axes OX O

and OY 0 into OX' and OY' whereas the auxiliary axis OY' is,

according to definition_ the intersection of the plane XO_ OY 0 with the

plane Z, O, Y

into

into

(2) An amplitude rotation 6

OZ', and OX' into OZ

(3) An amplitude rotation

OY, and 0Z' into OZ.

The positive sense of these rotations is:

about the axis

around the axis

OY', changing OZ 0

OX, changing OY'

> 0 makes the airplane turn to the left

8 > 0 causes nose down

> 0 causes inclination to the right.
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The direction cosines of the three axes OX, 0Y, OZ with respect

to the orthogonal system of axes OXo, YO, ZO are given by the table.

OX OY OZ

- cos _ sin _ sin _ sin $
cos e cos

+ sin _ sin e cos _ + cos _ sin e cos

OY 0 cos e sin

OZ0 - sin @

cos _ cos
+ sin _ sin 8 sin

sin _ cos 8

- sin_ cos

+ cos _ sin 8 sin ¢

cos _ cos 8

knowledge of the direction cosines permits an easy setting up of

the transformation formulas that might be required.

Let us note that the t>_ee angles 4, 8, _ are fixed to the

parameters customarily used for characterizing the position of an

airplane.

If 8 = _ : 0 @ defines the azimuth.

If _ = 0 0 defines the trim.

If 8 = 0 _ defines the lateral inclination.

4. Motion of the Airplane

The motion of the airpl_ue is, at every instant, determined:

(i) By the velocity V of its center of gravity

(2) By the angular velocity Z about an axis of rotation going

through its center of gravity.

If the atmosphere in which the airplane flies is stationary, that

is, is not in motion due to air currents_ V expresses at the same

time the velocity with respect to the ground and the velocity with

respect to the surrounding medium.

A motionless observer, that is, fixed to the ground, will define

the motion by the projections V and fl on the system of fixed axes

attached to the ground.
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A_uobserver placed in the airplane will define the motion by the
projections V and _ on the dynamic axes.

Assume:

U, V,

P, q,

w to be the projections of V

r to be the projections of

One has necessarily:

on the dynamic axes.

on the dynamic axes.

V 2 = u 2 + v2 + w 2

_2 = p2 , q2 + r 2

These six projections define actually the motion of the dynamic

orthogonal system of axes referred to itself, that is, with respect to

the instantaneous position it occupies. Since it is being continually

displaced, the motion of the airplane in space is not always described

in a convenient manner by these six projections.

However, the problem we are dealing with is, in fact, the study of

the motion as perceived by the pilot, not that of the motion as seen by

an observer on the ground.

Thus we shall always refer to the motion of the dynamic orthogonal

system of axes, and shall continuously make use of the projections u,

v, w and p, q, r.

5. Relations Between the Angular Velocities and the Attitude Angles

The three components p, q, r of the angular velocity correspond
to motions determined as follows:

The component p, about the axis 0X, constitutes the motion of

rolling.

The component q, about the axis 0Y, constitutes the motion of

pitching. @

The component r, about the axis 0Z, constitutes the motion of

yawing.
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The resultant angular velocity maybe defined either by its compo-
nents p, q, r about the axes OX, OY, and OZ, or by the three
components:

_d

-_u around the axis OX
dt

d8
around the axis OY'

dt

d,¢
d-_ around the axis OZ 0

Projecting on the axes OX, OY, OZ a vector the components of

which along the axes OX, OY' and O_ are d_ d@ dW
d-_' d-_' d-_' one obtains:

d_ d_ sin e
P - dt dt

de d,¢
q : _ cos _ + _ cos e sin

d@ de
r = d-t cos @ cos _ - _ sin

These purely geometrical relations occ_mr in the equations defining
the motion.

Written so as to express explicitly d9 de d9d-T' d--t' d--t'they become:

d_ sin e
dt - p + cos _(q sin _ + r cos 9)

d@
--- : q cos 9 - r sin
dt

d_ i

dt cos @
(q sin _ + r cos _)

R emar k: If _ =0 (wings horizontal), one obtains:

d@ d_
q : _y{ r :_cos e
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Pitching modifies the longitudinal inclination of the airplane,

the motion of yawing displaces the airplane in azimuth.

The relation between the motions of the airplane relative to the

air, q and r, and its displacement with respect to the ground is

orthogonal.

When _ = _/2, that is, when the wings are vertical:

d_ d8
q = _Tcos e r - dt

The usual relation between the motions of the airplane relative

to the air and its displacement with respect to the horizon is reversed;

the pitching modifies the azimuth of the airplane whereas the yawing

motion modifies the longitudinal inclination.

6. Equivalent Representation

Utilization of the six components

u,v,w (dimensions LT-9

p,q,r Cdimensions T -1)

presents difficulties sometimes. It can be useful to employ only one

single dimensional characteristic, the velocity, and to define the five

other elements of the motion by dimensionless parameters.

For this purpose, one may define the motion with respect to the

dynawlic orthogonal system of axes as follows:

(i) Instead of using the three projections of the vector V, one

characterizes the translational motion by the numerical value of the

resultant V, and the orientation of this vector with respect to the

dynamic orthogonal system of axes. This orientation will be charac-

terized by two angles; the angles of attack and of sideslip the exact

definition of which is given in the following section.

(2) Instead of using the components p, q, r of the angular

velocity, it is of advantage to use the three dimensionless quantities

called "rotational velocity ratios. ''I

I 0 is used also to designate the specific mass of the air. Never-

theless, we think it possible to use 0 to denote two essentially

different quantities since no confusion whatsoever could arise.
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ps × _ ql rs
V V V

In these expressions s represents a transverse dimension, Z a

longitudinal dimension of the airplane.

The rotational velocity ratios then express the relationship that

exists between the linear velocities of a point at a prescribed distance

s or Z from the center of gravity due to the rotation considered, and

the velocity V of the center of gravity.

As a matter of fact, we will take:

s = semispan of the airplane.

= lever arm of the horizontal tail surfaces, that is, the distance

separating the centroid of the tail plane from the center of gravity of

the airplane.

7. Axes Dependent on the Flight Path and on the Airplane

Assume an axis Ox coinciding with the velocity, an axis Oz,

defined by the intersection of the plane originating from 0 and

perpendicular to Ox with the plane of symmetry ZOX - this axis Oz

will be directed upward - and an axis Oy, perpendicular to the preceding

ones and directed toward the left.

These axes define an orthogonal system of axes, called aerodynamic

orthogonal system. Let V s be the projection of the velocity on the

plane of symmetry.

The angle measured in the plane of symmetry and comprised between

the directions V s and 0x is called the angle of attack _.

The angle measured in the plane Vs0V and comprised between the

directions Vs and V is the angle of sideslip p.

According to definition:

The angle of attack _ will be positive if Vs is directed below OX.

The angle of sideslip p is positive if V is directed at the left

of OY.
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One has, under these conditions:

u = V cos _ cos

v =Vsin_

w = -V sin _ co_

and knowledge of the velocity V and the two angles of _ and _ is

quite equivalent to knowledge of the three projections.

Two angular quantities, the angles _ and _ are sufficient for

a complete determination of the respective position of the aerodynamic

and dynamic orthogonal systems of axes since, according to the conven-

tion for determining Oz, the two orthogonal systems are not completely

independent of each other.

Let us note that w _ tan _ and _ = tan _ cos
u u

The aerodyn_ic orthogonal system is frequently used. In wind-

tunnel tests, the aerodynamic reactions are always determined by means

of balances which measure the components in directions invariably fixed
to the airstream.

These directions are usually:

The direction -Ox; that is, that of the airstream

The direction Oz.

The direction Oy.

It is frequently necessary to refer to the d3clamic axes forces which

are defined by their components along the aerodynamic axes.

The transformation formulas can be in_ediately set up as soon as the

direction cosines of one system of axes with respect to the other one

are known.

These direction cosines of the three axes Ox, Oy, Oz with respect

to the dynamic orthogonal system of axes OXYZ are given by the table.

Ox e/ Oz

OX cos _ cos _ -cos _ sin _ sin

0Y sin _ cos _ 0

OZ -sin _ cos _ -sin e sin _ cos
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CHAPTER II

DYNAMICS OF THE AIRPLA_E

i. Forces and Moments

The external actions affecting the airplane are:

(a) The force of gravity applied at the center of gravity

(b) The aerodynamic forces and moments exerted on the airplane

(c) The forces exerted by the propeller and transmitted to the air-

plane by the motor mounts

These actions acquit the following components, along or around the

dynamic axes.

_.- The projections of the weight G along the three dynamic

axes are the projections of a continually vertical force. One has
therefore:

Gx :G sin9

Gy = -G sin _ cos 9

G z = -G cos 9 cos

The projections of the force of gravity depend therefore on the

angles 9 and _.

Aerodynamic actions exerted on the airframe.- The aerodynamic

actions exerted by the airframe consist in a resultant F, applied at

the center of gravity, and a moment C.

We shall call

dynamic axes, and

dynmmic axes.

X, Y, Z the components of F

L, M, N the components of C

along the three

around the three

The positive directions are necessarily those of the forces acting

along the positive direction of the axes_ _nd those of the moments tending

to produce positive rotations p, q_ r.
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Effects exerted by the propeller.- The forces transmitted to the

airplane by the motor mounts comprise:

(a) The aerodynamic reactions exerted by the surrounding medium

on the propeller

(b) The internal forces of the power plant, such as gyroscopic

moments. These last may be considered as external actions as far as

their effect on the motion of the airplane is concerned.

The reactions comprised in (a) are the thrust T of the propeller

and a torque Q acting around that axis.

The thrust acts precisely along the propeller axis only when the

velocity V coincides with the propeller axis. It may show components

perpendicular to the axis if the forward speed forms an appreciable angle
with the axis.

On the other hand, the propeller axis is not necessarily parallel to

one of the axes of the airplane. Under these conditions, the thrust

possesses, generally, three components Tx, Ty, T z along the axes fixed

t:_ th_ airplane.

If the straight line along which the thrust is acting does not pass

through the center of gravity, the thrust exerts a moment the components

of which around the three axes will be called Lh, Mh, Nh.

The moment Q is equal to the engine torque. 2 It depends therefore

on the throttle setting selected by the pilot. It possesses, as a rule,

three components: Qx, _, Qz"

The propeller exerts a gyrostatic moment which, for certain maneuvers_

is not negligible.

Let I be the moment of inertia of the gyrostat (propeller), _ its

_ugular velocity.

If the gyrostat is driven by a forced rotation _, it exerts a moment

of reaction Io_._ the components of which are

Lg = l(_r -_0zq )

Mg = I(_zp - _x r)

Ng i( q
2_len the engine is not geared down. If there is a reduction gear, the

gear ratio must be taken into account.
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calling _x, _y, _z the projections of the vector co on the dynamic

axes. This general expression may be simplified, however.

Sum of the external actions.- Let us call ZX, ZY, E Z the sums

of the projections of the various external forces along the three axes,

and EL, ZM, ZN the sums of the projections of the external moments

acting around these axes.

One then has, as a rule:

ZX = X + Tx + G sin e

EY = Y + Ty - G cos 8 sin

EZ = Z + T z - G cos 8 cos

ZL = L+ Lh + Qx + Lg

:M +Mh +% +Mg

ZN:_+_+%+Ng

Certain terms may be neglected, however. The axis of the propellers

is, in fact, parallel to the plane of symmetry so that one may put:

Ty=0 _=0

Lh=0 _y=O

When the airplane is symmetrical, one has Nh = O; however, there

exists one important case: that of a multiengined airplane flying with one

outboard engine stopped where one has

Nh i 0

One can approxLmate a_x with _ and neglect _y

the gyroscopic moment possesses only two components:

Mg : -lain

Ng = la_l

and _z" Hence
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2. Factors at the Disposal of the Pilot

The motion of an airplane may be studied in the following cases:

(a) Nonpiloted aircraft, flying with controls fixed

(b) Nonpiloted aircraft, flying with free controls (if the latter

are reversible)

(c) Piloted aircraft, with the controls being manipulated according

to a certain law, either by the pilot or by a mechanical device called

automatic pilot.

This will lead us to an analysis of the means the pilot has at his

disposal for influencing the motion of the airplane.

We should like to remark right now that the second case is a parti-

cular case of the third: the displacement of the controls then is the

one which occurs in the course of the maneuvers of the airplane if the

force applied to them is zero.

3. Equation of Motion of an Airplane Flying with Controls Fixed

The motion of an airplane is determined as a function of the external

actions, by the six fundamental equations of dynamics.

Assume m to be the mass of the airplane; A, B, C its principal
moments of inertia.

By virtue of the selection of axes, the product of inertia: E = 0.

Due to the symmetry: D = F = 0.

Referring the motion to the axes fixed to the airplane, the equations
of motion are written:

ml U+

m_dV+ ru - pw) = ZY_t

m(dW+_t pv - _) = ZZ
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dp
A aT+ qr(C - B) = m

Baq+rp(A-C) =Z_
at

C_--+pq(B-A) =ZN
dt

where m represents the mass of the airplane; A, B, C its three

moments of inertia.

Since the projections of weight are functions of $ and 8, the

preceding six equations constitute a system connecting the linear veloc-

ities u, v, w, the angular velocities p, q, r, and the angles of

orientation $ and e with the independent variable t.

We must therefore complete the system by means of equations -which

connect the angles with speeds of rotation. We have at our disposal the

relations:

d_ sin 8,
d-_ = p + co--_ _p sin _ + r cos _)

de

d-_ = q cos q_ - r sin

d_?? 1= ___--cu--_(qsin _ + r cos _)
dt CO_ _

The two first ones are sufficient for completing the system. If

one wants, moreover, the azimuth, one must utilize the third equation

which then introduces the variable $.

The motion is thus characterized by nine equations with nine

dependent variables.

The instantaneous values of the external actions must be introduced

in these equations, and we shall have to investigate to what extent these

actions are known as functions of:

(a) The instantaneous values of the variables u, v, w, p, q, r

(or V, _, _, _, X, O) which define the motion of the airplane

(b) Their derivatives

(c) In certain cases, of the previous history of the motion of the

airplane.
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Onedifficulty arises in connection with the power plant: With A
the constant throttle setting, we mayassumethe engine torque Qm to be
constant, but the resistant propeller torque depends on its speed of
rotation _ and on the forward speed of the machine:

Q =

The speed of rotation of the power plant is therefore connected with

the translational velocity of the airplane by a relation:

IdR:
dt

where I designates the moment of inertia of the propeller.

If one wants to proceed rigorously, one has to add to the system a

new variable, the rotational speed of the propeller, and also a new equa-

tion, and must then combine the study of the motion of the airplane in

space with the study of the rotational motion of the power plant.

This mode of procedure would increase the complexity of the system

still more. We point it out only for the record. The system of the

nine equations must, on the contrary, be simplified in order to lead to

practical conclusions.

We shall make use of artifices which permit avoiding the introduction

of variations from the power plant reg£me into the equations of motion of

the airplane.

4. Separation of the Equations

The investigation of the motion of airplanes will be facilitated,

in numerous cases, by the possibility of splitting up the system of

equations into two systems independent of one another which define the

longitudinal and the transverse motion, respectively.

The longitudinal motion contains the displacements along the axes

and 0Z, and the rotations around the axis OY; it corresponds to the

equations:

m + pw - rv = X + Tx + P sin 8

OX
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m = Z + Tz - P cos e cos

dq
B_:M+Mh+Mg

d_

dt

This motion is considered to take place with constant values of v,

p, r.

The external effects are functions of the above constant values and

of the magnitude of the variable quantities u, w, q, e (equivalent,

as we have seen, to V, _, X, and 0).

The transverse motion comprises the displacements along the axis

and the rotations around the axes OX and OZ. It corresponds to the

equations:

OY

\

/dv •

m\_-_\+ ru - pw_ = Y - P cos e sin

A d_p_+ qr(C - B) = L + Qx
dt

dr

C y+pq(B-A)

d_ (r cos _ + sin _sin e

d_ cos _ + q sin
d-Y= r cos-----_ cos----V

It is considered to take place with constant values of u, w, q, e.

The external effects are functions of the above constant values and of

the magnitude of the variable quantities v, p, r, _, and _ (equivalent

to _, _, p, _, and _).
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5- The Accelerations

Let _s note that the three equations of translation may be written:

m[_u + (qw- g sin0]j: + x

m_ + (ru - pw) + g sin _ cos = Y

mF dw + (pv - qu) + g cos e cos _ = T z + Z

_t A

If we represent the quantities between brackets by Jx' Jy' Jz,

we obtain:

mJ --T + X
X X

m_ = Y

mJ z = T z + Z

The quantities Jx_ Jy_ Jz are the sum:

Of the linear accelerations

Of the centripetal accelerations

Of the projection of the acceleration of the force of gravity.

They may be considered as constituting the components of the total

acceleration and are hence in close relation with the sensations experi-

enced by the pilot and the passengers.

The quantities Jx, Jy, Jz may receive another physical interpre-

tation. Every one among them is equal to the effect which the apparent

grsvity exerts along the negative direction of the corresponding axis.
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6. Equations of Motion of an Airplane When the

Controls Are Manipulated

In these cases the preceding systems of equations must be completed

by the relations giving the deflection of the control surfaces as a func-

tion of time; the external actions must be expressed as functions of the

deflections of the control surfaces.

These questions will be developed further on.
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CHAPTER III

THE EXTEP_A_LACTIONS

i. Utilization of Dimensionless Factors

We take up again the enumeration we made in the first section of

the preceding chapter regarding the various external actions.

In the course of this chapter we shall describe the means utilized

for investigating, defining and predicting the magnitude of the external

actions.

The necessity of mking comparisons between airplanes showing

considerable differences in weight, dimensions, and speed, has led to

defining all external effects acting upon an airplane by dimensionless
factors.

We shall set up here the indispensable definitions.

2. Density of the Airplane

In the investigation of the motion the mass of the airplane will be

replaced to advantage by the dimensionless relation:

2m

oSc

called the density of the airplane.

In this expression:

D denotes the specific mass of the surrounding air

S the lifting-surface area

c a characteristic dimension, the wing chord

The density of the airplane is the ratio between the mass of the

airplane and the mass of an air volume equal to half the product of its

lifting-surface area and the length of the chord.

It results from this definition that the density of the airplane

varies with the altitude.
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3. Projection of the Aerodynamic Actions on the Axes

Fixed to the Airplane

The components X, Y, Z, L, M, N will be expressed as functions

The lifting-surface area S

The mean chord c of that su_face

The span b

The dynamic pressure pV2/2

Six dimensionless factors.

We shall put:

_V2
X = CxS

pV 2
Y = CyS -_-

z :CzSe

pV 2

L : CLSb

M : CMSC pV2
2

9

The factors CX, Cy, CZ, CL, CM, CN a_e ordinarily called coeffi-

cients. The nomenclature "coefficient" seems to indicate that these

factors are constant. This is not tru% however; these factors are

essentially variable and their value depend:: on a great number of variables.

4. Projections of the External Actions on the Axes

Referred to the Relative Wind

It is clear that one can refer the external actions also to the

axes 0x, 0y, 0z constituting the aerodynamic orthogonal system of axes.

We shall call:

Resistance Fx or drag, the projection on the direction of the

relative wind, that is, along the negative direction of 0x.

Transverse force Fy, the projection on the axis Oy.

Lift Fz, the projection on the axis Oz.
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These components may be defined by factors analogous to the preceding

ones, generally denoted in the technical literature in French language

by Cx, Cy, Cz, with the subscripts "_ritten as lower-case letters.

The components of the moment around the three axes Ox, 0y, 0z are

defined by corresponding factors which one may write CZ, Cm, Cn.

5- Actions Exerted by the Propeller

Any propeller is defined by its exterior form. Among the parameters

on which this form depends, there is the angle at which the blades are

set, which determines the pitch.

With the exterior form (and consequently the pitch) fixed, it will

be possible to determine uniquely the thrust T and the moment Q as

a function of the peripheral velocity mD/2 of the propeller and of the

velocity V of the airplane, or as a function of one of these quantities
and of their ratio.

We shall put:

V

where n denotes the rotational speed, expressed in revolutions

per second, and D the diameter of the propeller.

The ratio of the velocity of the airplane and the peripheral velocity

of the propeller is indicated, except for the factor i/_, by this

characteristic 7:

2V 2V i

aD 2_nD 7

In practice, the thrust T and the moment Q are expressed, as

functions of one of the two velocities, by dimensionless factors the

numerical values of which are functions of the advance ratio 7-

One may utilize one or the other of the two series of factors K
or C.

If one expresses T and

one has:

Q as functions of the rotational speed,

T :KTPn2D 4

Q : KQpn2D 5
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If one expresses these quantities as functions of the velocity of

the airplane, it will be of advantage to use as ratios the dynamic pressure

and the surface of the disk swept by the propeller. One then obtains:

pV 2 _D 2

T : CT--5--I[-

pV 2 _D 2
Q = CQ D

2 4

For a propeller of prescribed form the factors KTK Q and CTC Q

are uniquely functions of y.

The factors CT and CQ express the action of the propeller in a

manner analogous to the one utilized for denoting the force exerted on

the airfr_r:e; they show the inconvenience of being represented as func-

tions of 7 by curves which possess, for small values of Y, an infinite
branch.

The following relation exists between the factors C and the

factors K:

The moments Mh and Nh exerted by the thrust of the propeller if

its axis does not pass tlrrough the center of gravity will be expressed as

functions of T and of the corresponding linear dimension. One has, for
instance:

with SH denoting the surface of the disk swept by the propeller.

Remarks: (i) It may be useful to complete the notationsj showing,

how one can express the power absorbed by the propeller.

One has necessarily:

Hence:

w=%

• W : K=_pngD 5
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or

w =c % v3/2

with, according to definition:

Kw = 2_KQ

(2) The effective power is equal to the absorbed power multiplied

by the efficiency _ of the propeller. Thus it will be possible to

define the effective power by the factors Cwu or Kwu , uniquely func-

tions of 7 and analogous to the previous ones.

(5) The factors CT, CQ, Cw or KT, KQ, K w characterize a

given propeller and are functions of the advance ratio 7-

If the angle at which the blades are set is variable, there exist

as _ny relations (or curves) KT, EQ, K w or CT, CQ, Cw as func-

tions of 7 as there are different blade-angle settings.

The described propellers of variable pitch are therefore characterized

by a family of these curves.

6. Variables Defining the Steady-State External Forces

The forces exerted by the surrounding medium on an airplane in

motion with controls fixed are functions of a large number of variables.

Having agreed to represent the forces by dimensionless factors, one

must now necessarily determine on what variables these factors depend,

and how they depend on them.

The conventional hypothesis of similitude consists in admitting that

the factors CX . . CN are independent:

(a) Of the physical characteristics of the atmosphere

(b) Of the aerodynamic velocity

(c) Of the absolute dimensions of the aircraft.
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The external forces are then determined for steady-state conditions,

by factors which are uniquely functions:

Of the angles of attack and of sideslip _ and

Of the rotation ratio _, X, p, and of the ratio 7 which deter-

mines the effect of the slipstream of the propeller on the aircraft.

Actual experiences show that the aerodynamic forces depend in addi-
tion on a certain number of other variables.

Certain characteristics of the surrounding medium - viscosity,

turbulence - exert a considerable effect on the aerodynamic forces in

steady state.

In setting up the reactions an element dependent on the airplane,

the roughness of the surface in contact with the atmosphere, also plays

a role which must not be neglected.

In the present report we shall _ke the assumption that it is always

possible to determine the aerodynamic reactions in steady state either by

means of laboratory tests or by means of theoretical or empirical calcu-

lations. This implies that when our knowledge is based on laboratory

tests, carried out on scaled-down models under conditions of viscosity,

turbulence, and roughness different from those existing f_ full-scale

models, the development of the factors CX . CN, as functions of these

characteristics, is supposed to be known.

The determination of the aerodynamic forces in steady state is

completely outside of the scope of the present report, and we shall

discuss the test methods only when this will be useful in making the

mechanical significance of one or the other characteristic understood.

Besides, the experimental possibilities of investigation are not

the same if the state of motion consists of a pure translation or of

a translation accompanied by a rotation.

7- Tests in Pure Translation

The tests corresponding to motions comprising only translation can

be carried out in wind tunnels. We shall here not enlarge upon test

technique.

The number of wind tunnels throughout the world is such that for

any new aircraft project, one can arrive at an experimental determination
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of the factors CX . . . CN for the principal steady states of transla-
tion, and for different configurations of the airplane. 3

Wind tunnels are generally equipped for measurementof the forces
along the trihedron Oxyz (taking into account the remark madebefore
regarding the positive sense of the drags).

If one wants to introduce experimental results into the foregoing
equations of motion, it is necessary to makeuse of the transformation
formulas which permit passing from one system to another.

Wehave given before the table of the direction cosines.

It is well to remark also that the direction used most which serves
as reference for the definition of the angles of attack is not the same
in the wind tunnel and for the actual aircraft. Since the angle of
attack in the wind tunnel is referred to a chord fixed to the profile,
one has:

CL = (LS + E

when the axis of inertia is raised with respect to the said chord.

When Cx and Cz are defined as functions of this angle of attack

in the wind tunnel, the usual case, one obtains for example for zero

sideslip:

Cx = -Cx cos(as + c) + Cz sin(as + _)

CZ = -Cx sin(a s + e) + Cz sin(c_s + e)

The tests yield serviceable results only when the models are provided

with electric motors driving the propellers at speeds determined for each

test by the conditions of similitude (equality of the values of 7)-

This leads us to say a few words regarding the moments M and

Mh = Th.

If M is the longitudinal moment of the aerodynamic forces exerted

on the airframe:

M h = T h is the moment exerted about the center of gravity by the

t_ust of the propeller, and constitutes the direct effect of the propeller

on the longitudinal moment.

30he calls configuration of the airplane the external form corre-

sponding to a prescribed position of the movable elements which will be

discussed in the following chapter.
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In fact, the propeller modifies by its slipstream the velocity and
the direction of the airstre_m striking the horizontal tail surfaces and
certain parts of the wing. It acts upon the aerodynamic reactions and
exerts an indirect effect on the moment M.

It is almost impossible to isolate the direct effect from the indirect
effect. The latter is frequently of opposite sense, and one is inevitably
led to visualize a total moment:

Mt =M+Th

defined by a total-moment coefficient:

Sc

It is easy to determine in the wind tunnel the CMt for all combi-

nations of angle of attack _ and a_vance ratio 7 (for a given blade-

_ngle se_ting) so that the C_ can be characterized by an exper£_ental

diagrm_ the shape of which is represented in figure 12 or in figure 13.

The following considerations permit an interpretation of these

dia_ams.

Any change in the magnitude of 7 modifies the thrust exerted and

alters the slipstream.

At small values of 7, the propeller operates in the neighborhood of

static thrust. The thrust developed is large, and the ratio of the slip-

stream velocity of the propeller to the aerodym_mic velocity is maximum.

Both the thrust exerted and the relative magnitude of the slipstream

decrease when 7 increases.

For a certain value of 7 the propeller does not exert any thrust,

and the propeller slipstream does not exert any influence on this moment.

The figures are plotted under the hypothesis that the thrust becomes zero

for 7 = 1.7.

If dCMt > 0 (fig. 12), everything takes place as if the preponderant
d7

effect were the direct effect exerted by a propeller the axis of which

passes below the center of gravity.
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If __22__ 0 (fig. 13) the sense of the phenomenon is that exerted
d_

by the direct effect of a propeller the thrust axis of which passes above

the center of gravity.

In view of the prescribed fact that CMt is a function of _ and

and that in the course of maneuver which changes the angle of attack the

velocity of the airplane generally varies, one has necessarily:

d_t _ _DM t + _CM t dy

d_ _ By d_

where the derivative d_/d_ has to take into account the manner in which

the advance ratio of the propeller varies in the course of the maneuver

considered.

8. Tests in Translation Accompanied by Rotation

The tests reproducing steady-state conditions which comprise at the

s_me t_me a translation and a rotation can be performed in the wind

tunnel if the radius of rotation is small (spin), as whirling-arm tests

if the radius is large.

Actually, only the second case is of #naterest to us.

The aerodynamic whirling-arm test is a means of investigation utilized

at the beginning of aviation which had, however, practically disappeared

toward 1925-1930. It has been taken up again these last years, and a

modern whirling-arm apparatus has been constructed at the N.P.L. at

Teddington.

We shall describe a possible experiment which shows the effect of a

continuous and constant rotation X upon the factor CM.

Assume a model, the moment coefficient CM of which has been measured,

for given angle of attack _ and control-surface deflection _, in the

course of a tunnel test where the relative motion contains only translation.

The same model is placed at the extreme end of a whirling arm of the

length R, with the model axis OY being parallel to the axis of the

whirling arm.

_le rotational speed of the latter is

of the model is D_, its angular velocity

Z. Hence, the velocity

q = _, and the ratio:

V
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The aircraft is placed on the arm, in such a _anner that it presents

itself at the angle of attack _. Dynamometers which permit measurement

of the moment CM are placed on the arm.

This experiment leads to the statement that the moment _4, realized

on the whirling arm with a rotation ratio X is different from the one

found in s_ple translation, for the same angle of attack _ and the

same control-s_rface deflection _.

The cause of this difference is easily found. Even though the angle

of attack of the wings is the same in the two tests, this does not hold

true for the angle of attack of the tail surfaces.

Let _ be the angle of attack of the tail surfaces during the

translation test.

In the whirling-arm test, this angle is altered by the effect of

the angular velocity and becomes _' - X.

_e rotation q = _ actually subjects all points of the airplane

to complementary velocities:

Lhu = zq Aw = -xq

The distance x of the tail surfaces is negative and equal to

a - Z; the incremental velocity is equal to qZ; it gives rise, by com-

bination _ith the translation V, to an incremental angle of attack:

Aw _ qZ

V V

There results an incremental reaction on the tail surfaces:

_C'

pV2/ z X
_Z' : -S' 2 6_,

which in turn produces an incremental moment:

Z_','! = _AZ'

One obtains finally:

d×
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which determines the order of magnitude of the effect of the rotation on

the CM.

For instance, for S' = _ S

Z = 3c

since the gradient of the lift coefficient of the tail surfaces with

reference to the actual angle of attack of the tail surfaces is

dC '
z =3

dc_'

one obtains

dCM 9
_ _ __° #

d× 6

_ie minus sign indicates that one deals here with a damping effect:

a moment acting in a sense opposite to that of the rotation.

The other parts of the airplane - fuselage, wings - exert, for their

part, an effect which contributes to increase this damping. Although

it is not quite as easy to roughly evaluate this effect, one may say

that, with a normal machine, the dCMJdM due to these elements is of

the order of -0.20 to -0.15.

One must add this effect to that of the tail surfaces.

In steady state, the development of the CN could be determined as

a function of the ratio p, with the aid of a whirling-arm test where the

axis 0Z of the model is placed parallel to the axis of rotation of the

whirling arm. This simple remark is sufficient for explaining the signi-

ficance of the derivative 8CN18 p which defines the damping of the

motions of yaw.

9. Aerodynamic Derivatives

Since the forces and moments realized in steady state are continuous

functions of the variables u, v, w, p, q, r, they possess derivatives.

We shall have to use the latter constantly irl calculations later on and it

will be convenient to discuss them right away.
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In the investigation of logitudinal motion, we shall encounter

derivatives such as X'u " " M'q which we shall define by dimensionless

factors a' I . . . c3 in accordance with the table:

2X !

X' = -a'ISV _ whence a' - uu i pSV

P 2X 'w

X'w = -blSV _ bl - pSV

2X '
q

X'q = -ClSZV _ cI -

Z' = -a2SV Pu _ a2 -

P
Z'w = -b2SV _ b2

Z'q = -c2SZV _ c2 -

pSZV

2Z'
U

pSV

2Z'
W

oSV

_ q

pSZV

p 2_N'
M, u = _a3ScV _ a3 _ u

pScV

M' w = -b3ScV _ b 3 - 2_4'w
2 pScV

= p 2_'_ q
M'q -csSc_V _ c3 pSc_V

These fac4ors are determined as ftmctions of the coefficients CX,

CZ, CM and their derivatives with respect to the variables _ and X.

For the derivatives with respect to the linear velocities, one
obtains:

I_Cxv2 _v2 )X' u : bq- + _y/-cx.sZ

h o
: \_--j-v + z_x/sv

= -a'iSV
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now:

whence

8Cx _Cx d_ w 8Cx _ 8Cx

8u 8_ au uZ _ v

X !

w

8c X

a'l = _ _7 -2Cx

\_w sv_/2: -blSVg

now:

%Cx _Cx d_ i _Cx

_W _ dw u _

taking into account that u = V, one obtains:

Likewise, the determination of Z'u and Z'w leads to:

_C Z

a2 = _--2C Z

_C_

b2 - _(z

Finally:

M't, u (_cMt )V2 _V 2 __ _'P= + _--_-q,_ sc

i t)= \ _u V+ 2CM ScV 0-2

= -a3ScVp/2

When the propeller is of fixed pitch, CMt depends on two variables

and 7- Both are functions of the velocity of translation V. One

obtains therefore:
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_u _ du _r du

_M_ w _CM t dr

however, in order to determine dr/du , one must know, in addition, the

variations of the velocity of rotation of the engine.

If this velocity of rotation were constant, one would have:

dr_ i _7

du nD V

An expedient, studied in appendix I, permits taking this variation

in velocity into account by introduction of a dimensionless factor n',

so that one obtains finally:

a3 _CMt 8CM t
= _-_ -Tn'-_-- - 2CMt

When the propeller is of variable pitch, the variation in velocity u

modifies the propeller blade-angle setting, but the number of revolutions

is constant. The a3 can still be determined but knowledge of a certain
n_rnber of characteristics is necessary.

Tme determination of M't,w is easy and leads immediately to:

.As to the derivatives with respect to the angular velocity q, one

assumes generally that:

X' =0
q

Z' =0
q
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now:

Thus c3 is the only coefficient to be determined. One obtains

M'q = ScV I = -csSclV

X = qZ/V whence dX/dq = ZV

8CMv = 8CM_Xv = _ 8CM
8q 8X dq _X

and

c3
_CM

_x

In the investigation of the transverse motion, we shall encounter

derivatives such as Y'v N' Since the two investigations are• " " r"
made separately, there is no inconvenience in utilizing the letters

aI . . c3 for defining them, in accordance with the table:

v, = _alSV p 2Y'v
v _ al : -

v, = _blSs V p 2Y'p
P 2 bl = pSsV

o
Y'r = -ClSSV 2 Cl =

2Y' r

pSsV

2L'

L' = a2SbV p v
v _ a2 = pSbV

2_n I

L'p = b2SbsV p b 2 = PpSbsV

L'r = c2SbsV I c2 -

P a5 =N'v = a3SbV

N'p = bsSbSV I b3 =

N' r = c3SbsV _ c3 =

2L' r

pSbsV

2_N'
v

p SbV

2N'p

pSbsV

2_ 'r

pSbsV
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The factors aI . . c3 corresponding to the transverse motion are

determined as functions of the coefficients Cy, CL, CN and of their

derivatives with respect to the variables p, _, p. They are calculated

in the s_me manner, but since p = v/u instead of _ = -w/u, the quan-

tities al, a2, and a3 are preceded by the minus sign.

One assumes likewise that the derivatives of the force Y with

respect to the angular velocities p and r are zero.

Calculation of the others leads to:

_Cy

aI : _p

_CL _L _CN

a2 - _p b2 = -_-- c2 - _

_cN _CL _CN

a3 _p b3 _p bp

Let us recall here a conventional result.

An elementary calculation shows that the role of the wings in the

terms b2, c2, b3, and c3 of the transverse motion is of the order

of .magnitude:

_CL I _Cz

_ - b2 : 8 _

_CN i _Cx

_CL I
- _c2 = _ _ CzBp 4

8C__NN: _c3 = _ i Cx
8p 4

Added to this effect, of course, is that of the other surfaces of the
aircraft.
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Remark: The factors al, bl, etc., have the same significance as

the factors Xu, xw or yp etc., defined in "Nomenclature for Stability

Coefficients" R. & M. 1801, but they differ from them sometimes by a

constant factor 2 and by the sign. This last difference results from

the use of a dynamic trihedron the axes of which are differently oriented.

We did not want to use here the English notations in order to avoid

the confusion which would result from these differences.

lO. Influence of the Attitude Parameters on the

Aerodynamic Effects

The aerodynamic forces and reactions are independent of the angles $,

e, $ which define the orientation of the airplane in space.

On an airplane flying with controls fixed, the derivatives M'e,

L'_, and L'9, N'9, and N'9 are necessarily zero. However, we shall

see that they can cease to be zero if the airplane is provided with an

automatic pilot so that it will be useful for symmetry of the calculations

to define the following notations immediately.

Longitudinal Motion

bCM
M'e = -d3ScV2 P-- d32 be

Transverse Motion

L'_ = -d2SbV 2 p2

I,' ¢ = "_3 stv2 p-2

N'm = -e2 SbV2 p2

N'# = -e3SbV2 p-2

d3

e2 -

e3

bCL

d_

bC_

b_
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!i. Derivatives of the Propeller Thrust

In the course of the calculations we shall have to use the derivatives

of the thrust T with respect to the variables u, v, w, p, q, r.

In a first treatment of the problem, only T' u is assumed not to
be zero.

Putt ing:

T' = " SV p .. 2T'-- -- U

u -a i 2 a i pSV

one must calculate a"
I"

In the case of the constant-pitch propeller one has:

T u = Sh PV2 dC_ p' 2 du + 2CTSh 7 V

It is shown in the appendix I that one may write:

whence

dC T dC T d7 dC T
: : --n'7

v _d- v _9-_ _

The calculations may be carried further, and

if desired, as a function of KT instead of CT.

Remark: In the calculations, the quantities

always added. We shall put therefore:

a" I may be expressed,

a'l and a" I are

aI = a' + a"I i

12. External Forces in Unsteady-State Motion

Investigation of the various states of motion requires knowledge of

the aerodynamic forces for unsteady-state conditions.
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Theoretical and experimental research has been carried out with a

view to determination of the transitory phenomena resulting from changes:

(a) Of the aerodyns_nic velocity

(b) Of the angle of attack

(c) Of the angular velocities p, q, r

The situation is as follows:

(a) Accelerations dV/dt.- It has been possible to determine theo-

retically the effect of the accelerations for bodies presenting only drag

as well as for lifting elements.

(b) Changes of angle of attack.- The transitory phenomena which

accompany a change in angle of attack have been studied theoretically.

_±i_or±_ v_ _dssner, of Y_rm_-_ _,_d Sears, _tc.)

In the domain where flow theory applies, the increase in lift corre-

sponding to an abrupt increase in angle of attack _ is not instantaneous.

The circulation, and hence, the lift corresponding to the new angle

of attack _ is established gradually.

On the other hand, the experiments have proved an important fact

relating to the flows at angles of attack in the neighborhood of maximum

lift. In the case of a rapid increase in angle of attack, the theoretical

state of flow is established in accordance with the theory, but the flow

separates after having been established, if the final angle of attack is

near that of _xim_ lift or exceeds it. As a result, the lift, __der

these conditions, is apt to attain transitorily a value exceeding the one

it has at the s_me angle of attack in steady state.

_c_ Effect of variable angular velocities p_ q, r.- It has been_

possible to establish in the tunnel data regarding the effect of a vari-

able angular velocity by m_king the models oscillate.

The motion of a model with the moment of inertia I, oscillating

freely about its transverse axis, satisfies the equation:

I d2-_£_+ J d-_0+ K_ = 0

dt dt

where I is the moment of inertia of the model, K a coefficient of the

restoring moment, and J a coefficient proportional to the damping
moment.
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The damping moment j d_ is due to the effect of the rotation q.
dt

The experimental determination of the oscillation characteristics permits,

when I and K are known, to determine J, that is, a factor propor-

tional to dCM d_, defining the effect of the angular velocity on the

pitching moment.

More complex oscillation methods, using especially forced oscilla-

tions, may be contrived with a view to establishing the effect of any

one of the angular velocities p, q, r on any one of the moments L,
M, N.

The methods utilizing forced oscillations yield much more accurate

results than those utilizing free oscillations; they are the only ones

actually in use.

fThe derivatives such as dCM dx, dCN/dO , obtained for unsteady-

state conditions by the method of oscillations, differ considerably from

those obtained under steady-state conditions by means of whirling-arm

tests. They correspond, in fact, to a physically different phenomenon. 4

13. Introduction of Our Knowledge of Unsteady-State

Phenomena into the Calculations

We think that a step forward would be made by introducing into the

calculations our knowledge of unsteady-state phenomena, if we could add

to the expression of the aerodyna_ic forces as a function of the instan-

taneous values of the variables u, v, w, p, q, r realized in

steady state, factors expressing the influence of the derivative of each

of these variables.

We show in chapter II what are the extensions to be made to the

methods of calculation using the flight conditions.

The ideal procedure would be to introduce into the calculations the

expressions of the external forces which take into account the entire

previous history of the motion. This result has not yet been attained

at the present time.

4It is impossible for us to treat this question here in detail. Its

investigation co1_ld give occasion to a complete report, independent of

the one given here.
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14. Introduction of the Mach N_ber Lnto the Theory

One can study the behavior of aircraft controlled by automatic

pilots, flying at speeds of 300 to 500 _n per hour without taking into

consideration the changes in the aerodynamic forces _hich are produced

when the critical value of the Mach n_.ber is approached.

At the values indicated above, the abrupt change of the aerodynamic

forces is not yet present.

However, there is no getting away from the fact that the flight

investigations of aircraft using automatic pilots are frequently intended

to predict the behavior of guided missiles, travelling at speeds reaching

sonic velocity and even surpassing it.

However, establis_m_ent of a complete theory of automatic flight in

largely subsonic regions seems to us a prelLminary condition, realization

of which is necessary before it can become possible to __ndertake in a

useful manner investigations of flight in the transonic and supersonic

regions.

In the present report, we limit ourselves to the flight in the

subsonic region and we do not attempt to introduce into the calculations

the influence of the changes in the external forces due to the variations

of the _ch number regarding which our knowledge is still rudimentary.

The study of automatic flight in completely subsonic regions is in

itself of sufficient interest, owing to the development taken by this

type of flight, to justify the present report; besides, we reserve the

right to supplement it later on by introduction of the effects due to

the compressibility of the air.
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CHAPTER IV

THE EFFECTS OF THE PILOT

i. Intervention of the Pilot

The motion of an airplane in space is generally not that of an

indefor_ble solid body free in space. The airplane is guided by a

pilot whose intervention makes itself felt in flight by various actions.

The principal ones, involved in the handling of the aircraft, are:

The maneuver of power-setting for the engine

The deform_tions voluntarily £mposed on the airplane.

The changes of throttle setting produce variations of the engine

torque. They must be balanced by a corresponding variation of the

torque-opposing moment.

If the propeller has constant pitch, an increase in engine torque

can be balanced by an increase in the torque-opposing moment only when

the rotational speed increases.

If the propeller is adjustable which imposes a reasonably constant

speed of rotation, an increase in engine torque will be balanced by an

increase in pitch.

_ both cases, a change of throttle setting which increases the

engine torque produces an increase in thrust force.

The modification of the conditions for operation of the propeller

(modification of the parameter y or of the pitch) exerts an influence

on the slipstream of the propeller, and the reactions X, Z, M exerted

on the airframe may be altered by this fact.

The modification of these reactions constitutes a secondary effect.

The changes in the external confi_arations of a glider modify either

one of the aerodynamic moments L, M, or N, or one of the components of

the reaction X, Y, Z, or several among them.

The pilot possesses means of action upon the external forces and

moments applied to the airplane, which means, he is able to affect the

flight path.
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2. Principal Controls

The surfaces, displacement of which produces a modification of

moment, are the controls.

In an aircraft of conventional form the pilot can apply moments

about each of the three axes; he has for this purpose the following

three controls at his disposal:

(a) The ailerons

(b) The rudder

(c) The elevator

which constitute the main controls.

(a) The ailerons are intended to produce moments about the longitu-

dinal axis. They are situated on both sides of the wing and their motion

is generally linked together. Their deflection, defined by the angle _,

will be considered positive when the left aileron is lowered while the

right aileron is raised by an equivalent amount.

(b) The elevator produces a moment about the lateral axis. The

deflection, represented by _, is considered positive if it is made down-

ward, for an elevator _situated at the rear (usual case).

(c) The rudder is intended to produce moments about the yaw axis.

The deflection _ will be positive if the rudder is deflected to the
left.

The movable surfaces of the controls are rather small in proportion

to the wing surface and it is generally assumed that their displacement

exerts only an insignificant effect on the forces.

It would be desirable that a maneuver performed with the purpose of

exerting a moment about one of the axes should not have any effect about

the two other axes. This is not always the case. Maneuvering of the

ailerons exerts a secondary effect about the yaw axis which, generally,

cannot be suppressed.

The control mechanism of the principal controls is reversible on

small and medium airplanes.
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3. Magnitude of the Control Forces

_en a control surface is displaced, it modifies one or the other

forces or moments exerted on the airplane. The derivative of the force

or moment exerted with respect to the displacement or deflection, char-

acterizes the effectiveness of the control surface.

A. Effect of throttle setting.- The throttle setting, represented

symbolically by the variable a, exerts on the forces applied to the

airplane effects represented by the factors Sl_ s2, and s3.

The change in drag opposes the change in thrust and its effect may

be incorporated in sI

m' : V2psiS -

The modifications in the forces Z and M are given by:

so that:

o p

Z' = s2SV_ -2

P
M' = ScV 2

2

dCT

Sl = d_

dCz

s2 =
d_

For the performance of numerical calculations, a must be given

concrete significance. A useful definition of a may be given by the

manifold pressure.

B. Effect of the elevator.- The deflection _ of the elevator exerts

on the total moment Mt an effect represented by h3:

P
M'q = h3ScV2
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so that

C. Effect of the lateral controls.- We characterize them by:

n !
P

= h2bSV2 _ or
_C L

h2 =

_C L

= k2bSV2 P -

N'_ = h3bSV2 [ h3 - 8cN

_,_ = ksbSV2 £ k3 - 8ON
2

4. Control-Hinge Moments

Knowledge of the control-hinge moments is essential in any study
of handling qualities.

We shall denote by L__ Mj N the moment exerted by the aerodynamic

reactions about the hinge of every one of the three control surfaces.

These hinge moments will be defined by the coefficients Ccl , Ccm _

Ccn , by means of the following relations:

For the ailerons:

L = CclSmCm 2

For the elevator:

pV 2

M_ = CcmS'mC m 2

For the rudder:

,, ,, D#N = CcnS m c m --
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' s"m represent the areas of the movable elements, Cm,where Sm, S m,
I!

C'm, c m the chord of these movable elements.

Knowledge of the hinge raoments permits finding the corresponding

force to be exerted by the pilot, taking into account the mechanical

advantage of control linkage and in some cases the weight of the movable

surfaces if their center of gravity is not situated on the axis.

For the ailerons, the moment L is positive when it tends to raise

the left aileron, that is, when the control stick tends to be displaced

toward the left.

For the elevator, M is positive when it tends to raise the movable

surface, that is, when the control stick tends to push forward in the hand

of the pilot.

For the rudder, N is positive when it tends to oppose a deflection

to the left, that is, when the rudder bar pushes against the left foot

of the pilot.

The coefficients CcZ , Ccm , Ccn are functions not only of the

aileron deflection angles _, _, _, but also of the angles of attack

and of sideslip _ and _, and even of the rotation ratios _, X, 0-

They can be measured in the wind tunnel for all the cases corresponding

to steady states of translation.

While the control surface is in the process of being deflected, the

coefficients are functions of the rate of change of deflection, that is,

of d /dt,dn/dt,d /dt.

Even though we can take this fact into account in setting up the

equations, it is unfortunately difficult to fix the n_merical values for

this effect.

5. Compensating Devices

When the dimensions of the aircraft lead, under certain conditions,

to excessive values of the moments L, M, Nj it is necessary to use

compensating devices the purpose of which is a reduction of the coeffi-

cients CcZ, Ccm, Ccn.

These compensating devices can be utilized if one requires achievement

of a hinge moment zero, for a given condition. Most frequently they are

made by providing at the trailing edge of the movable control surface a

supplementary degree of deformation, controlled by the pilot.
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The portion of the horizontal tail surface, considered as fixed, may
in general be adjustable, with its setting controlled by a worn gear. It
constitutes in this case an auxiliary control of the pitching moments.

Likewise, the action of the rudder can be modified or reinforced by
the triztming of the fin which is sometimesadjustable in flight.

Finally, there exist aerodynamic surfaces the displacement of which
by the pilot has the purpose of modifying the aerodynamic forces.
Properly speaking, these parts of the airplane are not control surfaces:

(i) Certain airplanes are equipped with aerodynamic brakes, permitting
modification of the component X.

(2) Of greater ir_portance are the lifting devices permitting, at
equal velocity, increasing of the component Z.

These devices generally consist of flaps extending over considerable
portions of the wing span. The majority of lifting flaps affect equally
the component X and modify the drag; the latter does, generally, not
constitute an inconvenience.

It is always desirable that the maneuvering of the surfaces intenaed
to modify the forces should have as small an effect as possible on the
moments.

In our investigation of aircraft motion, we shall content ourselves
with studying the motions resulting from the displacement of the reversible
controls which we have called the principal controls.

Weshall assumethat the deflection of the irreversible controls
modifies the airplane once and for all and defines in someway another
airplane which could be investigated, if necessary, by the samemeans
as the first one.

8. Specialization of the Controls

Wedivided the investigation of motion into two distinct problems:
longitudinal motion and lateral motion.

On the other hand, we retain four controls as fundamental controls.

The longitudinal motion will be studied as a f_nction of the displace-
ment of two controls:

The deflection _ of the elevator

The power setting of the engine which we represent symbolically by _.
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The lateral motion will be determined by the movement of the two

other control surfaces:

The deflection _ of the ailerons

The deflection _ of the elevator

9. Mechanical Deformations

In our investigation, we take into account only the voluntarily

produced deflections _, q, _ and we assmne the rigidity of the air-

plane to be sufficient to enable us to neglect any other structural
deformation.

It is important to draw attention to this hypothesis because elastic

deformations of the airframe always take place under the sction of external

forces.

Every t_me the forces to which an aircraft is subjected show a

variation, its frame undergoes deformations. The amplitude of the elastic

deformations depends on the rigidity of the construction.

One may reduce the amplitude of the elastic deformations, but one

cannot suppress them completely. A perfectly rigid aircraft does not

exist.

The elastic deformations play a large role in the vibrations of

airplane frames.

Between the vibrations of two components of an airplane, for instance,

between wing and aileron, there _y exist an aerodynamic coupling which

can increase considerably the ar.plitude of certain deformations and which

leads no longer to simple oscillations, but to real flapping, corresponding

to the phenomenon generally called "flutter".

The elastic deformations of the frame, whether they are oscillatory

or not, may play a role in the determination of the trajectory of the

airplane.

The hypothesis we made consists in assuming this effect to be

sufficiently weak to be neglected.
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EFFECT OF THE CONTROLS ON THE CONDITIONS OF EQUILIBRIUM

i. Action of the Controls

An investigation of the motion of airp]_nes which forms the object

of the present report, assumes several facts resulting from the condi-

tions of equilibrium to be firmly established.

We shall recall below the essential principles defining the effect

of the controls in the course of flights in steady state.

2. Condition of Longitud_a! Equi!ibri_m for a

Rectilinear Flight Path

Using for this particular problem axes fixed to the flight path,

one may write the equations of equilibrium:

T cos at - CxS _ V2 - G sin T = 0

T sin%-CzS  - Ocos =0

M t ....... =0

where at is the angle between the thrust axis and the trajectory, and

T the slope of the trajectory, assumed as positive when the airplane
climbs.

Writing

neglecting T sin _t

first equation by V:

cos at : 1

COS T = 1

in the presence of G, one obtains, multiplying the

P V3 - GV sin T = 0
TV - CxS

V2
CzS 2 : G

OMtSC _ V2 = 0
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The first condition expresses the equilibrium of power. The second

condition expresses the equilibrium of lif_. The third condition expresses

the equilibrium of moment.

The moment coefficient

attack _, of the deflection

of the propeller y = V/nD.

CMt is a known function of the angle of

of the rudder, and of the advance ratio

The lift coefficient is uniquely a function of _.

EiLminating _ between the second and third equations, one obtains

a relation:

V : F(_)

=

which may be written also:

The control surface called the elevator determines the flight velocity

or the angle of attack at which a state of equilibrium is possible. It

constitutes the control for the flight speed.

Let us now examine the first and second equations.

We put TV : Wu useful power

V sin T = Vv rate of cl£mb, positive when the airplane

goes up.

We el£minate V between these equations and obtain:

Cx

Cx

The ratio Cz3/2 is a known function of the angle of attack and,

indirectly, of the velocity.

_e effective power W u depends on the power settLng _, on the

flight velocity, and on the density of the air.

One may plot the curves of effective power as fumctions of the

velocity, for different values of _.
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Let us plot as a function of the velocity, for prescribed weight and

altitude, the curve of:

C x

o

which determines the power required for horizontal flight.

These curves permit determination of the excess power AW or GV v.

Hence, they determine the rate of climb.

It is found that, at constant velocity, the only means of influencing

the rate of cl£mb, that is, the slope of the trajectory, consists in

increasing the engine power.

It is the engine power which makes the airplane climb, and the

throttle setting is the control which directly affects this power.

However, maneuvering of the elevator exerts an indirect effect.

Let us suppose that an aircraft flies horizontally, at the speed VA,

with the power setting _2"

If the pilot places the airplane in equilibrium at a speed VB< VA,

by means of a deflection -_, he frees a certain excess of power which

permits the airplane to climb.

This secondary effect of the elevator justifies the n_e given to

this control.

When _CM > 0 (normal effect of the elevator)

-- > 0 (aircraft having static stability)

and when one exmmines operating points at a speed higher than the minimum

necessary for lift (so-called high-speed flight), all effects are in accord.

A negative displacement _ exerts a tail-down moment and determines

a position of equilibrium at a larger angle of attack.

At this new position of equilibrium, the power required for horizontal

flight is smaller, and a power m_rgin, "unfrozen" as it were, allows the

sircraft to _ointain an equilibrium of power on an ascending trajectory.
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If one of the preceding conditions is not satisfied, either because

the airplane is statically unstable Q_< O)or because the intended

point of operation lies at a velocity smaller than that for maximum

power (slow regime), at least one of the effects is reversed.

3. Turning Flight

Let us assume an airplane describing a curve with angular velocity

about a vertical axis.

The vector _, directed upward, defines according to our conventions

a curve to the left.

This vector is projected on the following d2_vLic axes:

p = -_ sin e

q = _ sin _ cos e

r = _ cos _ cos e

We shall suppose that the airplane axis OX is sufficiently close

to the horizontal to permit neglecting _ sin e.

One sees that an airplane in a regular turn is subject to permanent

angular velocities q and r.

q comes into play in the conditions of longitudinal equilibrium

and acts upon M.

r comes into play in the conditions of lateral equilibrium.

Let us briefly investigate the latter.

4. Conditions of Lateral Equilibrium in Turns

We shall assume:

(a) That the angle of attack and the velocity, known and determined

_ +_ rn_di_ions of longitudinal equilibrium, constitute the given

factors of the problem

(b) That the lift coefficient realized at this angle of attack is

independent of the sideslip
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(c) That the effect of the propeller slipstream and that of the

engine torque have been compensated

(d) That the thrust axis lies in the plane of symmetry.

The pilot may influence the selection of the position of equilibrium

by means of two controls, that of the ailerons and that of the rudder. He

modifies thus the factors CL and CN which define the aerodynamic forces

acting upon the airplane.

_CL
characterizes the principal effect of the ailerons

_CN characterizes the secondary effect of the ailerons

8C N

8cL

characterizes the principal effect of the elevator

characterizes the secondary effect of the elevator

We write the secondary effect of each control as a fraction x

or z of the principal effect:

8CN 8C L

8CL _C N

The conditons of lateral equilibrium number three. For steady-state

conditions they become, if one makes p = O:

ZY - mg sin _ = mrV

EL = qr(C - B)

ZN=O

or

ZY - mg sin _ = mV_ cos

Z L = _2sin @ cos _(C - B)

ZN = 0
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In fact, the numerical value of _ is small, and the second equa-

tion may in an approximate study be written:

_L = 0

In the third equation, we shall neglect the gyrostatic moment Ng

which enters in EN.

V
-- and writing the equations in non-Replacing _ cos _ = r by 0 s

dhnensional form, we obtain:

CL = 0

CN = 0

When the aerodynamic coefficients vary linearly with _, _, _,

and p, one has:

_Cy _c
Cy = 3J3 _ + 3_

because of the lateral component on the rudder, produced by the deflec-

tion, and

CL _CL _CL _C L _C L:--_+--_ +--{ +

_cN _cN bcN bcN

cN-_ _ +_-7-_ +a-y-_ + _---D--o

The conditions of equilibrium are finally written:

bCy bCy

_ _+_--_--_w \g /

bC L bC L 8C L 8C L
--_+--%+--_+ -0

beN DON 3CN bc----N-N= 0
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This system depends on five variables:

The angle of sideslip

The lateral inclination

The angular velocity of rotation replaced by the ratio of roll p

The deflection of the ailerons

The deflection of the elevator _.

There exists therefore an infinite square number of solutions. But

two of the variables, n_mely the deflections, are actually degrees of

freedom at the disposal of the pilot.

For any arbitrarily selected value of the deflections _ and _, the

variables _, _, and _ are determined.

Remark: This conclusion is valid only as long as p = O, that is,

only for turns about a vertical axis in the course of which the axis 0X

remains horizontal.

5. Discussion of the E@uations

Taking the previous restriction into account, we shall investigate

the conditions of equilibrium for tb_ree different types of turns, char-

acterized respectively by:

= O: perfect turn, sideslip zero

= O: turn with action of the ailerons only

= 0: turn with action of the elevator only

A. Perfect t_rn.- The two equations of moment give:

bCL_ fbC L bCLI i

_ b_ -p_-_-z _7-/i - xz

0(> x_ 1 - XZ

On the usual aircraft,

bC L
The

bp

bC L
The

bp

bCN
and -- are positive

b_

bCN

and 0_- are negative



61

:.--.
i

00

IbOo0 8

IOOO0 0

For p > O, when x and z are small, deflections _ and _ are

positive.

In order to maintain the airplane in a perfect turn, one must apply

continually a deflection of the rudder in the direction of the turn, and

one must hold up the inside wing.

bCN
These facts are easily understood. The --p is a resistance to

bp
the turn. In order to overcome it and to maintain the turn, one must

apply a continuous moment CN which is done chiefly by the deflection

of the rudder.

The _CL is a secondary or disturbance moment which results from
bp

the decrease of lift on the inside wing, and tends to depress it.

In order to overcome this distt_b_nce moment, one must hold up the

inside wing which is done chiefly by the deflection of the ailerons.

The exact inclination _ will be calculated bymeans of the trans-

lational equation of equilibrium according to 0Y, possibly taking into

account the lateral reaction developed by the deflection of the control

surface.

B. Turn effected under action of the ailerons onl_f.- A steady-state

turn can be maintained by means of deflecting one of the two lateral

controls while maintaining the other in neutral position.

The turn ceases to be perfect, a sideslip being necessary in order

to maintain it.

We make _ = 0 in the preceding equations and eliminate p between

the two equations of equilibrium of moment.

We obtain:

8CL D

b-_----P _c_ acL

bp bp

with

D _

bC N _CL _CL 8C N

• bp bp bp bp
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On an airplane possessing static stability, the factors _CL and

bCN bCL _C N 8_
are both positive, the factors _ and are both negative.

bp bp bp

The quantity D resulting from the differences of the two products

may be positive, zero, or negative according to the respective values of

the preceding factors. It constitutes an important characteristic.

bC N bC L

Since the secondary effect is small, b-_- -x _-_-_ O, and the

deflection _ which ensures maintenance of a correct turn will be

Negative when D > 0

Zero when D = 0

Positive when D < O.

Let us assume a turn for which p b O, that is 3 a turn to the left.

On an airplane of the first type, one must lower the left wing, that

is, lower the wing on the inside of the turn.

On an airplane of the second type, one need not do anything: a turn

once started maintains itself even if the two lateral controls do not

undergo any deflection

On an airplane of the third type, one must hold up the inside wing.

The system of equations permits also the determination of _. The

calculation of _ shows that the turns effected under action of the

ailerons alone can constitute a state of equilibrium only if they are

accompanied by a continual sideslip _ toward the inside.

This sideslip develops the moments L_ and N_ which replace the

moments L_ and N_ produced in the preceding case by the deflection

of the two controls. However, in the preceding case, the two deflections

were independent and could be adjusted in such a manner as to produce

separately moments which equilibrate exactly the opposing moment Np and

the disturbance moment Lo .

Here, the sideslip _ can only accidentally produce moments L_

and N_ exactly equal at the same time to L and to N. This occurs
when D = 0.
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This is only rarely the case. In general, D i 0. When the N_

due to the sideslip opposes and compensates the resistance to the turn

Np, the produced L_ does not have the exact value required for the

rolling equilibrium: one must adjust the rolling moment by a deflec-

tion _ in one or the other direction.

C. Turn effected under action of the rudder alone.- Let us make

= 0 in the equations and calculate _. We obtain:

_CN
_ ----p

D

_C L _CN
m z

Since :_ is small, the denominator of the second number will be positive,

and the deflection _ necessary for the turn to the left will be

Positive when D > 0

Zero when D = O

Negative when D < O.

On an airplane of the first type, one must deflect the rudder toward

the side of the turn which has to be maintained.

On an airplane of the second type, the turn maintains itself without

any deflection of the lateral controls.

On an airplane of the third type, one must deflect the rudder in the

direction opposed to the turn which has to be maintained.

Here also steady-state conditions are not possible unless the airplane

shows a continual sideslip toward the inside. This sideslip furnishes the

largest portion of the necessary yawing and rolling moments. The rudder

deflection is applied only to adjust the moments in such a manner that the

airplane may simultaneously satisfy both conditions of equilibrium of

moment.

6. Numerical Application

It will be useful to illustrate the previous conclusions by a numer-

ical example.

We assume an aircraft flying at 50 m/second and describing a turn

of 450 m radius.
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Rolling moment due to the turn

Inherent stability in roll _CN
8P

8CL
Inherent stability in yaw

The execution of a turn takes:

and

2_ x 450

5O
= 56.6 seconds

2_
= O. iii

56.5

The lateral inclination in a perfect turn is 29.30 ° whence

cos _ : 0.87

r : 0.iii x 0.87 : 0.0965

For an airplane of a span of 20 m:

rxlO
p = = o.o193

V

This ratio would be p = 0.02 for a span of 20.35 m.

p = 0.02 is the value for which we shall perform the calculation.

We shall suppose that:

pcg = 0.60
V 2

and shall consider three airplanes characterized by certain common values

and certain differing values.
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(a) Elements common to the three airplanes:

Lateral force due to the sideslip: _C__y= -0.008

Lateral force due to the deflection: _Cy = -0.0024

_CL
Principal effect of the ailerons: - +0.003

_CN
Principal effect of the rudder: - +0.O012

Secondary effects of the controls: x = z = O.

(b) Elements varying between the different airplanes:

Airplane No. I Airplane No. 2 Airplane No. 3

0.0010 0.0012 O.O014

0.0008 0.00075 0.0007
-0.18 -0.16 -0.14

Resistance to the turn _CN -0.08 -0.i0

Characteristic D -6.4 × 10 -5 0

-O. 12

+7 X 10 -5

w

_h

The numerical values of the derivatives with respect to the above

angles are expressed by taking the degree as unit.

They must be multiplied by 57.3 in order to obtain the derivatives-

of the forces and of the moments if the angles are expressed in radians.

The problem amounts to investigating which are the values of the

deflections and of the sideslip which maintain a turn at p = 0.02.

The result of the calculation is as follows, with all 8mgles

expressed in degrees:

Airplane No. i Airplane No. 2 Airplane No. 3

= +1°20 +1°06 +0°95

= +1°32 +1°67 +2o00
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Airplane No. i Airplane No. 2 Airplane No. 3

Turn maintained by ailerons alone

= +2000 +2o66 +3°46

= +1°07 0° _0o66

Turn maintained by rudder alone

= +3o60

= -1°07

+2066 +2000

0o +0°835

The inclination _ which ensures the translational equilibrium can

be calculated. In the turns due to the action of one control, this

inclination exceeds the one necessary for a perfect turn by 2 degrees

to 3 degrees.

We state two important facts:

i. The deflections required for maintaining a continuous turn are

very small whatever the type of turf which is adopted.

2. Besides the perfect turn, without sideslip, there exist turns

somewhat more inclined than the perfect turn, and accompanied by a

slight sideslip toward the inside.

The effect of this deflection is to force the airplane into the

turn, and to decrease the deflections to be applied by the pilot.

These turns may be maintained by the operation of one single control.

From the viewpoint of piloting, these last turns may be considered correct,

but the airplanes require continual deflections the direction of which

varies according to the sign of the characteristic D.

If one is content with qualitatively observing the position of the

control surfaces in flight, it is impossible to establish the distinction

between the different types of turns described above. It is not without

reason that instructors tell their pupils: "Once the turn is started,

put the controls back in neutral position . . ."

Nevertheless, a distinction between these types of turns, in flight,

may be made by means of appropriate measuring instruments, and the anal-

ysis of the conditions of turns is of considerable importance in the

investigation of automatic flight control.

The turn with insufficient inclination and with sideslip toward the

outside is, on the contrary, entirely faulty.
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We return to the n_merical example and calculate the deflections

and the sideslip, prescribing a lateral inclination of 24° and of 18°

(with the inclination of a correct turn being 29o30); we find in fact

the following results:

Deflection _ of the ailerons

Inclination _ ist airplane 2nd airplane 3rd airplane

29o30 1°2 1°06 0o93

24 ° 4° 4o4 4o8

18 ° 7°1 8°1 9°

Deflection _ of the rudder

29o30 l°32 l°67 2°

24 ° 6o9 6o9 6o9

18 ° 13 ° 12° 50 12o01

Corresponding sideslip

29030 09 0° 0 o
24 ° _8°40 -8°40 -8o40

18 ° -17o65 -17050 -17o35

It is clear that a turn with insufficient inclination is dangerous

because of the large increase in drag due to the sideslip.

w

7. Initiation of the Turn

For the start of a turn, it is necessary to:

(i) Incline the airplane toward the center of the turn by the

angle

(2) Impart to the airplane the angular velocity r about the axis OZ.

One may attain this result by several methods:

i. Acting s_multaneously upon the ailerons and upon the rudder, that

is, acting simultaneously upon control stick and rudder pedal

2. Using first the control stick and then the rudder pedal_ that is_

first inclining the airplane and only afterwards beginning to make it

turn
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3. Using first the rudder pedal and only afterwards the control

stick, that is, beginning to make the airpl_ Re turn before inclining it.

Theoretically, the first maneuver is the best. By skillfully com-

bining the movements of control stick and rudder pedal it is possible

to effect the entire initiation of the turn without a sideslip of the

airplane.

The lateral inclination will be obtained by pushing the control

stick toward the inside. On the other hand, we shall see that, once

the state of rotation is attained, the pilot must hold up the lower

wing. An inversion of the lateral movements of the control stick is

therefore inevitable if one wants to produce a perfect turn by the

conventional maneuver of the two lateral controls.

The angular velocity r will be produced by the deflection of the
rudder.

The pilot must overcome the inertia of the airplane. If he wants

to obtain the motion of a turn rather quickly, he will accelerate the

initiation of rotation of the airplane by giving transitorily to the

rudder a larger deflection than is needed to maintain the turn once it

has been started. The pilot will also perform a reverse motion of the

rudder pedal.

The second method of inducing the turn is frequently used. It

consists in starting the turn by a sideslip (that is a skid toward the

interior) the effect of which on the airplane contributes to putting it
into the turn.

The amplitude of the maneuver to be carried out with the rudder

pedal is thereby decreased.

Carrying this method of piloting to the limit, that is, accentuating

the maneuvering of the control stick with a view to reducing that of the

rudder pedal, one would arrive at putting the airplane into the turn by

means of the ailerons alone. This method of action is conceivable in

view of the fact that a continual turn can be maintained by a maneuvering
of the ailerons.

The third maneuver induces a skid of the airplane toward the outside.

Owing to the static stability of the airplane, this skid produces a rolling

moment which tends to incline the airplane toward the inside.

The amplitude of the maneuver to be applied to the control stick is

then reduced.

This method of piloting is, theoretically, very bad. Skidding toward

the outside constitutes fundamentally a serious fault in piloting to be

avoided under any circumstances.
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THE LONGITUDINAL MOTION

i. The Equations of the Longitudinal Motion

69

Let (i) be the system of equatior_ of the varied motion:

/s \

mt-_--qU\dt+ q_T - rvj = X + Tx + G sin 8

f/dw ',
m\d t + pv - qu! = Z + Tz - G cos 8 cos

dq
B _ =Mr + I_r

dS
--=+q
dt

(i)

F

The external forces and moments Txp Tz, X, Z, and M t are

supposed to be known as functions of:

(ist) The characteristics of the motion:

u, w, q, variables

v, p, r, supposed constants

(2rid) The parameters:

deflection

power setting dependent on action of the pilot

The general problem consists in calculating the motion as a function

of time, that is, in determining

u :h(t)]

w F2(t)l, (21

q : F3(t )

8 : F4(t )



i

7O

if one knows the initial conditions of the motion and the actions carried

out by the pilot, defined as functions of time by the functions:

= _l(t)

= _2(t)

In the development that we make here, we shall assume the surrounding

medium to be excited by invariable displacement motions.

The theory may be generalized and extended to include the case of

variable displacement motions.

The equations of the motion may be written in the form:

du _ fl(u,w,%e,N,o)
dt

dw _ f2(u,w,q,e,N,o )
dt

a_q = _3 (u,w,q,e,n, o)
dt

de
- f4(u,w,q,e,_ a)dt

(3)

The two principal cases to be studied are:

A. Aircraft flying with controls fixed (N = Ct, _ = Ct) the motion

of which has, however, undergone an initial disturbance, defined by the

value of the variables u, w, q, e, at the instant t = 0 at which

the disturbance is assumed to have occurred.

The motion then is a return motion toward the initial state, and

the problem is that of the stability of a motion.

B. Aircraft subjected to actions of the pilot.

The most elementary action is the following: a deflection passing

abruptly, at the time to, from

to _ +4

and the power setting of the engine changed from

to _ + Ao
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The desired motion is the response of the airplane, that is, the

motions the airplane carries out in order to attain the state determined

by the new values of deflections. The problem is that of the maneuver-

ability of the airplane.

The solution of the two problems is facilitated by the process of

linearization of the equations.

2. Linearization of the Equations

We assume as a hypothesis that there is an equilibrium condition

possible. _nis will be, in general, the condition which exists before

the time tO .

Assmme u, w, q,

to this condition and

to be the values of the variables corresponding

_, _ to be the positions of the controls.

One has necessarily:

f2(_,_,_,_,_,_): o

f3(_,_,%_,%_) : o

f4(_,_,_,_,_,_): o

(4)

A. Let us examine the case of motions with controls fixed.- In the

course of such a mneuver, the variables take on the values:

u :[+su

w =w+_w

q =p+Sq

(9)

_, _7, q, [ are the values corresponding to a steady state. Su, bw

8q, 88 represent the difference between the instantaneous value and

the value corresponding to this steady state.
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The system (3) may be written:

du dSu
fl(_ + 5u, _ + 8w, _ + 5q,

dt dt

d_xw dSw
f2(_ + 5u, _ + 5w, q + 5q,

dt dt

--_=f3(u+su, w+ew, _+sq,dt dt

de d58

dt dt f4(u+ 5u, w+ 5w, _+ 5q,

+ se)]

e + Be) /

+ 5e)J

(6)

The differences 8u, 5w, Bq, B0 become the variables of the

system.

We shall proceed by means of Tayler's formula, stopping at the

first derivatives.

With (4) taken into account, the derivation is reduced to:

_fl bfl bfl
dBu _fl 5u - _5w --- 5q 58 = 0
dt 8u bw 8q be

dSw bf2 8f2 bf2 bf2
5u 5w 5q - _Se = 0

dt bu bw bq be

dBq bf5 _f3 _f3 _f3
5u 5w ---51 5e = 0

dt _u 3w bq b0

dSe bf4 _f4 _f4 bf4
5q 50 = 0

dt _u 5u bw 5w _q BO

(7)

The partial derivatives are those corresponding to the values _,

Q, _, e of u, w, q, e, (they have constant values and the system

has become a system of linear equations with constant coefficients,) in

which the increments 5u, 5w, 5q, 80 about the equilibrium condition
are the variables.

B. Action of the pilot.- In the course of a flight in equilibrium,

the elevator and the throttle undergo displacements a_ and Aq at the

instant to; from this instant onward at which the displacements are

applied, the 5u, 5w, 5q, 5e originate.
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0 + Ae, a + a_ must be introduced into the system (6). Under

these conditions, the system (7) is written:

d_u _fl _fl _fl _fl _fl _fl
.... 8q - _Be - a_ + aa

at _u _u _w 5w _q _6 _

dSw _f2 _f2
_u - _Sw -

dt _u _w

_f2 _f2 _f2 _f2

dSq 8f3 8f 3 8f3 8f3 _f3 8f3

dt _u Bu - _T Sw - _Tsq - _T80 = _TaR + _-a_

d_e _f4 _f4 _f4 _f4
8u - -- 8w - --Bq - 0

at _u _w bq Be

(8)

We can immediately write 0 in the fourth equation because of the

particular form of f4 which gives necessarily:

8f4 8f4
= 0 _ = 0

We have here a system of linear equations with second term.

If the a_ and ac are constant (independent of t_me), the inte-

gration of the system presents hardly _y difference from that of the

preceding system.

If the a_ and ao are arbitrary functions of time, the problem

_ay be solved analytically, without insurmountable difficulties, for

certain particular forms (sinusoidal or exponential) of the fu_mtions.

If the latter are of any other form, graphical methods or methods

of iteration still permit arriving at the solution.

The device which permits a replacement of the variables u, w, q,

8 by their increments $u, 8w, 8q, _8 about a position of equilibrium

u, w, q, _, is called linearization.

Unler the assumption that in linearizing one writes the aerodynamic

actions as functions of the instantaneous values of the variables by

means of a term proportional to the increment, the linearization assumes

either that the second derivatives of the forces with respect to the

variables are zero, or that the increments are sufficiently small to

make their effect negligible in the terms of higher order where they

appear as the square, cube, etc.
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The derivation shows explicitly that the method can be used only

under the supposition that the aerodynamic actions are constantly deter-

mined by the instantaneous value of the variables of the problem.

Nevertheless, we shall show in chapter XI that it is also possible

to apply the method if these actions are at the same time functions of

the said variables and of their first derivatives.

5. Integration of the Linear Equations

A. Equations without second term.- The conventional theory states

that the general solution of a system of linear equations has the

following formS:

5u = Clex!t + C2 ex2t + CseXSt + C4eX4t

5w = ZICI exlt + Z2C2 ex2t + Z3C3 ex3t + Z4C4 ex4t

5q = mlClexlt + m2C2 ex2t + m3C3e x3t + m4C4 ex4t

58 = nlC lexI t + n2C2ex2t + n3C3ex3t + n4C4 ex4t.

I_grange's method permits determination of the x and of the

factors Z, m, n.

The four values of x are the roots of:

8fl 8fl 8fl bfl

-x

_f2 _f2 _f2 8f2

_u _w _q _e

_f5 _f3 _f3 _f3

_u _w _q Be

 f_14 f_k
_u _w _q Be

=0

-x

(9)

(lO)

r

5The exponents of e must read xlt, x2t, x3t, x4t. Physical

difficulties have prevented the numbers appearing as subscripts.

The same remark applies to similar expressions occurring later on in

the text.
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This expression is an equation of the fourth degree in x.

x4 + KlX5 + K2x2 + K3xl + _4 = 0

and constitutes the characteristic equation of the system.

The four groups of factors ZI, ml, nl, Z4, m4, n4 will be

obtained by means of any three of the four equations of the system (12)

where one introduces successively the four roots Xl, x2, x3, x4 of

the characteristic.

_--_-x_ + 7, _--_-+ m_qq-+ n _-_-- = 0

" o+ Z _-xi + m--+ n =

_u bw / bq be

I +n =0
_u _ + m\_q -x,,, be

/

_f4
_u--+ Z _-_-+ m _+ n\_-_---x I = 0

(i])

(12)

The four factors CI, C2, C3, C4 are integration constants which

one determines by introducing the initial conditions of the movement

considered into the general solution. It is possible to calculate them

o_ _nctions of the values (_U)o , (Sw)0 , (_q)o' (_e)O_ of the initial

disturbance at the time t = 0 when the factors ZI . . n4 have been

prel_ninarily determined.

The roots of the characteristic equation may be real or complex

quantities.

Each pair of complex roots defines an oscillatory motion.

In the case of the longitudinal motion, the four roots are generally

complex. When such is the case, the total motion results from the super-

position of two oscillatory motions.

B. EQuations with constant second term.- We shall visualize only the

case of abrupt deflection of the elevator Z_]. The effect of a change in

the power setting would be established by an analogous argument.
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It is known that the general integral of a linear system with second

term is equal to the general integral of the same system without second

term plus a particular solution of the equations with second term.

In thevisualized case, the second term of each of the equations is

a constant.

8fl 1 8Cx V 2 L_X0

_ A_ =_ _--_ Sp--_-A_- m

8f2 1 8Cz V 2 AZ0
A_ - sp --A_ -

_ m _ 2 m

_-_-a_ - 1 _cM v 2
_ B_n scp Tan :

Since the principal effect of the deflection is to produce a modifi-

cation of the moment, one may take:

8C z;3Cx -0 - 0

0nly the third equation possesses a constant term at the time of

the displacement of the control surface.

In order to deter_.ine the particular solution, one notes that there

exists necessarily a system of constant values Au, Aw, Aq, Ae which

satisfies:

_fl _fl _fl _fl

_-_-Au + _- Aw + _ aq + _--Ao : 0

_f2 _f2
_f2 _f2 aw + _q + A0 : 0
_u an + _w _-q _7

_u _w _q Be B

_f4
_f4 _f4 _f4 aq + ae : o
_u Au + _ _w + o_-

D

Application of these Au, Aw, Aq, AO to the aircraft would have

the effect of placing in equilibrium the aerodynamic forces and moments
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produced by the deflection. These quantities constitute the desired

particular solution, and the general solution of the equations may be
written:

6u = au + Clexlt + C2 ex2t + C3eX3t + C4eX4t

8w = Aw + ZiClexlt + Z2_C2ex2t + Z3C3eX3t + Z4C4eX4t

Bq = Aq + mlClexlt + m2C2eX2t + m3C3ex3t + m4C4ex4t

60 = A0 + nlClexlt + n2C2eX2t + n3C3ex3t + n4C4eX4t

The terms Au, Aw, Aq, A0 represent the difference between the
final state and the initial state.

The terms in ext represent the transient part of the response.

The integration constants will be determined by writing that at the

time t = 0 the (Su)0 , (Bw)0 , (6q)0, (80) 0 defined by the general

solution are zero, that is, by calculating the C1, C2, C3, C4 corre-

sponding to :

-_ = Clexlt + C2eX2t + C3eX3t + C4eX4t

-aw = ZIClexlt + Z2C2ex2t + _3C3ex3t + _4C4eX4t

-aq = mlClex!t + m2C2eX2t + m3C3eX3t + m4C4eX4t

-a@ = nlCleXlt + n2C2ex2t + n3C3eX3t + n4C4eX4t

It amounts, in fact, to considering the final state as steady state

and to writing that at the initial instant, after application of the

deflection _, when the variables still have the values characterizing

the former state, everything happens as if the airplane would deviate

from its new state of equilibrium by an initial perturbation equal to

-Au, -Aw, -a0.

Remarks: i. It is clear that the result obtained is not due to the

fact that we have taken 8fl 8f2
- = 0. We should have arrived at the

bn bn
same conclusion if we had kept these derivatives _ 0.
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2. _he case of a modification of the power setting could be investi-

gated in the same way, but here the principal effect would be a modifica-

tion of thrust, and 8f__! would become the important term.

C. Equations the second term of which is a function of t.- The

general solution is also formed from the general solution of the equa-

tions without second term plus a particular solution of the system with

a second term which is a function of t.

Although the integration is possible in certain particular cases,

we can avoid this investigation, since a general formula, Duhamel's

integral which we study in chapter XII, gives us the possibility of

calculating the response to any maneuver of the pilot, whatever the law

of deflection may be, as soon as we know the response for a constant

deflection of unity.

4. Types of Motion

The motions determined by ext are aperiodic when the roots x

are real; they are oscillatory when the roots are complex.

In the equations of the longitudinal motion, the four roots are,

in general, complex.

o

Xl, 2 = kl_ 2 - Sl,21

x3, 4 : k3, 4 + s3,4i

The transient part of the solution is formed from the superposition

of two oscillatory motions.

The investigation of the stability of the motion of the airplane

appears as follows:

i. If one attempts to determine uniquely whether a motion is dynami-

cally stable, that is, whether the airplane tends toward its state of

equilibrium, it suffices to make sure that all the ext decrease when

the time increases, whatever the factors ZI " " . n4 and the integration

constants may be.

It is not necessary to solve, for this purpose, the equation of the

fourth degree. One must make sure (and this issufficient) that the roots

are negative when they are real, or that their real part is negative when

they are imaginary.
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Routh has shown that if an equation of the fourth degree is written

in the form:

x4+Klx3+K 2+K3x+K 4:0

the roots will have a negative real part, or will be entirely negative,

if the following conditions are satisfied:

KI>0

K2>O

KS>0

K4>0

K 3 KIK4

R = K 2 KI K3 > 0

These conditions constitute a criterion of dynamic stability.

2. If one desires to know the characteristic period and damping of

the motion which results after a perturbation without determining the

amplitudes, it is necessary (and sufficient) to solve the characteristic

equation.

The values k and s determine the periods and the damping.

For any oscillatory motion, the period T

2_
T-

S

is given by:

The duration D required for the amplitudes to decrease to one

half (or to double) is:

o

D __

The logarithmic decrement

ZnO.5 _ 0.69__2

k k

6 depends on

u2
8 = _n--

uI

s and k. In fact:
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or

u___2= ekT = e2_k/s

uI

From the practical view point, one uses sometimes, instead of the

decrement, the ratio:

R = T/D

This ratio is equal to:

k 6.2852 k
_nO.5 s 0._92 s

It is connected with the logarithmic decrement by the relation:

5
R = -- = 1.45

_nO.5

In all cases, the period and the damping are independent of the

performed maneuver and of the initial conditions.

3. If one desires to know the amplitude and the phase displacement

of the various motions which follow a prescribed initial perturbation

or a unit maneuver of the controls, one must determLne the factors Z,

m, n and the integration constants CI, C2, C3, C4.

The factors _, m, n are independent of the considered initial

perturbation, they depend on the aerodynamic characteristics of the

airplane.

In contrast, the integration constants CI . . . C4 depend In every

case on the initial perturbation visualized.

If the four roots are complex, the transient part of the solution
may be wrlttenU:

61u order to simplify the notation, everything connected with the

pair of complex roots l, 2 is represented without subscript, and every-

thing connected with the pair 3, 4, is provided with the sign '.
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8u = ektA u sin(st + Cpu) + ek'tA' u s:Ln(s't + ¢P'u)

_-- o_. s_(_ +_.) +o_'_,. _(_,_ +,,,)

_ =o_ s_C_t+_) +o_'t_,__(s,_ +_,_)
_ --_ s_(_ +_) + _'_e _(_,_ +_,)

The factors A represent the largest possible amplitude.

The terms _ represent the phase displacements.

The calculations connecting the sixteen factors A and _ with the

sixteen factors C, l, m, n have been placed in appendix II so as
not to encumber the derivation.

Important remarks: 1. Since the equations are linear, the amplitude

of all motions is proportional to the causes which produce them (initial

perturbations or deflections).

2. For the same reason, the motion produced by several simultaneous

causes is equal to the sum of the motions which would be produced by

each of these causes acting separately.

3. The method of integration is simple in theory but leads to very

long numerical calculations.

It is useful to replace it, in practice, by a method derived from

operational calculus.

These procedures are investigated in chapter XVIII.

4. The preceding problem is frequently treated by taking as variables

8u/V and 6w/V instead of 6u and 8w.

The variable 8w/V is practically equal to -8_.

This does not introduce any change in the characteristic determinant.

5- The problem may also be treated by writing the equations of

equilibrium of the forces along the flight path and normal to the flight

path.

The variables then are:

The velocity V

The slope of the flight path T (generally supposed to be positive

when the airplane climbs)
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The angle of attack

The angular velocity q = _ d(m + _ if one maintains the definition
dt

of the positive sense of the pitching rotations.

The angle of trim e = -(_ + T) is no longer one of the fundamental

variables.

This manner of notation permits introduction of the derivatives of

the lift and of the drag, and does not require the transformation of

these forces into components along the axes fixed to the airplane.

It is, however, less suitable to the goal we have set ourselves, the

investigation of automatic flight control, since the reference employed

there most frequently is precisely the angle of trim 8, and not the

inclination of the flight path T which occurs only in devices intended

to produce an entirely automatic landing, not yet in general use.

D
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CH__ VII

THE LONGITUDINAL MOTION

i. Transformation of the General Equations

e

We take up again the general equations:

dSu bfl _fl bfl _fl bfl bfl
8u - 5w 5q - -- 8e = --AN + --Ao

at bu bw bq Be 8n bo

dSw bf2 bf 2 _f2 5q
dt bu 8u - b-S- 5w bq

dSq bf3 bf} bf5 bf3 bf9 bf3
-- - --Su - --Sw - --Sq - --Se = --AN + --Ao
at bu bw bq be b_ b_

dSe bf4 bf4 bf4 _f4
.... 8q ---Se = 0

dt bu 5u _w 5w bq _e

It is clear that:

bfL
- l( T, + X' u]

_U m \ u

bf 2
- _+!z,

bU m U

bfl : -J+ l(X'q+ T'q) bf2 - u +-Z- 1 ,
bq 8q m q

bf I bf 2
-- = g cos 8 • = g sin e
_e Be

_f2
bfl 1 X' 1 Z'

bfl _. i T' bf2 _ I Z'

bf 2
°q + !(X'w+ T'w)
bw m bw m Z'w
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u 8f3 i M' _f4

_u B u _u

8f48f3 _l_M, _= 0
8w B w 8w

_f4_f5 =l M, --=+i

_q B q _q

_f4
_f3 = 1 M, e -- = 0
Be B Be

8f48f5 = i M' -- = 0
8n B n 8n

8f48f3 __! M' -- --0

As we visualize the stability for rectilinear motion,

q=0

(It would not be the same if we wanted to investigate the longi-

tudinal stability during turns. )

The derivatives X' T' Z'
q' q' q

them to be zero.

are small and we shall assume

It will be the same with regard to T' W"

If one wanted, nevertheless, to take these derivatives into account,

it would suffice to add the corresponding terms to the set of equations.

As to the terms of the second member which define the action of the

controls, we shall suppose that the elevator acts exclusively upon the

moment, whence:

X' : Z' : 0

_le derivatives of the aerodynamic actions X' u " " M'_ have been

def_n_ed in chapters III and IV, by dimensionless factors a' h 3
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Let us write the mass and the moment of inertia as functions of the

density of the airplane as a nondimensional quantity:

m =_Sc p

P
= _r2ScB

Let us put, moreover:

8fl _c _c

cI = - ;F_--x _- = _ -9-

_fl _c _c

dl - _e × -- = -g cos ev v

_f2 _c ____c

c2 : - ;_7 x-v- : -_ v

_f2 _c _c
d 2 = - --x --=-g sin e --

Be v v

c4 _f4 _c _c
8q V V

We have furthermore: a = a'l + a i.''

The equations of motion become, when these substitutions have been
made:

_c dSu

V dt

_c dSw

V dt

+ alSu + blSW + clSq +dlS@ = SlVAO

+ a25u + b25w + c25q + d25e = s2VAo

_c dSq

V dt
c c cZ c Vd35 e+7 a3 u+V b35w+  38q+ : +

_c dS@

V dt + 0 + 0 + c45q + 0 = 0

In these equations all terms appearing in the first and the second

equation have the d_mensions LT -I, in the third: the dimensions T-I,

in the fourth: the dimensions O.
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Let us note, furthermore, that:

cI and c2 have the d£mensions L

dI and d 2 have the d_mensions LT -I

c4 has the dimension T

2. Factors Depending on the Aerodynamic Characteristics

of the Airplane

We have seen that it was possible to calculate the factors aI . . . c3

starting from the aerodynamic coefficients found in wind tunnel tests.

Let us recall the expressions:

a! = a' I + a" I

_Cx
a' I = _ _-_- - 2Cx

= _ S \_7 7 - 2C

8Cx

bI - 8_

8Cz
_2 = _ _ 2Cz

8Cz

b 2 - _

_CM t _CM t
n'7 - 2CM t

a 3 = _ _ _

b 3 = _

_CM t

c3 - _×

One would also have:

if the angle of trim would exert a direct effect on the moment M.
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This effect is zero because the aerodynamic reactions depend only

on the linear and angular velocities. Nevertheless we maintain the term

in d3 in the equations in order to give them the generality necessary

for the investigation of automatic flight control.

Finally, the factors characterizing the effect of the controls are:

3. The Aerodynamic Time

An examination of the equations shows that a new simplification may
be used.

So far, the unit of time Ut was the second.

Let us express the time by means of a new unit UT related to the

second by

_c

An interval of time equal to t seconds will be expressed in the

new system by a n_mber

T=t V
_c

The quantity T is dLmensionless. It constitutes the aerodynamic
time.

Replacing in the first term of each of the first members of the

equations

_c d d
a-Yby d-V
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we obtain:

dS__uu+ alSu + blSW + clSq + d188 = sIVA _
dT

dBw
_+ a2_u + b25w + c28q + d258 = s2VAa
dT

dSq + c c cZ c c
aT _ a35u + _ b3_w + _ c38_ + _ Vd38e = _ hsVA_

dSe
+ c48 q = 0

dT

C

+ _ s3VA_ "

The characteristic determinant of the first members of the system
becomes:

aI + h bI cI dI

a2 b 2 + k c2 d2

c c c_ c

a3 _ b3 r-_ c3 + _ _ Vd3

0 0 c4 + k

=0

_e roots of the equation

h4 + AIA3 +A2h2+A3 h+Au = 0

permit writing the solution of the differential system without second

member, by means of four expressions of the form:

w

with,

5u : Cl ehlT

(in the general case):

+ C2 eh2T + C3e h3T + C4eh4 T

= + 2 ihi, 2 _1,2 - el,

h3, 4 _3, 4 + 4 i= - (_3,
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Since this quantity _ is dimensionless, the period T and the

duration D required for reduction to one half of the amplitudes given

by:

2_ _n0.5
T=-- D=

are expressed in the unit of aerodynamic time.

They must be multiplied by _c/V to find

seconds.

T and D expressed in

It is important to remark that the change from t to T made at

the end of the calculation does not affect the _uit of time by means of

which the velocities u, w, q are measured. One continues measuring_

these velocities utilizing the second as _uit of time.

4. Development of the Determinant

Developing the determinant as a function of the last line, we obtain:

a I + h bI cI

a2 b 2 + _ c2

c a3 r_c b3 r-_czc3 + h

aI + _ bI dI

a2 b2 + _ d 2

c a3 r2c b3 _c Vd 3

=0

Let, arranging with respect to terms of subscript 3:

4

Al: b2)+ °3

A2 = ib2- a2d + a 3 _(-Cl)+ b 3 c_(-c2)t c 3 _ I + b2)+
J

A3 = a3 r_I°lC2- b2Cl + dlC4)+ b3 _(a2c I -alc2 + d2c4) +

cZ c

A4 = a3 2c4di - bld2C4 I + b 3 _ ic4d2 - a2dl c +
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We replace the quantities Cl, dl, c2, d2, c4 by their values,

and obtain:

cZ

A I = (aI + b2) + _ e3

_I _" c2A 2 = \alb 2 - a2bl) ÷ a 3 _ _ + b 3 y

A3 = + a3 _ _ bl V - b2 V + cos e + b3 y _' 2 _ + al V +
\

c_ (a!b 2 _ a2 b \ c2 'sine +c3 , i +b2)

A4 = + a3 _ _ 2 cos 8 - bI sin e +

c2 _c ," ', c2 ",

b3 _ _ _-,a l\ sin 8 - a2cos 8) + b3 y I_ ialb2 - b2al#

It can be immediately verified that:

_c Cz = CZ w u--= - c_+--: i

v2 v v

The transformations may be carried still further; however, the

preceding expressions suffice for finding the essential facts.

The coefficients AI, A2, A3, A4 depend:

(I) On seven ptLrely aerodynamic parameters, functions of the angle

of attack, namely: four parameters dependent on the derivatives of the

forces al, bl, a2, b2; three parameters dependent on the derivatives

of the moments a3, b3, c 3

The parameter d5 is zero because the aerodyn&mic actions are

independent of the orientation of the airplane in space, but it is

provisionally maintained in the equations with a view to a subsequent

generalization of the theory:

(2) On the density of _ of the airplane
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(3) On the distribution of masses in the airplane, characterized

by c/r•

(4) On a purely geometric ratio _/c which is introduced only

because we used in the definition of the pitching coefficient X a unit

of length Z other than c

(5) Considered flight regime, characterized by:

w/V = -_ (_-- angle of attack)

The angle e

The lift coefficient Cz = pc
v2

i

5- Discussion of the Characteristic

It is difficult to establish, by discussion of the characteristic

equation, how the solutions k will vary when each of the parameters

mentioned above varies, and it is completely impossible to determine how

the terms which define the amplitudes of the motions will vary in the

general solution of the differential system•

We collide here with the practical inconvenience of a complicated

expression. The result depends on particular numerical values.

Consequently, we obtain from this calculation only information

regarding the periods and the damping of the motion for the particular

values assigned to the characteristic equations.

If we find that the system is unstable or possesses undesirable

characteristics, the calculation does not provide us with any immediate

indication of the manner for making it stable or satisfactory.

Actually, these inconveniences are not too serious. The number of

characteristics which the designer can influence is very limited.

Certain elements such as the b 2 = dCz/d_ , are fixed by the general
I

properties of the flows, and only the discussion of the density _ and

of the ratio c/r as functions of the three derivatives of the moment

(that is, a3, b3, c3) gives results of direct interest for the designer.

N,Jm_rou_ reports, consisting of calculations of numerical examples

where one of the elements varies systematically, have given very definite

indications on the direction of the development of the phenomena•
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There exists already a considerable documentat'on regarding this

subject.

The derivatives

M
-- _ C 3_ b3 _×

are the most important ones.

b 3 > 0 expresses that the airplane, which is supposed to oscillate

around an axis fixed in space, has the tendency to maintain its equilibrium

angle of attack. A positive sign defines, in fact, a diving moment for an

increase in angle of attack.

A similar tendency is presented by an airplane possessing the charac-

teristic called static stability, that is to say, weather-vane stability.

The procedures are perfectly well known which permit making an air-

plane statically stable and even giving it a predetermined degree of

static stability. The displacement of the center of gravity from the

rear toward the front is the factor having the greatest effect.

c5 > 0 indicates that a positive speed of rotation gives rise to a

negative moment, proportional to that speed. The term c5 defines the

damping in pitch.

One may carry the investigation up to the three stages described in

section 4 of the preceding chapter.

(a) Verification of the criterion of stability.- One fixes one or

several values of a3. For each of them, the AI, A2, . . are linear

functions of b3 and c3.

Directing the b5 and c5 along the axes, one plots the straight

lines:

A I = 0

A 2 = 0

A3 = o

A4=O
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and the curve

A3 A_4

R = A 2 AI A3 = 0

which separates the regions of stability from those of instability.

It is easy to recognize which sides of the lines correspond to

stability and to instability: one determines which is the boundary

common to all regions of stability.

(b) luvestigation of periods and damping.- The solution of the

equations is necessary. There exists, however, an approximation method

which, though not giving the exact roots, furnishes approx_T_te roots

knowledge of which is perfectly sufficient to define the nature of the

phenomenon.

The equation

_4 + Alh3 * A2h2 + A3 _ + A4 = 0

can, in fact, be put in the form

+ =0

Each of the equations of the second degree defines an oscillatory

motion: one is a motion of short period, rapidly ds_ped; the other is

a motion of long period, slightly damped.

(c) Calculation of the amplitudes.- If one carries the calculation

as far as determination of the amplitudes, one sees that the short-period

motion consists primarily of an oscillation about the center of gravity

whereas the long-period oscillation corresponds to a succession of rises

and falls in the trajectory of the center of gravity.

These motions are accompanied by considerable variations in the

velocity V or u; the airplane accelerates in descent, and vice versa.

This completely differentiates the slow oscillation from the rapid

oscillation which takes place without appreciable modification of the

speed.

An analysis of the motions is easily made by examining the solutions

of the system of equations, put in the form of curves.
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As an example_ we give such diagrams for an airplane the character-

istics of which would be:

a I : +0.125 bI : +0.345 c3 = +1.37

a2 : -0.80 b 2 : +3.75 _ : 28.8

a3 = 0 b3 = 0.344 c/r = 1.53

I/c : 2.6
for a flight regime corresponding to:

= 0 e = 0 Cz = 0.40

The calculated motions are those that follow:

(a) An initial perturbation corresponding to the effect of a hori-

zontal gust coming from in front

(a )o

(b) An initial perturbation:

= 0.25V

(Sw)o = -0.20V

which corresponds to an ascending gust producing at the initial instant

an increment in angle of attack:

(5_)0 : +0.2 rad

(c) An initial perturbation formed by the superposition of:

b

(_)0 = *0.2 rad

(6e)O = -0.2 rad

that is, an angular displacement in space of the aircraft.
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(d) The application of an abrupt deflection producing

_M = -0.015

which is intended to establish the airplane on a flight path ascending

more steeply, travelled at larger angle of attack and at lower speed.

(e) The suppression of the thrust due to stopping of the engine -

extreme case of a variation in throttle setting.

One can find the following facts in the diagrams:

(a) Effect of (Su) o > 0.- The first consequence of the perturbation

is the appearance of an excess of lift. Under its effect the trajectory

becomes ascending.

The inclination of the trajectory has the effect of diminishing the

angle of attack.

The aircraft which due to its static stability tends to maintain

a constant angle of incidence will perform a nose-up motion depending

on the rapid oscillation.

The airplane which has very nearly found again its incidence of

equilibrium condition now follows an ascending trajectory where the

conditions of equilibrium of power are not satisfied. It will find its

power equilibrium again through the effect of the slow oscillation.

(b) Initial perturbation (SW)o.- The perturbation (SW)o , of nega-

tive value, becomes manifest by an increase in angle of attack, at the

instant t = O; this increment in angle of attack tends to decrease

through the diving motion due to the static stability, and through the

undulation of the trajectory of the airplane resulting from the excess
of llft.

The diving motion is the more energetic the greater the static

stability. It depends on the rapid oscillation.

When the equilibrium of moment has been reestablished and that

oscillation has ended, the airplane follows, however, a descending

+_o_+_r__w j. _._ co _+___..... _ power equilibrium are not satisfied, and

the airplane accelerates. An oscillation of long period originates; its

amplitude is the larger the greater the inclination of the airplane has

been in the course of these phenomena, that is, the greater the static

stability.



(c) Abrupt pull-up motion.- An initial pull-up motion modifies at

the same time 5_ and 6e as long as the trajectory itself has not been
modified.

The diagram shows that the initial perturbation is opposed partly

by the diving motion (which will increase with the static stability and

which depends on the rapid oscillation), partly by a modification in

the inclination of the trajectory.

This inclination creates a lack of equilibrium of power which in

turn causes the beginning of the slow oscillation.

(d) Effect of the deflection of the elevator.- The initial effect

is a motion which tends to make the airplane nose up. However, this

motion which depends on the rapid oscillation is visible only at the

beginning of the diagram of the angle of attack.

Since the airplane is required to settle itself on a trajectory

which greatly differs from the initial trajectory as to the speed and

the trim of the airplane, motions which depend on the slow oscillation

are produced.

Inspite of a considerable degree of static stability, the slow

escillation does not arise strictly at constant angle of attack.

At a constant deflection _, one has dC M = 0, but

_CM _CM _CM d7 dV
dCM- d +G--x dV

t

If 8CM/_7 = 0, the amplitudes of d_ and d X will be in the ratio:

The oscillation in _, opposed to that of q, that is, at the

derivative of e, will lag behind that of e by _/2.

(e) Suppression of the thrust corresponding to the stopping of the

_.- Since the calculations have been carried out with _d/_7 = O,

the suppression of the thrust does not produce any direct effect on the

equilibrium of moments. The airplane will slow up and the motions which

will be produced will all depend on the slow oscillation because they

result from the airplane's pursuit of power-equilibrium conditions.



97

The complete stoppage of the engine corresponds to an initial

perturbation:

CX
8e = - arc tg --

Cz

It is well to remark that, in the case b, the phenomenon is greatly

schematized. The diagram corresponds to the roughest calculation one can

possibly make; it supposes, in fact:

That the gust arises abruptly

That the airplane is, from the first instant onward, in its entirety

subjected to this gust.

6. The Total Damping

The motion of the airplane results from the superposition of two

motions:

The rapid oscillation is strongly damped; the duration D of

decrease to half-amplitude is a fraction of a second.

The slow oscillation is slightly damped; D is of the order of

30 seconds.

The damping of each oscillation is proportional to the real part

(necessarily negative) of the corresponding root.

Now the sum of the roots = -A!.

The coefficient AI, with changed sign, may therefore be regarded

as the total of availablG damping.

One can influence the total damping only by means of the para-

meters al, b2, and c3.

_le other parameters do not affect the total of available damping.

They can influence only the distribution of the damping between the two

components of the motion.

If one succeeds, by the effect of as, b3, or d3, in increasing

the damping of the slow oscillation_ one diminishes that of the rapid
oscillation.



98

Let us recall

_= K+_oi

_' : _' +- _'i

where the pair of roots 3, 4 relative to the slow oscillation• takes on

the sign prime.

Since _ > _' when we make a small quantity n pass from _ to

_' D' which has become ZnO.5 is little modified, whereas D' which
- n

has become ZnO.5 is strongly reduced.
_' + n

Any alteration in the airplane which increases _' at the expense

of _ is favorable• since the d_mping of the rapid oscillation can

generally be somewhat d£minished without disadvantage.

Remark: It is clear that the method of approximate solution pointed

out above does not give exact results since it leads to attributing to

the rapid oscillation a damping equal to the total available damping.

7- Remarks on the Expressions _, A2, A3, A 4

A. The factor _ al_mys multiplies the terms in

does not multiply c3:

_j ms a restoring moment

a 3 and b3, but

c5 is a damping moment.

The increase of the airplane density _ will have an unfavorable

effect; an airplane of high density (that is, with a high wing loading)

will necessitate a larger damping coefficient _CM/_ X (in absolute value)

than a machine with small loading.

B. At normal angles of incidence, the factors al, bl, a2, b2

have such values as to make the term in alb 2 - a2b I appearing in A 2

positive.

On the other hand, the factors which multiply a3, b3, c 3 in A 2,

A3, or A4 are generally positive.
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The only factor which can become negative is the one which multiplies

b3 in the expression A 3.

Ascending trajectories may lead to values such that sin 8 gives

its sign (negative) not only to the term in b 3 but also to the entire

expression A 3.

This fact explains that the stability of ascending flight paths is

always more precarious than that of horizontal or descending flight paths.

Pursuit planes endowed with normal characteristics become frequently

unstable in the case of steeply ascending trajectories at full engine

speed because the term in b3 which appears in A 3 has become negative

and gives its sign to the entire A 3.

One finds therefore that the increase in static stability of the

air frame can only increase the instability of the motion.

The instability considered above always affects the slow oscillation.

C. The sense in which T, D, T' and D' develop if a3, b 3 or

c3 are altered can be established in a general manner only by treating

numerical examples and the conclusions are, on principle, of value only

in the particular case considered.

Any_my, we shall indicate the conclusions at which we have arrived

(airplane with the same characteristics as the one to which refer the
ocurvcs _ figure _4j.

Effect of a 3.

Let us recall that a3 can express:

a3 8CMt 8CM t ,.... n _ - 2CMt

The parameter a3 exerts only an insignificant effect on the rapid

oscillation, but a considerable one on the slow oscillation.

At small angles of attack (_ in the neighborhood of zero) its

variations stem exclusively from the effect

_7
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An increase in the velocity of the aircraft diminishes the thrust

of the propeller.

When the propeller axis passes above the center of gravity, the

thrust reduction produces a nose-up moment. An increase of V produces

a negative ACM; the airplane is characterized by:

Such a characteristic is favorable for the stability. As a result

of the form of A4 a machine which is statically unstable for slow condi-

tions may be made dynamically stable by:

It must, however, be noted that the stability produced by this means

does not correspond to very desirable flight-path characteristics. The

period of the slow oscillation decreases whereas the duration D

increases: oscillations of this type may become inconvenient.

Inversely, an airplane in which the thrust axis passes below the

center of gravity is generally characterized by:

Such a characteristic tends to make the slow oscillation unstable.

If the flight path of an aircraft has become, for any reason whatsoever,

a descending one, the plane will necessarily accelerate. The moment M

becomes positive, that is, nose-down and tends to oppose the levelling-

out of the flight path and to maintain or accentuate the diving condition.

A statically stable airplane may become dynamically unstable if:

8CM t
>0

The calculations show from what value of a3 onward this instability

may manifest itself, taking into account the value of the other parameters.
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It is interesting to note that a machine characterized by
_CMti_7 _ 0 has necessarily the tendency to nose-up whenthe engine is

l

stopped. A machine characterized by _CMtI_y _ 0 tends to become nose-

down. This last reaction is favorable for safety.

The airplanes fall into different classes regarding the effect

of the _C_I_ 7 according to whether one considers the phenomena

occurring when the motor turns normally or those which accompany an abrupt

stopping.

Effect of b3 =--_-

The period of the rapid oscillation (motion of rotation about the

center of gravity) is necessarily linked to the magnitude of the static

stability, or the restoring moment.

This period decreases when b3 increases.

It increases when b3 decreases, and, for a low degree of static

stability, the rapid motion ceases to be oscillatory and becomes the

sum of two aperiodic motions.

Nevertheless the roots _i and _2 remain negative and the corre-

sponding aperiodic motions remain stable, even for a negative static

stability.

The mechanical cause of this phenomenon is easily fo_d; it is due

to the undulations of the flight path produced by the increase of lift

b _ 0_ which accompanies increase in angle of attack.any
I

The damping of the rapid motion as long as the latter maintainsits

oscillatory character is independent of b 3.

l_e period of the slow oscillation decreases also when b3 increases.

Its damping also decreases.

When b3 decreases, the period increases; then the motion ceases to

be oscillatory.

When b3 = O, the instability limit A 4 = 0 is easily surmounted.

This instability goes back to one of the components of the slow

oscillation and the duration of amplification of the perturbations is

long.
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The flight of an airplane affected by a slight instability of the

slow motion is no longer possible with controls fixed but remains possible

when the pilot _kes the necessary corrections.

Effect of c3 = bCM.
b×

The factor c3 uniquely exercises an effect on the damping. It

increases the total damping, but the increase relates almost entirely

to the root having to do with the rapid motion.

8. The Accelerations

One of the quantities to which the occupants of an airplane are the

most sensitive is the normal component Jz of the total acceleration,

opposed to the apparent gravity.

In the course of a varied motion

where Jz = g cos G cos

8J z the increment.

Jz = Jz + 8Jz

represents the steady-state component and

The hypotheses adopted permit us to write:

[dSw -(qBu + uSq) sin 8 58]= Ld- - - g

= I Z,u_ u + i Z,w8 w + ! Z'qSqm m m

Since q and 7,_q
one of the expressions:

are supposed to be zero, we can adopt either

dSw
8J -

z dt
uSq - g sin 0 88

or

5J z :

As soon as we know the development of the 8u, 8w, 5q, Be in

the co_rse of unsteady motion, we can determine at every instant the

increment of acceleration 8J z.
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LINEARIZATION OF THE EQUATIONS OF THE lATERAL MOTION

i. What Lateral Stability Consists of

The lateral motion is determined by:

The equilibrium of the forces following the transverse axis 0Y

The equilibrium of moments along each of the axes 0X and 0Z,

Just as in the case of longitudinal stability, the destruction of

one of the states of equilibrium gives rise to forces and moments which

in turn act upon the other equilibria.

_ne sequence of phenomena which take place may in certain cases be

established by simple reasoning.

Let us assume an airplane to which one has imparted the two static

stabilities of roll and yaw, satisfying the two conditions:

_CL _CN
>0 -->0

(313 _

We suppose that the machine is inclined toward the left 5_ < 0.

The machine will deviate in this direction, under the effect of gravity.

and a perturbation 5_ > 0 will originate.

This perturbation constitutes a lateral translation which will have

two effects:

(ist) The airplane will have a tendency to level out under the

action of _CLI_; the skidding to the left will tend to incline the

machine to the right.

(2nd) The airplane will have a tendency to veer to the left since

it behaves like a wind vane, with _CN/8 _ being positive,

Thus a new perturbation arises, a turn 5r > O. In this motion the

right wing will be at the outside of the turn and will be displaced more

rapidly than the left wing.

The lift will be stronger and will tend to increase still more, thus

to emphasize the lateral inclination. The moment L is, in fact, a
f_nction of r.



104

l

The derivative _CL/_r is negative and the turn $r has a tendency

of straightening out the outer wing, in the case considered the right wing.

Two opposite effects are produced and, according to the proportions

of the machine, one or the other predominates.

If the effect of the static stability of roll prevails, it will be

possible that after a turn the airplane will resume its initial state;

nevertheless it will fly in another direction than before the initial

perturbation.

If the effect of the angular velocity r on the rolling moment L

is larger than the effect of the skidding 9, the second effect prevails.

The inclination of the machine increases, the airplane starts on a more

and more inclined turn and describes a spiral trajectory.

The machine is then dynamically unstable; the instability affecting

it is called spiral instability.

The dynamic study shows that a machine which satisfies separately

each of the two conditions of static stability (of flight path and of

yaw) may be unstable if the first stability is too highly developed in

proportion to the second.

Likewise the motion of an airplane may present unfavorable charac-

teristics if the rolling stability is too high in proportion to the

flight-path stability.

Let us imagine that the machine skids to the left, with the axis OX

of the plane oriented to the right with respect to the flight path.

If _CLI_ is high, the machine will be forcibly inclined to the

right, and the rolling will be positive. The tendency toward a leftward

turn will on the contrary be slight since _CNI_ is, by hypothesis,

supposed to be small. The secondary rolling moment which might develop

due to this turn will tend to incline the machine to the left, but it

will remain weak since the turn is little pronounced.

The motion of the positive rolling, to the right, will predominate.

Since nothing opposes its action, the airplane will lean to the right.

The resultant of forces along the transverse axis will at this moment

make the airplane skid to the right, and the same phenomena, in the

inverse sense, will occur.

One can see how there arises the possibility of a yawing motion on

_dnich a continuous balancing is superposed. This motion becomes unstable

and the amplitudes will increase for too small values of _CN/_ _.
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2. Setting-Up of Equations by the Method of

Linearization of Equations

The equations of the variable motion are:

m + ru - pw = Y - G sin

C d_£p+ pq(B - A) = ZN
dt

A_+ qr(c-B) =
dt

One must add two geometric relations connecting the angular veloc-

ities p and r with the derivatives d_/dt and d@/dt and resulting

from the definition of the rotations:

d_ d@
P = dt dt sin 8

d_ de
r = d-t cos e cos _ - d-t sin

which may be written:

d_ _ £in @(
d-_ - p + cos @'q sin _ + r cos _)

d_ _ 1 (q sin _ + r cos _)
dt cos @

We shall be able to assume q = 0 when we investigate the lateral

stability of a rectilinear motion.
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The system of the five equations has the form:

dv

_-y= fl(V,p,r,_,¢)

dp = f2(v,p,r,_,, )
dt

dr
_-_ = f3(v,p,r,_,,)

d_
= f4 (v,p,r,$,$)

a__¢=fs(v,p,r,_,, )dt

It can be linearized as in the study of longitudinal stability, with

the perturbations 5v, 5p, 5r, 5_, 55 now becoming the variables.

The integral system depends after linearization on an algebraic

equation of the fifth degree in x, instead of an equation of the fourth

degree.

This equation will be:

_v _p _r _ _,

3f4 3f4 3f4 3f4 3f4
.... X '--

_v _p _r _ _¢

5f5 5f5 _f____5 _f5 3f5

_v 5p 5r _ 5_

=0

-- -X

One notices immediately that the derivatives of the five functions

with respect to the variable _ are zero.
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The equation of the fifth degree admits a zero root:

This circumstance facilitates the analytical investigation since the

characteristic equation becomes one of the fourth degree if one eliminates

this particular solution_ and the mathematical investigation will be

carried out by methods similar to those used for the study of the longi-

tudinal motion.

The existence of this particular root corresponds to a well-determined
mechanical fact.

In the study of the longitudinal motion one states that certain

projections of the external forces depend on the angle 0.

If e is not zero, the axis of the airplane is inclined upward or

downward, with respect to the horizon, and the gravity exerts along the

axis OX a component which is to be subtracted from or added to the

propeller thrust.

When an aircraft is dynamically stable, it reverts, after a series

of oscillations, to its initial state. The forces acting upon it must

reassume their initial value. This result can be obtained only if the

airplane recovers its original trim.

_n the study of the lateral motion we shall encounter two angular

quantities _ and _.

The component of the forces along the axis OY depends on the

angle _ since the gravity exerts a lateral component when the airplane

is inclined. If the airplane is dyn_ically stable, it reverts after

any perturbation whatsoever to its initial state and must therefore

assume again its initial inclination.

This does not apply to the angle @. Whatever the final position

of the airplane may be, the projections of the weight on the axes are

independent of the azimuth @; no force and no moment exists which would

be a function of @.

If, consequently, a dynamically stable aircraft returns after a

perturbation to its initial state, it has to reassume a motion charac-

terized by the same velocities and the same _ngles e and _ as the

initial motion, but not necessarily by the same angle _.

After a perturbation, a machine does not possess any stability of

heading. The existence of a solution x 5 = O is only the mathematical

consequence of this fact.
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Momentarily setting aside this solution, we write the characteristic

equation as for the longitudinal stability:

x4 + AlX3 + A2x2 + A3x + A 4 = 0

The integral system will be written:

8v = Clexlt + C2 ex2t + C3eX3t + C4 ex4t

8p = ZICI exlt + Z2C2 ex2t + Z3C3e x3t + Z4C4 ex4t

br =mlClexlt + m2C2eX2t + m3C3eX3t + m4C4eX4t

_p = nlClexlt + n2C2eX2t + n3C3eX3t + n4C4eX4t

To obtain the perturbation 8#, will be possible only by the

integration:

Jdt J co-_(Sq sin Q_ + 8r cos _)dt

The characteristic equation in x always admits in the study of the

lateral motion one pair of imaginary roots x!, 2 and two real roots x3

and x4 .

The motion will therefore result from the superposition of an

oscillation and of two aperiodic motions.

3. Motion Effected by the Action of the Lateral Controls

The moments produced by the lateral controls will be introduced in

the second term of the equations, and the solution of the system with a

second term permits determination of the effect of the ailerons or of the

rudder on the lateral motion.

The principle of the method is the same as for the longitudinal

motion, but it is well to point out immediately that the integration can

be accomplished much more easily by the operational method described in

chapter XVIII than by the classical integration procedure.
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THE LATERAL MOTION

i. Transformation of the General Equations

Let us write the general equations in the linearized form:

dSw

dt

dBp

dt

!h
dt _v _p _r

8f3 8f9 8f3

d_
dt

8f4 _f4 _f4 8f4
5v - _Sp - _Sr - _5_

®

8f4
- --_ = o

d%

8f9 8f5 8f5 8f5 8f5

_v 5v - _-Sp - _--_-Sr - _--5(p - _--69 = 0

a

The derivatives of the functions f have the form:

8fl i y, 8fl
..... g cos

8v m v

1 , _fl
8fl =_+_T :0
_p P _

8fl
8fl 1 'r 1 y,
_--r-= -_ + m- Y _ = m-
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8f2 = iL, --8f3: _i N'
_v A v 8v C v

_f2 I L' _f3 i

p

3f2 : i _(c - B) _f3 _ l
_--- A L'r - _r C N'r

6f 38f2 _ i L' -- = 1-N

8f3 i3f2 _ i L' -- = -

3f2 i L' _f5 I N'
_ A _ _ C

_f2 _ I L' _f5 i

A c

- q(B - A)

3f4 3f5
-- = 0 -- = 0

_v

_ = I

_p h_
=0

8f4 sin e 8f5 cos

_r cos 8 cos _ _r cos 8

3f4 - sin e _f5 - sin q_
= -r sin _ - -r

&p cos e h_ cos e

_f4 3f5
_= 0 - 0

We have moreover:

3f4 _f4 3f5 _f5

which have not even been written in the preceding equations.
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The following calculations are devoted to the study of the recti-

linear system for which q = O.

If one wanted to investigate the dynamic stability of a curvilinear

trmjectory, one would have to maintain this term.

The derivatives of the aerodynamic actions Y'
p •

defined in chapters III and IVby factors aI . . k3.

• N' r have been

wise

We shall assume that the derivatives Y'p and Y'r

Y' and Y'

are zero, like-

The moments L and N are independent of the attitude of the air-

plane in space. _he factors d2, d3, e2, e3 are normally zero.

However, one can, by means of instruments for automatic flight control,

make the moments functions of the angles, and we will temporarily keep

the terms d2 e3 in the equations.

Let us again replace:

m by _Sc _
2

A by mr 2 = _Sc p r 2
a _ a

C by mr2c = gSc _ r2c

When all substitutions have been carried out, the equations of the

motion, written with a second term, become:

_c dSv

V dt + alSv + b15 p , clSr + d15 _ + e159 = 0

_c dSp b bs bs bV
-- + a25v + b25P + -- c25r + +

V dt r_a r_a r2a r_a d25_

r2bVae25_ =--r2abVh25_ + r-_bvak25_

_c dS__rr+ b_La35v + bs___b55 p + bs___c35 r + bV_V
V dt r2 c r2 c r2 c r2 c d55_ +

bV e35_ = bV_V_h35_ + bY_V_k35_
r2c r2c r2c
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in which:

_c asT_
V dt + a48v + b45P + c48r + d48q) + e45_ = 0

_c d8¢

----+ a55v + b55P + c58r + d58 _ + e55 _ = 0V dt

_f4
a4 = 0 because _v 0

8f5
-- = 0: 0 _v

-- _c
bI = -w _--

cl = +_cV

_c 8f4 _-_ _c
b4=

V _ V

b5 = 0 because _f5 = 0
8p

_C
dI = +g cos Y

_c _ sin e
d_ = + r sln_

V cos %

d5 = + _c _ sine
V cos e

c4 = _ _c sin e cos
v cos 8

c- - _c si__i
P V cos 8

If the aerodynamic characteristics are not modified by a mechanical

device:

d 2 = 0 e2 = 0

d 5 = 0 e3 = 0
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Finally, e I = e4 = e5 = 0, since the derivatives of the corresponding

functions with respect to I/ are zero.

d4 and c4 are zero for a horizontal trim since sin e = O.

Practically there remain only seven factors connected with the aero-

dynamic characteristics of the airplane and four factors characterizing

the action of the controls, namely:

4

Finally:

_cL _c N
a2 - a 3 -

_CL _<_N
b 2 - b5 -

8CL c3 _CNc2 - _p = - _p

_)CL _C N

h2 - _ h3 - _

_CL _CN
k2 - _ k3 -

2. Characteristic Determinant

We shall make the same transformation of the unit of time as in the

study of the longitudinal motion and search for the solution in T.

Let us write the characteristic determinant of the equation system
without second term. We obtain:
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aI + _ bI cI dI 0

b bs b2 + _ bs c2 bV d2 bV-_-- a2 -_- -_-- -_- -_- e2
ra r a r a r a r a

a3
r2c r2bs-_-cb5 r2bs-_-cc3 + k r2cb-V-Vd3 r2c_bVe3

o b4 c4 d4 + _ 0

o 0 c5 d 5

=0

Let us assume an equation of the fifth degree in h:

_5+ BI_4+ B2_3 + B3_2 + B4_+ B5 = 0

However, if one takes into consideration only the aerodynamic

characteristics of the airframe, without equipment for automatic flight
control:

d2 = d3 = e2 = e3 = 0

and the equation is reduced to:

k4 + Alh3 + A2h2 + A3 h + A4 = 0

It is no longer possible to write the AI, A2, A3, A4

of linear functions of the six factors a2, b2, c2 and a3,

which define the derivatives of the moments of roll and yaw.

in the form

b 3, e3

In certain terms of the development the derivatives of One moment

are multiplied by those of the other.

For c4 = d4 = 0 (horizontal trim),

d 2 = d 3 = e2 = e3 = 0

one may write the development (replacing b by 2s, in order to avoid

the coexistence of the letter b, span, and of the b's with subscript

which designate the derivatives of CL):
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A I a I + 2 s2 b2 + 2 s2 c3
= r2--_ r2--_

A 2 a2 2 sc W _ a3 2 SC u_ + b2 2 s2= _ _a I +
r2a V r2c V r2a

s2 • 4s4

c3 2--r2c al+ (b2c , - b3C2)r-_ar2 c

A3 = -a2 2sc cos _ _c 4s3c (V w 3)
r2-_ _W + a 2 r2ar2c b3 + _ c _ -

4s3c u
a5 r2a---_2c_Vc2 + V b2)_ +

\ 4s3c 2 gc

A4"= (a3c2 - a2C,_r2_r2c _ V 2

4s 4

- aI(b2c5 b,c2) r2ar2 c

i15

Let us note that all factors c (chord) appearing in the expressions

are multiplied by W. _ey stem from substitutions of _ for m.

One could write:

c_ = SV

which would eliminate the factor c and would replace it everywhere by

s, under the condition that the density _ be replaced by another density

equal to:

v =_ c 2m
s oSs

In this case every airplane would be characterized by two densities:

_he one, _, utilized in the study of the longitudinal motion

The other, v, utilized in the study of the lateral motion.

We have preferred using only one single expression for the density.

We state that the A1, A2, A3, A4 are functions:

(1) Of dimensionless factors aI . . . c3 dependent on the aero-

dynamic characteristics of the airplane
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(2) Of geometrical characteristics such as s/r a or s/r c dependent
on the moments of inertia

(3) Of the angle of attack -w/V and of the lift coefficient:

(4) Of the density # of the airplane.

Let us remark that the aerodynamic factors

a given airplane, with the angle of attack.

aI • . . c5 vary, for

B

3. Characteristics of the Motion

The discussion ought to be carried out as a function of six quan-

tities. One can proceed with it only by treating series of numerical

examples. On the other hand, this investigation should be made for

different angles of attack.

Finally, it would be useful to investigate the effects of variations

of the density _ and of modification in the mass distribution - which

determine modifications of s/r a or s/r c.

We shall be content with recalling the essential facts which have
become classical.

The solution of the characteristic equation contains always a pair

of complex roots, determining an oscillatory motion, and two real roots,
determining two aperiodic motions.

Following, one of those two motions will be called spiral motion,

the other strongly damped motion.

We shall write the subscript 3 for the root k corresponding to

the spiral motion, and the subscript 4 for the one corresponding to

the motion called "strongly damped."

These roots are easily distinguished. The root determining the

strongly damped motion is of large absolute value and always negative.

be root determining the spiral motion is much sm_ller in absolute value,

and may be positive or negative.

Because of the large number of variables we shall investigate first

the influence of the derivatives a2 and a3 which constitute the static-

stability coefficients.
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We shall examine successively:

(a) The criterion of stability

(b) The period and the damping of the motions

(c) The amplitudes.

These three problems correspond to the stages we pointed out in the

study of the longitudinal motion.

(A) Criterion of stability.- We shall write the coefficients A

as functions of a2 and a3 for normal and constant values of the other

parameters, and trace, taking a2 and a3 as axes, the lines:

A I = 0 A 2 = 0 A 3 = 0 A 4 = 0

A3 A A4
R =A 2 : 0

A 1 A3

separating regions of the diagram where each of these expressions is

or _ O.

In fact, the curves A I = 0 and A 2 = 0 pass outside of the

trimming limits, the useful part of the diagram is alweys on the stable

side, and only the lines A 5 = 0, A 4 = 0, R : 0 have to be considered.

'l-here is one region where these t_mee expressions are all s£_u!ta-

neously > O.

The airplanes, the static-stability coefficients of which fall into

this region, are all dynamically stable.

The condition A 4 _ 0 is nothing else but:

a3c 2 - a2c 3 _ 0

or

_N _CL _L _CN

_ 5p 5_ 5p
_0

" which is precisely the expression D > 0 of chapter V.



i18

@

P

D

I"

4

O

If D = O, an airplane which is making a turn when the two lateral

controls are neutral (_ = O; _ = 0), continues with this turn indefinitely.

If D < O, a similar turn will have the tendency of becoming more

pronounced because the inner wing must be supported in order to maintain

the lateral inclination and to prevent it from increasing.

The machine presents spiral instability. Any flight path travelled

with _ = 0 and _ = 0 is finally transformed into a spiral.

If D > 0, a turn without control deflection has a tendency to stop

because the airplane must be maintained in the turn by an appropriate

deflection of one of the controls. The rectilinear flight path consti-

tutes the stable trajectory.

Since the _CN/_ _ and (_CL]_ _ are habituallY positive, and _CN/_ p

and 8CL/8 p are habitually negative, the stability condition may be

written:

_C L _(JN

The static stability about the axis 0Z must be inferior at a

certain limit which is a function of the static stability about the

axis OX.

We recall that the principal factor producing the first is the magni-

tude of the vertical tail surfaces and that the one producing the second

is the dihedral of the wing.

These two characteristics are connected to one another.

However, the diagram shows us certain unexpected facts. The region

of stability extends sometimes below the axis of the abscissas.

A directionally unstable airplane may be dynamically stable if the

instability remains slight. Finally, the area of stability may present

a pointed region (of very much reduced area) corresponding at the same

time to a slight static directional instability and to a slight static

rolling instability.

In the figure the line A 4 is a straight line because we plotted

it under the assumption that the derivatives _CL/Sp and _CN/8 p are

constant. In reality, it would be difficult to vary the static directional
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stability in significant proportions without exerting an influence on
the area or the lever arm of the vertical tail surfaces.

Amy increase of _CNIS_ then entails an increase, in absolute value,

of _CN/Sp. In order to keep to effectively realizable cases, one would

have to take into account the modifications of 8CN18 p accompanying those

of aCNI 8_.

The line A4 = 0 will cease to be a straight line and will become
a curve.

NUMERICAL VALUES USED FORTHEEXAMPLES CONCERNING THELATERALMOTION

Chapter IX, Chapter IX,
Chapter V Sectfons 3 and 4 Section 5

Airplane i 2 3 A B C A' B' C'

4

= - _c--XY+o.45 +0.45 +o.45
al 8_

a2 = - --_CL-0.0573 -0.069 -0.080

c2 = - _)CL +0.18 +0.16 .+0.14

_CN -0.046 -0.045 -0.040
a3 : _

_CN

b3=

_CN +O. 08 +0 .i0 +0 .12
c3 - _)p

+0.60 +0.60 +0.60

-0.o8o -0.o4o -o.020

+0.24 +0.24 +0.24

+o.056 +o.o56 +o.o56

-0.040 +0.010 -0.040

-0.017 -0.017 -0.017

+o.045 +o.o45 +o.o45

Cp 0.62

r2alS2

r2cls 2

_CL in degrees: 0.003

0.40

28.2

0.i0

0.24

+o.4o +O.4O +O.4O

-0.120 -0.060 -0.120

+0.42 +0.42 +0.42

+0.06 +o.06 +0.06

-o.o48 -o.o24 -o.o4o

-o.o3 -o.o3 -o.o3

4-0.072 +0.048 40.072

0.20

lOb/c

0.06

0.12

in degrees: 0.012
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(B) Period and damping of the motions.- Solution of the character-

istic is necessary. Performing the calculations for three airplanes

called A, B, and C in the table on the preceeding page, we state:

(1) _aat the root k4 maintains a practically constant value

(2) That the root h 5 is positive on one side of the condi-

tion A4 = 0 and negative on the other. It determines satisfactorily

the spiral stability

(3) Thst the complex root determines a sufficiently damped oscil-

latory motion when the static directional stability is normal, but that

the period increases and the damping diminishes when the directional

stability decreases.

Exceeding the limit R = 0 makes the instability of the oscillatory
motion manifest.

(C) Amplitudes.- One can obtain a conception of the amplitudes by

examining the return motion of the airplane toward its initial state

after an initial perturbation of each of the four variables By, 8p,

5r, and 5_.

In making these calculations, one finds the following facts:

(1) A perturbation of the lateral inclination fosters especially

the spiral motion. It excites the oscillation only slightly and exerts

practically zero effect on the damped motion.

(2) An initial perturbation of skidding excites the oscillation in

a high degree, the spiral motion in a low degree. The amplitude of the

damped motion is negligible.

(3) An initial perturbation of the angular velocity p goes back

almost entirely to the motion called "strongly damped." The perturba-

tion 5p stops quickly but leaves the airplane with a lateral inclina-

tion 5_ which, in turn, may be considered as the initial perturbation

which excites the return motion.

(4) An initial perturbation of the angular velocity 5r produces

a skidding in the same manner as a perturbation 5p creates the lateral

inclination.

It does not exert any effect on the damped motion and is afterwards

reabsorbed llke the motion of skidding it had created.
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Actually only the initial perturbations of skidding and of lateral

inclination are typical.

The motions to which they give rise are indicated as functions of

time in figure 26 for the three airplanes considered before.

Knowing the amplitudes one can state that the oscillatory motion

constitutes a real balancing, formed by the superposition of a rolling

and of a yawing motion; it is called "Dutch roll" by Anglo-Saxon engineers.

4. Effect of the Other Parameters

Numerous points ought to be investigated.

We shall point out some well-established important facts:

(a) For a given airplane the aerodynamic characteristics vary when

the sustained angle of attack increases, but the variation takes place

in a sense always unfavorable to stability.

(b) When the density of the airplane increases as do the radii of

gyration (relation such that s/r a becomes smaller_ one finds that theJ

region of stability shrinks considerably because the curve R = 0 rises.

On modern aircraft it becomes more and more difficult to realize

degrees of static stability (and to endow the airplane with them) which

ensure stable trajectories for controls fixed.

Even though for several years now there has been a tendency to con-

sider spiral instability as a rather serious defect, at present one is

forced to admit it if there is no way of avoiding it.

In ease of a slight spiral instability, the speed of increase in

initial perturbations is tolerable and leaves the pilot sufficient time

for intervening.

(c) Nevertheless, it is useful for the continuation of this study

to investigate the effect of modifications of the parameters b2, c2,

b3, and c3, that is, of the derivatives of the moments in proportion to

the angular velocities.

Increment in b2:
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The parameter is a damping factor. Any increment in b 2 augments

the coefficient AI, that is, the total of available damping.

The greatest part of this increment goes to the root k4; the two

other roots receive only a very small part of it.

Increment in b 3:

The factor b 3 does not affect AI. It can produce only an exchange

between the different roots. This effect is absolutely insignificant.

Increment in c2:

The factor c2 does not affect AI, but it produces an exchange

between the damping of the oscillatory motion and that of the spiral

motion.

It does not exert any influence on X4.

The exchange results from the form of A4:

A4 = a3c 2 - a2c 3

o

D

where the values of a5 and a 2 are frequently of the same order of
magnitude.

Since the stability condition is written (with consideration of the

signs ):

or

8C__LL> _C__8CL _C__NN
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one sees that a reduction of c2 (increase of 8CL/8 D in absolute

value) is favorable to the stability of the spiral motion. This improve-

ment will be obtained by borrowing from the real part of 1.2, that is to
say, by borrowing from the damping of the oscillation.

Increment in c3:

The coefficient A1 depends on c3.

the total damping available.

This increment never applies to h4

oscillatory and the spiral motions.

Any increment of c3 augments

but is distributed between the

5- Motion of the Airplane Under the Effect of a Control

If we place in the second term the moment produced by the deflection

of the ailerons or of the elevator, it is possible to determine the motion

caused by this deflection.

We give on the diagrams which follow the result of the calculation

for the three airplanes A', B', and C' the characteristics of which
are indicated in the table.

Each of the controls is supposed not to exert any secondary effect.

The moment applied by the ailerons tends to lower the left wing; it
is taken equal to:

CL = -0.006

which corresponds to a deflection of -2 degrees when the efficiency of

the control _CLI8 _ is equal to:

or
0.172 (angles expressed in radians)

0.005 (angles expressed in degrees)

The moment applied by the rudder tends to cause rotation to the

left; it is taken equal to:

CN : +0.0024
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which corresponds to a deflection of +2 degrees when the efficiency of

the control _NI _ is equal to:

0.069 (angles in radians)

or

0.0012 (angles in degrees)

Under the action of the roiling moment developed by the ailerons,
the airplane immediately is inclined to the left.

However, it starts out by turnlngto the right, due to the effect

of N'p, but this motion changes rapidly its sense and the airplane then

turns to the left.

_he rotation to the left is due to the skidding toward the left which

originates as a consequence of the lateral inclination. This skidding

produces a yawing moment due to the directional static stability with

which the considered airplanes are supposed to be endowed.

Under the action of the yawing moment toward the left, the airplane

starts a rotation r to that side; but since the trajectory is not

immediately modified, the airplane skids toward the right, that is, toward
the outside of the turn.

Under the effect of this skidding the airplanes which possess lateral

static stability are inclined toward the inside of the turn. An airplane

which is characterized by 8CL/8 _ = 0 is not subjected to this rolling

moment.

The diagrams show that, if one wants to start a turn by means of

aileron action alone, the airplane with spiral instability is the one

with the most rapid changes of course 8,.

If one wants to induce a turn uniquely by maneuvering of the rudder,

the airplane with spiral instability is the one which turns most unsatis-

factorily because it is not inclined toward the inside under the action

of the skid toward the outside.

One can understand immediately that the simple maneuvers consisting

of an invariable deflection of one or the other of the two lateral controls

do not lead to placing the airplane into a regular turn.

We studied in chapter V the equilibrium-type conditions of turns.

the flight path corresponds to 6 0, one has _ _ _= ne_es_ar_gf p = 0 once

the steady state has been established.

If
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CHAPTER X

EXPERIMENTAL RESULTS

I. Development of the Preceding Theory

The linearized theory of the motion of an airplane is due to the

research of G. H. Bryan whose report: "Stability in Aviation" constitutes

a major work.

Published in 1911, at the era of the "Paris-Madrid, " "Paris-Rome,"

etc., races the theory went completely unnoticed and did not exert any

influence on the development of aircraft. This development occurred in

a semiempirical manner, up to the time in 1916-1918 when Bairslow in

Great Britain and Hunsacker in the United States took up again Bryan's

theory and introduced into it the numerical values of the derivatives

which the progress of aerodynamic knowledge permitted one to evaluate.

One became then aware that the linearized theory permits an explana-

tion, (along general lines), of the particularities presented by the

motion of airplanes.

From the period 1920-1925 onward, experimenters were busy recording

the trajectories of aircraft flying with controls fixed, that is, behaving

in accordance with the fundamental hypothesis of the preceding theory.

The experiments made in the United States by Norton, Warner, and

Allen, in the course of the years following the first World War, gave a

qualitative and partial confirmation of the theory.

For a long time, however, it was not possible to observe the rapid

oscillation depending on the longitudinal motion. This is not at all

surprising. It is sufficient to visualize the aspect an oscillation

assumes when its damping is such that the duration D for decrease to

half-value becomes 1/20 of the period, in order to perceive that such

an oscillation must lose its customary appearance (fig. 28).

A quantitative study of a particular type of aircraft, the Bristol

Fighter, was begun in Great Britain, toward 1920. Laboratories attempted

measurement of the aerodynamic derivatives by means of a series of models:

several airplanes of this type were subjected to experimental verifica-

tions. These studies lasted until 1926; they enhanced the repute of the

theory but were not reviewed. No other type of aircraft was ever more

the object of a complete investigation with the aim of a determination

of the derivatives and verification of the theory.
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The laboratory tests, carried out for the first time on a Bristol
Fighter, gave a result which, since then, always has been reconfirmed.

In the neighborhood of maximumlift, the derivative 8CM/8×
decreases considerably and becomeszero (sometimes even changes its sign).
Under these conditions the rapid oscillation must becomeperceptible.
And that is what actually happens.

Recordings (R. & M., Nr. 1367) of the flight path of the Bristol
Fighter, flying at approximately maximumlift, permitted recordings of
the rapid oscillation (period of 3" on this type of airplane).

Toward 1930, the NACAwas able to announcethat the theory of longi-
tudinal motion had formed the object of quantitative verifications in
level flight (with the T' and D' of the slow oscillation corresponding
to those deduced from the theory); however, the correspondence of results
was not attained for flight with engine in operation.

_he reason for this lay probably in insufficient knowledge of the
effect of the propeller on the aerodynamic actions undergone by the air-

plane. These effects are still only incompletely known, and an important

part of the experimental work of the American wind tunnels during these

last years aimed precisely at an investigation of this action.

i

2. Usefulness of the Theory

For many years the methods of calculation which permit forseeing

the motion of an airplane did not play a part in airplane-design studies.

One did not attempt to numerically predict the characteristics D and T,

and one even did not always make measurements of those existing once the

airplane had been built.

For the designer, a theory can be of use only when it permits fixing

in advance the characteristics to be obtained.

The American NACA and the technical authorities of several countries

posed themselves the question: "What are the dynamic characteristics

which must be realized?"

In order to solve this problem as far as the longitudinal motion is

concerned, the NACA proceeded by statistical means. It had a series of

pilots test airplanes with known characteristics T' and D' of the

o±_._......v_v_w.,_1_+_ _nd _os_d_ +h_ir,__ necessarily aualitative,_ opinion

regarding the flight properties.

The answers did not permit establishing any correlation between the

valuations of the pilots and the characteristics T' and D', with

controls fixed.
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Other factors determined the judgment of the pilots; these factors

referred, above all, to the magnitude of the reactions of the controls,

to the flight properties with free controls and to the response of the

airplane to the _tion of the pilot in the neighborhood of maximum lift.

The determination of the desirable characteristics regarding the

lateral motion has likewise given rise to divergent opinions.

At one time one tried to avoid at all costs spiral instability even

though the instability, or even the insufficient damping, of the swinging
motion constitutes a much more serious inconvenience.

Nevertheless, the theory has been valuable explaining the motions

and making the character of the phenomena comprehensible which otherwise

would have remained mysterious.

3. Study of Flight With Free Controls

The theory of flight with free controls may be established by

investigating the flight of an airplane subjected to a particular law

of deflection, namely that which ensures constantly a zero hinge moment.

This problem does not constitute the object of this report; never-

theless we shall show how its study could be undertaken, and we shall

find that it constitutes a particular development of the preceding theory.

In 1936 the development of our knowledge had progressed so far that,

for the first time, the specification of the conditions of stability and

maneuverability to be realized in a new airplane contained requirements

relative to the dynamic characteristics.

Millikan's publication of the technical specifications which the

Douglas DC 4 had to satisfy (the studies of which began at that time)

constituted, from this point of view, an important event.

Aside from stipulations relative to the static conditions (for

instance, deflection of the controls and their reactions in flight) the

following requirements were to be found:

(a) The airplane will be placed in a dive until its Speed has

increased by 40 km per hour, and at that moment the control will be

released.

The oscillations which will then be produced will have a period of

at least 35 seconds and their damping will have to be such that the

amplitude will be reduced to 20 percent of the initial value in four cycles.
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(b) With the course (azimuth) of the airplane modified by i0 ° by a
deflection of the rudder, the control will be released and the airplane
will stabilize itself according to an azimuth varying by not more than
5° from the one at which the airplane wasat the momentwhere the control
was released.

The amplitude of the first oscillation in azimuth must not exceed
12°, and after three cycles this amplitude will be reduced to a maximum
of 3° . The period must be at least 20 seconds; the ailerons are used
during the maneuverfor constantly maintaining a horizontal position of
the transverse axis.

(c) The airplane will be inclined laterally 15° by meansof the
ailerons, and these will then be relecsed.

The airplane must recover, and its inclination must be less than 2°
after 15 seconds. The rudder is maneuveredso as to cancel the skidding.

4. Airplane with Simplified Flight Control

An American engineer, Mr. Weick, has devoted himself to the reali-
zation of a simplified flight control, using only one organ of lateral
control instead of two. After years of studies and tests, he succeeded
in realizing an airplane where the aerodynamic derivatives are propor-
tioned in such a manner that the pilot can make the airplane perform
correct maneuvers, using only one single organ of lateral control - a
linkage the displacement of which determines at the sametime the motion
of the ailerons and that of the rudder; the respective deflections

= fl(X) = f2(x)

are two different functions fl and f2 of the motion realized by the

pilot but determined once and for all. The airplane in question is the

Ercoupe, well known in Belgium.

It is impossible for the pilot of the Ercoupe to hold the plane

level in the turn, that is, to hold up the inside wing. The connection

existing between the two controls prevents the pilot from making a flat

turn.

The turns are probably carried out with a very slight sideslip (a

few degrees) toward the inside which may be considered as practically

correct.

The realization of an airplane carrying out such maneuvers with a

single control organ for the two lateral controls should, in our opinion,

be credited to the theory of the lateral motion.
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An examination of the successive achievements of Mr. Weick shows

clearly that they were not simply a matter of chance but the result of
patient work.

Like several others, Mr. Weick had at first tried to completely do

away with one of the lateral controls (the rudder). However, he has

obtained results only by maintaining the latter but doing away with the

independent control organ.

5- Extension of the Method of Linearization

A. Action of the derivatives.- The four preceding chapters have

been devoted to the study of the motion with controls fixed under the

hypothesis that the aerodynamic actions are dependent only on the funda-
mental variables

u, w, q

v, p, r

The range of the linearization method can be extended. The intro-

duction of supplementary terms permits taking into account what occurs

when the external actions depend on the derivatives of the fundamental
variables.

In the following chapter the argument will be presented for the

longitudinal motion but it could be integrally reproduced in the case
of lateral motion.

This extension of the method is of interest only when the manner in

which the external actions depend on the said derivatives is known. In

fact, this dependence is little known, and only the effect of lag in

attaining the deflection is easily evaluated.

Most of the recent presentations of the investigation of the longi-

tudinal motion incorporate this effect in the equations set up initially.

However, we have preferred to carry out first a study of the motion

in the simplest case and to show then, in a general manner, how the effect
of all the derivatives u' ' ', w , q on the external actions may be
introduced into the calculations.

_ elementary presentation is sufficient to give an understanding of

the general behavior of the airplane in flight.
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The introduction of the effect of the derivatives of the fundamental
variables on the external actions into the calculation is, on the contrary,
indispensable if one wants to carry out a complete comparison between the
conclusions of the theory and the numerical characteristics noted in flight.

Weshould like to remark, however, that such an investigation can be
undertaken only by organizations which have elaborate test facilities at
their disposal.

The study of the effect of the derivatives of the fundamental
variables on the aerodynamic reactions is, at any rate, interesting with
a view to automatic flight control under the assumption that it is easy
to ir_gine devices sensitive to the derivatives of the fundamental vari-
ables, and for application of knownaerodynamicmomentsunder the action
of these derivatives.

B. Inertia of the engine.- We have indicated, ever since chapter II,

that we assume that the engine instantaneously reached its steady speed.

This hypothesis permitted us to write T as a function of V.

It is evident that a more detailed analysis of the phenomena should

lead us to take into account also the transient phenomena due to the

inertia of the propeller, since the speed of revolution of the engine is

connected with the velocity of translation V, but does not, in the case

of variation, take on immediately the magnitude it possesses in steady

state.

At the present time, the absence of exact data concerning the effect

of the propeller on the external aerodynamic actions makes such an

£mprovement in the calculations rather £mpractical.

If we possessed the necessary data, it would be possible to introduce

them in the form of the effect of dV/dt, and it seems that it would be

possible to avoid the introduction of a supplementary equation of a moment

about the propeller axis into the system of equations.
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CHAPTER XI

MOTIONS WHEN T_E _ODYN]_.IIC ACTIONS

DEPEND ON THE DERIVATIVES

i. General Theory

We shall now abandon the hypothesis we have made so far: that the

forces are completely determined by the instantaneous values of the

variables u, w, q, 8. We shall now investigate what becomes of the

motion when the aerodynamic reactions depend on the derivatives du/dt,

dw/dt, d_dt.

The reactions are assumed to be expressed as functions of the

velocities u, w, q; but to the functions used previously, supple-

mentary terms have to be added which express the effect of the deriva-

tives on the aerodynamic actions.

We shall simplify the notation by representing the derivatives by

u' w' q'

The system of equations of motion has the form

u' = gl(SU,Sw,Sq,_8,u',w',q')

w' = g2(Su,_w,Sq,58,u',w',q')

q' : g3(Su,Sw,Sq, Se,u',w',q')

0' : 5q

After linearization, and taking into consideration that the deriva-

tives of the functions g are equal to those of the functions f defined

before:

_gl _fl _g4 _f4

_u _u Be _e



133

one obtains:

u' Bfl Bfl
= B-_-8u + _ 5w +

W !

q!

Bf 2 Bf 2

= B-u-5u + _-- 8w +

Bf3 Bf3
= B--#-5u + _ 8w +

e' = 5q

We write:

_f! 6q + 5e + ' + + '
Bq _7 _7 _ _ q

Bf2 Bf2 Bg2 ' Bg-2,w' Bg2
_--q 5q+ _-_--5e + _Tu + _-T + _Tq, q

Bg 3 3g 3
Bf3 °f3 Bg3 u' + w' q'Tg-q5q + _T 5e+ _--_T _ + T_Tq,

Bfz 3fl 8fl Bfz
-- 5u + -- 5w + -- 5q ÷ -- 8e
Bu Bw Bq Be

= Fl(SU,Bw,Sq, Be )

Bf2 8f2

Bu 8u + _--
8w +

8f 2 Bf 2

8q+ _ 5e= F2(Su,Sw,Sq, Se )

Bf 3 Bf 3 Bf 3 Bf 3

_---8u + _-- _w + _ 8q + _ eo = F3(5_,Sw,eq,ee)

and the system becomes:

u' = F l(Su,Tw,Sq,Se) + _7 + _ +

Bg2 u' Bg w' Bg q'
w' = F2(Su, Sw,Sq,Se) + _ + _w2,. + _q2

Bg 3 Bg ,
Bg u' w' _3,q

q' = F3(Su,Sw'Sq, Te) + _-"_--' + _-T +

Solving with respect to u', w', q', 8', one obtains:

U !

W !

dSu
dt = hl(SU'Sw'Bq'S6)

dSw

dt
: h2(Su,Sw,Sq, Se )

q, = dS___q= h3(Su,Sw,Sq, Se)dt

e ' dTe
= d-_- = h4(Su'Sw'Sq'6e)
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The functions hi, h2, h3, h4 are linear functions an_] of the

first degree in 5u, 5w, 5q, 58. The system may therefore be inte-

grated by the same methods as those applied before.

2. Solution when the Aerodynamic Actions Depend

on the Velocity of Variation of Incidence

We shall treat the case where the effects X, Z, M depend, aside

from the usual variables, on the velocity of variation of inciaence d_/dt,

that is, on the derivative dw/dt = w'.

An argument analogous to the one that follows here could be estab-

lished if the aerodynamic forces depended on u'

In the case considered, the system is reduced to

W !

w' = F2(Su,Sw,Sq, S% ) + _g___2w'
bw '

_g w'
q' = Fs(Su,Sw,Sq, S8 ) + _

with

_gl i , -SV p zI
3w' m X'w' and X' w, 2

_g2 !
= Z' Z' = -SV _ z2O_ m w' w'

8g5 i M' M' - Sc
8w--7= B w' w' r2 V ._ z3

whence:

_gl -V

_c Zl

8g2 -V
- z2

_w' _c

_g3 -c V

8w' r 2 _c
z3
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These expressions will be useful only in so far as we can express

the effect of the accelerations by means of the factors Zl_ z2, z3.

We obtain after solution for u', w', q' and 0'

-z
i

u' = F1 + F2 (_c/V) + z2

-z2

w' : F2 + F 2 (_c/V) + z2

- (c/r 2) z3

q' = F3 + F2 (_c/V) + z2

Putting

b
X

-z I

(_c/v)+ z2

-z2

bz = (_c/v)+z2

z5

bm : (hi.c/V)+ z 2

we shall write

u' = FI + bxF 2

w' = F2 + bzF 2

c

q, : F3 + bmr-_F 2

Q
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Thus the system to be integrated is written when there is no second

term (case of an initial perturbation)

dSu

_u/5u \5d7 - + bx - + bx 5w -

+ + o

d-_--- t_-_- bz Iu - t_w + b z Iw -

-q + b z 5q - + b z 50 = 0_q / \_0 _e /

dt \Su + bm r 2 8u / \Sw bm r 2 8w /

c _f2_ l_f3
r2 _q_Sq - t_-_- + bm

d50
_-Sq=0
dt

The characteristic determinant for the solution in terms of T is

written, with all terms multiplied by _c/V

aI + Lxa2) + X

(a2 + b za2)

C a

7_3 + b,=a2)
0

+

C b
7( 5 + bmb3j

0

(c.'I + bxC2) (dl + bxd2)

(c2 + bzC2) (d2 + bzd2)

c__ Zcx bmC3) + X r 2

c4 + X

=0

This determinant may be developed without difficulty and leads to

an equation of the fourth degree in h.



137

It is necessary to replace bx, bz, bm by expressions which take

into account the effect of the aerodynamic phenomenon on the motion which

we are investigating.

The modifications of w which take place at constant V correspond

to modifications of the incidence m.

Since

w

V

dm dw i

dt dt V

w' = - V_'

one states that

_c
z

z2 = + _kL--7

which permits determining the bx, bz, bm.

The Zl, z2, z5 have the dimensions T Just like _c/V.

3. Effects of the Velocity of Increase in Incidence

on the Aerodynamic Forces

The following effects exist:

(a) Lag in the establishment of the lift and of the deflection.

When the incidence undergoes an increase, the corresponding circula-

tion is not i_mediate_v established, and the lift develops only with a

certain lag.

In a phenomenon where the incidence increases progressively, the

instantaneous lift will be smaller than the one corresponding to the same

instantaneous incidence, realized in steady state.
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These phenomena have been studied theoretically by Kussner, Kuethe,
Se_rs, etc.

The presence of a systematic lag in the establishment of the lift

permits predicting that in the course of a phenomenon where the incidence

varies progressively, the instantaneous lift will be a function not only

of the instantaneous incidence but also of its speed of increase.

The CM to which an airplane is subJected_the incidence of which

varies, will be influenced by the phenomenon described above, therefore:

(i) By the lag in the establishment of the lift of the wing

(2) By the lag in the establishment of the lift of the tail

(3) By a lag in the deflection which necessarily accompanies the

lag in the establishment of the lift

(b) Lag in the break down of the flow.

In the neighborhood of maximum lift there appears, aside from the

lag in the establishment of the theoretical circulation, a lag in the
break down of the flow.

A rapid increase of incidence may transitorily carry the lift up

to a value exceeding the maximum value that it has in steady state.

However, the flow is unstable and deteriorates rapidly, causing a
reduction of lift.

Taking as a function of the incidence the instantaneous lift realized

in the neighborhood of and beyond the critical incidence, at different

speeds of variation of incidence, the NACA has obtained a series of dif-
ferent curves.

The phenomenon investigated here is different from the previous one.

It occurs only at large incidences whereas the preceding one may take

place at all incidences.

A positive speed of increase of incidence leads to a higher transitory

lift than the steady-state lift at the same incidence, whereas it produces

a transitory lift lower than the steady-state lift as in the case of the

previous phenomenon.

The lag in the break down of the flow is a true hysteresis phenomenon.

If one obtains a polar starting from an incidence larger than that at

maximum lift and descending, one obtains frequently in the neighborhood

of the maximum lift a polar different from the one obtained in ascending.
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(c) Lag in the onset of downwash at the tail.

The lag in the onset of downwash at the tail constitutes a phenomenon

the mechanism of which is clear and indisputable. It is easy to find for

it the physical cause and the analytical expression.

4. Effect of the Lag in the Establishment of Lift

Let us suppose that an increase in incidence has occurred corre-

sponding under static conditions to an increase of Cz equal to one.

The diagram of Sears indicates how the lift increment varies effec-

tively as a function of time - this time being estimated by means of a

unit of time s equal to the time taken by the airplane for traversing
half the chord.

2V
unit s = -- seconds

c

Between the measurements of the same time interval there exists the
relation

As =c-q-at
2v

c
At = _ As

2V

By means of the graphical construction of Carson (defined in the

following chapter) we can investigate the development of the lift as a

function of the time s when we suppose that the increment 2_ has

been realized progressively, with the duration of the increment being,

respectively, equal to

As = i0 or At = i0 c/2V seconds

As = 20 or At = 20 c/2V seconds

As = 50 or At 30 c/2V seconds

m

We find that during the period of increase in incidence the C z has

a smaller value than it would have if the lift would correspond to the

_nstantaneous incidence. The order of magnitude of the phenomenon is

taken into account by replacement of the instantaneous curve C z by a

straight line.
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Thus one finds a constant difference of

AC z : 0.ii for At : 15 c/V seconds

Z_Cz = 0.165 for _t : i0 c/V seconds

2_z = 0.33 for At = 5 c/V seconds

The correction of lift _C z to be applied to the Cz corresponding

to the instantaneous incidence, in order to have the Cz real, is nega-

tive and its absolute value is inversely proportional to the duration

which is necessary to bring the wing to the final incidence. It is

therefore proportional to the speed of increase in incidence d_/dt

AC z = -K d__
dt

When the incidence corresponding to C z = I is attained during a

time At = 15 c/V seconds, the speed of variation in incidence is

dm i i

dt  Cz/a 15 c/v

the difference in lift is AC z = -0.II.

This permits fixing the value of K

 c__Az-
K = 1.65 c

v

_Cz/_ is of the order of 4.

For C = 3 meters and V = I00 m/see, one would have

whence

K = +0.20

.  Cz/a ': -o.2o
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The previously given relations between the lift and the force Z

show that one may write almost without error

C z : CZ

whence

_c _czz

Z2 =_=_

which permits calculation of the factors bx, bz, bm.

Remark: The preceding ar_nzr_ent constitutes an attempt to introduce

into the frame work of the linear equations a typical value for the lag_
in the establisb_nent of the lift.

The factor bz will be > I when _c/V is larger than -z2 which

is the general case.

The result obtained is therefore rather paradoxical; the term

b2 = _Cz/(k_ of the determin_It is multiplied by a factor > i although

it would rather seem that the lag in the establishment of the llft should

be expressed by a reduction of b2.

The calculations have been checked several times in order to make

sure whether this result was not due to _ error in sign, but the sign

found has always been confirmed.

Since Cm = Cmo + 0.25C z

because of the wing and independently of any action of the tail, one
should admit at the same t_l_e

_m

z3 : &7 : -o.o5

5. Effect of the I_g in the Break Down of the Flow

This phenomenon occurs in the nelghborhood of maximum lift.

The method of linearizatlon of the equations is basically no longer

_ppllcable in this case, in view of' the fact that the second derivatives

may no longer be neglected.
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The investigation of flight in the neighborhood of maximum lift must

be excluded from the present report.

There is therefore no reason for visualizing here the consequences

of the lag in the appearance of the separation.

6. Effect of the Lag in the Arrival of the Downwash at the Tail

One can easily find the physical cause and the analytical expression
of this phenomenon.

Let us try to express it by a simple argument. In the static inves-

tigation of the moment CM, one takes for the angle of attack of the

tail me:7

e

where _ is the incidence of the wing

c the downwash due to the wing

5 the final decalage fixed by the design

This relation serves as the basis for the calculation of the OM

steady state, but it ceases to be exact when the airplane undergoes a

pitching motion in the course of which the angle of attack varies.

At an instant t the stream lines which strike the tail have

actually not been deflected by the angle ct realized at that moment

but by the angle ct' which existed at a previous instant t'.

t' = t - _/V

where Z/V is the time for the flow to traverse the distance which

separates the wing from the tail.

The real angle of attack of the tail at the time t is therefore

in

_c t = (_ - c + 8)t + ct - ct'

7Since m' = 8_/dt is to designate the derivative of the incidence

of the wing, we shall use in what follows:

_e for the real angle of attack of the tail

Cze for the llft of the tail
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that is, it is equal to the angle of attack given by the static relation,
plus a correction et - et'.

Now

de t' deet - et' = _(t - ) = dt V

or else

dc d_
et - et' = d_ dt V

Introducing this correction of the angle of attack into the static
expression of the moment,we see that there exists actually a supple-
mentary moment,proportional to the derivative 8_/dt and equal to

Hence

S'Z _Cz_ e Z de _'

CM = S--_- Me V dm

_CM S'_ _Cz, e Z de

z3 = &_--7= sc _e v d_

and one finds thus that the lag in the arrival of the downwash at the

tail has the effect of bringing about a 8CM/d_' which can be easily

calculated.

The phenomenon considered here does not produce any effect on the

Cx and Cz. If one limits oneself to the effect of the lag in the

arrival of the downwash, one has therefore

zI = 0 z2 = 0

It can be easily verified that the sign of the expression _CM/8_'

is correct.

When _ increases, the calculation carried out with the static

value et leads to a too large downwash, that is, to an angle of attack

_e which is too small. The correction must augment _e, that is, the

normal reaction on the tail surfaces and the diving moment.

- The correction must be positive.
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We introduce into the system the values of zI,

We obtain

bx = 0

b z = 0

tin= __V__
gc

z2, and z3.

In the characteristic determinant which gives the solution in T

only the third line is modified.

C

The term _-_ a3 becomes

c_

-- c3
r 2

d3V
r2

C

7(a3 + bma2)

c b +

+

with d 5 = 0.

What happened was:

(i) The terms a3, b3, and c3 underwent appreciable modifications

(2) The fourth term of the third line ceased to be always zero

Let us examine first the quantity which has been just added to c3.

We have

_cM _c
c3 = _X c2 = -V V since u = V

Hence

bmC 2 _M S'Z 8Cz,e dc

C3+ .... +
8X Sc b e d_
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For steady conditions, an important part of the 8CM/SX

by the lift on the tail; one had

_C_cM s'__z_
_X Sc _e

is produced

One finds that everything takes place as if the part due to the

horizontal tail in the damping of the pitching were multiplied by

i + (_/d_).

Since 8e/d_ is of the order of magnitvde of 0.5 and, since on the

other hand, the effect of the tail is predominant in the damping of the

pitching, the correction which is to be introduced into the calculations

if one wants to take the effect investigated into account, is important.

The correction terms to be added to a3 and b3 are less important

but they are, nevertheless, not negligible.

Actually, what happens is

a3 became a3 + bma 2

h3 b3 + b_2

It is easy to evaluate the order of magnitude of certain factors.

If one takes

one obtains

/o = 3 s,/s: 1/5

bm = -1/p X 3 X 1/5 X 3 X 3 X 1/2 -2.7/p

On the other hand, a2 = _(_Cz/_) -2Cz is of the order of magnitude

of -io

b2 = _Cz/(kL is of the order of magnitude of +4.

The factor _, on the other hand, is always represented by a high

number, of the order of I00.
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Hence, everything happens as though:

a3 was increased by a quantity of the order of a hundredth

b3 was reduced by a quantity which could reach several hundreths

Since the term a3 is itself very small, and the term b 3 = _CM/_

is normally of the order of a tenth, it can be necessary to take the
corrections indicated into account.

Finally, there appears in the fourth column a term c/r2(d3V + bmd2)

but, d 2 = -_ sin @ × _c/V so that, if the trim of the airplane is

horizontal, this term remains zero.

7. Solution of the System when the Moments Depend on the

Linear Acceleration dV/dt or on the Angular Acceleration

It is possible to repeat the calculations of the sections 2 and 4

with the assumption that the aerodynamic actions depend on the derivative

U I or qt.

We shall be satisfied to indicate the formulas pertaining to the

effect of u'.

We assume three coefficients which characterize the effect of the

derivative

8C x
-- _ V

Xl _u'

8Cz
m _ V

x2 _u'

x3 = _ m V8u '

These coefficients lead to the factors

-x1

: (_c/v)+ xI

-x 2

az : C_c/v)+ Xl

-x3

am : (_c/v)+ xI
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which are introduced into the characteristic determinant in the same

manner as the bx, bz_ bm.

If only the moment depends on u'

ax=O az=O am = -(V/_c)x 3

and only the third line of the determinant is modified.

It is written

cZ c3+ cr 7 + +r2_

We shall see later on that the fourth termmay exert a notable effect

in the case where d I is different from zero.

The formulas concerning the effect of q' would be established in

the same manner.

8. Lateral Motion

It is obvious that analogous calculations could be carried out in

the course of calculation of the lateral motion.

However, these calculations would be useless (except in the case of

automatic stabilizers) in view of the fact that nothing is known about

the aerodynamic effects exerted.
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CHAPTER XII

EFFECT OF THE CONTINUOUS DISPLAC_ENT OF A CONTROL

I. Continuous Displacements

In the preceding chapters we calculated the motion which follows

upon the abrupt displacement of a control.

The general expressions set up before determine the motion of the

airplane when a control is being deflected by _B (longitudinal motion),

by At, or by _ (lateral motion), and maintained in its new position.

In theory, the problem is solved in the s_me marn_er for a change

A_ of the power setting.

In fact, the pilot acts by continuous and progressive displacement

of d_, dB, and d_ as a function of t or T, and it is necessary

to determine the resulting motions of the airplane.

2. Duhamel's Integral

The response of the airplane to a variable movement of a control

may be determined by Duhamel's integral.

For an abrupt deflection equal to unity applied at the time t = 0,

the general solution of the system is

the C, x, Z,
i to 4.

5u = Au + ZCe xt = Fl(t )

5w = Aw + Z/Ce xt = F2(t )

5q : Aq + ZmCe xt = F 3(t)

8e = Ae + ZnCe xt = F4(t)

m, and n are successively provided with the subscripts

If the deflection _0 applied at the origin of the time scale is

different from unity, we shall have

5u = _0Fl(t)

and so forth.
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At the instant ta, for example, we shall have

8Ua = _oFl(ta)

We shall write only the expression of one single variable which will

permit us to eliminate the subscript i from FI.

Let us assume an instant tb subsequent to ta. If the deflection

has not changed, we shall have

5ub = UoF(tb)

Xtb
: _0_u + _0ZCe

If, in addition, the deflection changes at the time ta and assumes

at that moment the value nO + d_, we obtain

5ub = _0&u + _oXDe xtb + d_ Au + d_ECe x(tb-ta)

or else

5ub = _oF(t b) + d_ F(t b - ta)

If the deflection, instead of undergoing one single increase d_

at the instant ta, is modified regularly from the instant ta to the

instant tb, according to a law _ = f(t), an increment d_ will be

added at every one of the points between ta and tb, and one will have

_+ tb d-L F(t b - ta)dt a5u b = _oF(tb) + dta
_a

D

in this expression t a is the variable of integration.

On the other hand, if the deflection is varied starting from the

origin, the lower !Lmit of Lutegration ta = 0.

We can finally omit the subscript a and we obtain, representing

the deflection by f(t)

5Ub f(O)F(tb) + r/_tb= f'(t)F(t b - t)dt
J0
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This formula constitutes Duhamel's integral. It permits calcula-
tion of the response of the airplane to a deflection developing according
to an arbitrary law f(t), if the response of the airplane F(t) to unit
deflection is known.

Duhamel's integral determines the value of the variables, such as
at the arbitrary instant t b by an integration carried out between the
limits 0 and t b.

_u_

Remarks: i. The sameargument permits determination of the effect
of external perturbations, such as gusts arising no longer in an abrupt
manner, but progressively.

2. The argument is independent of the selection of the unit of
time. Wemade it assuming the solution of the differential equations
written in the system x and t. Obviously it is also applicable to
the solution containing h and T.

3. Other Expressions of Duhamel's Integral

The application of the formula

_U

-/v du
dv = uv j

shows that the two expressions

and

5ub = f(0)F(tb) +

_tb

5ub = f(tb)F(to)+ /
_/0

f'(t)F(tb - t)dt

f(t)F'(t b - t)dt

Q

are equivalent.

One may furthermore write the integral in the forms

and

8u b : f(O)F(t b) + _ tb f'(tb - t)F(t)dt

JO

F ţb
5u b = f(tb)F(O ) + f

JO
f(t b - t)F'(t)dt
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4. Graphical Construction

A simple graphical construction permits us to find the value of

/_tb f' (t t)dt
Jo )F(tb -

Let us plot, by means of a first system of axes, the curve (I),

defining F as a function of t.

With a second system of axes, placed with respect to the first as

indicated in the drawing, let us plot the curve (2) which defines f(t)
as a function of t.

Let us now choose the value tb for which we calculate 8ub. Let

us register this time tb on the time scale of the two diagrams.

Let us assume, for instance,

the interval contained between 0

the drawing considered).

tb = lO seconds. Let us then divide

and tb into n equal parts (lO on

Let us plot an auxiliary curve (3) which connects the values of

F(t b - t) with the values of f'(t) realized at the same instant.

This curve (3) is plotted on a system of axes where the values

F(t b - t) represent the abscissas and the f(t) the ordinates.

It is constructed by associating:

the point (n) of the curve (i) with the point (0) of the curve (2);

the point (n - i) of the curve (i) with the point (i) of the

curve (2), and so forth.

It is clear that under these conditions:

_0 df
tb F(tb - t)_ dt

is represented by the area under the auxiliary curve.

One must therefore carry out a quadrature in order to find the 8u

at the time tb.
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Since one attempts to find the curve 5u as a function of time, it

will be necessary to repeat the construction for a sufficient number of

points.

Finally, one generally wants to know 5w and 5e as well; the

construction will have to be applied to thes_ variables.

The application of the graphical method takes a relatively long time

even though artifices are rapidly discovered (employment of movable

tracings, for instance) which permit systematizing and greatly acceler-

ating the constructions.

5. Actual Piloting

The theoretical study permits an explanation of certain peculiarities

of actual piloting.

A. Piloting with respect to elevation.- The pilot desires to pass \

from the rectilinear flight condition RI(VI, _i' and @i are determined)

to the rectilinear flight condition R2(V2, c_2, and @2 are determined)

by maneuvering of the elevator alone, without modification of the throttle

setting.

The characteristics of the airplane are such that to a given

displacement

G2 - _I : A_

there correspond

V2 - VI = -2/10 V I

e_2 - _i = +3o

e2 - el = _5o

If this deflection A_ is applied abruptly, the 5V, _, and 5@

vary as functions of time according to the expressions given previously

which are produced by the curves given in the plate 24 of chapter VII.

A skillful pilot will try to rapidly attain the flight condition R2

and then to stabilize the airplane in the corresponding position, avoiding

the long-period oscillations.



153

He will not apply the deflection A_ abruptly but will utilize

another law of deflection. He will start from _i at t = 0, and will

necessarily terminate at _2' but within a determined time and after

having followed an indetermined path.

The graphical method permits us a trial-and-error investigation of

the laws of displacement which stabilize more or less rapidly the vari-

ables 5V, 5_, or 5e at their final value.

The piloting will be precise when the pilot, in an intentional

change of flight condition, rapidly attains the final value of the vari-

ables 5V, 5_, and 58, without oscillation.

An examination of the diagram shows us that the motions 5V, 5_,

and 50, produced by an abrupt deflection, are out of phase during their

transitory period. The 5V and 5e are obviously squared.

Thus it can be predicted that it will be impossible to suppress, by

a continuous variation of the deflection, simultaneously both deviations

_V and 5e. Different laws of deflection will be applicable according

to the variable the pilot wants to establish first at its final value.

The inclination e is the variable the modifications of which the

pilot can most easily appreciate in visual piloting.

Conducting step by step the search of the q which brings 58

rapidly to approximately its final value, we find that the law of deflec-

tion represented by (I) imposes on 5e a variation represented by (2).

The variables 5V and 5_ then undergo an imposed variation,

corresponding to the curves 3 and 4. They tend to reach much less

rapidly their final value, but the oscillatory character of the behavior

corresponding to an abrupt deflection has disappeared.

One could, again by trial and error, find laws other than (i), to

improve the shape of the curve (2).

The various possible laws satisfy the following characteristics:

The deflection to be applied at the start of the motion is greater than

the one corresponding to the final state (this is done with a view to

accelerate the starting of the rotation of the airplane); then, after a

very brief time interval, the control must be deflected in the opposite

sense in order to avoid overshooting of the position of equilibrium.

Then the control should be brought to the final position of equilib-

riumby a slow progressive displacement.
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The pilot must therefore carry out a double motion in order to avoid
overshooting the position of equilibrium.

B. Startin_ a turn.- Let us take up again the considerations of

chapter V sections 5 and 6 on the conditions of equilibrium in turns.

Let us investigate, for the airplanes examined in chapter IX

section 5, the conditions of equilibrium during a turn to the left,

effected with a lateral inclination _ of the order of 39 ° •

We shall assume that the semispan of the air_olane has a length of
i0 m, that the airplane flies at a speed of 80 m/second, and that it
traverses a circle of 800 m radius.

We then have

= 0.I r = _ cos q_ = 0.08 p = 0.O1

The conditions of equilibrium show us that the theoretical turn

corresponds, on the three airplanes considered, to

= +0.2 ° _ : 0

= +0.5 ° _ : -38°40

= -0.67 rad

The response in _, _, _, p, and @, under the effect of an

aileron deflection -2° and of a rudder deflection +2 ° is given for the

three airplanes in plate 27.

The maneuver to be carried out, if one wants to realize in practice

the theoretical turn, consists in manipulating the two controls according

to the laws

= fl(t) or fl(T)

= f2 (t) f2 (T)

such that after the shortest possible time the motion corresponds to
the constant values.

= 0 _ = 0 _ : -38°40 p = +0.01

= -0.67 rad
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for the final values of deflection

: +0.5 ° { : +0.5 °

The calculation of this maneuver may be made by trial and error by

means of graphical construction.

In practice the pilot performs only maneuvers which lead approxi-

mately to the desired result.

The conditions of equilibrium under the action of one single control

have been given in order to show that they are the attainable-accuracy
limits.

Figure 33 indicates the result of the graphical construction carried

out for the airplane B' under the assumption of a priori fixed laws of
deflection as functions of tkme.

The motion of the airplane has not been stabilized at the desired

values, but it is not far remote from them.

By trial and error, one would arrive at finding laws of deflection

which would lead more exactly to the desired turn.

The figure shows that the motion of the rudder is a little too

important with respect to that of the ailerons, for it produced tempo-

rarily a sideslip to the right, toward the outside. 8

We have indicated previously that the conditions of equilibrimm in

the course of a turn, realized with a steady deflection of a single con-

trol, would differ only slightly from those corresponding to a theoret-

ically correct turn.

For the airplane B', the conditions of equilibrium during a turn,

at an angular velocity p = 0.01, under the effect of one control, are

Aileron deflection -0.07 0

Rudder deflection 0 +0.4

Sideslip +0.95 +0.3

Inclination -39.50 -39.0
i

These results show that the conditions under which a turn can take

place are not invariably fixed but that there exists, on the contrary_

a certain domain of variables and of possible maneuvers.

8Important note.- In the figure 33, the positive sideslip _ is shown

directed upward. A positive _ corresponds to a sideslip to the left, not

to the right, as erroneously indicated in the clich$.
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CF_kPTE_XIII

THEAUTOMATICPILOT

i. Statement of the Problem

The pilots who, after laborious and prolonged tests, first achieved
instrument flying, without external visibility, did perhaps not suspect
that they demonstrated the possibility of automatic flight.

Yet, giving this matter a very little thought is sufficient to
realize that, if the readings of one or several instruments, combined
according to a law established once for all, uniquely determine the
control deflections capable of producing under all circumstances correct
flying, there is only one more step to designing a machine "ad hoc."

This step has been undertaken, and numerousdevices for automatic
flight control have appeared.

For reasons which will becomeclear in section 3, these apparatus
are sometimescalled "automatic stabilizers."

2. Essential Elements of the Apparatus for

Automatic Flight Control

Any device of automatic flight control comprizes one or several
detectors of perturbation, actuating a control through the intermediary
of a servomotor.

At the beginning, certain apparatus have been constructed with
detectors sufficiently powerful to actuate the corresponding control,
withou} servomotor. This is the case of the Constantin wind vane and
the Eteve anemometerwind vane.

However, this solution has been completely abandoned, and the servo-
motor has becomean indispensable organ.

_]is servomotor can be:

A compressed-air device

A hydraulic device

An electrical device.
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In most cases the signal given by the detector is not even s_fici -

ciently powerful to directly control the servomotor; it must be amplified.

The flight parameters which one can use as references are:

i. The variables which define the kinematic flight elements, that

is, the fundamental variables:

Velocity V

Angle of attack

Trim e

_gular velocity of pitch q

for the longitudinal motion,

Sideslip

Lateral inclination

Course or az_!uth

Angular velocity of roll p

Angular velocity of yaw r

for the lateral motion.

2. The derivatives of these variables.

3. _easurable characteristics which are direct functions of these

variables, such as the components of the apparent weight.

4. Elements dependent on the position of the airplane, as functions

of terrestrial reference points.

One can see immediately that the possibility of resorting to several

flight variables, of utilizing servomotors of different types, of adding

amplifiers if necessary, will give rise to various types of apparatus for

automatic flight control.

if we want to avoid an excessive extension of the present report, we

cannot study all suggested or tested combinations or even describe the

apparatus which have been actually put to use.
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Let us be content to point out anlong the actually utilized apparatus:

In the United States: Sperry, Bendix, and Honeywell devices

In Great Britain: Smith

In France: Alk_n

In Germany: Siemens, Patin, and Askama

3. Program

The automatic pilot is required to perform a certain number of tasks,

concerning

A. The improvement of the flight paths

B. The passing from one flight condition to another

C. Action in case of engine failure

D. Flight following a beam.

A. Improvement of the flight paths.- When an airplane has been

made the object of careful aerodynamic study, the designer is generally

able to make it dynamically stable. This airplane then presents flight

characteristics which n_y be considered normal but which exhibit never-

theless certain unavoidable defects. These defects are:

(a) Failure to hold the course

(b) Insufficient damping of the longitudinal long-period oscillation

(c) Decrease in the damping of the short-period longitudinal oscilla-

tion in flight at very reduced speed

(d) In certain special cases, for instance tailles s airplanes, insuf-

ficient damping of this oscillation in normal flight conditions

(e) Major vertical accelerations in flight in bad weather

(f) Insufficient maintenance of the three parameters e, @, #

which must keep up rigorously constant values in military airplanes which

constitute a gunnery platform

One can require of an instrument for automatic flight control to

improve these characteristics; this consists, in some measure, in modifying

the "natural" reactions of the airplane.
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If the aerodynamic study has left more defects than the unavoidable

ones in existence, one may extend the task of the automatic pilot and

assign to it the masking of these abnormal characteristics. However,

this seems to us admissible only if an improvement in the "natural"

flight path were attained at the cost of a considerable reduction of

performance.

Besides, we should like to note that in our opinion there is no hope

of reducing the accelerations due to vertical gusts by employment of

instruments acting upon the controls. 0nly more deep-seated changes

brought to bear upon the structure of the airplane c_n lead to an improve-

ment in this respect.

B. Passing from one flight condition to another.- The automatic

flight-control devices should execute the changes in flight condition

which the pilot prescribes in manipulating the buttons.

The changes in flight condition consist in:

Making the airplane climb

Making it descend

Making it turn.

Manipulation of the push buttons consists, in fact, in changing the

adjustment of the instrument: by shifting the zero point.

la) Longitudinal motion.- Assume an airplane provided with an

automatic stabilizer dependent on the angle of trim, ensuring for instance

the relationship:

p

w

We have necessarily

0 o 0o

_2 ° +i °

_4° +2 °

_6° +3 °

_CM _CM
=_d_ + _d_

dCM _ _
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Let us suppose

8CM = O.O18

_CM
= o.oo6

At the deflection N = O, the airplane flies horizontally (T = O)

at the angle of attack _ = O, and because of the trim condition e = O.

The pilot desires, without changing the throttle setting, to estab-

lish an ascending trajectory characterized by

AT = 2° Z_ = 3° A0 = -5°

values which satisfy the condition of power equilibrium.

Realization of the equilibrium of moment demands, in the final state_

a deflection A m = -i°.

One must therefore modify the adjustment of the automatic pilot in

such a manner as to realize the relation

0 qo
-5° -i

This can be done by shifting of the zero point, and entails then:

0° _3.5°
_2° -2.5 °

_4 ° _1.5 °

_6° _0.5 °

In the preceding chapter, we determined an example for a deflection

law, leading to a progressive realization of the desired flight condition.

One sees that abrupt passing from one adjustment to another would

entail an excessive deflection at the initial instant.

The automatic pilot should therefore be conceived in such a manner

that the modification of adjustment would be carried out progressively
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and would lead, if possible, to laws of deflection reminiscent of the one
which the application of Duha_el's integral had led us to consider as
favorable. Onecan see immediately that one maycomeclose to the desired
design by adding a component _ = k q which will oppose the previous one,
that is, by making the automatic pilot sensitive to the angular pitching
velocity.

(b) Lateral motion.- The amount of adjustment of the automatic

stabilizer required for putting an airplane into a turn, will likewise

be determined by the equilibrium conditions in steady turn and by the

necessity of proceeding progressively.

Let us assume an airplane provided with an automatic stabilizer,

dependent on the parameters $ and @, regulated in such a manner as

to produce, in the course of a rectilinear flight, the deflections

z_ = -o.sam z_ = -o.sm_

The rectilinear flight constitutes the initial state.

The circular flight, at constant angular velocity, constitutes the

final state.

It is clear that throughout the entire duration of the flight corre-

sponding to the final state:

(a) The connection between the angle _ and the deflection _ must

be interrupted.

(b) The relationship between the angle _ and the deflection

must be completely changed since the airplane may settle itself, in

banking, in a condition where _ is of the order of magnitude of 30

to 40 ° (for the examples calculated above) whereas the steady-state

deflections are insignificant.

The aerodynamic characteristics of the airplane permit determination

of the deflections necessary for the execution of the turn and, conse-

quently, choice of the setting imposed on the instrument.

For this, we may act with a certain latitude because there exists a

"_o_e_ oe__o of possible turns, of the s_me radius, corresponding to

inclinations which differ relatively little from one another, and to

deflections which are still small, owing to the tolerance which permits

the consideration that a slight sideslip toward the inside does not

prevent the turn from being correct.
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Whatever the solution adopted, the unbalance of the aileron control

will be reasonably equal to the inclination of the desired turn. Abrupt

application of such an unbalance would lead, starting from the moment

when the airplane is made to turn, to excessive deflections which would

no longer have anything in common with the motions which Carson's con-

struction permits us to consider as normal.

The designer of instruments for automatic flight control should in

some way add a special device intended to introduce a sufficiently pro-

gressive action in the modification of the adjustment. The result to
which this device should lead has been determined at the end of the

preceding chapter by graphical constructions.

The modern automatic pilots utilize as flight reference conditions

not only the angles _ and i but also the angular velocities of

roll p and the angular velocities of yaw r.

The introduction of the components

acts on the deflections during the period of starting a turn and tends

to approximate the actual law of deflection to the desired law.

(c) Actions in case of engine failure.- Formerly, at the time when

the single-engined airplanes were those in use most widely, it was demanded

that, in case of engine failure, the stabilizer should rapidly put the air-

plane into a descending attitude.

This requirement led to recommending the employment of stabilizers

sensitive to the velocity V, or possessing at least a component sensi-

tive to the difference in velocity. It delayed the employment of sta-

bilizers sensitive to 8 which do not satisfy it.

At the present time, in multiengined aircraft, the failure of one

engine does no longer impose the immediate execution of a maneuver

involving the longitudinal motion, but instead that of a maneuver involving

the lateral motion. In fact, one must oppose immediately the moment of

yaw which accompanies the stopping of an outboard engine.

The control of the rudder seems effective against a perturbation A@,

from this point of view.

(d) Flight following a beam.- The development of automatic flight

led to the requirement that the piloting equipment should make the air-

planes follow flight paths z_terialized in space by electromagnetic

fields produced by means of radio beams or radio beacons placed on the

ground.
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This objective poses new problems which will be examined specifically
in chapter XVII.

4. Points to be Studied

Wepropose to study more particularly the improvement in maintaining
the flight path.

This problem comprizes:

A. The study of the instruments of detection

B. The calculation of the motion of the telecontrol, transforming
the indication received into a deflection

C. Investigation of the reaction of the airplane under the effect
of the deflection

The point A will be summarily examinedin the following section.

The preceding chapters have furnished all the elements for a solu-
tion of the problem C.

It remains therefore to be examinedto what an extent it is necessary
to set up, Mudto know the theory of, the control mechanisms.

5. The Detectors

The study we are making here postulates the existence of instruments
which permit detecting any difference between the actual values and the
meanvalues one attempts to realize, by mean3of measuring the instanta-
neous values of the variables of reference.

These differences must be transmitted to the utilizing apparatus,
without decrease in precision of the instruments of measurementby the
necessity of conveying a certain energy to the control apparatus.

The operation of the measuring instruments calls for the following
comments:

(A) Velocity.- The apparatus which are sensitive to the velocity

furnish a measure proportional to the density of the air and to the square

of the velocity. They may set an appreciable energy in action.
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(B) Angle of attack and sideslip.- The position of the airplane with

respect to its flight path is determined by the angles of attack and of

sideslip. Both may be measured:

(I) By wind vanes

(2) By the pressure difference along a spindle-shaped body

i. A wind vane articulated around an axis has a tendency of estab-

lishing itself in a position which is constant with respect to the direc-

tion of the airstream lines.

It may make the direction of these airstream lines with respect to

the airplane perceptible if the friction about the axis is sufficiently

small. Since this is an apparatus where in equilibrium position the

moment is zero, the indications of the wind vane are independent of the

velocity.

The wind vane requires employment of a relay removing from the

detector as little energy as possible: it has the main disadvantage of

detecting the direction of the airstream lines at the location where it

is placed; this direction may differ from the flow direction, at infinity

(opposed to the relative speed of the airplane).

2. Since the distribution of the pressures along a spindle-shaped

body is a known function

Of the velocity

Of the density of the air

Of the angle formed by the axis of the spindle-shaped body and the

wind direction,

one may measure the angle of attack or of sideslip by comparison of the

measurements carried out at conveniently located points.

This method gave rise to the creation of visual indicators; their

use has not become general, however.

(C) Orientation of the airplane in space.- The three parameters to

be measured are the angles 8, _, and _.

Trim 8: The conventional means for determination of the angle of

trim consists in using a cardan-mounted gyroscope which thus constitutes

a gyrostat.
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The axis of this gyrostat maybe placed along the axes
In both cases it will permit detection of a change in trim
sponding to one rotation about the axis OY.

OZ or OX.
@ corre-

The arrangement employedmost frequently is that of the gyrostat
with vertical axis.

Whatever the chosen solution maybe, the gyrostat movesslowly
relative to the airplane even whenno change at all occurs in the trimming
angle of the airplane.

(a) If the instrument remains in a given place, the axis has a
tendency to describe, within 24 hours, the cone corresponding to the
motion of the fixed star which is to be found in its extension.

(b) The terrestrial coordinates of a fixed star, at a given point,
are functions of the time but they vary also if one changesposition on
the surface of the globe.

If the airplane which carries the gyrostat goes from one point to
another, there occurs, as a result, in addition to the apparent displace-
ment defined above another one which is due to the variation of the
terrestrial coordinates of the star considered.

(c) In addition to these apparent motions of the axis which result
in fact from the displacement of the case of the apparatus, there occur
the actual displacements of the axis produced by precission, that is, by
the disturbing momentsto which the gyrostat is actually subject because
of the imperfections in its construction.

It results from these phenomenathat one must always control the
direction of a free gyroscope and bring it back to the selected position.

If the direction to be maintained is the vertical, one has an impor-
tant reference point at disposal: the gravity. The problem to be solved
is: bringing the axis of the gyrostat back into the direction of the
latter if it has deviated from it.

The difficulty stems from the impossibility of determining, in a
mobile device, the direction of the true gravity: all apparatus sensitive
to gravity indicate the apparent gravity.

Onemust therefore makeuse of a correction, applying in a continuous
manner and with a very small power, and one must count on it that its
action, determined by the meandirection of the apparent gravity, will
produce after a certain time the sameresult as if this correction had
depended, at every instant, on the true gravity.
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Every gyrostat must be brought back to its position by such a mech-
anism, applying a slight momentin the direction determined by the laws
of the gyroscopic effect.

Weshall here not describe the devices used for this purpose; we
indicate only that they are indispensable.

Lateral inclination _: A cardan-mountedgyrostat the axis of which
lies in the direction along the axes OZ or OY is capable of detecting
a change in the lateral inclination _.

The gyrostat with vertical axis is the one used most frequently: the
sameapparatus which then permits measurementof the angles @ and _.

Every gyroscope stabilized according to the integral of the differences
with respect to the apparent gravity presents an important property:

If there exists a difference of constant direction between the apparent
and the true gravity during a sufficiently long time (for instance in the
course of a series of turns in a given direction), the axis of the gyrostat
wanders in the direction of this apparent gravity, and the instrument
becomesdeviated.

Azimuth _: A gyrostat with horizontal axis, placed in motion in
any direction whatsoever, will continue to indicate this direction with
respect to the device on which it is mounted, but this property is subject
to the previous restrictions, and the axis must be stabilized with respect
to a physical reference which can be nothing else but the horizontal
componentof the terrestrial magnetic field.

Since the functioning of compasses(magnetic) is subject to many
irregularities, one can stabilize the gyrostat only with respect to the
meanindication of a compass, taken over a sufficiently long time interval.

This problem has obtained numerouspractical solutions. The most
recent ones makeuse of an electrical compasscalled "fluxgate" which
we cannot describe here and which seemsto eliminate part of the irreg-
ularities of the magnetic compasses.

Let us indicate another important point.

The cardan-type gyrostat, being a zero apparatus, furnishes an
indication independent of its rotational velocity. However, one cannot
oppose its displacement by an opposing momentwithout falsifying its
indications.

Employmentof a cardan-type gyroscope necessitates, therefore,
employmentof a relay absorbing infinitesimal power. Great ingenuity
has been used for accomplishing this.
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(D) Angular velocities.- The angular velocities p, q, r are

measured with the aid of gyrometers.

The gyrometer is an apparatus based on the properties of a gyroscope

subjected to a forced precission.

The rotor is no longer cardan-mounted but undergoes the rotation

to be detected: it measures this rotation by the magnitude of the

opposing moment it provides.

Since the sensitivity of the instrument is proportional to the

angular velocity of the gyrostats, this velocity must be controlled.

Remark: Though one needs to know for the realization of an auto-

matic pilot at the same time the angular deviation about an axis and the

corresponding angular velocity, it is not necessary to use both instru-

ments described above: gyrostat and gyrometer. One alone is sufficient

under the condition that, if the gyrostat is employed, a differentiator

must be added; if the gyrometer is used, an integrator.

(E) Function of the preceding variables.- The preceding variables

are the intrinsic variables of the motion of the airplane. They are

independent of terrestrial references and of entrained motions of the

surrounding medium.

Certain of their functions are easy to measure, and their employment

should be considered from the start in setting up a program for automatic

flight control. These functions are the three components of the apparent

gravity which are indicated by pendulums or accelerometers.

(F) Radioelectric reference coordinates.- By means of electromagnetic

fields, it becomes possible to produce in the atmosphere reference lines

fixed with respect to points on the earth, not situated at infinity.

By means of special receivers, the airplane can evaluate its distance

from the reference lines mentioned.

Let us prescribe for the airplane a rectilinear flight path coinciding

with an electromagnetic reference line.

Assume z to be its vertical distance, y its horizontal distance,

with respect to this reference line.

Let us suppose, in order to simplify the treatment, that the refer-

ence line is horizontal and directed along the origin of the azimuths.

One will have necessarily

dz = V sin T dt

dy = V sin(¢ + _)dt
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with

Onehas therefore

z : _-V sin(e + _)dt

y = sin( +  )dt

and if we deflect the controls as a function of the indications z or

y, we effect, in fact, a piloting as a function of the integral of the

differences of the elementary variables e, _ or @ and _.

Piloting as a function of the integral of the differences leads to

special properties, the study of which forms the object of chapter XVII.

6. The Mechanical Automatic Servocontrol

The purpose of automatic servocontrol is to produce a deflection of

a control which will be a predetermined function of the indication of

the deviation detector, or of a combination of the indications of several

detectors.

Let us visualize this problem from a general point of view.

We shall call "input signal" an angular quantity x, varying as a

function of time; "output signal" an angular position z of a secondary

axis, which we call the controlled axis; "automatic servocontrol" the

mechanism which imposes on the secondary axis displacements such that

z is a definite function of x.

In fact, the chosen function will be simple and it will often be

required that the output signal follow the input signal as exactly as

possible, except for a factor of proportionality.

In order to produce the displacement of the controlled axis, it may

become necessary to overcome opposing moments proportional to z, inertia

moments, and friction moments.

The automatic control system will therefore utilize work furnished

by a local-energy source, the servomotor.

To arrive at this result, the servomotor actuating the controlled

axis can be controlled as a function of this deviation.

C = X - Z
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One frequently improves the functioning of the system by adding to

a control proportional to the deviation _, an action proportional

de

to the derivative of this deviation -- =
dt

d(x - z)

dt

to the derivative of the response -dz/dt or

,to the integral e dt of the deviation.
J

The automatic servocontrol may, on the other hand, be conceived in

several different ways:

(a) One may visualize the employment of a servomotor turned on and

developing its maximum moment (or its full power) as soon as the devia-

tion 6, its derivative or its integral attains a sufficient value for

actuating a relay and controlling the servomotor.

As an extreme, (and this arrangement is incorporated in the Honeywell

automatic pilot) one may imagine a servomotor rotating constantly and a

relay actuating a clutch in one direction or the other.

(b) One may visualize a servomotor the moment (or the power) of

which would be a continuous function of the deviation, its derivative,

or its integral.

This continuous function may be a proportionality. A servocontrol

of this type will be linear.

Between the on and off automatic servocontrol and the linear auto-

matic servocontrol, one may imagine intermediate cases where the moment

follows the deviation c but varies by steps.

7. Classical Theories of the Linear Automatic Servocontrol

The theory of automatic servocontrol is easily set up if one can

assume that the engine torque applied to the controlled axis is strictly

proportional to the deviation, to the derivatives, or to the integral of

the deviation.

Let:

J be the moment of inertia of the controlled axis

f a friction coefficient

k a factor defining the resisting moment of the controlled axis,

proportional to the displacement.
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by
The motion of the proportional automatic servocontrol is determined

d2z dz
f --+ : KCx z)

at_ dt

O

The calculation of the motion toward the position of equilibrium

corresponding to a constant increment _x, applied abruptly, is a classical

problem.

It is well to remark that, starting from an equilibrium position for

which x = 0 and z = 0, it is impossible - when k is not equal to

zero - to make z remain equal to x when x varies. The necessity

of developing a steady moment kz in all equilibrium positions other

than x = 0 and z = 0 makes the presence of a steady deviation

e = x - z unavoidable.

The automatic servocontrol, proportional to the deviation, permits

z to follow x only if the resisting moment is always zero.

If one adds to the moment proportional to the deviation a moment

varying with the derivative of the deviation

K' d(x - z)
dt

or with the derivative of the position of the controlled axis alone

the oscillations of the system are reduced.

The addition of a moment proportional to the integral of the

deviation

K' _cdt

permits the realization of equilibrium positions characterized by z = x

even when a resisting moment_ proportional to the displacement, opposes

the motion of the controlled axis.

The value of these calculations depends on the degree of accuracy

of the hypotheses on which they are based, and it is therefore necessary

to see how certain controls are actually realized.
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8. The Sperry A 5 Automatic Servocontrol

Let us examine the Sperry A 5 automatic pilot. This instrument

attempts to produce a control-surface deflection proportional to the

inclination of the airplane. It comprises a gyrostat or rotor, cards_u-

mounted, placed in an enclosure (case), kept at very low pressure by a

vacuum pump.

The rotor is shaped in such a msmner as to form blades, and its

rotation is obtained by directing toward these blades the Jets of air

which enter the case.

Outside the rotor but inside the case there is a casing E perforated

by several apertures and capable of undergoing angular displacements under

the action of the "follow-up" cables.

Two of the openings made in the casing are pressure inlets and

terminate on two sides of a membrane.

The rotor - through the agency of a stop-valve system connected

with it, and represented in the diagram by the blocks B - closes more

or less the pressure-inlet openings in the casing. When the rotor

occupies its mean position, it closes these openings equally, but it

closes them differentially, when displaced with respect to the casing

one way or the other from its mean position. Hence, any displacement

of the gyrostat produces a pressure difference on the two faces of the

membrane and a deformation of it.

The rembrane, in being deformed, displaces, by means of a rod, the

piston valve of a distributor which controls the entrance of the oil

under pressure into the control servomotor. When the membrane occupies

the mean position, the piston valve cuts off any communication between

the oil pump and the servomotor; however, when this piston valve leaves

this position, in one direction or the other, it connects one side of the

piston of the servomotor with the oil pumps, and this piston is displaced

as long as the connection is not cut.

In the position shown in the figure, the airplane has a nose-up

position, a pressure difference has been produced on the membrane, and

the distributor has led the oil pressure onto the front (left) face of

the servomotor.

The piston will displace itself in the desired direction; however,

its motion will have to be stopped when the control surface will have

displaced itself by an angle corresponding to the relative displacement

of the gyrostat. A connection between the casing E and the control

surface permits this result to be attained.

The motion of the control will displace the casing in such a manner

to bring the uncovered aperture back into contact with the shut-off

device. Therefore the control surface, by its displacement, reacts on
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the sensing mechanism in a manner tending to establish equal pressure

on the two forces of the membrane, and to stop the motion. This "follow-

up" mechanism permits, in short, impressing on the control surface a

displacement proportional to that of the gyroscope.

Any displacement of the casing produced by a control independent of

the follow-up mechanism (not shown in the figure), constitutes a change

in adjustment which modifies the law linking, as an end result, the posi-

tion of the control surface with that of the _fro, with respect to an

axis fixed to the airplane.

Such a control at the disposition of the pilot allows him to modify

the flight path of the airplane through the agency of the automatic pilot.

The Sperry A 5 automatic pilot utilizes two gyrostats for operating

the three controls by means of three pneumatic relays and three servomotors.

The first gyrostat, with vertical axis, detects the deviations of

trim 8 and of lateral inclination _; the second gyrostat detects the

deviations of azimuth @.

This apparatus is used very much and it functions regularly. It

requires, of course, filters and accessories not represented on the

diagram of its operating principles.

Moreover, it must be noted that the practical construction of the

casing and the shut-off device is slightly different from the fundamental

description given above.

It suffices to examine the operation of this apparatus for under-

standing that it does not yield a linear automatic servocontrol.

The input signal x is here the angle of trim.

The output signal z is the deflection _ which reproduces itself

in the angular motion of the casing B. The distribution of the pressures

on the membrane does depend on the deviation e - _, but the description

shows that the pressure finally exerted on the piston of the servomotor

will by no means be proportional to e - _.

If one neglects the load losses which vary according to the degree

of opening of the apertures of the distributor and according to the flow

of oil, the pressure acting on the piston of the servomotor will be the

pressure of the oil pump, and one can see that the automatic servocontrol

will act in a manner which is much more nearly "on or off" than according

to the linear law.

9. Linear Automatic Servocontrol

We shall now describe a classical mechanism having linear charac-

teristics as long as a certain limit of moment corresponding to the

saturation of the magnetic cores has not been attained.
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A control crank (i), in being displaced 0y x, makesa contact (2)
slide on a potentiometer powered by an independent source.

The driven axis (4) is actuated by a motor MI. Any rotation of
this axis produces, by meansof a return device, the displacement of
another contact (3) along the samepotentiometer.

The connections are such that whenthe response (3) of the axis (4)
occurs in the direction corresponding to the requirement x, the
contact (3) tends toward (2).

This return permits proportioning of the displacement z in
accordance with x.

Let us designate equally by:

x the position of the slider 2

z the position of the slider 3

The electromotive force K(x - z) which one finds between 2 and 3
is used with a view to actuating the motor MI; but, since it is insuf-
ficient, it must be amplified. For this purpose it makesa current i 0
pass into the excitation circuit of a dynamo D driven at constant
speed by a completely independent motor MO.

Under the action of the electromotive force produced in this dynamo,
there originates a current i I. This current is sent into the motor MI.

Since the intensity i I is considerably higher than io, the appa-
ratus constitutes a power relay.

Onecan assumethat the motor torque developed by MI is propor-
tional to i I.

Onesees immediately that, if the motor MI is to overcomea
resisting momentproportional to z, it is not possible to realize the
equality between z and x since, i_ order to maintain a deflection z,
one must apply a motor torque equal to the resisting moment. Onemust,
therefore, maintain an intensity i I different from zero which implies
that the values x and z cannot coincide.

The Sperry A!2 automatic pilot utilizes an electric control, applying
the principle described above; however, it is complementedby various
organs, one of which is a control for compensation of the hinge moment.
The input signal x governs simultaneously the motor MI actuating the
control, and a motor M2 of small power actuating - somewhatmore
slowly - the compensator for the control-surface hinge moment;this
compensator is displaced in such direction that, for the desired deflec-
tion z, the hinge momentbecomesagain zero.
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CKAPTERXIV.

THEAIRPLANEANDTHEAUTOMATICSERVOCONTROL

I. Equations of the Linear Automatic Servocontrol

The description just given showsus that the input signal x and
output signal z are connected by equations more complicated than those
we have given in section 7 of the preceding chapter.

Weshall establish here a more exact theory of the electrical servo-
control.

The excitation circuit of the dynamooffers the impedance

d
R+Ld- _

i 0
It is subjected to an electromotive force K(x - z), and the current

is determined by

di 0
K(x - z) = RiO + L d-_-

The circuit which produces the excitation of the dynamoand the
motor MI are subjected to an electromotive force Ci 0 and to an elec-
tromotive force A(dz/dt); A is a coefficient dependent on the windings,
and dz/dt is the angular velocity measured in units of the displacement
of the contact 3.

If RI is the resistance of the circuit, L1 its inductance, one
has as equilibrium condition of the electromotive forces

dil dz
_+A--

Cio =Rlil + In_ dt dt

Finally, with M ! furnishing a motor torque Bi! proportional

to iI (motor with independent excitation), one has as the equilibrium

condition for the moments about the controlled axis:

d2z dz

Bil = J d7 + f--dt + kz
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with

J momentof inertia of the axis 4

f friction coefficient

k factor defining the resisting momentassumedto be proportional
to the displacement

We shall write dz/dt : z'.

Wefind that the output signal z is determined_ as a function of
the input signal x, by four linear equations

di 0
L d--_--+Rio + Kz =Kx

di I
_+ Rli I + Az' - Ci0 = 0LI dt

dz t

J d-_--+ fz' + kz - Bi I = 0

dz
_ - z ! -- 0
dt

We find here again a system of equations analogous to those which deter-

mine the longitudinal motion of an airplane; here the variables are io,

il, z', and z.

When no control order is given, x = 0 and the system will be

stable equilibrium if the characteristic determinant satisfies Routh's

criterion.

If x undergoes, at the time t = O, an abrupt increment Ax, the

motion of the axis z = f(t) can be determined - when the position of

equilibrium is known - by the methcd used to calculate the motion of the

airplane unaer the effect of an abrupt displacement of a control surface.
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Let us consider

2. Developmentof the Equations of the Linear System

again the system

dio Rio + K (x - z)
dT: - L

dil R1 - _- z'--= + c 0 _ i1
dt L1 L1 L1

which we shall write

dz' B f z' k
aT:_il-7 -Tz

d___= Z !

dz

di 0

d-_- + alio + blil + ClZ' + dlz = dlx

di I

dT+ a2i 0 + b2i I + c2z' + d2z = 0

dz _

--+ a3i 0 + b3i I + c3z' + d3z = 0
dt

dz

d-_ + a4io + b4il + c4z' + d4z = 0

One has therefore

K

R b I = 0 cI = 0 dI =aI =

C R1
= =-- c2 = _ d2 = 0

a2 - _ll b2 L1 L1

a3 =0

B F k

b3 = - _ c3 = 7 d3 =

- a4 = 0 b4 = 0 c4 = -i d4 = 0
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The system possesses a characteristic equation

=0

aI + h 0 0 dI

a2 b2 + _ c2 0

o b3 c3 + _ d3

0 0 c4

gives

The development in the form of

+ +AS +A3 +A4:o

A I = aI + b2 + c3

A 2 = alb 2 + alc 3 + b2c 3 - c4d 3 - b3c 2

A3 = alb2C 3 - alC4d 3 - b2c4d3 - alb3C 2

A4 = -a2b3c4d I - alb2C4d 3

where we have c4 = -1.

Routh's stability conditions permit us to verify whether or not a

given system characterized by particular values of each one of the

Ii characteristics L_ R_ Ll_ RI, A, B_ C_ J, K, k, and f, is

stable, but they do not lend themselves to a general discussion.

Let us remark, however, that the condition

A 3 AIA4
.... _-0

R = A 2 AI A3

leads immediately to an important conclusion. Assuming that it is satis-

fied for the four primary conditions AI _ 0 . . . A 4 _ 0, the sensi-

tivity K cannot exceed a certain value.
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In fact, only A4 contains dI or K/L. '_en K increases A4
must increase and the fifth condition of stability will cease to be
satisfied.

There will always arrive a momentwhere the servocontrol described
above will be unstable if one increases its sensitivity by an increase

in the coefficient K (for instance, increasing the voltage of the

battery).

Just as the longitudinal motion of the airplane results from the

superposition of the irregularities of the flight path (switch back)

with the oscillations of the airplane about its center of gravity, the

motion of an automatic control system consists, in the mostgeneral case,

of the superposition of the oscillatory motions of the amplifying system

and of those of the so-called mechanical control system, resulting from

the equilibrium of the moments about the controlled axis.

In general, the oscillations of the amplifying system have a shorter

period than those of the controlled axis,and, although the two oscilla-

tions necessarily interact, one on the other, it is possible to find in

the solutions the influence of each of the component motions.

3. Control of the AppliedMoment by the Angular Velocity

In the simplified study made in section 6 of the preceding chapter,

we pointed out that the characteristics of the effective motion of the

controlled axis improve if the moment applied to the axis is a conven-

iently selected function of the angular velocity z' of displacement

of this axis.

This result is easily found also in a study taking into account the

existence of the amplifying stage.

Let us briefly investigate what happens when the voltage applied

to the first circuit becomes K(x - z) - K'z' instead of being equal

to K(x - z).

Since the application of a command _x > 0 tends to produce a -_

Az > O, there appears also a z0 > 0 as soon as the response has started.

The complementary term reduces, at this instant, the applied voltage

which helps prevent the new position of equilibrium from being exceeded.
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In the general theory to write

K(x- z) K'z'

in the second term of the first equation amounts to taking cI = +K'/L
instead of cI = 0

A simple examination of the determinant shows that only a single

new term has been introduced, namely the term

+a2b 3c IX

which modifies the value of the single coefficient A3.

Since a2b3c I is > O, the coefficient A 3 is increased and the

danger of instability, from too great a value of AIA4/A 3 due to an

excessive sensitivity, is reduced.

In spite of the danger of having R become negative through an

increase of A3/AI, making the moment a function of the displacement

velocity of the controlled axis is favorable.

4. System of the Third Degree

The problem of servo control has been expounded by several authors;

they took the characteristics of the amplification device into considera-

tion but assumed LI = O in the circuit of the servocontrol motor.

The characteristic equation is then of the third degree.

One has in this case

di 0

L d--_--+ Ri O = +K(x - z)

Az' + Rli I = Ci 0

dz I

J d-T-+ fz' + Kz = Bi I

dz
_ = z !

dt
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TTie second equation gives iI : I/RI(Ci 0 - Az') which we introduce

into the third equation so that we obtain

di0 -R i0 K z)d-'_--= %- - Z(x -

dz' BC (f A4z, kaT: + _--_zio - + -7 z

We can now write the characteristic equation.

notations as before, we obtain

B a2

RI b 2

and the determinant is written

al+k

a2

b3

0 d-

c2 )3 - _22b5 + _' a3

0 c4 +k

Maintaining the s_me

=0

where

with

_3 + AZ_2+ A2x + A3 = 0

I c2 b_AI = ai + 3 - b_2 V

c 2

A 2 = alc 3 - al qb 3 - c4d 3

c2

A3 = -alC4d3 - b3 _2 c4dl
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There will be stability if
A3

AI > O, A2 > 0, A3 > 0, and A2 > m
AI

Here again one finds that A3 alone depends on the sensitivity
dI = K/L and increases with this sensitivity.

The servo system must becomeunstable if one increases the
sensitivity.

If the displacement z of the controlled axis takes place without
a restoring momentproportional to the displacement, one has, moreover,
k = O, that is, d3 = O.

?he principles of the linear servo system studied above in a general

case, then in a particular case, have been utilized by Mr. Roccard in his

"Etude de la stabilit_ des syst_mes accessibles _ des mesures" (Study of

the stability of systems susceptible to modifications") and have been

treated by him for the particular case _ = 0 and k = 0.

.... pr_pa= _ also .... used by_Vm-. Harris in his "Tne Frequency

Response of Automatic Control Systems," with the difference that this

author assumes that the intermediaz_ circuit (R, L, i0) is powered by a
source of alternating current.

5. Combination of Automatic Control and Airplane

We can study the reactions of an airplane, a control surface of

which is actuated by a servocontrol, by combining the systems of equa-

tions relating to the airplane and to the control.

Let us assume that we are dealing with a simple automatic pilot

actuating the elevator as a function of the devi_tion of trim.

The motion of the airplane under the action of a continually variable

deflection 5_ is given as a function of the aerodynamic time T by the
system

dSu

d-_-+ alSu + blSW + ClSq + dlSB = 0

d-"_ + a25u + b25w + c25q + d_56 = 0

dSq c c cZ cV cV

+ a3 u+ + °3 q+ 7 d35e- h35n 0

d50 uc 5q = 0
dT V
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in which the coefficients aI . . . h3 relating to the airplane have

been defined in chapter VII. Let us note that d3 = 0.

The motion of the automatic control, in turn, will be defined by

an analogous system where the real nature of the input and output signals

will be taken into account.

In the case considered, the input is the deviation of trim 5e; the

output is the deflection 5_ of the elevator. The deflections one

attempts to realize, and the deviations of trim must have opposite signs;

they are not necessarily equal, but simply proportional. One has therefore

x = -hlSe

z = +5_

The resisting moment or hinge moment is, actually, not only a func-

tion of the deflection z = 5_ and of its derivative z' = 5_', but also

of the velocity of the airplane V, of the angle of attack _ (defined

in the equations by w), of the angular velocity q, and even of the

angle of trim if one takes the moment into consideration which is produced

by the weight of the control if its center of gravity does not lie on the

hinge.

The operation of the automatic control responds to the system

di 0
_+ all 0 + dl5 _ + h158 = 0
dt

di I
d-_--+ a2i 0 + b2i I + c25 _' = 0

dS__+dt asio + bsil + c35_' + d35_ + e35u + f35w + g55q + h55e = 0

r_u__ 5_' = 0
dt

The coefficients a I . . . d4 relating to the automatic control

system have been defined in section 2 of the present chapter.
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The coefficients e3, f3' g3' h3 are proportional to the deriva-

tives of the hinge moment, with respect to the variables defining the

motion of the airplane.

In order to treat this system simultaneously with the previous one,

the aerodynamic time must be adopted as the unit. The transformation

will be carried out by multiplying all terms of the four equations, except

the derivatives, by _c/V.

We shall represent each of the coefficients relating to the automatic

control system, after they have been multiplied by _c/V, by a' d'I " " " 4'

e' h'3; this will avoid confusions with the factors relating to the

airplane.

We thus arrive at eight equations: four equations of motion of the

airplane, four equations of motion of the automatic control, and of eight

variables•

The first group depends on the four variables 8u, 5w, 5q, 5e

defining the motion of the airplane, but the third equation of motion

depends, moreover, on 5_.

The equations of the second group depend on the four variables io,

il, 5_', and 5_ determining the motion of the control; moreover, how-

ever, the first equation depends on 8e 3 and the third equation depends

on 5u, 8w, 5q, and eventually Be.

The complete system gives rise to a characteristic determinant of

eight lines and eight columns.

aI + h bI cI d I 0 0 0 0

a2 b2 + h c 2 d 2 0 0 0 0

c c cl c

a3 7 b3 °3+ 0 0 0 0 h3v

0 0 -_-!c k 0 0 0 0
V

v a' + k 0 0 d' I0 n 0 h'l i

0 0 0 0 a' 2 b' 2 + h c'2 0

e'3 f'3 g'3 h' 3 0 b' 3 c'3 + _ d' 5

0 0 0 0 0 0 ____c k
V

=0
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The characteristic determinants of the airplane and of the automatic

control constitute minors of this new table but the total determinant is

not reduced to the simple product of the two.

Even in a simple case - assuming that the resisting moment of the _on-

trol is independent of the flight conditions (e'3 = f'3 = g'3 = h'3 = 0) -

the principle of setting up equations prevents one from writing

h3 = 0

h' I = 0

and with the method used it is not possible to separate the study of the

motion of the airplane from that of the motion of the servocontrol.

Remarks: i. The argument carried out in the case of a control sur-

face actuated by a servocontrol dependent on the deviations of trim may

be extended to a control actuated by deviations in velocity, angle of

attack, etc.

Terms with e'l, f'l, g'l, on the fifth line of the determinant

would result.

2. An exposition analogous to the preceding one could be given for

the study of the lateral motion under the effect of servocontrols actuated

by the deviations of the variables defining this motion.

3. It has been assumed in the previous chapter that the detectors of

perturbations acted without inertia, and communicated to the amplifying

device an input signal rigorously equal to the perturbation.

If that were not so, one would have to write the equations governing

the functioning of the detecting instruments, to add them to the system

examined, and to raise the degree of the characteristic still higher.

6. Possible Simplifications

The general theory leads to complicated expressions which are almost

useless due to the impossibility of making the influence of the different

variables apparent.

The foregoing exposition has been given with the purpose of showing

that the different problems, treated by a certain number of authors, are

actually particular cases of the general problem.
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The choice of the simplifications determines in a measure the problem

inve st igat ed.

The following questions have been treated.

(A) Study of the motion of the airplane under the assumption that

the control surface is actuated by a servomotor the moment of which is

proportional to the perturbation.

This first investigation amounts to eliminating the study of the

amplification stage, and to examining a system of six linear equations.

A report, in accordance with this train of thought, has been written

by Weiss.

The setting up of the equations leads necessarily to a characteristic

equation of the sixth degree the solution of which is quite laborious.

Weiss evades this difficulty by an artifice.

It can actually be admitted that the characteristics of the slow

oscillation will not be in any way affected by the moment of inertia of

the control.

Let us therefore perform the calculation for the first time under

the assumption that the control is without inertia 3 according to the

procedure B below. The characteristic equation is of the fourth degree;

it leads to solutions determining a rapid oscillation and a slow

oscillation.

In pursuance of the hypothesis made above, the solution defining the

slow oscillation in the system of the fourth degree is also a solution of

the equation of the sixth degree. Dividing this last equation by the

common solution, one arrives again at an equation of the fourth degree

which determines the rapid oscillation and the motion of the control.

One can also study the influence of the characteristics of the con-

trol: inertia, power of the servomotor, hinge moment, on the motion of

the airplane.

Thus one supposes that these characteristics have an influence solely _

on the rapid oscillation.

It is evident that this manner of reasoning is awkward and indirect.

(B) Study of the motion of the airplane under the assumption that

the control is actuated by a servomotor without inertia, producing at

every instant a deflection proportional to the perturbation.
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Such a hypothesis eradicates the effect of the mechanical character-

istics of the automatic control; it retains only - but showing up their

full importance - the mechanical characteristics of the motion of the

airplane.

Since the automatic control is supposed to produce continually

Z =X

or, in the case where the control is a function of the trim

8_ = -h158

it suffices to replace the te_un in 5q

of moments of the airplane by a term in

to d 5 a value different from zero.

in the equation of equilibrium

58 - which amounts to attributing

If the control is a function of another parameter, it will cause a

simple alteration of the corresponding coefficient a3, b3, or c3.

The characteristic equation remains an equation of the fourth degree

in the study of the longitudinal motion. It is of the fifth or of the

fourth degree according to the law of control adopted in the case of the

lateral motion.

The two following chapters are devoted to the study of automatic

piloting carried out under this hypothesis.

(C) Study of the motion under the assumption that the control is

movable but that there is neither a servomotor nor a detector of pertur-

bation present.

In this case, the control assumes, by itself, the position which

ensures the equilibrium of the hinge moment, and the system of equations

determines the motion of the airplane flying with free controls.

The fifth and sixth equations of the general system (section 5),

likewise the variables iO and iI must be eliminated.

In the seventh equation one eliminates the terms a3i and b3il,

and writes the rotational equilibrium of the control.

The product of the moment of inertia of the control and the angular

acceleration d_'/dt must balance the hinge moment at every instant.

The problem is determined by a system of the sixth degree. The

lateral motion of the airplane flying with two free controls is determined

by a system of the eighth degree.
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The possibility of obtaining a usuable solution depends, above all,

on the knowledge of the hinge moment and of the derivatives of this moment

with respect to the different variables.

The problem of flight with free controls is not the one we have posed.

This problem has already formed the subject of numerous theoretical

investigations - which differ especially by the simplifications which have

been introduced with the purpose of reducing the degree of the equations.
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CHAPTER XV

EFFECT OF THE AUTOMATIC PILOT ON THE LONGITUDINAL MOTION

i. Indirect Effect of the Four Elementary Variables

on the Longitudinal Moment

Let us assume that there exist devices producing a deflection d_

of the elevator, proportional to the deviation:

of velocity bu

of angle of attack 8_ = -(Sw/V)

of angular velocity 8q

of trim 5e

It will be possible to obtain the effect of these devices on the

stability of the airplane motion, on the periods and the damping by

introducing into the determinant the desired complementary term:

8CM d_ V = a3 +% becomes _ _ dV a3s

_cM ___
b 3 becomes b3 + B_-_-d_ = b3 _ b3s

8cM d_ v c3 +
c3 becomes c3 8B dq _ = C3s

d3 becomes d3 - _CMdBs_d-_ = d3 + d3s

The quantities a3s , b3s , C3s , d3s characterize the effect of

automatic stabilizer.

We have previously (Chapter VII) written the expressions for the

coefficients AI' "2'_ A3, A4 of +_._ characteristic e_ation as f_c-

tions of the four derivatives of the moment a3, b3, c3, d3.

These expressions lend themselves, without modification, to the

prediction of the effects of a stabilizer which is a function of one of



189

DO@

_@@ II

@0

the fundamental variables. It suffices to replace a3 by a3 + ass , etc.

The discussion carried out previously shows that, in general, positive

values of a3s , bSs , C3s , d3s lead to stability.

These values are positive when:

< 0
8_ du

(an increase in velocity makes the airplane nose up),

> 0
_ d_

(an increase in the angle of attack makes it nose down),

< 0
a'rI dq

(an angular acceleration, in the nose-down direction, makes the airplane

nose up),

(a displacement in trim, in the nose-down direction, makes the airplane

nose up).

The linear theory easily permits clearing up the question of the

automatic stabilizer, making a preliminary selection among the possible

solutions, and research - along general lines - regarding the effect

which this or that law of piloting will have on the characteristics of
the motion.

Many unfruitful tests could have been avoided, at the cost of a few

hours of calculation. It is curious to see how completely the first

designers of automatic-control instruments neglected the indications the

theory could offer.
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2. Numerical Value of the Complementary Terms

Let us show, as an example, to what numerical values the likely

laws of deflection will lead.

A. Piloting as a function of the velocity.- Assume a device producing

a 5_ of -I° when the airplane accelerates by 5V = 0.I V.

Such a stabilizer will be characterized by

a3s -V d_ dCM dCM: dVd--C: + l0dT--

A value of dCM/d_ = 0.015 (angles in degrees) is normal.

The corresponding value of a3s would be +0.15.

In fact, the detectors are generally sensitive to the square of the

velocity, olt may be seen easily that the apparatus for which the deflec-

tion is -I leads to the same value of a3s when the a__rp!ane accelerates

by dV 2 = 0.2 V2

B. Pilotin_ as a function of the an_le of attack.- A detector of

perturbation in angle of attack set so as to produce a dR = I° when

d_ = 2° , gives

dCM

b3s : 1/2 _ × 57.3

A

if we express, as above, the dCM/d N in degrees.

For dCM/dN = 0.015, one obtains b3s = 0.43.

C. Pilotin 6 as a function of the ansular velocity.- An apparatus

which would deflect the elevator by an angle dR = +5 °, for an angula _

velocity q = -57.3 ° per second, would give

_CM d_ v
C3s - _ dq Z

assume for V/Z = 6 (for instance, V = 60 m/sec, Z = i0 m.)

C3s = + 0.015 X 5/Z X 6 = 0.45
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D, Pilotin& as a function of the angle of trim.- A detector of

perturbation producing a deflection dq = -0.5 d8 leads, for the value

of 8CM/_ assumed above, to

d3s : 0.015 X 1/2 X 57-3 = 0.43

I

3. Effect of Piloting Which Is a Function of the Deviations of a

Fundamental Variable

A first examination of the possibilities presented by the different

laws of piloting may be _de by investigating the effect which the intro-

duction of increasing values of a3s , b3s, CSs, d3s exerts on the

damping and on the period.

The solutions indicated as interesting by this first examination,

may then be investigated in detail later on, after the reactions of the

airplane corresponding to certa_ initial perturbations have been

completely calculated.

The diagrams given previously show us, in fact, that sometimes the

initial perturbation (this is the case of 5w) diminishes rapidly but

causes the appearance of secondary perturbations.

If a first examination shows that the period and damping character-

istics are satisfactory, it is necessary to make sure that the selected

law of piloting will not have the effect of increasing the _mplitude of

one or the other of the secondary perturbations.

Let us consider hypothetical airplanes, characterized by numerical

values chosen arbitrarily for a certain number of given values.

Assume

aI = +0.125 Cz = 0.40

a2 = -0.80

bI = +O.345

b 2 = +3.75

= 28.8

c/r : 1.53

Z/c = 2.6

- T = 1.63 sec
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Let us limit ourselves, on the other hand, to the study of horizontal

flight paths traversed at zero angle of attack

c_=0 T=0 l) =0

For all airplanes corresponding to these given values, the coef-

ficients AI, A2, A3, A 4 are expressed as follows as functions of

the characteristics (a3 + a3s), (b3 + b3s), (c3 + e3s), (d3 + d3s):

A1 = 3.8747 + (;.19 (c3 + C3s)

A 2 = 0.74]5 + 0 (a 3 + a34

+ 66.4 (b3 + b3s)

+ 2.5. 7 (c 3 + e34

+66.8 (d3 +d3s)

A 3 = 0 +3.74 ('3+'34
+ 8.34 (_3+_34
+ 4.m (°3+ c34
+ 258.5@3 + d3s)

A4 = 0 + 99.8 (a3 + a3s )

+2z.3 (b3+b3s )

+ (%+%s)

Let us recall that d3 = 0 and suppose, moreover, that the airplane

corresponds to

L

a3 = 0

c3 = +1.37

in the case where the piloting is a function of the perturbation of
the angle of attack, we must take

a3s = 0 C3s = 0 d3s = 0

andgivev_lablevaluesto(b3 + b3s)
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Let us now investigate the effect of a series of _alues varying

regularly from -0.23 to +0.46.

The roots h and k' are then given by the following table:

(_+ b3s ) k h'

0.46 -6.095 + 4.92i -0.0665 + 0.388i

0.344 -6.092 +- 4.15i -0.0674 +_ 0.362i

0.23 -6.09 +- 3.03i -0.0713 +- 0.310i

O.114 -6.08 ± 1.51i -0.0828 +- 0.230i

0.057 -7.45 - 4.65 -0.0914 +- 0.15 i

-0.057 -9.13 - 2.94 -0.376 + 0.122

-0.114 -9.715 - 2.38 -0.473 + 0.207

-0.172 -i0.ii - 1.79 -0.692 + 0.285

-0.23 -10.60 - 1.048 +-0.346i + 0.38

For the other three laws of piloting considered we shall examine

some cases by investigating how the law considered_modifies the motion

of an airplane possessing a static stability zero _3 = O) and a rela-

tively high static stability

b3 = 0.006 x 57.3 = 0.3438

We shall find as roots:

Variable parameter: a3s

case b3 = 0

a + a3s ) h _'

-0.10 -8.65 - 3.37 -0.732 + 0.334

-0.05 -8.65 - 3.40 -0.569 + 0.301

0 -8.65 - 3.43 -0.208 0

+0.05 -8.54 - 3.64 -0.0712 ± 0.401i

+0.i0 -8.50 - 3.81 -0.042 ± 0.555i

case b3 = 0.3438

-0.i0 -6.074 ± 4.13i -0.086 _ 0.2375i

-0.05 -6.078 _ 4.13i -0.0815 ± 0.191 i

0 -6.092 ± 4.15i -0.0674 ± 0.362 i

+0.05 -6.100 _ 4.20i -0.0600 _ 0.460 i

+0.I0 -6.105 _ 4.15i -0.0560 ± 0.56 i
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Variable parameter: C3s

case b3 = O

c + C3s ) h _'

o.96 -5.842 - 3.6825 +o.2 0
1.15 -7.01 - 3.71 +0.2 0

1.37 -8.69 - 3.41 +0.202 0

1.63 -9.947 - 3.70 +0.202 0

1.96 -II. 834 - 3.834 +O. 202 0

case b3 = 0.342

0.96 -4.313 ± 4.73i

1.15 -5.396 +- 4.45i

1.37 -6.092 + 4.15i

1.63 -6.85 ± 3.60i

1.96 -7.86 +- 2.23i

-0.0568 ± 0.397i

-0.0661 ± 0.381i

-0.0674 ± 0.362i

-0.0715 ± 0.342i

-0.0756 _ 0.320i

Variable parameter:

case b3 : 0

d3s

d3s _ h'

0 -8.60 - 3.43 -0.208 0

0.05 -7.90 - 3.84 -0.4165 .0.1625

0.i0 -7.60 - 3.70 -0.865 -0.149

0.20 -5.35 3 0.031i -1.455 -0.175

0.30 -5.05 i 2.18 i -2.033 -0.181

case b3 = 0.344

0 -6.092 _ 4.15 i -0.0674 ± 0.362i

0.05 -5.979 ± 4.36 i -o.1812 t o.375i

0.i0 -5.87 t 4.475i -0.2895 ± 0.188i

0.20 -5.67 ± 5.14 i -0.485 ± 0.03 i

0.30 -5.55 ± 5.60 i -0.762 - 0.546

Y_owledge of the roots Z permits picking out of the cases of

instability (positive roots) and determining the period T and the

duration D of the damping of the motions.
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Let us recall that, having

k = _+ _i

the T and D, expressed in aerodynamic time, are given by

2_

T --
c

_n 0.5
D =

Although the tables given in the preceding pages, and the conclu-

sions we draw from them, apply to a particular case, they are in good

agreement with the results obtained by other authors regarding other

particular cases.

Remark: Since it is a matter of indifference whether the variations

of a3, 03, and c3 are produced by the particular aerodynamic shapes

of the airplane or by the deflection of the elevator, acting without lag

or inertia, under the effect of a detector of perturbations, these tables

justify the results given qualitatively in section 7, Chapter VII.

4. Practical Effects Obtained

A. Piloting as a function of the velocity.- An airplane which is

dynamically unstable due to negative values of a3 or of b3 (A4 < 0),

could be rendered dynamically stable by an apparatus for piloting as a

function of the velocity.

The stability attained by increase of a3s does not, however, endow

the airplane with very good flight characteristics, since the damping of

the slow oscillation is, and remains, weak.

The stabilizer sensitive to the velocity will amplify the rotations

by which an airplane naturally seeks to maintain a constant velocity•

Hence, it amplifies the amplitude of certain secondary perturbations.

One of the current defects of airplanes is the insufficiency of the

damping of the slow oscillations. The stabilizer which is a function of

the velocity is incapable of improving this situation. One can easily

understand the reason.

Let us examine the variation of the V, 0, and q in the course

of the slow oscillation.
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The stabilizer which is a function of the velocity produces the

maximum deflection - that is, applies the maximum pitching moment - when

the trim of the airplane is horizontal.

It is clear that it will not contribute to stopping the airplane in

this position - which is precisely what is required of it.

The stabilizer which is sensitive to the velocity acts too late;

that is the reason why it exerts a detrimental effect on the damping

of the slow oscillation.

B. Piloting as a function of the an_le of attack.- Any apparatus

comprising a wind vane for detecting any perturbation in angle of attack

and actuating the elevator in the desired sense, does nothing else but

increase the static stability of the airplane, that is, its tendency to

maintain a constant value of the angle of attack.

The calculations show that b3 may vary between rather wide limits

without deterioration of the flight characteristics of the airplane.

There does not seem to exist a determined value of b3 (which could

possibly be realized artificially_ by producing b3s by means of a

mechanical device) which ensures a flight path of clearly superior

characteristics.

On the other hand, one can make the coefficient of static stability

b3 = 8CM/8_ vary within wide limits by perfectly natural means: by

displacing the center of gravity of the airplane along the axis OX.

This explains the practical failure of the attempts made with the

purpose of developing the use of instruments of piloting utilizing the

angle-of-attack parameter.

C. Piloting as a function of the an_ular velocity.- The utilization

of the angular-velocity parameter is expressed in the equations by a C3s.

It augments AI and increases therefore the total available damping.

However, the increment has a bearing solely on the rapid oscillation

whereas it is the slow oscillation the damping of which ought to be

increased.

The ineffectiveness of the stabilizer which is a function of q for

the damping of the slow oscillation can also be explained by examining

the figure. The peaks of the curve of the q's correspond to the peaks

of the curve of the V's_ and the apparatus does not act at the right

moment.
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The "angular-velocity" parameter used alone does not seemto lead
to practical results, but it maybe of interest if combined with the
"trim"-8 parameter.

It is curious to find that one of the oldest devices studied - the
Lucas-Girardville stabilizer, designed in 1911 - used the parameter q.

D. Pilotin_ as a function of the ansle of trim e.- In contrast to

instr'mnents sensitive to V and q, the stabilizer which is sensitive

to 8 assures a maximum deflection at the moment when the airplane is

the most inclined and a zero deflection at the moment when the airplane

is horizontal.

This situation is favorable for damping the slow oscillations. The

calculation confirms this conclusion.

The equation in h comprises a term in d3; this term does not

increase the value of the coefficient AI, but it acts effectively on

the distribution of the available damping.

The numerical table shows the following facts:

(a) Apparatus mounted on an airplane with neutral stability.- Without

stabilizer, the airplane is actuated by a motion the four components of

which are aperiodic. The addition of a stabilizer makes the rapid motion

oscillatory when the sensitivity of the stabilizer is increased.

The slow motion remains made up of the superposition of two aperiodic

motions, within the limits of imaginable sensitivity.

The stabilizer causes a retention of the real part of the root of

the rapid motion and transfers this quantity to the root of the slow

motion. This transfer of damping increases with the sensitivity of the

stabilizer.

(b) Apparatus mounted on a statically stable airplane.- The rapid

motion is oscillatory for all hypotheses of sensitivity of the stabilizer.

The slow motion - at first oscillatory - becomes aperiodic for the

highest imaginable sensitivity.

The transfer of damping from one root to the other is practically

equal to one half of what it is on the statically neutral apparatus.

(c) General conclusion.- The stabilization sensitive to the inclina-

tion e possesses a valuable property which the apparatus studied pre-

viously do not possess: the high rate of damping of the slow oscillation.
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Any occurring initial _erturbation will therefore show a rapidly

diminishing amplitude - when it concerns the rapid oscillation as well

as when it concerns the slow oscillation.

The same result has been found in the United States where a calcula-

tion analogous to the preceding one has been carried out by A. Klemin,

P. Pepper_ and H. Wittner, of New York University•

The effect of the stabilizer has been investigated for variable

sensitivities. The maximum sensitivity corresponds to a deflection d_

of -3° per degree of inclination 0.

The conclusions of the American reports are:

(a) The damping of the slow oscillation is considerably improved.

(b) If the airplane is stable, the slow oscillation is transformed

into two aperiodic motions as soon as d_/de = -0.5.

(c) After a study of stabilizers up to d_/d8 = -3, these American

reports state that, if a stabilizer of high sensitivity is placed on the

airplane, the characteristics of statically stable and statically neutral

airplanes tend to become indistinguishable. In other words, the effect

of b3 disappears before that of dSs when the latter is sufficiently

large.

(d) After having combined variations of c3 with d3s , they state

that the influence of the damping factors c3 on the characteristics of

the motion disappears in view of the effect of the factor d3s•

Airplanes which would present unfavorable characteristics, due to

insufficiency of c3, show perfectly admissible characteristics when

they are provided with stabilizer sensitive to the inclination e.

5. Stabilizers as Functions of the Derivatives

The calculations presented in Chapter XI permit predicting the
action of a stabilizer which is a function of the derivatives of the

fundamental variables.

by

A. Piloting as a function of U'.- Let us characterize the mechanism

8CM d_ K of dimensions L-IT 2

_ du'
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It suffices to use again the formulas of Chapter XI, Section 7,

noting that

where

_CM d__ V = -KV

x3 = _ au'

xI = 0

v x3 +yaK
am = _c _c

a3 became a3 + ama I

b3 b3 + amb1

c3 c3 + amCl i/_

v_3 (zero) w 3 + amdI

The action of the mechanism is the same as that of four equivalent

stabilizers, respectively sensitive to the variables u, w, q, e, and

of power

V2
2_ 3 = K ma 1

_c

V2
_b 3 = K--b I

_c

V2
Ac 3 = K--_ cI

_c

l v2 dl
z_3 = V K --g

On a nor_l airplane, one has

> 0 (of the order of I/I0)
a 1

b ! > 0

_c
c I = w_-

_c
dI = -g cos e--V
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On the other hand, we take K < 0 because it is normal to make the

airplane nose up when it accelerates.

Hence

_3 = KV2 a!<0m_c

v_2
Ab 3 = K _c bl < 0

V
Ac 3 = K w T zero when w = 0

2_I3 = -K g cos _ > 0

Of these four equivalent stabilizers replacing the one which is a
function of u' the two first ones exert a negative effect (unfavorable),

the third exerts zero effect in the course of a flight at zero angle of

attack, the fourth - namely the stabilizer which is a function of the

trim - exerts a positive effect.

by

B. Piloting as a function of w'.- Let us characterize the mechanism

_CM d__ = K dimensions L -I T2

dw'

where

We refer to Chapter XI

_cM _- v = -Kv
z5 = _ dw'

V V2

b3 = _ m z3 = --K
_c _c

a3 became a5 + bma 2

b 3 b3 + bmb 2

c5 c5 + I/Z bmC 2

w 3 v_3 + bm_2
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that is, as if there were four equivalent stabilizers, of the power

On a normal airplane

a2< 0

b2>0

c2 = -u _c
V

(of the order of +4)

On the other hand, one will take

make the airplane nose down when _'

tire w' appears.

K < 0 because it is normal to

increases, that is, when a nega-

Hence

Ab 2 < 0

Z_d3 = -K g sin @

-K _V > 0
Ac 3

The equivalent velocity stabilizer exerts a positive effect. The

equivalent angle-of-attack stabilizer exerts a negative effect. The

equivalent angular-velocity stabilizer exerts a positive effect. The

equivalent trim stabilizer produces zero effect when @ = O.

C. Pilotin_ as a function of %'.- It is well to present a direct
argument:

V 2

Zha5 = K -_ a2

V2

at3 = K -_ bs

_c5 = K v2_--E_ c2

V2l

_d 3 = v K -g _2

d2 = -g sin @ /9.V
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The equation of rotation is written

i i _M d_l
= ql

q' _ M + B _ dq'

II d____ =i M
q, 1 8M

B _ dq' B

Let us characterize the stabilizer by

8CM d__ = -K K - of the dimensions -
8_ dq'

K will be positive if it causes the airplane to nose up when the angular
acceleration is positive.

Hence

8M dn pV 2
= -K Sc --

8_ dq' 2

Inserting this value into the equation of equilibrium of the

rotation, one obtains

1 1 P-_): q'(1÷ c): _q' + _K Sc i

1 = f3 (Su'_w'Sq'Se) i + Cq' = M I +------_

in •w_ •Wrl ulng:

c ! K sopW K_
B 2 pr 2

On an airplane not provided with an automatic pilot_ we had

f5 V c

_f3 V c

V cZ

_f3
-- = 0
be
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The addition of a stabilizer sensitive to the angular acceleration

will produce the same effect as that which one would obtain by multiplying

a3, b3, and c3 by i/i + c which is < I when K > O.

The apparatus considered would reduce the stability.

There is nothing surprising in this conclusion.

We have seen that a stabilizer sensitive to 0, defined by

dCM
d3s - d_ de

increases the stability of the motion.

Now_

q, = dq = d2e

dt dt 2

The stabilizer defined by

K=

is therefore sensitive to a variable which is opposed to O.

The action of the visualized instrument will actually be opposed

to that of an apparatus recognized to be good. The result reached is

unavoidable.

D. Pilotin_ as a function of d0/dt.- Application of the general

formulas makes us state again a fact obvious a priori: piloting as a

function of d0/dt is nothing else but a piloting which is a function

of q, already examined previously.

E. Conclusion.- The foregoing investigation shows that practically

only one law of piloting as a function of the derivatives seems of

interest, namely the first.

This stems from the fact that the fourth of the effective stabilizers

which are equivalent to the apparatus utilizing the acceleration u' is

a stabilizer which is a function of the angle of trim acting in the

favorable sense.

We see actually that for a sensitivity such as 5u' = 5m/sec 2

which produces a deflection _ = -2°, we would have under the assumption

that _CM/_ = 0.015 (angles in degrees as before):
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K' 8CM _ -0.015 × 2/5 = O.OO6
du':

and

Z_d3 = -g K' = +0.06

The sensitivity of the equivalent trim stabilizer is not negligible,

and the effect of this component can make itself felt.

Obviously one must ask oneself if that effect will not be overcome

by the effect of the stabilizer which is a function of the velocity which

acts in the unfavorable sense.

We see immediately that this effect will be small.

In fact

Z_a3 = K V2 aI
_c

V2 = gV2 i

_c _c g x Cz

whenee

a3
= Cz

for

K = _.006

aI = +0.1

C z = +0.4

one obtains

-0.006 × o.i x io

_3 = = -0.015
0.4

an effect which appears relatively small.

It should be remarked that this effect can easi3_v be cancelled by

compensating it by a component of piloting as a function of the velocity.

Actually, there does not exist shy apparatus directly measuring the

derivative du/dt. In order to obtain it one must detect u, then dif-

ferentiate the obtained result, for instance with the aid of an electric
differentiator.
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Hence it is possible to extract from the measurement of u that

which is necessary to cancel eventually one of the four effects which

are functions of u'.

6. Calculation of the Flight Paths After Initial Perturbation

A comparative calculation of the theoretical flight paths, after

various initial perturbations, has been performed by Neumark.

We borrow from his report the figures which form the object of

plate 39.

These figures describe the behavior of an airplane:

(a) Flying with controls fixed

(b) Piloted by au instrument which is a function of e

(c) Piloted by an instrument which is a function of u and u'

undergoing an initial perturbation

(1) of velocity _u0 (horizontal gust)

(2) of velocity 6w 0 (or angle of attack

(3) of angle of attack ba0 and of trim

displacement of the airplane) 9

The roots of the characteristic equation are characterized by the

following numerical values.

For the airplane without automatic pilot

_' = -0.025

_' = 0.541

bao)(ascending gust)

-_60 (actual

For the airplane with an automatic pilot which is a function of e

= -2.621 _' = -0.569

= 3.793 _' = 0.341

9The original report of Neumark gives the curves for one single per-

turbation Be. These curves are without physical significance, and we

prefer to add the curves resulting from the perturbations 8_ = -Sw/V and

-Be, in order to obtain an initial perturbation which is more complex but

has a physical significance: Displacement of the airplane in space.
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and
For the airplane with an automatic pilot which is a function of V

dV/dt

= -2.610 _' = -0.580

a = 2.816 _' = 0.765

The curves relating to the airplane flying with controls fixed are

comparable to those we have calculated.

Those relating to the airplane provided with an automatic pilot

exhibit a transfer of damping from the rapid oscillation toward the slow
oscillation.

The examples calculated by Neumark show that:

(a) In the case of the initial perturbation 5uO (horizontal gust),

the stabilizer which is a function of the trim opposes the nosing up which

constitutes the natural reaction of the airplane without stabilizer; hence

the perturbation 5u diminishes more slowly than it would if the airplane

were not provided with an automatic pilot, but the motions of long period

are, nevertheless, better damped.

For the same initial perturbation, the stabilizer which is a function

of the velocity and of the derivative gives to the secondary perturbation

of angle of attack a complicated form which the author has studied in more

detail in the original report.

(b) In the case of the initial perturbation (5cO) = -Swo/V

(ascending gust) the stabilizers both diminish the rapidity of the decay
of 5_.

_nis is caused by the fact that the decay of 5_ is produced by

the expGnential term e_t; the transfer of a certain quantity of

toward _' diminishes therefore the rapidity of the decay of a

perturbation.

(c) In the case of a displacement of the airplane in space the

stabilizer which is a function of e adds its effect to that of the

static stability.

Remark: The appearance of the diagrams is in good agreement with

a fact verified by experience and easily explained by the theory.

The automatic flight control does in no way reduce the vertical

accelerations undergone by an airplane flying in bad weather.
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These accelerations stem_ in fact, from increments in lift, produced

chiefly by the modifications in angle of attack $_ due to the vertical

gusts.

No instrument diminishes the maximum 5_ corresponding to an instan-

taneous _ast. All airplanes would be subject to the same accelerations

in the theoretical case of the instantaneous gust, whether or not they are

provided with an automatic pilot.

If the gust 5_ is established progressively in a fraction of a

second (that is_ during a time comparable to the duration of disappearance

of 5_ by the d_ping of the rapid oscillation), the graphic construction

of Carson shows that the stabilized airplane - for which 5_ diminishes

somewhat more slowly - is finally subject to perturbations of the angle

of attack (and consequently to accelerations) of a higher degree than a

nonstabilized airplane.

This is a consequence of the fact that one has attempted to transfer

the damping from the rapid oscillation to the slow oscillation.

7- Stabilizer Acting With Lag

Principle: The detector_ sensitive to an arbitrary variable y_

actuates the control by the intermediary of a servomotor.

In a sL_.plified calculation one will -write that, due to the inertia

of the apparatus and the free play, the control occupies at the instant t

the position determined by the _gnitude the variable y possessed at the

instant t - n, that is, n seconds earlier.

One may _Tite

dy

Yt-n = Yt - _ n

The motion of rotation of the airplane is determined by

__dq= _i M + I _M d_ ! _M d_ --11dY
dt B B _ dy Yt B _N dy dt

The first term of the second member corresponds to the motion of

the airplane without stabilizer.

_ne second term defines the effect of a stabilizer sensitive to the

variable y, acting instantaneously.
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The third term represents an effect proportional to dy/dt, that

is, to the derivative of the variable y.

Writing

__ 8CM
1 _M d_ c V V_
B 8_ dy y'n = r2 _c 8_ n]d__ y, C _ ,

dy : Y

one sees that everything occurs as if the airplane were provided, in

addition to the stabilizer sensitive to y, with an instrument sensitive

to the derivative of y, and of the sensitivity

KV=
_cM dn_CM d__ V = n V

_ dy' 8_ dy

Let us examine this effect when y is replaced, successively, by

each of the variables.

First case: Lag in the action of a stabilizer sensitive to u, of

the power a3s.

This effect is analogous to that of a stabilizer sensitive to the

acc elerat ion

8cMv-- :Kv
_ du'

the sensitivity of which would be equal to

-n V -
8_ du

= ÷n a3s

that is, for which

KV= +n a3s

n a3s
K =

V

The effect of an apparatus sensitive to u', of the power K, is

given to us in section 5.
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Replacing K by its value we see that the lag exerts the same effect

as four equivalent systems characterized by

V

Zha3 = aI a3s n -_

_b 3 = b I a3s n _c

w

Ac 3 = a3s n T

Z_d3 = -a3s n _ cos @

The determintal effect of the lag stems, above all, from the fact

that Zhd3 has become < O.

Second case: Lag in the action of a stabilizer sensitive to w,

of the power b3s (b3s is assumed to be > 0).

The same calculation indicates that the lag in the operation of the

stabilizer is equal to the presence of four equivalent stabilizers.

V
2_ 3 = a 2 b3s n --

_c

V

_b 3 = b2 bss n-_

V

Ac5 = -b3s n _-

g

2_ 3 = -b3s n _ sin e

Third case: Lag in the action of a stabilizer sensitive to q.

The calculation shows that, in this case, there is only one single

equivalent stabilizer. It is of the type _c 3. Its action is equal to

_s : -n(g/V)C3s

and corresponds necessarily to a reduction in damping.
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Fourth case: Lag in the actffon of a stabilizer sensitive to the

angle of trim e.

This lag is represented by the action of a stabilizer sensitive to
the derivative of e

_CM £__ = _CM

V _ dq -n V_7 de

Then,

bCM aft_--[i: d___Z _CM d_ ! = +n----

_q dX V _ dX V _n de

Everything occurs as if one had a stabilizer which is a function

of the angular velocity q, equal to:

Ac 3 = -n(V/Z)d3s

The lag in the functioning of a stabilizer sensitive to the inclina-

tion e is equivalent to a reduction of the damping coefficient c3 of
the airplane.

This effect may be numerically evaluated.

For instance, for

n = 0.3

dss : 0.I0

V = i00

Z = i0

one would have a reduction in c5 of 0.3 which a normal airplane can
generally stand.
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CHAPTER XVI

EFFECT OF THE AUTOMATIC PILOT ON THE LATERAL MOTION

i. Combinations to be Considered

The lateral piloting may be done by actuating the ailerons and the

rudder, either as a function of the deviations in the variables

angle of sideslip _ = v/u = v/V

angular velocity of roll p

angular velocity of yaw r

or as a function of the deviations in the angles

lateral inclination

course or azimuth

which define the angular position of the airplane in space.

Each of these piloting parameters can actuate one or the other of

the two controls, or even govern them both simultaneously.

Each one of the lateral controls exerts, on the other hand, an effect

around the two axes 0X and OZ.

For an aileron deflection At, the rolling moment dCL/d_ 2_ is the

principal effect, the yawing moment dCN/d_ 2_ is a secondary, nonneg-

ligible effect.

For a rudder deflection 2_, the yawing moment dCN/d _ _ is the

principal effect, the rolling moment dCN/d _ 2_ is a secondary effect.

As a result, one has to consider, in the general case, a large number

of effects.

When the piloting parameters are _, p_ or r, the automatic

apparatus modifies effects naturally exerted upon the airplane, according
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to the aerodynamic characteristics of the plane. The actions exerted

are defined by the table:

- -- + because a2 = -

_CN_'_) _CN
_C N d_ + because a =

V(ff Ld_ _CL_7 )_s :-s,_,__ +_
_c_

because b2 = - --_

+ _) _CNb3s=__Vs_cNapd_ _CNd_ because b3 =-_--

d-_l _CL
vI_C L d_ + _C L d_ because c2 = - --

C2s = - s\_ dr _ _p

vl_ _) because c3 = - _CN

When the law of deflection depends on m or #, the automatic

stabilizer introduces effects which do not exist on the airplane flying

with controls fixed. These effects can be characterized by factors

which are written, in the most general case, when all effects add up:

d2s =-\_" am _ a

/_ _CN d_ t
CN d_ + __

d__+___)

/_C N d_ 8C N d___.h

e3s = -\8_ d_ + 8_ _/
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In the preceding expressions, the first term of each parenthesis

represents the effect of the ailerons, the second represents the effect

of the rudder.

In each of the products, the first factor characterizes the aerody-

namic effect of the control; the second factor characterizes the ogera-

tion of the automatic pilot.

The action of the different laws is investigated for each of the

two groups in the following sections.

2. Stabilizers Which Are Functions of the Variables

of the First Group

As an example, the order of magnitude of the complementary terms

is indicated below for a particular case.

Let us assume that the effectiveness of the controls is defined by

4

ailerons 8CL/8_ = 0.003 (angle _ in degrees)

= 0.172 (angle in radians)

rudder _CN/_ : 0.0015 (angle _ in degrees)

= 0.086 (angle in radians)

The secondary effects are always a fraction x or z of the

principal effects:

_CL
_CL =x_

_C N_CN = z _

we shall assume them to be zero.

If we suppose a displacement of 1/2 ° of the ailerons or of the

rudder for I° of sideslip, we obtain

a2s : -0.172 × 0.5 : -0.086

a3s : -0.086 × 0.5 = -0.043
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A displacement of the ailerons of 5° for an angular velocity of roll

of 57° 3' per second, and a displacement of the rudder of 5° for an

angular velocity of yaw of 57° 3' per second give, respectively, for

V/s = i0

b2s = 0.003 × 5 × I0 = 0.15

C3s = 0.0012 × 5 × i0 = 0.06

The investigation of the automatic pilot which is a function of

the variables 9, p, or r will be reduced to a discussion of the

roots of the system, for modifications in the magnitude of the parameters

a2 and a3 b2 and b3 c2 and c3

In chapter IX, we have briefly indicated the effect of these param-

eters. Let us now treat, as an example, the case of a hypothetical air-

plane which has a certain number of invariable characteristics but for

which each of the parameters a2, a3, b2, b3, c2, c3 may vax7

separately.

Invariable characteristics

= 28.2

C z = 0.40

s2/r2a = I0

s2/r2c = 4.2

slc = 3

Combinations investigated

a2 a5 b2 b5 c 2 c3

variable -0.04 +0.24 -0.017 +0.056 +0.045

-0.04 variable id. id. id. id.

id. -0.04 variable id. id. id.

id. id. +0.24 variable id. id.

id. id. id. -0.017 variable id.

id. id. id. id. +0.056 variable



215_

|@OQ@@

Q 60

oOO0

0@01

DO O@

D •

We find for the roots _:

Variable parameter a2

0

-0.02

-0.04
-0.06
-0.08

-0.72 ± 2.08 i +0.786

-0.675 +-2.14 i +0.495

-0.620 +-2.23 i +0.o162

-0.577 _ 2.30 i -4).Oll4
-0.531 + 2.357i -0.0354

-6.28

-6.28

-6.54
-6.41

-6.48

Variable parameter a3

+0.02

+0. Ol

+0

-0.02
-0.04

-o.o65

+0.525 t o.415i

+0.o69 +-0.5321

-o.451 +- O.908i

-0.605 ± 1.67 i

-0.627 +-2.25 i
-0.656 ± 2.79 i

-2.58
-1.38
-o.378
-0.0341
+0.0162

+o.0423

-6.54

-6.54

-6.34

-6.55

-6.55

-6.56

Variable parameter b2

o.2o4 -o. 55 +-2.58i +o.o182

0.254 -0.629 +-2.23i +0.0162

0.264 -0.627 +-2.22i +0.0147

-5.67

-6.35

-7.12

Variable parameter b3

Completely insignificant effect

-O.OLO8
-o.o168
-o.o228

-0.617 +-2.22i

-0.620 • 2.25i

-0.622 + 2.26i

+o.o165
+0.0162

+0.o158

-6.35
-6.33
-6.32

Variable parameter c2

o.o413 -0.6oot 2.22i -o.00364
0.0563 -0.620 9 2.23i +0.0162

0.0713 -0.64 _ 2.25i +0.0359

-6.55

-6.33

-6.50

Variable parameter c3

0

0.o3
0.44

0.60

-o.31 t 2.21i +0.0_ -6.31

-0.515 ± 2.25i +0.035 -6.53

-0.627 ± 2.23i +0.0162 -6.33

-0.738 t 2.22i -0.005 -6.33
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The practical effects would be as follows:

(a) The automatic pilot as a function of the angle of sideslip.-

This mode of piloting will produce the same effect a6 an increase in

dihedral of the wing or in the power of the vertical tail depending on

whether the ailerons or the rudder are actuated.

This mode is little used.

If one had to deal with a badly designed airplane represented by

a coordinate a2 and a3 situated in a zone of instability or only

too closely to the limits, one could visualize a correction of the

defects by an appropriate stabilizer a2s or a3s.

However, so far one has always preferred to modify the airplane

itself.

(b) The automatic pilot as a function of an an_ular velocity.- In

principle, b2s and C3s increase A1, that is the total damping avail-

able - but whereas b2s increases particularly the root k4 which can-

not make any use of this increment, the effect of C3s is distributed

between the oscillatory motion and the spiral motion, and can exert a
useful effect.

The terms b3s and C2s which are not to be found on the diagonal

of the determinant and do not affect A1, are only of little interest.

3. Automatic Pilots Which Are Functions of The

Variables of the Second Group

We shall first define the order of magnitude of the complementary
terms.

Let us assume that the aerodynamic effectiveness of the controls

is the same as in the preceding section.

We shall limit ourselves at first to simple cases:

Ailerons deflected by 1/2o for i° of lateral inclination;

Rudder deflected by 1/2 ° for i° change in azimuth
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One has

d2 = 0.172 x 0.5 = 0.086

e3 : 0.086 x 0.5 = 0.043

Let us write the characteristic determinant of the system of equa-

tions of the lateral motion in its general form, that is, incorporating

in it the terms in d2, ds,_ e2, e3 which are zero when the airplane

flies with controls fixed but which cease to be zero when the lateral

controls undergo deflections which are functions of _ and @.

Let us recall or set

The condition

bI : -w ___c
V

cI = +u _cV

_C _C

dI = g cos $ -_ = g -_

aI + k b I c I d I 0

b--_-a 2 bs-_-b 2 + k bs-!-c2 bV d2 bV e2
r2r2a a r2a r2a r2a

1o a3 b s b3 bs.___c3 + k bV d3 b__.V_Ve3
r2c r2c r2 r2c c r2c

0 b4 0 k 0

0 0 c5 0

=0
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is identical with

_5 + _4 B2X3 2+ + B3k + B4h + B5 = 0

Comparing with the development carried out in chapter IX, and

replacing b by 2s, one obtains

BI = A I

2sc 2sc

B2 = A 2 + _ -- d2 + _ -- e3
r2a r2c

1B3 = A3 + _ r--_c_al + -_--re b d2 + _ r-_-c I + --r2ab e3 +

_ -- --c d5 + g- 5- --b c2
r2c r2a r- a r2 c

2SC(a 2s 2 c3 2s a3cl) d2 +B4 = A4 + B-- l--
r2a r2c " r2 c

_s_/_s _ _)
_ r2c\r2a a2cl- aI r-_a c d3 +

2sc/2s 2s2 _
r_aa\r2--_a3bl-al r--2--c b./e 2 +

2sc / 2s 2 2s \

r-_c[al --r2a b2 - __r2a a2bl)e3 +

__c_(_o_e_,1
r2ar2c

B5 = _ -- 3 -- _C e2 + _ -- a2 -- _C e3
r2a r2 c r2 c r2a

2 4s2c2

2 2 al_2e3 - e2d3]
r arc

+
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by writing directly

C5dl = _ _CV g V_-_c: _ _ g_c = -Cz_C

The presence of the factor c (chord of the wing) gives rise to

the same remark as was made already in section 2, chapter IX.

Let us remark immediately that the equation is of the fifth degree

only when at least one of the quantities e2 or e3 is different from

zero, that is, when one of the external actions is a function of _.

On the other hand, none of the terms in d2, d3, e2, or e3 is

to be found on the diagonal.

These terms do not contribute to an increase in total damping and

can only produce transfers of damping from one root to the other.

Let us retain, as the only variables, the quantities d2, d3, e2_

e3 and write the coefficients BI, B2, B3, B4, and B5, giving to

the other characteristics the values of the previous example.

We then obtain

BI = 7.55

B2 = 13.15 + 173d 2 + 104e 3

= 33.41 + 224.5d 2 - 155d 3 + 46-4e2 + 710-4e 3

B4 = -0.544 + 785.2d 2 - 787.7d 3 + 27.8e 2 +

388e 3 + 5200_2e3 - e2d3)

B5 = -288e 2 + 288e 3 + 3080(d2e 3 - e2d _
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Let us study the characteristic equation in the following cases:

0,0 ..0 eo. ee. .0. so. 0,. 0.. me. .m. .co moo oo0 ooo o00

d2 = 0 0.04 0.08 0.16

a3 = o

e2 = e3 = 0

OIl ell ..0 moo oil Ol. lie e.. ..0 eel ooo Oo. el. leo oil

-0.02 0 +0.0143 : -0.04

d 2 =0

e2 = e3 = 0

o.0 ... 00. e.o .oo 0.0 o.o go. ... oo. 0oo .oo oo. oo. ooo

e 3 = 0 -a_. 05 +0.10 +0.20

e2 = 0

d2 = d3 = 0

• o. 0.o .to ooo ..o ooo 0.. 01o .o0 .0. .0. .-o coo ooo so.

e2 = 0 0.025

e3 = 0

d2 = d3 : 0

o

The roots of the characteristic equation are:

Variable parameter d 2

d2 hl.2 _3 k4

0 -0.627 i 2.23i +0.0162 -6.33

0.04 -0.742 i 2.25i +0.845 -6.915

0.08 -0.845 ± 2.17i -2.932 ±1.73i

0.16 -0.770 _ 2.02i -3.007 ±4.20i
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Variable parameter d3

d3

-0.04

-0.02

0

+0.01

hl,2 h3 h4

-0.1385 ± 2.28i -0.938 -6.33

-0.3575 ± 2.21i -0.510 -6.33

-0.627 ± 2.23i +0.0162 -6.33

-0.750 ± 2.25i +0.263 -6.32

Variable parameter e3

e3 _1,2

0 -0.627 +- 2.23i

0.05 -0. 512 ± 3- 02i

0.i0 -0.434 ± 3.86i

0.20 -0.41 ± 5.00i

_3,4 _5

+0.016 0 -6.33

-0.133 ± 0.416i -6.33

-0.176 ± 0.517i -6.32

-0.212 ± 0.488i -6.32

Variable parameter e2

e2 _1,2 _3 h4 _5

0 -0.627 ± 2.23i +0.016 0 -6.33

0.025 -0.56 ± 2.29i +0.84 -I -6.32

These roots correspond to the following practical effects:

Effect of d2: When the stabilizer which is sensitive to

operates the ailerons and these latter act without secondary effect,
we find:

(I) That the oscillation subsists while undergoing progressive

modifications.

(2) That the root k4 which determines a strongly damped rolling

motion and hence is negative begins to increase in absolute value - which

is normal because the visualized mode of piloting consists precisely in

opposing the rolling motion. But since the sum of the roots is to remain

constant, the root _3 which characterizes the spiral motion must undergo

positive increments, and the pilotage visualized must necessarily produce

spiral instability.

For sufficiently large values of d2, the roots _3 and )d_ are

combined into a pair of complex roots, and one then encounters a damped

oscillation.
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Effect of d3: The d 3 corresponds in principle to the maneuver

of the rudder under the effect of the lateral inclination _.

d3 _ 0 corresponds to a maneuver in the direction tending to make

the airplane rotate about the wing which is lowered - which is unfavorable.

The direction in which such a control should act corresponds to

d3 < O. Thecalculation verifies this fact.

An effect d3 may also be produced as a secondary effect of the

ailerons when these are actuated as a function of the deviation in _.

This d 3 is then > 0 and is unfavorable.

Effect of e3: This effect is perhaps the most important one that

can be produced by the automatic pilot.

In fact, the airplane does not have any sense of azimuth, and the

pilot, in flight, must constantly correct the heading.

A stabilizer applying to the rudder a deflection which is a function

of the change in azimuth imparts to the airplane a new sense which it

does not _ossess naturally.

One knows that the equation has become an equation of the 5th degree.

The calculation shows that the root h4 of the airplane without stabilizer

appears again in the equation of the 5th degree.

This is an interesting finding which facilitates the calculations,

for when this root is known, one can immediately reduce by i the degree

of the equation of the airplane provided with the automatic pilot.

The root h3 which defined the spiral motion is combined with the

new root introduced by the stabilizer to give a new oscillatory motion

which is rather slightly damped.

In proportion as the power of the stabilizer grows, the damping of

the former oscillatory motion decreases.

The characteristics we are setting up here for a particular example

have been encountered in other particular cases by other authors, notably

by imiay.

One may assume that for an airplane which presents normal charac-

teristics, the phenomena found above are general.

J
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Effect of e2: The maneuvering of the ailerons as a function of

the change in azimuth would produce and effect e2.

An effect e2 _ 0 produces a detrimental action because there

exists a positive root much larger than that found for the same airplane

when not provided with a stabilizer.

The reason for this fact is easily found: for an increment d@ _ O,

the stabilizer furnishes AT, _ O.

If the airplane has turned to the left, the effect e 2 would make

it incline toward the left. It may easily be seen that this effect

necessarily contributes to an increase in spiral instability.

An effect e2 _ 0 may be produced as a secondary effect by a rudder

controlled by the change in azimuth. This effect exists if the vertical

tail is very high.

4. Secondary Effects

We state that the two normal types of automatic pilot, namely

d2 > 0 and e3 _ 0, can both produce an unfavorable action due to the

secondary effect of the controls.

It may be useful to verify that these secondary effects are always

less important than the favorable principal effect.

Let us examine the roots corresponding to two combinations:

d2 = 0.08 with (as secondary effect)

e3 = 0.i0 with (as secondary effect)

d3 = O.O1

e2 = 0.025

and let us compare them with the roots corresponding to the same principal

effect, without secondary effect.

In the case of the ailerons maneuvered as a function of M, we find

-1.13 ± 2.225i -2.647 ± 1.32i

while we had, in the absence of a secondary effect

-0.845 ± 2.17i -2.932 ± 1.73i
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The reduction in damping of the first oscillation is noticeable.

In the case of the azimuth stabilizer we find

-0.44 _ 3.86i -0.175 ± 0.451i and -6.32

while we had, without secondary effect

-0.434 ± 3.86i -0.176 ± 0.517i and -6.32

The difference is imperceptible.

These findings showthat - at least in the example investigated -
the secondary effect of the controls is not of a nature as to modify our
conclusions.

5. Stabilizers WhichAre _anctions of the Derivatives

The problem of the lateral stabilizers sensitive to the derivatives
of the variables determining the lateral motion maybe treated like that
of the longitudinal stabilizers.

Onefinds again absolutely parallel results: one sees for instance
that the stabilizer which is sensitive to the derivative of the angle of
sideslip is equivalent to four elementary stabilizers which are functions
of the angle of sideslip, of the angalar velocities p and r, and of
the lateral inclination.

The most interesting result to which this examination leads concerns
the effect of the lag of the stabilizer which is a function of the
azimuth 4.

A lag n in the operation of the stabilizer e3 produces the same
effect as if one were adding a stabilizer which is a function of the
angular velocity r, and of the power

ac3 : -n _ e3
S

It is equivalent to a reduction of the damping coefficient. This

effect could be considerable. In fact, for n = 0.2, V = I00, s = i0

e3 = 0.I0 we would have:

Ac 3 = -0.2

while we know that the c3 is of the order of +0.05.
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There is therefore reason to ask what the effect of a reduction,

or even of a change in the sign, of the damping coefficient c3 will be,

in the case of an airplane provided with a stabilizer of the type e3,

sensitive to the azimuth.

We performed the calculation for e3 = 0.i0, taking a series of

values of (c5 + A c3).

The result is as follows:

Coefficients of the equation of the 5th degree

c5 +2_c 3 B1 B2 B5 B4 B5

+0.044 7.554 23.512 104.28 38.456 28.8

0 6.84 18.742 101.862 56.51 28.8

-0.005 6.40 15.5 100.50 35.5 28.8

-0.05 6.04 13.23 98.75 34.2 28.8

-0.i0 5.24 7.78 95.77 32 28.8

One of the roots is necessarily real; its value is practically the

same in the five equations. Assume h5 to be this root.

Dividing by (h - h5), one obtains an equation of the 4th degree

which leads to the following roots:

Oscillation arising Rolling

Value Pure oscillation from the spiral motion

of (c5 + AC3) motion h 5

0.045

0

-o. 025

-o.o5
-0. i0

-0.434 ± 3.86i

-0.i ± 3.85i

+0.08 _ 3.84i

+o.295 ± 3.83i

+0.694 _ 3.75i

-0.164 +- 0.552i -6.30

-0.176 ± 0.517i -6.32

-0.165 +_ 0.525i -6.32

-0.164 +- 0.53 i -6.31

-0.165 + 0.53 i -6.30

The two oscillatory motions are determined by the equation of the

4th degree. These equations are characterized by a coefficient A I

continually diminishing in proportion as c3 + _c_ decreases

The total available for the damping of the two oscillations keeps

on diminishing, and the pure oscillation my become unstable.
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This example shows that a lag in the operation of the directional

stabilizer will impart to the airplane a steady yawing motion.

If this instability is of a high degree, it will not suffice to

attempt to modify the distribution of the damping between the two

oscillations.
t

After extracting from -BI the root _5' the remaining available

amount is not sufficient to damp the two oscillations, whatever the law

of distribution.

It would have to be possible either to reduce the root _5' or to

increase the total available damping.

Unfortunately, it does not seem possible to reduce the root kS'

and the most effective solution consists in increasing the c3 by

adding a mechanism for controlling the deflection of the rudder as a

function of the angular velocity r, that is, by augmenting artificially

the damping of the rolling motions.

The characteristics which the calculation indicates for the motion

of an airplane provided with an automatic pilot sensitive to the

azimuth _ (whether or not there is a lag in the operation) show that

there always exists a serious risk of undulatory motion.

The well-known practical difficulties encountered in creating and

operating these instruments constitute a very clear demonstration of

the theoretical conclusions.

Let us remark finally that when the instability is not too pronounced

and it is sufficient to modify the distribution of damping, several experts

suggest utilizing the effect of the component d3 > 0 for this purpose.

This exerts a powerful effect on the transfer of damping from the spiral

motion toward the oscillatory motion; and this means is usable for sta-

bilizing the latter motion after the spiral instability need no longer

be feared - which is the case of an airplane provided with an automatic

pilot of the type e3.
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CHAPTER X-VII

THE AUTOMATIC PILOT AS A FUNCTION OF THE

INTEGRAL OF THE PERTURBATIONS

I. Statement of the Problem

The piloting parameters studied so far were parameters in some way

intrinsic to the airplane.

The airplane piloted according to these parameters is insensitive

to certain factors which are, however, very important - namely the

entrained velocities of the surrounding medium, if these velocities have

a constamt magnitude.

The airplane which passes abruptly from a zone Z I where the atmos-

phere is motionless to a zone Z2 where the air has an upward velocity W

is, at the instant of this passage_ subject to a perturbation 5w and

reacts abruptly; however, when the transitory period has come to an end,

the plane will return to a position of equilibrium characterized by the

same relative velocity, the same angle of attack, and the same trim as

in the initial state. The entrainment velocity simply adds to the rela-

tive velocity, and the trajectory becomes an ascending one without dis-

turbing the power-equilibrium conditions.

If the airplane is provided with instruments of automatic flight

c_ntrol sensitive to the perturbations 5u, 5w, and _8, this equipment

will give rise to reactions during the transitory period but it will be

incapable of discerning a difference between the final state of equilib-

rium and the initial state.

Everything we said here about the lateral motion applies likewise

to motions with respect to th_ _urrounding medium. If that medium is

possessed of a horizontal entrainment velocity - the wind - the motion

of the airplane with respect to the ground is the sum of the motion with

respect to the surrounding medium and that of the entrained velocity,

and the instruments sensitive to the perturbations examined so far are

incapable of detecting the effect exerted on the flight path by a constant

wind.

By means of electromagnetic fields, it is possible to set up in

space reference lines fi:<ed to the ground. It is possible to detect the

deviations with respect to these reference lines and to maneuver the

controls accordingly.
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Thus one realizes a new class of instruments for automatic flight

control.

2. Flight Controlled by Radio Reference Lines

One may visualize:

(a) Flight following a parallel beam

(b) Flight in a beam converging at a point

In the case of parallel reference axes, the airborne receiver gives,

by hypothesis, an indication proportional to the distance y between

the airplane and the axis.

In the case of a converging beam the center of which is at the

distance D from the airplane, the receiver furnishes frequently the

angle _; however, since tan c = y/D, this indication is equivalent to

that furnished by a receiver which gives the deviation y but is of a

sensitivity varying with the distance D.

We shall not attempt to find out by what means the intensity of an

electromagnetic field can be transfomed into an input signal x of the

servocontrol. If we assume that this part of the operation takes place

without lag, the functioning of the servocontrol will be determined by

the characteristics of the power relays and of the servomotor used.

The point we are investigating in the present chapter is the effect

of the piloting which is a function of references fixed to the ground on

the motion of the airplane.

3. Longitudinal Motion

After a line of reference has been set up, the problem posed is to

fly along this line, utilizing the indications of an instrument which

detects the deviations in height z with respect to the latter. (See

fig. 35-)

This deviation z constitutes a new variable, defined, in the case

of a horizontal reference line, by

dz = V sin T dt
P%

z = / V sin T dt



229

ii III Ii III III iii

• 110

_ 0@@0

ooze

_OoOO O

t |

It is proportional to the integral of the angular deviation of the

flight path.

Now

T : -(e + _)

Approximating the angles by the sines, we have

dz _ -V(e +_)
dt

In automatic flight control, the deflection of one of the two longi-

tudinal controls is linked to z by a law of proportionality. If the

actuated control is the elevator, the moment M is a function of the

new variable z, and one has

dq _ f3(u,w,q,8 z)
dt

On the other hand, the expression

aZ__v(e + _)
dt

becomes a new function f5

dz _ f5(u,w,e)dt

and the motion of the airplane is determined by a system of five linear

equations.

Since the derivatives

5f3

;z

_f5 _f5 _f9

are different from zero, the characteristic equation is of the fifth

degree and is written
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du dw dq

_£2 _f2 _f2
_ X

du dw dq

_f3 _f3 _f3

du dw dq

0 0 -i

_f5 _f5
-- 0

du dw

m _ x
_f3

d8

-x

_f5

de

_f3

dz

0

-x

=0

4

The type of piloting which operates by actuating the elevator, as

a function of the deviations in altitude, with respect to a reference

line, is, in fact, not very logical, for the variable directly controlled

in the steady-state condition by the elevator is the velocity along the

flight path.

The slope of the flight path is determined by the elevator, in the

equilibrium condition, only in an indirect manner, through the effect of

the excess of power. The piloting with a view to maintaining the airplane

on a flight path defined in altitude should logically take place by acting

on the control the effect of which determines directly the upward velocity,

that is, the control of the engine power setting.

Such a law of piloting would be necessarily defined by a relation

between the thrust T and the deviation z detected; it will produce

a modification of the moment M only if the engine power setting exerts

a secondary effect on the CM.

For an airplane piloted in this way, the function fl will depend

on z,

du _ fl(u,w 'q,e, z)
dt

the derivative 8fl/SZ will always be different from zero; the deriv-

ative _f3/_z also will be different from zero when the secondary effect

l

!

is not zero. The characteristic equation likewise will be of the fifth

degree.



251

° B

@

4. Lateral Motion

The detected deviation y Is the horizontal distance with respect

to the reference line.

Let us assume that this indication is utilized for the control of

the rudder.

In the case of an ideal control mechanism

_=kXy

the moment N is a function of y and the equation of equilibrium

about the axis OZ is written

dr _ f3(v,p,r,_,_,y )dt

The derivative dr/dt is a function of a sixth variable, the dis-

tance y.

In order to simplify the notation, we assume that the azimuth of

the axis of the beam is the origin of the _; we have therefore, taking

into account the possible sideslip:

dy = V sin(_ + _) dt

Y = FV sin(_ + B) dt

and we achieve a piloting which is a function of the integral of the

perturbations of the variables , and _.

We may write, on the other hand

dy _ V sin(@ + 9) = f6(v,p,r,_,@,Y)dt

and we have a sixth equation connecting the derivative of the variable y

with one of the five other variables.
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The characteristic determinant becomes

_fl _fl 5fl _fl _fl

8f2 8f2 8f2 _f2 5f2
_m x _ _

0

_f4
x _ 0

_f4 5f4 _f4 _f4

_v _p _r _P

8f5 _f5 8f5 8f5 8f5

_v _p 8r _P 8,

- x 0

5f6 _f6
0 0 0 -x

=0

_f3 8f6 8f6

and since _--_ _v and _* are different from zero_ the character-

istic equation is of the sixth degree.

5- Principal Properties of These Types of Piloting

The piloting as a function of the references fixed to the ground

has three essential properties:

i. It is equivalent to the piloting which is a function of the

integral of the deviations of one or of several intrinsic variables.

2. It raises the degree of the characteristic equation by one.

3. It permits removing the airplane from the influence of the

entrained velocities of the surrounding medium. The flight path may -

within certain limits - be rendered independent of these entrained

motions.

The study of the properties of the airplanes piloted in such a man-

ner could be made by development of the characteristic equations. How-

ever, a superficial examination is sufficient to show the defect of any

piloting which is a function of the integral of the deviations: the
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motions are insufficiently damped and become easily unstable if the sen-

sitivity of the instruments is too high.

In fact, let us examine what takes place in the case of the lateral

motion.

If the airplane is at a given instant to the right of the axis

(Zhy < 0), the automatic pilot will receive a command (AN> O) propor-

tional to Z4Y under the effect of which it will turn to the left.

This command will be cancelled only at the moment when the airplane

is on the axis. Under the effect of the previously accumulated commands,

the airplane will have carried out a considerable rotation, and it will

not again contact the axis tangentially with an infinitely small #.

It will, on the contrary, intersect the axis at a rather large angle #,

resulting from the integration of the 5_, and will pass to the left of

the reference line.

After the airplane has passed beyond that position, the same phenom-

ena occur in the opposite direction, and the motion may be amplified.

The experience acquired in the execution of blind landings shows

that this is really so. One may consider that the human pilot who

attempts to make a blind landing by deflecting the rudder according to

the indications of the vertical needle of his ILS receiver, achieves

manually the piloting defined above_ since the needle indicates the

lateral deviation y.

An airplane thus piloted frequently takes up a flight path which

becomes more and more undulatory in proportion as the airplane approaches

the destination. This stems from the fact that the sensitivity of the

receiver grows in proportion as the airplane approaches the transmitter.

Equal deviations of the needle correspond to increasingly small devia-

tions 5y, and when the pilot endeavers to fit his movements to the

indications of the needle, he finally makes the airplane execute an

unstable motion as a result of excessive sensitivity.

The theoretical study of such an apparatus could be made by keeping

the system of equations in the linear form but giving to the sensitivity

factor included in 8f3/_y a series of increasing values corresponding
w

to different degrees of the progress of the airplane along the landing

flight path.

The search for a general expression for the sensitivity factor as

function of time would make 8f3/_y a function of the independenta

variable, and would change the type of the equations.
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6. Possible Combinations

The type of piloting sensitive to the distance relative to a refer-

ence line can be combined with a type of piloting sensitive to the angu-

lar deviation of the airplane with respect to the direction of this

reference line.

Several cases can be considered for longitudinal piloting: hori-

zontal alinement, angular alinement.

TLe case of horizontal alinement is rather theoretical; actually,

the case of angular alinement is the real case. If the adjustment of

the controls and instruments is such that the conditions of equilibrium-

when the airplane follows exactly the prescribed flight path - are satis-

fied by deflections zero, one can visualize the following effects:

Control of elevation dependent on the deviation 5e;

Control of power setting dependent on the deviation 5z; or else,

control of elevation dependent on a combination of the deviations 58
and 5z.

For the lateral piloting, the case realized in practice is the one

where the rudder is actuated as a function of By and 8@.

Under the assumption that the origin of the @ corresponds to a

particular reference line, and that the y are positive when the air-

plane is to the left of the reference line, the law of piloting becomes

5_ = -K18y - K2B @

The theoretical study shows that one can realize favorable flight

paths by a suitable choice of the sensitivities K I and K 2. These

trajectories improve still more if one adds a pil_ting component which
is a function of r.

However, we see immediately that in case of lateral wind of a

velocity W the law of piloting does not permit maintaining the air-

plane on the reference line. In fact, since W/V is the crab angle,

the rectilinear flight along the reference line, at a distance y = O,

is not feasible unless the airplane adopts a course equal (in absolute

value) to the angle of sideslip W/V, and maintains this course

constantly.

This implies the combination

- : 0 :W/V By: 0
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which can be realized only if the pilot _ knowing the velocity component

W of the wind and the angle of sideslip - modifies the adjustment of

the instrument by displacing in some manner the zero point of the @.

Without an adjustment of the automatic pilot to take the wind into

account, the airplane will necessarily follow a flight path showing

constantly deviations 5@ and By.

7- Automatic Landing

Piloting as a function of terrestrial references has the principal

aim of permitting the realization of automatic landing.

From the longitudinal viewpoint, the problem consists in following -

with deviations in height not exceeding lO meters - an inclined reference

line which one can, in a first solution_ assume to have constant slope.

Actually, this slope is not necessarily constant, and it would be better

to define in space a trajectory identical to the one the pilot imposes

on bJs airplane when he makes a visual landing.

Experience has shown that it is actually not practical to control

the slope of the flight path by means of the elevator, because the start

of the descent of an airplane can be accompanied by an increase in veloc-

ity along the flight path which is absolutely inadmissible in the course

of the maneuvers preceding landing.

The devices which have been built avoid these variations in speed

by controlling the engine power. This control is indispensable if one

prescribes a constant velocity on a flight path of variable slope.

From the lateral viewpoint_ the problem consists in guiding the

airplane along the axis of a runwaF, even in the case of a cross wind.

Since the width of the runway is of the order of from 80 to 100 meters,

the admissible deviation on either side of the axis cannot exceed

20 meters.

Knowledge of the crab angle is indispensable, the heading imposed

on the airplane being equal to the azimuth of the runway, corrected by

the crab angle. However, this manner of proceeding is admissible only

when the correction to be applied does not exceed 6° to 8° .

We reproduce the recording of an automatic landing_ effected by

means of a Lancaster airplane. Thi_ diagram is taken from the report

published in 1946 by H. 0. Pritchard.

The control apparatus was sensitive to 8y and 8@. At a distance

of 7 miles from the entrance of the runway_ the airplane deviated fram
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it by approximately 1 mile, but its axis 0Y was reasonably parallel
to that of the runway. After the automatic flight-control apparatus
had been put in action_ the airplane effected a change in course of
about 45° and approached the axis of the runway.

The curve seemsto indicate the existence of an oscillation of very
long period (of the order of 2 minutes), which agrees rather well with
the concept of piloting as a function of the integral of a perturbation.

I
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CHAPTER XVIII

APPLICATIONS OF SYMBOLIC CALCULUS

TO THE PRECEDING PROBLEMS

i. Usefulness of the Symbolic Calculus
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The solution of the preceding problems is greatly simplified if

one resorts to operational or symbolic calculus.

(a) The integration of the differential equations defining the

motion as a function of the given initial conditions by the classical

method of Lagrange is simple in theory, but, actually, gives rise to

very lengthy numerical calculations. The operational calculus leads to

a much speedier method.

(b) In the symbolic calculus, Duhamel's integral is, in general,

replaced by an equivalent, but simpler, expression.

(c) In a particular case 3 for example when a system defined by lin-

ear equations is subjected to harmonic, that is, sinusoidal excitation,

the solution of the steady motion is found immediately, thanks to the

symbolic calculus.

2. Principle of the Symbolic Calculus

Consider a function f(t) of the real variable t.

We put

_0 °°

q_(p) : p e-Ptf(t)dt

an integral which is found in the second member being assumed convergent.

This fo_rala defines a correspondence b_t_e_, the functions f(t)

and _(p) and is symbolically represented by

" _(p) of(t)
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It constitutes Carson's transformation.

The function $(p) is called the image of the function f(t).

To Carson's transformation there corresponds an inverse relation-

ship: the formnla of Bromwlch

i ^ c+i=

f(t) = 2--_Jc_i_ ePt _(P)dpp

where the integral is extended to a line of the complex plane going from

c - _i to c + _i.

The function f(t) is called the original of _(p), and the rela-

tionship is represented symbolically by

f(t) 3 _(p)

Any treatment of the symbolic calculus leads to the setting up of

tables of correspondence between images and originals.

If one treats a mechanical problem, one must, in general 3 determine

an unknown function of time f(t). The statement of the problem permits

the writing down of one or several relations between this unknown func-

tion f(t) and the given data of the problem.

The symbolic method permits the solution of such a problem by means

of three successive operations.

The first consists in translating the equation which defines the

devised function f(t) into symbolic language.

After this translation_as taken place, the equation which trans-

lates the phenomenon into symbolic notation does no longer contain the

variable t. The latter is replaced everywhere by the variable p, and

the function to be determined is replaced by a function _(p).

The second stage then consists in determining _(p).

Finally, after the form _(p) has been found, one must proceed to

the third phase, that is, to find the original f(t) which corresponds

to it which can be done either with the aid of a table of correspondence

established once for all, or with the aid of the Bromwich-Mellin formula,

if the function _(p) and its original are not indicated in the tables.
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Since the purpose of the operational calculus is to simplify the

calculations, its employment is justified only if the determination of

_(p) is easier than that of f(t).

This is not necessarily the case but does occur always, if the func-

tion f(t) is a sum of exponentials.

Since the functions f(t) which are of interest to us are precisely

of this form, the operational calculus is a valuable expedient in the

investigation of the dynamics of an airplane.

The use of Bromwich's formula requires a thorough acquaintance with

the theory of analytical functions and the practice of manipulating com-

plex integrals.

It is generally not necessary to use this formula for the return

to the original. This return is achieved either by direct utilization

of the tables of correspondence, or - and this happens in the majority

of cases - by application of Heaviside's formula which we shall demon-

strate further on, without resorting to Bromwich's formula, by the simple

use of the table of correspondence.

Important remark: Carson's transformation (with its inverse formula)

does not constitute the only transformation one can visualize.

The relationship

oo

F(p) =70 f(t)e-Ptdt

defines a transformation different from the preceding one, namely

Laplace's transformation.

Its inverse formula

c+ioo

f(t)- i _ ePtF(p)dp
2_i _ c-ioo

is Cauchy's transformation

One notes that the formulas of Laplace and of Cauchy differ from

the formulas of Carson and Bromwichby a factor p.
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one has

f,  (plf(0)]

In order to show this, let us write

_0 °°

pq_(p) = p2 e-Ptf(t)dt

Let us integrate the second member by parts

pq_(p) = [-pe'Ptf(t)]

oo oo

0 + Pf0
e-Ptf' (t )dt

The term between brackets is equal to -pf(o).

Hence

_0 °°

p_(p)-pf(O) = p e-Ptf '(t)dt

The second member is nothing else but Carscn's transformation

applied to the derivative f'(t). One has therefore exactly

f'(t) _ p [_(p)-f(O)]

q

This formula expresses the essential property of the transformation

of Carson: The operation of the differentiation of f(t) is reduced

to the multiplication of the image by p; however, this product is

dirinished by pf(o).

6th) Integration:

If f(t)95(p)
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0t f(t)dt = _(p)P

0t
The image of f(t)dt is written by definition

P/O e-Pt f(t)d dt

or else

t oo

 (t  tfo

Let us integrate by parts. We obtain

[- _ot tl _
e-P t f(t)d

0

t

+ _0 e-Ptf(t)dt

The first term is zero. The second term is

P

The integration of f(t)dt corresponds to the division of the

image by p.

The two preceding properties: differentiation and integration, are

the ones in which the entire interest of the operational calculus centers

because it permits reducing the integration of a differential equation

to an algebraic calculation.
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4. Operational Table

T1_e calculations are, in general, remarkably simple.

Let us indicate the following relationships:

Original _nage

tn p-nn!

et P
p-i

eat P
p - a

eat - I a

cos _t

sin _t

p -- a

p2

o

5. Value of the Function For a Negative Time

The problem which we pose consists in predicting the behavior of

a system as the consequence of the modification of one of the factors

of equilibrium..

Generally, this modification starts at the instant t = 0 and up

to that time the system was in equilibrium.

If the variables of the problem are the perturbations about the

position of equilibri_n, they are functions of the time, but functions

of a particular type - because riley are, by h_othesis, zero for t _ 0

and start varying only at t = O.

This particular characteristic can be expressed in several ways -

either by admitting explicitly that all functions of time investigated

will be zero for t < 0 - or by assuring that the e_cJression describing
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the variation of the variables contains as a factor Heaviside's unit

function; this function has the value

0 for t < 0

l for t > 0

We do not intend to study the theoretical consequences of this

concept.

It suffices to point out that Carson's transformation applied to

the function

f(t) = 0 for t < 0

f(t) = i for t > 0

gives

: 1

A function f(t) which satisfies the preceding condition (value

zero for t = O) possesses an import_ut property if one displaces the

origin of the time.

Let us find the image of f(t - s), that is, the image of the

f_uction displaced by the quantity s with respect to t.

AS su_qle

_(p) = p e-Ptf(t)dt

e

We want to calculate

_0 _ ._t )dt_l(p) = p e-__ f(t - s
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Let us put

oo

_l(P) = P e-ps __ e-ptlf(tl)dtl
S

Since f(t) is zero for the negative values of t:

whence

_l(p) = e-pS$(p)

or else

e-PS$(p)c f(t - s)

The operator e-P s, multiplying a function _(p), is equivalent to

a displacement of the variable t by the quantity s.

6. Application of the Operational Calculus to the

Solution of Linear Differential Equations

The operational calculus permits rapid solution of systems of linear

differential equations.

Assume a system of four equations, in four dependent variables x,

y, z, s, and the independent variable t.

dx + al x + blY + Cl z + dl s = hi
dt
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ay+ a2x+ +Ce z+ a2sdt b2Y = h2

dtd-_z+ a3 x + b3y + c3 z + d3 s = h3

247

d_as+ a4x+b4y+ c4z + d_s = h4
dt

The quantities h I . . h 4 appearing in the second member are

constants (case of the equations encountered previously).

The integration of the system has the purpose of determining four

unknown functions of time

o

x = Fl(t)

y = F2(t)

z = F3(t)

s = F4(t )

Let us write that

Fl(t)

F2(t)

F3(t)

F4(t)

One has therefore

is the original of an unknown function _(p)

is the original of an unknown function _(p)

is the original of an unknown function _(p)

is the original of an unknown function c(p)

xn_

ynrl
zn_
s_o"
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according to what has been said previously.

dx _p_ _ pxo
dt

dd_tt_P_ - PYo

d z oPt - PZ 0
dt

d_p_ - ps 0

where Xo, YO, Zo, So are the _lues of the functions x, y, z,

s at the time t = O, that is, the initial conditions.

Let us write the equations to be integrated by going to the images

(aI + P)_ + bl_ + Cl_ + dig = hI + PX 0

_ +(b2+ p)_+ c2_ + _ : ½ + py0

a3_ + b3_ +(c 3 + P)_ + d3_ = h3 + pz 0

a4_ + b4_ + c4_ +(d4+ P)_: h4 + ps0

It suffices to solve the algebraic equations for finding the images

_, _, _, and a as function of the initial values Xo, YO, z0, So

_nd of the constants hl, h2, h3, and h4.

The introduction of the initial values Xo, Y0, z0, sO is equi-

valent to the determination of the constants of integration because the

latter are - in the conventional methods - determined by introducing

into the solutions the initial values corresponding to the time t = O.

The solution of the algebraic equations by determinants gives

_x_s_ons such as
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h I + px 0 bl Cl d I

+ PYo b2 + P 02

h3 + PZ 0 b3 c3 + P d3

h4 + pso b_ c4 _4 + P

aI + p b I cI d1

a2 b2 + p c2

a3 b3 c3 + p d3

a4 b 4 c4 d4 + p

Let us call Z(p) the denominator. This polynomial in p is

identical to the characteristic equations in h written in chapters VII

and IX; it is sufficient to replace h by p.

Let us designate the minors of the numerator by

HI, I(P) _,I(P) HS,I(P) H4,1(P)

with the first subscript designating the suppressed line; with the sec-

ond subscript designating the suppressed column.

We obtain the following symbolic expression

HI, I(P) H2,1(P)

= (hI + PxO) Z(p) + (h2 + PYO) Z(p) +

HS,I(P) H4,1(P)

(h3+ pZo)z(p) + (h4+ PSo)Z(p)

it remains to find the original of this expression.
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7 • Heaviside' s Formula

The theoretical treatises solve the question by application of the

formula of Bromwich-Mellin. However, there exists a method which permits

finding directly the expression

Fl(t) D_(p)

when the numerators are polynomials of a degree lower than or equal to

the polynomial of the denominator.

The expressions we have to deal with satisfy precisely this

restriction.

Let us limit ourselves to the study of one single term

= hl HI'I(P)+ _0 PHZ_I(P)
Z(p) Z(p)

and let us, in order to simplify the notation, provisionally drop the

double subscript of H.

When the equation Z(p) = 0 does not possess multiple roots (the

usual case in practice), the rational fraction may be decomposed by purely

algebraic means, in a sum

zZ'(Z) (p - ?,)

with _ designating the roots of the equation Z(p) = O.

The image _ may consequently be represented by

n __ . Zn H(k) p= _ _ _(X) X +

Each of the terms which constitute the second member is a product

of which only the factors
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h and P

p-k p-k

are functions of p.

These two quantities appear in the table of correspondence

k e ekt - 1

p-_

P ¢ eht

p-_

which permits to immediately come back to the original x

n H(k) ek t
n H(Z) (eht l) + Xo_: F1(t): hlZ
1 1

We can transform the solution, noting that, if we make p = 0

the expression H(p)/Z(p), we obtain

H(O) n H(h)

z(o) 1

in

for

This permits, in fact, writing, again making use of the subscript

H:

Izn Hi, l(_) e_t HI, l(O)] n HZ1 _(_)e _tx = Fl(t) hl 1 kZ'(k) + Z(O) + XOZ 1

the expression known as "Heaviside's formula." It is generally written

in the particular case where xO = O.

The Z, from i to 4, affects the four roots h but does not apply

to the subscripts of the minors.
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The corzplete solution x

in h2 and YO' with the minor to be used

h 3 Zo

h4 sO

will contain also analogous terms

H2,1

Hs,1

H4,1

The solutions in y, z, and s will be obtained in the same man-

ner; the second subscript of the minors H will become, respectively,

2, 5, or 4.

The differential system the solution of which we have studied Just

now is identical with the systems we had established previously for

investigating:

(a) The response of the airplane to an initial perturbation which

occurs suddenly at the time t = O, under the assumption that the air-

plane is flying with controls fixed

(b) The response of the airplane to an abrupt displacement of a

control surface carried out at the time t = 0

(c) The response of an automatic control system to command, of con-

stant amplitude, applied at t = O

In the first problem, the h are zero, but at least one of the

quantities Xo, YO, Zo or sO is different from zero.

In the second problem, at least one of the expressions h is differ-

ent from zero. The Xo, YO' z0 and sO are zero unless one superposes

the first and the second problem.

In the third problem, only the expression hI is different from

zero.

It is clear that the application of Heaviside's formula works rapidly

when the n roots of Z(p) = 0 are real.

8. Trigonometric Transformation of Heaviside's Formula

When one has to _al with imaginary roots, the calculations are

longer ana it will be of advantage to use graphical constructions.

A complex root may be written
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hence

k = _ + ig = Reir = R cos r + IR sin r

mmm:
ZZ' (_) ReirZ' (Reir)

the polynominal H Re ir is a complex quantity which can easily be

represented vectorially. We shall denote this quantity by He ih where

H is the modulus, h the argument.

Likewise, Z' Re ir will be designated by Z'e iz' where Z' is

the modulus and z' the argument.

We obtain therefore

We shall put

H(]_) = __H eir(h-r-z ')

kZ'(_) RZ'

Then

h - r - z' = e

H(X) eZt : MeieeReirt

_z'(_)

and, for the pair of complex roots

2 H(_)
Z
i _z'(_)

eht = M[e (ig+Reirt) + e (-iB+Re-irt) ]
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which leads, after a few calculations, to the simple expression

2
ekt = 2Me mt cos(at + e)

Let us wrlte, in order to recapitulate this calculation, the response

x = 6u to a deflection of the elevator, producing h I = h2 = h4 = 0

and h 3 = l, applied at an instant t = 0 where no other perturbation

pertains.

This response is, when one has at the same time real roots and com-

plex roots

z'(x)

 3,l(O)
z'(o)

X

 3,l(O)
z(o)

 3,l(x)
+ Z e_t + Z2Me_t cos(_b + e)

is the transient damped response corresponding to the real

roots of Z(p) = 0

is the response at infinity, that is, the change in steady

state imposed by the manipulation of the control

2Me_tcos(ot + e) is the transient oscillatory response which corre-

sponds to the imaginary roots

The sign Z is applied to pairs of conjugate roots: for one pair

of conjugate roots, the Z is not needed.

Let us note, as a conclusion, that the method of solution we have

just described does not contribute a single element not already con-

tained in the general method described in chapter VI; however, the exe-

cution of the method above is infinitely more rapid.

w
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and

Assume

f2(t)

9. Theorem of the Product

and $2(p) to be the images of the functions fl( )

_l(p) = p e-PSfl(S)ds

/o°$2(p) = p e-Ptf2(t)dt

There then exist between the products of the functions of s fl(s)

and f2(t - s) and the products of the images q_l(P) and q_2(P) the

relationships

and

t

!p _l(p)$2(p) c f0 fl(s)f2(t - s)ds

t

ip $1(p)q_2(p ) c _0 fl(t - s)f2(s)ds

From

qD2(P) Cf2(t)

we extract, for t > s (by displacement of the origin)

o

e-PS_2(p ) cfB(t - s)

Let us multiply the two members by fl(S)

e-psfl(s)_2(p) mfl(s)f2(t - s)
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Let us integrate for the variable s

e-PSfl(s)q_2(P)ds c fl(s)f2(t - s)ds

_i_l(p)_2(p)c f1(_)f2(t- s)dsP

When s is larger than t, the quantity (t - s) represents a nega-

tive time, and the function f2 is zero for these values of the varia-

ble. Hence there results that

° Sotfm(s)f2(t- s)ds= f1(s)f2(t- s)ds

and the first formula is therewith demonstrated.

The second "gill be demonstrated in the same _nner.

i0. Image of Duh_mel's Integral

Let us write the preceding relationship, replacing

designating by ¢2 the image of the following function

f2 by FI and

@2 (P) cF(t)

o

Let us write, moreover, that the function fl(s)

of a function f(s)

fl(s) = dr(s)= f'(s)
ds

Let us put

_1(P)of(s)

is the derivative
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•1(p)cf'(s)

on the other hand, by virtue of the rule of differentaiation

whence

p[_1(p)- f(o)]cf,(s)

_l(p):p[_(p)- f(o)]

Substituting this into the first formula o_ the product:

however

_0 t_l(P)- f(°)]¢2(p)cf'(s)F(t- s)ds

f(O)_2(p) cf(O)F(t)

Let us add, term by term

t

_l(P)_2(p) cf(O)F(t) + _0
f'(s)F(t - s)ds

o

The second term is nothing else but Duhamel's integral which gives

us the response of a system to an arbitrary perturbation f(s) which

is variable as a function of the response F to a constant perturbation

equal to unity.

Thus we see that the immge of the response to an arbitrary pertur-

bation is equal to the product of the image of the perturbation and the

image of the response to the unit perturbation.

The symbolic representation of Duhamel's integral considerably

sir_plifies this expression.
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ii. Application of Duhamel's Integral to the Study

of Automatic Flight Control

Let us apply themethods of operational calculus to the solution

of the following problem.

An airplane is provided with an apparatus which detects the pertur-

bations of any arbitrary variable, for instance 6u, and produces

instantly a deflection of the elevator proportional to this deviation.

One has therefore

6q = +kbu

In practice, k will be negative in the case considered because

one would choose such a direction for the maneuver that the control sur-

face would tend to make the airplane nose down when the speed diminishes.

What is then the behavior of the variations 6u, 6w, 6q, 6e

following an arbitrary initial perturbation (6n)0_

Solution of this problem is possible if one knows:

(a) The reaction of the airplane - which is supposed to fly with

controls fixed - under the action of the initial perturbation

(b) The response of the airplane, under the action of a constant

deflection 6q equal to unity

(c) The law 6_ = k6u characterizing the automatic apparatus.

Let us write the equations, denoting, in a general manner, the time

by t.

(a) The response of the airplane which is flying with controls fixed

to the initial perturbation is

6u = Gl(t)

5w = G2(t)

6q = G3(t)

6e = G4(t)
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These functions give rise to the images

71(P) CGl(t)

72(P) CG2(t)

y3(p) _G3(t)

74(P) =G4(t)

(b) The response of the airplane under the effect of a deflection

= I is

5u = Fl(t)

5w = F2(t)

5q = F3(t)

6e = F4(t)

These funtions give rise to the images

The unknown motion

91(P)CFI(t)

_2(P) cF2(t)

_3(P)¢F3(t)

_4(P)CF4(t)

bu : x(t)
5w = z(t)
5q = q(t)
5e : e(t)

is the superposition of the normal return motion of the airplane, after

the initial perturbation, and of the response of the airplane under the

action of a deflection which is at any instant proportional to the

deviation 5u.
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The functions x(t),

etc., and as images I0

z(t), etc. have as derivatives

cx(t)
cz(t)

x(p)cq(t)
e(p)c0(t)

x'(t), z'(t),

The deflection _ is, at any instant, given by

= kx(t)

under the assumption that the piloting is a function of 5u.

Duhamel's formula permits determination of the component of the

motion which is due to the action of this variable deflection. If one

superimposes the return motion of the airplane with controls fixed and

the response under the action of the variable deflection, one obtains,

at the instant tb

_0 tbx(tb) = Gl(tb) + Fl(tb)X(O)+ kFl(t b - t)x'(t)dt

z(tb) = G2(tb) + F2(tb)X(O) + kF2(t b - t) x'(t)dt

_0 tbq(tb) = G3(tb) + F3(tb) x(0)+ kF3(t b - t) x'(t)dt

If one assumes the integration of the second term to have been

carried out, one may eliminate everywhere the subscripts b.

lOone may represent the original and the image by the same letter if

one indicates that the one is the function of t, and the other of p.
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Going over to the images, taking into account the symbolic trans-

position of Duhamel's integral, one has

_(p) _l(p)÷ k_l(p)_(p)

×(p) : 73(p)+ k_3(p)_(p)

e(p): 74(p)+ _%(p)_(p)

Hence there results that the desired functions are

_(p): i k_1(p)
%(p)

_(p) _2(P)+ k[_2(P)Tl(P) %(P)72(P)]
1 - k_(p)

The expressions of X (p) and e(p) will be obtained by substitu-

tion of the subscripts 3 or 4 for the subscripts 2.

If the automatic pilot were a function of the deviation 5e, instead

of the deviation 6u, one would have

--kSe

and the symbolic expression of the resultant motion would be

_(p)= _(p) + k_(p)e(p)

ol.o_.e.e,leeol,ot,loe.1-

.leoeli,ljI.l,*Jo.lla-_,,

_(p)= %(p) + k%(_)_(p)
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which would give expressions such as

O0

00 °

.
O0 _(p)_-71(p)+ k[%(pi_4(P)- _(P)_I(P)]

1 - k_4(p)

e(p) = $4(P1

i - k_(p)

12. Usefulness of These Formulas

It seems at first sight that the employment of these s}_nbolic expres-

sions would necessitate the return to the original and therefore lead to

long calculations.

We shall show in the following chapter that this is not the case if

one examines sinusoidal perturbations.

Thus it is interesting to develop these formulas.

Let us take the general equations of the preceding chapter, replacing

x, y, z, s by 5u, 5w, 5q, 58, and writing the coefficients of

the third equation in the form

cq_a3 c__ b3 c__.tc5 cV d3
r2 r2 r2 r2

and the independent term in the form

In the most general case the initial perturbation wDich we assume

to be arbitrary can be considered as a s_m

: 5n : (SU)o + (SW)o + (_)q)o + (50)0



263

@0

@@

DtO@ s

Hence, representing the principal determinant by Z(p)

z(p):

aI + P b I cI dI

a2 b2 + p c2 d2

c b3 c__Zc3 + p cV d3a3 _ r2 r-_

a4 b4 c4 d4 + p

the images of the response to an initial perturbation are

P(_)o bl °i _l

P(SW) 0 b2 + P c2 d2

c__t3 c_A_c3 + p c_VVd3
P(Sq)0 r2 r 2 r 2

P(_e)o t4 c4 _4 + p

aI + p P(SU) 0 cI dI

a2 P(SW) 0 c2 d2

c a3 p(Sq) c_ c3 + P cV d3
0 r2 r_

a4 P(be)0 c4 _4 + p

1

z(p)

i

z(p)

and so forth in the same manner.

The symbolic response to the deflection, _ = i, will be given by

the following expressions in which the term h 3 = dCM/d _.
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$1(p):

$2(p)=

bo

0

c Vh3

0

bI Cl dI

b2 + p c2 d2

r-2Cb3 r-_cZc3 + p r-2CVd3

b4 c4 d4 + P

aI + p 0 cI dI
a2 0 c2 d2

Ic a3 c Vh 3 c Z c3 + p cV d3

7 r-_ 7

a4 0 c4 d4 +

i
x--
Z(p)

and so forth in the same manner.

In all these determinants we have:

d3 = 0

a4 = b4 = d4 = 0 (see the reasons above)

For simplification, we shall content ourselves to search for the

response to an initial perturbation (Sw) 0.

We assume therefore: (Su)0 = (Sq)O = (Se)O = 0

Let us again denote by H the minors of the determinant Z, with

the first subscript designating the suppressed line, the second desig-

nating the suppressed column.

The functions 7 are of the form

P(6w)0H2,1(P)

_l(p) = z(p)

72(p ) - P(Sw)oH2,2(P).
z(p)
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The functions are of the form

cV l(p)_h3H3,

_I(P) = Z(p)

cV

r-_h3i3,2(P)

z(p)

Let us assume that the automatic pilot is sensitive to the pertur-

bation in trim 58.

One obtains expressions such as

_(p)= p(_w)o
_,l(p)+ _°v h3[H3,1(pm2,4(p)_ _3,4(P)H2,1(P)]Z(p)1

Z(p)- k cVr-_H3_3,4(P)

@(p) = p(Sw)c H2'4(P)

Z(p) - k °-Zvh3x3,4(p)
r2

All these expressions will have the same denominator.

This denominator is nothing else but the characteristic determinant

of the motion of the airplane flying with controls fixed, plus the term

-k cV
r-_ h3Hs'4(P)

If we now examine the development of the determinant Z(p) as a

function of the terms of the third line, we find that this development
contains a term

cV dsH3,4(p )
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We see therefore that the periods and the damping of the motion

investigated will be determined by the roots in _ of the characteristic

determinant in which one will have replaced

Since

_5 by d3 - kh3

everything occurs as if the term in d3 of the characteristic deter-

minant became

with the mechanical connections imposing the sign of bq/b8 which will,
in fact, be negative.

The application of the operational calculus justifies the method of

calculation which we have used in chapter XV for the calculation of the

period and of the damping of the motion of an airplane provided with an

automatic pilot operating without lag.
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CHAPTER XIX

FREQUENCY RESPONSE

i. Definition

Let us examine the general properties of the oscillating systems.

Let us assume two quantities x and z, connected with one another

by a mechanical system. These quantities are functions of time.

The quantity x is the command or input signal.

The quantity z is the response or output signal.

The command x varies as a function of time, following a law of

input

x = fl(t)

The response z is determined by the law of output

z : f2(t)

An airplane constitutes a particular case of such a mechanical

system. The deflection of a control (for instance of the elevator h)

constitutes the input signal x. Each one of the quantities which define

the motion of the airplane - especially the variables u, w_ e - con-

stitutes an output signal. The entrained motions of the surrounding

medium also constitute input signals; the vertical gusts are identical

to initial perturbations 5w, the horizontal gusts are identical to

initial perturbations 8u.

Another special case is presented to us by the servocontrols. In

such an arrangement the displacement of a control constitutes the out-

put signal; it is a function of an input signal which can be either a

command given by the pilot; or the indication given by a detector of

pert1_bations.

In this last case, if one chooses x as input signal, the differ-

ence an existing between the instantaneous value n of a variable

and its steady-state value _ will be

/ 8n=n-_
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and if one adopts such a direction of deflection that the control imparts

to the airplane a moment which tends to reduce 5n, the arrangement real-

ized becomes an automatic pilot.

In the previous chapters we investigated the methods which give us

the response of the system for an input signal changing abruptly from

zero to a constant value. If the system is stable, this response is a

transient motion: namely the motion by which the system passes from the

position of initial equilibrium to the position of final equilibrium.

It will be of advantage to study the effect of an input signal equal

to unity.

We have remarked on the existence of Duhamel's integral which per-

mits calculation of the motion of the system caused by an input signal

constituting an arbitrary function of time, if one knows the response

to the abruptly applied unit signal.

There exists another means for studying the systems considered.

This means consists in determining the effect of an input signal, assumed

to be zero for t < 0 but constituting a sinusoidal function of time

for t > O:

x = xm sin _t

"When a system is subjected to such an excitation, a transient motion

is established at the beginning of the phenomenon, but it disappears

gradually, and the motion tends toward a steady state which is constituted

by a sinusoidal motion of the same period but different amplitude and

phase.

The system undergoes a forced oscillation, of the same period as

the excitation. This oscillation is the frequency response.

2. Calculation of the Frequency Response

Duhamel's integral is a general formula. Solved for a sufficiently

large time tb, it furnishes the characteristics of the steady motion.

Let us apply the method to the calculation of the frequency res-

ponse of an airplane subjected to a deflection _ varying according to

a sinusoidal law

: _m sin _t : f(t)

where _n represents the amplitude of the deflection, _ the circular

frequency of the excitation.
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Let us write the response 8u to the displacement

sinusoidal form

F(t) = Zku + ektAu sin(st + _) +

ek'tA'u sin(s't +_')

and Duhamel's integral in its form

5u b = f(O)F(tb) + f'(t b - t)F(t)dt

Since

sponding to a very large

with

_ = i in its

f(0) : 0, we obtain

fO tb t) EZku ZAuektsin(st + _dt5ub = _m - _ cos(tb - +

The only part of the integral of interest to us is the one corre-

tb

The solution of this integral appears in the appendix.

The calculations lead to an expression of the form

5u b = -(C sin _t b + D cos _tb)_m

C = mu + ZAu
_2c°s @u

k2 + (s + _)2

D=ZAu
s_ sin _u - km cos _u

k 2 + (s + _)2

The factors A and B which define the frequency response are functions:

(a) Of the circular frequency _ of the excitation

(b) Of the characteristics of the response of the airplane under

the effect of the deflection A_ = i, arplied abruptly.
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3. Complex Expression of the Frequency Response

The preceding method supposes that the characteristics Au, q_u,

s, and t of the response to the unit signal have been determined.

This calculation is lengthy and it requires especially the numerical

solution of the characteristic equation.

It is possible to determine the steady-state part of the response

in a more rapid manner, aside from Duhamel's integral.

Rb

F(t)

f(t)

Let be:

the response at the time tb

the response to the unit perturbation

a sinusoidal excitation

elmt _ e-lint

f(t) = _m sin _t : _m 2

The conventions usually agreed upon for the representation of

sinusoidal motions by rotating vectors permit writing symbolically:

sin _t = eimt

an expression which we shall utilize below. Besides, it would be suffi-

cient to make the calculation complete by using the two exponentials in

order to find the complete analytical expression of the result at which

we shall arrive.

Let us this time write Duhamei's integral as follows:

Rb = f(O)F t b

There follows necessarily

+_0 tb f' (t)F (tb-)dt

f(o): o

Let us temporarily omit the factor _m_ that is to say, let us

suppose an exciting motion of unit amplitude.

foRb = i_ei_tF (tb - t)dt
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Let us put

whence

t =t b -s

Let us replace t by s

We obtain

The integral

dt = -ds

tb - t = s

and take the new limits into account.

0

Rb--/tb- _ _ (tb-s);(s)ds

= ia_ imtb _0 tb e-imSF(s )ds

tb

ended within tb. (We concern ourselves on_th the steady-state
response.)

One has therefore

//Rb= ic_e_ e'_SF(s)ds

F(s) is, by definition_ the respo_e to the unit excitation.

Carson tr_sformation is

is zero because the transient motions are regarded as having

oo

_(P) = P/O e-PSF(s)ds

Let us replace p by im

_0 °°

_(i_) = i_ e-i_SF(s)ds

Its
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As a result,

Rb : e

and we see that the original of the steady-state part of the response

to a sinusoidal perturbation is obtained from the image of the response

to a unit perturbation, substituting im for the operator p_ and

multiplying by eimt.

This expression represents a sinusoidal motion of the frequency

and the complex amplitude q_(i_).

When the phenomenon investigated is represented by linear equations,

the image of the response is given by a quotient of polynomials in p.

By substitution of i_ for p one will find the complex smplitude_

that is to say, the magnitude and the phase displacement of the response.

This result is obtained by elementary calculations or constructions

which no longer necessitate the finding of the roots of the character-

istic equation.

Assume that one has to find the response

6u : x(t)

of an airplane (not provided with an automatic pilot) to a sinusoidal

excitation consisting:

of a motion, of amplitude _, of the elevator

or of variations, of amplitude n, in the entrained velocities of

the surrounding medium (atmospheric swell).

The response to an abrupt perturbation, in symbolic notation, is

of the form

:
z(p)

or

_(p ) = np H(p____)

z(p)

• according to whether it is a matter of the one or the other case.
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The minor H must be affected by the desired subscripts (see sec-

tion 12 of the previous chapter) and incorporates, if it takes place,
the constant factors.

In view of what was said above, the complex amplitude of the original

of the response is obtained by replacement of p by Im. It is written

is always of the form

_ or n ia_(i_)

Xn + iYn

x +iYd

where Xn, Yn, Xd, Yd are polynomials in _.

The amplitude or the modulus M of the response is

M : _/Xn2 + Yn2 : fl(_)

2 + Yd2

The phase displacement of the response with respect to the excita-

tion is

tg_x<) tg YdXd

An identical reasoning permits the calculation of the frequency

response of a linear automatic control system.

For command x = i, the symbolic response in z is

is the minor

a2

0

0

where H(p )

z(p)

@

bB+P

b3

0

C2

C3 +P

-I
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corresponding to the fourth term of the first line (fourth variable

calculated - unit action applied in the first equation only) in such

a manner that

z(p)

and the complex amplitude of the response is nothing else but Z(i_).

4. The Transfer Function

The expression H(p)/Z(p) = Y(p) in which one substitutes after-

wards p = i_ characterizes an oscillatory system which transforms an

input signal - the deflection of a control - into an output signal:

perturbation of one of the variables defining the motion of the airplane.

The expression Y(p) is called: "transfer function" by the

American authors, "admittance" by the French authors.

If the input signal were a perturbation of the surrounding medium,

one would have

y(p) _ pH(p)

Z(p)

The concept of transfer function is extended to the case of auto-

matic control mechanisms.

The inverse of the admittance

I(p)- 1
Y(p)

is the "impedance" of the system.

5- Graphical Representation of the Frequency Response

The characteristics of the system subjected to sinusoidal excitation

can be represented graphically, either by Cartesian diagrams giving the

amplitude and the phase displacement as functions of the excitation _,

or by a polar diagram.

In this last case, the locus of the frequency response is the locus

of the extremity of a vector the length of which is the ratio of the

amplitudes of the response to the command, and which forms with the

axis OX an angle representing the difference in phase. This locus is

graduated according to the values of the frequency.
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In order to trace it, it suffices to plot, on the plane of the

complex variable, the admittance function Y(im).

The curve of admittance, traced on the plane of the complex vari-

able, is actually nothing else but the curve of the frequency response,

in polar representation.

Any curve of this nature presents the following characteristics:

For _ = O, the angle _ is zero. There is no phase displacement;

the period of the input signal is so long that the system may be con-

sidered as being in a static state.

For _ = _, the curve passes through the origin which means that,

for an infinite frequency of excitation, the amplitude of the response

of the system is zero.

For intermediate frequencies, the response vector lags with respect

to the excitation.

One may visualize an inverse curve, called frequency-demand curve.

The locus of the frequency demand is the locus of the extremity of

a vector the length of which is the ratio of the amplitudes of the com-

mand to the response, and which forms with OX an angle which is the

difference in phase between the command and the response.

This locus is nothing else but the curve representing the impedance

in the plane of the complex variable.

The frequency-demand curve is deduced from the curve of response by

an inversion of the modulus i with respect to the origin_ and a symmetry

of the angles with respect to OX, with the demand leading the response.

When the demand vector is large_ the system requires a large exci-

tation in order to furnish a prescribed response.

Figure 45 represents the demand curve and the corresponding curve

of response.

The natural frequencies of the system are those where resonant

phenomena are produced which amplify the response. They correspond to

the parts of the curve for which the amplitude of the vector goes through

a maximum in a diagram of response, or through a minimum in a diagram

of demand.
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6. Equality of the Two Concepts

Knowledge of the transient motion of a system subjected to an abrupt

unit excitation, and knowledge of the frequency response of the system

realized in steady state by a sinusoidal excitation are equivalent.

The frequency response may be deduced from the response to the unit

excitation, by means of Duhamel's integral. Inversely, the transient

motion corresponding to the response to the unit excitation may be

deduced from the frequency response by a Fourier series.

Let us replace the step function, that is

f(t) = 0 for t < 0

f(t) = i for t > 0

by a periodic function formed by a series of impulses f(t) = i, of a

duration T/2 each, separated by equal intervals T/2 during which

f(t) = O.

The period T will be chosen sufficiently large that after a time

of application of the perturbation equal to T/2 the response to the

impulse differs from its final value only by a negligible quantity.

One replaces therefore the continuous impulse by successive impluses

each of which is applied for a sufficient length of time.

Any series of successive impulses may be represented by a series of

the type

)y = -_-[sin _t + _ sin 3 _t + _ sin _ _t + . .

when a symmetrical function with respect to the t-axis is involved.

A change of the origin gives immediately the Fourier series, repre-

senting steps the successive values of which are +i and O.

_I + in _t + _ sin 3 _t + _i sin 5 mt + . .v=2 5

The frequency _ of the fundamental harmonic is linked to the

period T (that is, to the duration of application T/2 of the excita-

tion) by

= 2_/T
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The function represented by the series approaches the alternative

unit function the more closely, the more one augments the number of

harmonics.

The response to the unit excitation will be obtained by picking out,

on the frequency-response diagram, the characteristics of the response

to each of the harmonics and by adding these partial responses, taking

the respective amplitudes into consideration.

7. Milliken's Experiments

The preceding material contains all the information which permits

calculation of the frequency response curves of airplanes subjected to

a sinusoidal excitation. If the input signal is a motion of the ele-

vator, one can calculate the frequency response curve for each of the

variables _, e, V as well as for the functions of these variables,

acceleration JZ or angular velocity q.

The given data to be utilized are those we have encountered in the

calculation of the dynamic lateral stability, but the solution of the

characteristic equation is not necessary.

Tests have been made in the United States, at the Cornell Laboratory,

for determining these curves in flight. Milliken applied, by means of

a convenient modification of the automatic pilot, an alternating deflec-

tion to the elevator and recorded the effectively applied deflection _,

as a function of time, and also the variation of the e, _, Jz con-

sidered as output signals.

We have plotted in a polar diagrsmthe result obtained by Milliken

for the ratio em/_m- The measurements were made by mesm_s of a twin-

engined B-25J light bomber. Certain tests have been made using the same

automatic pilot: the Sperry A12 at different flight velocities for the

airplane.

The curves found vary according to the speed of the airplane, that

is to say, according to its angle of attack. This is normal since the

aI . c3 which determine the response of the airplane depend on the

angle of attack.

Other tests have been made with successive use of different automatic

pilots (the Honeywell CI, Honeywell CIA , and Sperry AI2) but using the

airplane at the same condition of flight velocity.

These tests have led to curves differing among themselves; since the

pertinent known variables are the angle of trim e and the angle of
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deflection N actually applied, one may be surprised, at a first glance,

that the experimental results differ when the manner varies in which the

displacement of the control surface has been produced.

This fact is explained_ however_ when one examines the automatic

pilots used. Although one may hope that the Sperry will cause a more

or less sinusoidal deflection when one of the elements of adjustment

varies according to a specific law, this is not the case for the Honeywell.

This apparatus acts in an on-and-off manner and is not linear. The

deflection is controlled by a coupling which intermittently connects the

control surface with a driving motor rotating at constant speed. It is

obvious that such an apparatus is absolutely incapable of producing a

sinusoidal motion of the control surface. Besides, the recording dia-

gram of _ shows that the curve of variation in deflection is more

nearly saw-tooth than sinusoidal. Thus the motion of excitation contains

numerous harmonics, and the curve of the response is, under these con-

ditions, the response to a motion much more complex than a purely sinus-

oidal motion.

We do not pursue here the theoretical developments which Milliken

has given in his publications.

The calculation methods he used seem more primitive than those

which we recommend.

Miiliken introduced in his developments especially the hypothesis

of a constant V.

This means that he excluded systematically the influence of the

long-period oscillation.

This is compatible with the experiments made (since the tests were

carried out for an _ between i and 7 radians per second), but reduces

the generality of the conclusions.

The concept of frequency response applies also to the lateral motion

of the airplane, and tests aiming at the measurement of this character-

istic have been performed.

However, the results have not been published.

8. Automatic Control System Subjected to Sinusoidal Excitation

Let us again take up the investigation of automatic control systems

and seek for their response to a sinusoidal excitation.
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The arrangements for automatic control always contain an element
of return or of feedback, reproducing the response in z before the
indicator communicating the commandx to the apparatus.

For the apparatus studied in chapter XIV, the equality of the res-
ponse to the command(ultimately defined, except for a factor of propor-
tionality) is obtained because the slider 3 catching up with the slider 2
stops the control motor.

In fact, one subtracts the output z from the input commandx; the
amplification circuit and the servomotor are actuated by the difference
X - Z.

Any automatic control system containing a means of return:

(a) Constitutes a closed-loop system

(b) Maybe regarded as a system with negative feedback.

Let us note explicitly that such a device exists in the Sperry A3;

the displacement of the blocking device which is governed by a displace-

ment of the control surface reestablishes the equality of pressure on

the two faces of the membrane when the deflection _ has taken on the

value imposed as a function of e. In short, it is the kinematic llnk-

ages making up the connecting elements between the control surface and

the instrument case which determine the magnitude of 8q/Be = k.

We shall show in what follows that one can study the frequency res-

ponse and determine the transfer function of an automatic control system

which constitutes a closed-loop system in two different ways.

The first procedure consists in utilizing the system of equations

set up in chapter XIV, to send a sinusoidal input signal x_ and to find

the output signal z, either by calculating the transfer function of

the closed-loop system as it actually is, or by making experiments with

the system.

In the course of such an operation the amplifying circuit and the

servomotor should constantly function under the action of the difference

g = X - Z

Hence there results that there exists a second method of examination,

consisting in cutting off the feedback path by immobilizing the slider 3,

in sending to the mecahnism - by the displacement of the slider 2 - the

totality of an independent sinusoidal signal c, and in calculating or

observing the response z of the system thus simplified.
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This amounts to putting

d I = 0

into the system of equations and calculating z as a function of an

input signal e.

The system with the feedback path cut off will henceforward be

called open system.

Study of the closed-loop system with negative feedback and study

of the open system are equivalent since well-defined relations exist

between the curve of frequency response z/x of the closed-loop system

and the curve of response z/¢ of the open system.

9. Relations Between the Curves of Response for the

Open and for the Closed-Loop Systems

The definition

E =X- Z

leads to

or

z z/c
x 1 + z/e

X £
- + i

Z Z

In many cases the transfer function of the open system can be deter-

mined more easily than that of the original closed-loop system.

Once one has plotted the curve of frequency response or transfer

function of the open system, one can deduce from it the principal proper-

ties of the transfer function of the corresponding closed-loop system.

When the transfer function of the open system assumed to be known:

z XN + iYN

e XD + iyD



281

where XN, YN, XD and YD are functions of _ - has been plotted

on the plane of the complex variable, one determines immediately the

iocl of the points representing the same modulus z/x or the same phase

displacement _. These loci are, by definition, concentric circles

around the origin, or radii issuing from the origin.

The simplicity of the relations existing between z/e and z/x

permits the prediction that it will be possible to deduce, from the

curve of the transfer function of the open system, certain properties

of the corresponding closed-loop system.

One sees immediately that, if there exists a frequency for which

the curve of response of the open system passes through the point -1,

one has

Z/6 =-i

which entails

z/x =

z/x=O

An input signal of this frequency and of the amplitude zero excites

the closed-loop system and induces a response of finite amplitude. This

me_us that the closed-loop system becomes capable of free oscillation,

at a particular frequency, and indicates to us the possibility of finding

a criterion of stability of the closed-loop system according to the posi-

tion of the curve of response of the open system, with respect to the

point -1.

On the other hand, one may put into the complex plane serving for

the representation of the response z/e of the open system graduations

useful for the evaluation of the properties of the response z/x of

the corresponding closed-loop system.

In order to determine the loci of the same modulus z/x, let us

consider a vector V = z/e issuing from the origin, and a vector

V 1 = z/e + 1 issuing from the point 1.

The loci where these vectors terminate when their lengths are in

constant ratios M = V/V1, make up series of circles the centers of

which lie on the axis of the abscissas. This grid indicates, by its

intersections with the transfer function of the open system, the modulus

of the function of the closed-loop system.
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Analogously, the phase displacement of the curve of response of the

closed-loop system is given by the loci of equal phase displacement trans-

ferred to figure 50.

lO. Relations Between the Curves of Requirement for the

Open and for the Closed-Loop Systems

The demand curves have particular properties.

From

x E
- + 1

Z Z

one deduces that the vector expressing the demand of the closed-loop

system is equal to the demand vector of the open system (for the same

frequency) increased by 1.

This means that the demand vector of the closed-loop system starts

from the point -1, to end at the point of the demand curve of the open

system corresponding to the frequency considered.

The point -1 then is the center of the circles of the same modulus,

and the origin of radii of the same phase displacement.

The stability of the closed-loop system becomes critical when there

exists a frequency for which the demand vector has zero length, that is,

when the demand curve of the open system passes through -1.

This confirms the previous results_ because it results from the

definitions of the curves of demand and of response that -- if one of

them passes through the point -1 -- the other one does the same.
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CHAPTER XX

1. Combination of Several Oscillating Systems by the Method

of Frequency Response

The methods used in chapters XVandXVIpermit the study of the

effect exerted on the motion of an airplane by an apparatus for auto-

matic flight control actlngwlthout lag or inertia. These methods make

it possible to determine the type of stabilizer one can advantageously

use if one wants to control the flight path; they show to what extent

the law of piloting to be achieved by the automatic apparatus depends

on the characteristics of the airplane.

If one wants to take the real operational characteristics of the

automatic control system into account, as they are defined in chapter XVI,

one must combine the system of equations of the automatic control with

that of the pilot.

Determination of the motions corresponding to abrupt perturbations,

that is, to transient conditions, by the methods of classical mechanics

becomes impossible because of the complexity of the calculations.

In contrast, investigation of the frequency response remains possible

since it is easy to combine the conclusions of the study of the frequency

response of the airplane with the conclusions of the study of the frequency

response of the automatic control and to determine the frequency response

of the combination - without having to combine, in the course of the cal-

culations, the two sets of parameters among themselves.

2. Oscillating Systems Placed In Series

Let us imagine a chain formed of several open systems, placed in

series and controlling one another, and set up in _,uch a manner that the

functioning of any one system does not affect the functioning of the

preceding system.

The transfer function of the total systemwill be the product of

the transfer functions of the partial systems.

One can plot the curve of response of the total system by finding

points at equal frequency _ on the curves of response of the partial

systems, by multiplying the corresponding vectors according to the rule

of multiplication of imaginary quantities and then joining the points

thus obtained.

The demand curve of a system formed by several systems in series

will be obtained by multiplication of the vectors corresponding to

points of equal frequency.
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These properties are obvious and do not require any demonstration.

The only restriction results from the rule: the functioning of any

one system must not have any effect on the functioning of the preceding

system.

3. The Criterion of Nyquist

The considerations of section 9 of the preceding chapter show that

the frequency-response characteristics of a closed-loop system are related

to the response characteristics of the same system considered as an open

system.

The frequency response of a system containing several elementary

systems in series, on the other hand, is obtained by forming the product

of the responses of the elementary systems.

Thus one observes that here appears a possibility of treating

complex systems by relatively simple methods.

It is, especially, possible to determine whether or not a closed-

loop system is stable or not by examining the position of the response

curve of the corresponding open system, with respect to the point -I if

the output signal is subtracted from the input signal, with respect to

the point +I if the output signal is added to the input signal.

In the case of negative feedback (output signal subtracted from the

input signal) the passing through the point -1 of the curve characterizing

the open system indicates a finite response for an input zero. It con-

stitutes therefore the boundary between stability and instability. The

only question which remains to be determined is, on which side are found

stability and _ instability.

The criterion of Nyquist answers this question.

Let R(p) be the transfer function connecting an output signal

with the input signal x:

z = R(p)x

where p is a complex variable.

To a value zero of x there corresponds a nonzero value of z when

R(p) is infinite.

The corresponding values of p are the poles of the analytical

function R.
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Instability of the system is produced if the real part of one or

several poles is positive; in contrast, stability is attained when none

of the poles of the function has a positive real part - in other words,

when not any one value of p represented on the plane of the complex

variable by a point situated on the right half-plane constitutes a pole
of the function R.

In a system called a system with localized (lumped) constants we
have

R(p) =

where H and Z are polynomials in p.

The stability condition is that Z(p) must not have a zero situated

to the right of the imaginary axis.

A theorem of Cauchy gives us an indication regarding the number of

zeros and poles of an analytical function, contained in a particular

region of the plane.

Let us consider, on the plane of the variable p, a contour C.

Let (F(p)) be an analytical function which does not present either zeros

or poles on the contour C.

Let us carry out a conformal transformation defined by

P = F(p)

This transformation permits us to plot in the plane of the vari-

able P a curve £ which is the transformation of C.

Let N be the number of revolutions of the curve £ around the

origin of the plane P when the point p describes the contour C.

The theorem of Cauchy states that this number N is equal to the

difference K - Q between the number K of zeros and the number Q of

poles of the function F(p) inside the contour C:

N=K-Q

As a result, we can - if we know the number of poles K of the

function F(p) within the contour C - determine the number Q of

zeros inside this contour by inspection of the curve F.

• Let us apply this theorem to the problem we are interested in.
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Let us take as the contour C, in the plane p, the contour sepa-

rating the entire right part of the half-plane, that is to say, the

imaginary axis from -_i to +_i and a circular arc of infinite radius

joining, through the right part of the plane, the two extremities of the

imaginary axis.

The transformation of this contour by the function

P = F(p)

gives us:

(a) For the upper part of the imaginary axis, the curve F(i_) for

variable between 0 and _;

(b) For the lower part of the imaginary axis the curve symmetrical

to the precedincone;

(c) For the circle passing through infinity, circles situated at

infinity.

Let us apply this theorem to a system the transfer function of
which is

R1
Z = X

i+ R 1

that is, to a closed-loop system, with negative feedback where R1 is

the transfer function of the corresponding open system.

Let us examine the function R1 + I. Let K be its number of zeros,

and Q the number of poles.

The number of poles of the function R1 + 1 situated in a closed

contour is necessarily the same as the number of poles of the function

El. Q represents therefore likewise the number of poles of the func-

tion R1 inside the contour considered.

If the system R1 is stable, Q = 0 for the visualized contour

enclosing the right half of the p-plane.

The number of zeros of the function i + R I is then equal to the

number of turns about the origin of the transformed F defined by

P = 1 + Rl(P)



287

0000

bOO0

PO000

or also to the number of turns around the point -1 of the transformation

defined by

p = Rl(p)

Therefore one must draw on the complex plane of the variable P

this transformation of the contour enclosing the right half of the

p-plane defined above. This transformation is a closed curve the number

of turns of which around the point -I is counted.

Since the system R1 (open) is supposed to be stable, the corre-

sponding closed-loop system is stable if the curve F does not encircle

the point -1.

This closed curve £ comprises a branch which is nothing else but

the transfer function R (i_), a branch symmetrical with respect to the

axis and, ultimately, circles, or parts of a circle of infinite radius.

If the open system is made up of several oscillators placed in

series, R 1 is the product of the transfer functions of the elements.

It may occur that one of these elements is unstable, that is, presents

a pole in the right part of the plane. The condition of stability of

the corresponding closed-loop system will then be that the transforma-

tion of R1 must encircle once the point -1.

The relation which makes the stability of a closed-loop system

depend on the position of the point -1 with respect to a closed curve

plotted, starting from the transfer function of the open system, con-

stitutes Nyquist's criterion.

o

4. Application to Systems of Automatic Pilot and Airplane

The systems formed by an airplane and an automatic pilot constitute

systems with negative feedback. Their study constitutes a simple

extension of that of a simple automatic control system.

Let us examine a series of cases of increasing complexity.

A. Simple automatic control system with negative feedback.- Let

us take up again the linear automatic control studied in chapter XIX.

Let x be the input

z the output

We have shown before that the apparatus is actually sensitive to

the difference e = x - z owing to a device which subtracts the output

signal from the input signal.
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The airplane constitutes a first oscillating system. When it is

subjected to a sinusoidal deflection, it transformsthis input signal

and furnishes four output signals 5u, 5w, 5q, Be.

The automatic pilot is a second oscillator. It transforms any input

signal received into a deflection _. It is fed by the discriminator
which adds:

(a) The independent input signals Xl, produced by the pilot by

means of the device 3

(b) One of the output signals of the airplane, with the sign changed,
for instance

x e = -e

Under these conditions, the input signal to the oscillator 2 is

X =X. - e
1

The airplane (oscillator i) carries out the operations

8 = RI_ _ = DIS

The automatic pilot (oscillator 2) gives

The total motion for the characteristics of which we are actually

seeking is that produced by the independent excitation xi

8 = Rtx i xi = Dte

The relation

may be written

= R2(x i - e)

DIe = R2Dt8 - R28
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which gives, by means of several transformations

R2D t = D1 + R2

R21Rt : Dz + R2

R_

R2 R1R 2

D I + R 2 i + RIR 2

and likewise

Dt = DID 2 + i

Let us examine the principles of operation of the system. In fact,

we have simply formed - with respect to the quantities x i and 8 - a

closed-loop control system with negative sensitivity but where two

elements - the systems 2 and i - are placed in series.

We again find the expression of the characteristics of the closed-

loop system as a function of those of the open system which one would

obtain by cutting the feedback path, the response of the said open system

being determined by the product of the responses RIR 2 of two elements

placed in series.

The graphical criterion of stability will consist in tracing the

curve of the product RIR 2 and in examining the position of the point -1

with respect to this curve.

In figure 55 the curves R I and R 2 have been plotted. The

critical frequency corresponding to the appearance of steady oscillations

is the one for which RIR 2 = -i or DID 2 = -I.

We state here the well-founded practical rule which permits esti-

mation of the stability of closed-loop systems. This rule consists in

cutting the loop at any point whatsoever and in constructing, by forming

the product of the two functions RIR2, the transfer function of the open

system containing the two elements placed in series.

C. Airplane equipped with an automatic pilot and an independent

control which acts after the output of the automatic pilot.- Let there

be a combination comprising:

• (i) An airplane
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(2) An automatic pilot

(3) An independent control system acting after the output of the

automatic pilot

The schematic diagram is given by figure 56.

The airplane plays the same role as in the preceding case.

The automatic pilot receives only one single excitation: one of

the output signals of the airplane; it transforms this excitation into

a motion of deflectionwhich we shall call _p if the variable of refer-

ence is the angle of trim e.

The independent control acts between the output of the automatic

pilot and the control surface. Let us represent it by xi.

If the control is accomplished by a connecting rod, one may for

instance suppose an eccentric inserted into the rod, linking the auto-

matic pilot to the control mechanism.

= _p + x i

The automatic pilot produces

_p = R2(-e ) -e = D2_ p

The airplane produces

e = RI_ _ = Die

and the response of the combination with respect to the independent

control is

e = Rtx i xi = Dte

A calculation analogous to the preceding one gives

and

RI
Rt =

i + RIR 2

DID 2 + i

D t = D I + R2 = _ D2
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The expression of the response to an independent external control

is different from the preceding one, but the stability condition of the

system (flight of the airplane under action of the automatic pilot alone,

without any action exerted on the independent control, is the same as in

the previous case.

D. Airplane equipped with an automatic pilot which is a function of

two variables and an independent control.- Likewise, we shall distinguish

two cases, according to whether the independent control acts before the

automatic pilot or after it.

The airplane constitutes always an oscillating system under the

action of a simusoidal deflection of the control surface, but two of

the output signals, for instance 8 and V, are utilized by the auto-

matic pilot after having been changed in sign.

Figure 57 represents the schemetic diagram; the airplane forms the

oscillator system No. l, the automatic pilot constitutes the oscillator

No. 2.

(a) Let us suppose that the _-; .... _ -_+_l _ _l_ b_fore

the automatic pilot.

The automatic pilot receives:

x i and transforms this signal into _ = Rxx i

8 and transforms this signal into _ = -R2e

V and transforms this signal into _ = -R'2V

so that _ = Rxx i - R2e - R'2V

Since we have for the system 1

and for the total system

@ = RIN _ = DIe

V = R'IN _ = DIV

@ = Etx i x i = Dt8

V = R'tx i xi = D'tV



295

D@@O

O0

@OIP

we may write

R' t
D1 = DtR x - R2 - R'

D' I = D' R - R2 R't R'
tx _--- 2

which leads us, after all calculations have been made, to

RIRx

1 + RIR 2 + R'lR' 2

R !

t

R'iRx

1 + RIR 2 + R'IR' 2

When the denominator is zero, there is a frequency at which the

airplane can oscillate freely. Hence one sees that the passing through

t_ _ R,l_,2)the point -i of the curve _nln 2 + __ +_ _+_]_+.v

To express the demand curves, let us agree to write

xi = Dx_]

= -D2_]

V = -D'2_

One then has

/i + D_Do + D'_D

Dt = DxDI_ DID2_+_D,ID,_ '2>.

(i +DID2 + D'ID'2)D' 1 = DxD' 1 DID2 + D'ID' 2

The output signals of the airplane are therefore

u = RAN + RBW e

8 = RC_ + RDW e
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(b) If the independent control acts after the automatic pilot

(fig. 58), everything occurs as though D x and Rx are equal to unity.

Thus it is sufficient to make the substitution in the preceding

formulas.

Remark: We have examined a general case_ we have supposed that the

stabilizer treats the two signals received @ and V differently and

transforms them with ratios R2 and R' 2 differing by the modulus and

the phase difference.

If the two signals are added up, before being applied to the auto-

matic pilot, they will both be transformed in the same ratio R2. One

may achieve such an operation by introducing a purely numerical factor k

which takes account of the fact that the scales with which one measures

1R'2the V and the 8 are different, and by replacing RIR 2 + R' by

(RI + kR'I)R 2.

Y-me co_respondLng _aphica! constructioo is evident.

E. Response of an airplane equipped with an automatic pilot to

external perturbations.- So far, we have studied the response of the

airplane to the action of an independent control.

This concept is somewhat artificial. It had the advantage of leading

to cases which get progressively farther away from the simplest case -

elementary automatic-control mechanism - and of facilitating the argument.

The essential point does not consist, in general, in an investigation

of how the airplane responds to a sinusoidal excitation of an independent

control but, on the contrary, in making sure that, in the absence of any

independent control, the airplane's motion will be stable.

The stability condition follows readily from the argument. In the

determination of this condition, the manner in which the control acts

loses all significance: the stability condition is the same whatever

may be the location of the chain where the action of the control is

applied.

We shall show that the same arguments permit study of the reactions

of an airplane equipped with an automatic pilot under the effect of

external perturbation, for instance, gusts, assumed to be applied according
to a sinusoidal law.

Let us imagine an airplane subjected simultaneously to two excitations:

An excitation due to the sinusoidal displacement N of the elevator
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An excitation due to sinusoidal perturbations, of amplitude We,

of the entrained velocity of the surrounding medium.

By hypothesis, the airplane is provided with a device for automatic

piloting sensitive to the angle of trim e. Figure 59 gives the basic

diagram of the system considered.

The airplane constitutes the system i. It reacts differently under

the action of the input signals _ and w e .

Under the effect of each of these input signals, the system furnishes

four output signals u, w or m, e, and q. It is therefore charac-

terized by eight transfer functions which we can calculate by the previ-

ously established methods.

Of these eight transfer functions, there are four of interest to us,

in the problem studied. We should represent the responses by R with a

first subscript 1 to indicate that it applies to the system 1 airplane,

and with supplementary subscripts indicating which is the variable of

interest for the response and which the variable considered for the
excitation.

We shall use a simplification by adopting a less systematic notation

and agreeing that:

RA constitutes the response in u to an excitation in

RB constitutes the response in u to an excitation in w e

RC constitutes the response in 0 to an excitation in

RD constitutes the response in 0 to an excitation in w e

The automatic pilot constitutes the system 2 and is determined by

= -R2e or e = -D2h

Let us replace e in the preceding equation, and obtain

-o2u = RCU + Rowe

Let us eliminate _, taking u into account; we obtain

= i + 2 j e
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which constitutes the expression of the total response in u to an

external excitation we.

Since Rc is the same quantity which we have called RI in the

problems B and C, we state that we find again the same stability con-

dition which was to be foreseen: the stability condition, deduced from

the expression of the response to an external perturbation must be inde-

pendent of the variable, the variation of which constitutes the response,
and of the perturbation considered.

The total transfer function sought, response in u to an excitation

in We, will be calculable if one knows the curve of the frequency response

of the automatic pilot and the frequency responses RA . . . RD of the

airplane. The latter are calculable and given by

cV h3 H_,l(i_)RA : 7 z(i_)

(i_)H2,1(i_)

RB : z(i_)

cv H3,4(i_)
RC :_3 z(i_)

(im)H2,4 (im)

RD: zii_)

The curve representing the frequency response of the complete system

can therefore be plotted, each point being obtained by calculating, for

the value of _ considered, the different polynomials, and graphically

carrying out the construction.

Remark: In the theoretical case of an automatic pilot which does

not introduce any phase displacement, R2 is reduced to the constant -k.

Inserting this value R2 = -k into

R
x

i + RcR 2
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and replacing RA . . . RD by the expressions given above, one obtains

cv - ] 1
R = (i_)w e

r2 hsHs,4 Z(i_)

This formula corresponds exactly to the expressions found in sec-

tion 12 of chapter XVIII, with p being replaced by i_.

In the case of the motion 5u, produced by a perturbation 5w, with

an automatic pilot senstive to 58 but acting without inertia or lag,

the symbolic response is in fact

(p) + k[%(p)74 (p) - 71(p)% (p)]71
(p)

I -_4(p)

and since

cV H3,1(P) _I P (Sw_oH22 I(P)
q_l = r-_ h3 Z (p) = Z (p)

: cv E3,1(P)
_4 _ h3 74 = P(SW)o H3'4(P)z(p) z(p)

onm would have

cvh3[H3,1(p) (p)E3,4(p 1H2,1(P)+ k 7 H2,4(p)-_2,1 z2(p)
(p) : p(Sw)0

1- [k r_2 h3H3,4(p _ 1

a symbolic expression which permits passing to the frequency response by

substitution of i_ for p.

5- Recapitulation of the Principles

For any transient state, the properties of a system are, in fact,

completely described if one analyzes the phenomena for the sinusoidal
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steady states at all frequencies contained between zero and infinity,

and the method of the frequency response leads thus to the investi-

gation of the motion of airplanes in the cases that are insolvable

by the classical methods.

There exists equivalence between the curve of frequency response

and the curve giving the response under a unit action. We have seen

how one can go from one to the other.

If one is content with finding out whether a system is stable, the

criterion of Nyquist furnishes quickly an answer to the question.

The method of frequency response offers advantages which the clas-

sical method does not possess, because it permits:

(a) Analysis of the action of every parameter of the system sepa,

rarely, on the resultant behavior of the whole

(b) Determination of the performances ofthe mechanism, even if it

is very complicated

(c) Eventual experimental study of certain elements of the mechanism

defying calculation, and introduction of the experimental result into the

theoretical calculation of the combined system by graphical method

(d) Guidance in the search for the modifications which would be

recognized as necessary for improvement of an existing system thanks to

the possibility of representing the effect of the elementary mechanisms

by graphical methods.

6. Use of the Oscillating Table

If an element of a chain seems to defy calculation, one may consider

to determine from it experimentally the transfer function.

This procedure is especially suitable for elements the functioning

of which presents numerous causes of nonlinearity.

The Sperry AS, for instance, is in this case. It is not certain

that the difference in pressure acting on the membrane controlling the

distributor will be rigorously proportional to the angular displacement

of the _roscope.

It is doubtful that the displacement of the slide valve constituting

the distributor will be rigorously proportional to the pressure difference

acting on the membrane.
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Finally, it is almost certain that the force applied to the piston

of the servomotor will not be proportional to the displacement of the

distributor. As soon as one port is uncovered by the distributor, there

is actually a tendency for a pressure on the piston to establish itself

which is equal to the pressure given by the oil pump, reduced by the

pressure loss in traversing the passageway; the resulting pressure is

certainly not proportional to the displacement of the slide valve.

But if it is not possible, due to the nonlinearity of the system,

to calc1_late with certainty its curve of frequency response, there exists

always a possibility of determining this curve experimentally.

In practice, one may actually subject the detecting organ, in the

laboratory, to a sinusoidal excitation, apply to the output of the servo-

motor a return moment varying according to the same law as the hinge

moment, and record simultaneously the excitation and the response for an

entire range of frequencies.

For an apparatus sensitive to the angle of trim, such as Sperry A3,

it is sufficient to place the detector on a table the inclination of

which may vary sinusoidally at increasing frequency.

For a linear system, the curve of response is independent of the

amplitude of the excitations because an essential characteristic of the

linearity is a rigorous proportionality between the excitation and the

response.

Repeating the experiment for different amplitudes of the excitation,

one will see from the spread of the curves of unit response what is the

effect of the nonlinearity.

We have not yet the possibility of performing such tests but we hope

to have it shortly.

7. Interposition of Filters or of Amplifiers in the

Case of Electric Controls

Since the transfer function of a chain of elements is equal to the

product of the transfer functions of the elements when none of the latter

reacts on any of the preceding ones, there exist possibilities of trans-

forming the curve of response by introducing into the chain filters or

amplifiers which act on certain frequencies.

Let us take up again the diagram of the linear control of chapter XIV.

Let us suppose the feedback path to be cut, so that

" dI = 0
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The transfer function z/x may be written with separate considera-

cion of the component systems

z=z ill

x ii i x

It is clear that the interposition of filters or amplifiers permits,

for harmonic state, modification of the transfer function il/i , and

improvement of the curve of total response if the latter possesses unde-

sirable characteristics for certain values of the frequency.

8. The Frequencies

At a first glance, one may object that the natural frequencies of

the automatic pilot and of the airplane are sufficiently distant from

each other that the combination of the characteristics of the two systems
is not necessary.

We believe this objection to be unfounded because it is always useful

to verify, at the price of a few hours of calculation, that a theoretically
possible resonance is not produced.

There are so many examples of accidents that have happened in all

branches of mechanics, because a possible resonance had been neglected,

that one cannot possibly say that application of the calculation methods

developed above is not useful.

We have indicated that the oscillatory characteristics of servo-

controls can be modified by electric filters. The combinations of con-

densers, inductances, etc. generally produce an effect on frequencies

which are very high from the standpoint of the designer and hardly of
interest to him.

However, instruments have been created which modify the response of

electric circuits with large lags - that is, which act efficiently at
very low frequencies. They are the "chronotrons."

Such an apparatus is a Wheatstone bridge where the resistances placed

in the arms are subjected to the action of heating resistances through

which run the currents to be manipulated.

Due to the thermic inertia, the effects of the currents sent through

the heating resistances are manifested, in the circuits constituting the

bridge, with lags to be expressed in seconds, and it is thus possible to

add effects of small period to the input currents.
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In view of such possibilities, knowledge of complete investigation

methods seems indispensable.

9. Various Consequences of the Preceding Considerations

A. Theoretical case.- In chapters XV and XVI we made the assumption

that the deflection of the control surface took place by means of mech-

anisms without inertia. This amounts to supposing that the transforma-

tion R2, achieved by the automatic pilot takes place, in the case of

harmonic excitation, with a phase displacement continuously zero whatever

the pulsation frequency e may be. One may again plot the curve RIR2,

but this curve is nothing else but the curve R1 all vectors of which

are multiplied by a constant.

This leads immediately to an interesting conclusion.

The airplane possesses as many curves of response or transfer func-

tions as the number of output variables considered.

If one of these curves looks as indicated in b on figure 60, we

are certain that, by addition of a device for automatic piloting which

is a function of the variable considered and has negative feedback, we

shall arrive at instability, if we choose a sufficientlY high sensitivity

factor.

In fact, since the phase angle of the product EiR 2 is never changed,

there will always arrive a moment where the curve RIB 2 will pass through

-i when the constant factor R2 attains a sufficient magnitude. This

does not occur if RI corresponds to a curve such as a.

By subtraction of output or negative feedback we stipulate a device

such that:

A positive Ae (nose-down) makes the airplane nose up

A positive Aq (nose-down acceleration) makes the airplane nose up

A positive Au makes the airplane nose up

A positive 2_, that is, a negative _w, makes the airplane nose down.

The directions of action described above are those we have visualized,

in chapter XIV, as standard directions.
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If we have a piloting apparatus the action of which is inversed,

that is, if we operate by adding or reinjecting at the input a part of

the output, we have a system of positive feedback.

The stability condition will be no longer determined by the posi-

tion of the curve RIR 2 with respect to the point -I, but with respect

to the point +I. One can easily verify that mechanisms of this type

will lead to instability when their sensitivity becomes sufficient.

B. Case of a constant la_ in the functionin_ of the stabilizer.- If

we suppose that the automatic pilot acts with a constant lag, this lag

corresponds to an angular increment of the response R2, increasing with

the pulsation frequency.

In the application of the graphical criterion of stability one sees

that this operation could lead the extremity of the vector produced to

describe a curve surrounding the point -I, if, at high frequencies, the

modulus of the vector R2 is not very small.

C. Airplane equipped with an automatic control which is a function

of the derivative of one of the output signals of the airplane.- It is

possible to study the harmonic motion of an airplane equipped with an

automatic pilot that is a function of the derivative of one of the out-

put signals of the airplane.

Let RI be the function defining the fundamental output signal,

for instance V, under the action of the input signal _. We suppose

that the automatic pilot is excited by the derivative dV/dt. R 2 is

the function defining the output _ under the action of dV/dt.

The response RI in V can be calculated and plotted. There

corresponds a vector to each frequency _. However, the transformation

defined by R 2 is to be applied not to this vector but to its derivative.

One must therefore proceed, first, to carry out the differentiation

of this vector - an operation which is carried out by multiplying the

modulus of the vector by _ and by displacing it forward in phase by

_/2. This operation must be carried out on each of the vectors repre-

senting V, before performing the multiplication by each of the vectors

R 2 of the same frequency.

One has therefore plotted the locus of the product
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and the stability of the system will be indicated by the position of

this curve with respect to t_e point -i.

One sees immediately that this operation can contribute to deviating

the curve from the region occupied by the point -i.

We investigated in section 4, D, the functioning of the control

actuated by the indication of two variables. It is evident that one of

the two may be the derivative of the other and that_ instead of detecting

it, one may produce it by means of a differentiator.

D. Airplane equipped with an automatic control that is a function

of the integral of one of the output signals of the airplane.- Let RI,

R' be the functions defining the various output signals of the
i'

airplane, for instance, in the case of the lateral motion, the angles _

and _.

We suppose that the automatic pilot is sensitive to the distance y

between the actual flight path and a required flight path. R2 is the

function defining the output _ under the action of y. When the required

trajectory is obtained through radio alinements, the deviation with respect

to the latter can be measured on board of the airplane by means of receivers.

On the other hand, we can calculate this deviation as a function of

the intrinsic variables of the motion.

Since

dy = V(# + _)dt

f

y = /v(# +  )at
J

where # and _ are sinusoidal functions of the pulsation m. Thus

we find that for any pulsation m the output vector y is nothing else

but the integral of the sum of the vectors # and _, multiplied by V.

The integral of a rotating vector is obtained by multiplying the

modulus by i/m and by shifting its phase backward by _/2.

We can therefore construct the vector y for any pulsation m.

Plotting the curve RIR 2 consists in finding the locus of the pro-

duct of this vector y and the vector defining the response R 2.

One finds immediately that this construction always approaches this

locus in the region of the plane occupied by the point -I.
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The automatic landing depends, above all, on the possibility of

producing and of detecting, on board the airplane, beams which occupy

a position invariable with respect to the ground.

It is known that these beams undergo distortions which up to now

have been incompletely explained.

The first point to be improved is the stability of the beam, and

this problem depends solely on the technique of radio communications.

The airborne detection seems more certain than the production of

the beam; here also the problem depends on radio technique.

However, once these problems have been solved, the investigation of

the motion of the airplane must be made by combining all preceding factors.

Complete knowledge of the reactions of the airplane under all circumstances

is, of course, indispensable.

We want to stress a remark made in chapter XVII. In proportion as

the airplane approaches the transmitter, the effect is as though the sensi-

tivity of the automatic pilot increased.

But in setting up the equations, one introduces this sensitivity

by a factor which must remain constant.

As a result it will be necessary to investigate the reactions of

the airplane for a series of different values of the sensitivity factor,

corresponding to different distances of the airplane with respect to the

transmitter.

One may represent on the same diagram the transfer function of the

open system for different values of this parameter. One then finds that

the corresponding curves approach the point -i in proportion as the air-

plane approaches the transmitter.

ii. Conclusions

The investigation of the automatic piloting of airplanes by the

method of sinusoidal oscillations is a particular application of the

investigation methods of servo-mechanisms, established in the United

States during the war and developed very rapidly to a degree of high

perfection.

This method is much more powerful than the classical method; it

permits the study of complicated schemes of operation without leading

to inextricable calculations, but it presents its conclusions in the

form of curves called, according to the authors:
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curves of frequency response

transfer functions

locus of admittance or locus of impedance

the interpretation of which is not always immediately possible.

We have shown that, fundamentally, the transfer function contains

all elements necessary for knowledge of the motions of the system since

the elements which it defines, introduced in a Fourier series, permit

construction of the response to a unit impulse.

We have indicated that knowledge of the transfer function permits

the utilization of a criterion of stability in a simple application.

We have also attempted to show in the present report that these new

methods could be deduced from the classical theory by considerations

which constitute a transposition into the mechanical domain Of calcula-

tion methods used by electrical engineers.

The present report does not yet contain any application of these

methods to the solution of particular problems, to the study of frequencies

of resonance, to the study of better combinations, etc. We hope, however,

to have convinced the reader that these new methods make a complete inves-

tigation of the automatic flight control of airplanes possible, and to have

communicated to him our certainty that, thanks to them, all arising problems

will be solved.

Translated by Mary L. Mahler

National Advisory Committee

for Aeronautics
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In sections 9 and ii of chapter III, we introduced a factor n'

which permits expressing dT/dT when the rotational speed of a propeller

of constant pitch varies with the speed of the airplane as a result of

changes in the resisting moment.

One has, by definition

Q = kQpn2D 9

whence

Q
oD3n_ 4 oDS_

Passing to logarithms:

log kQ = log K + 2 log 7 - 2 log V

log _ : ½ logkQ + log v + c

1
d log 7 = _ d log kQ + d log V

or

d log V i d log kQ
+ --

d log 7 2 d log 7

dV 7 + i d log kQ = 1
V d 7 2 d log

-i

1

i d log kQ
i+

2 d log 7

Representing, by means of logarithmic scales, the curve of the kQ

as a function of 7, one can find the absolute slope of the curve and

thus determine

d log kQ
= S

d log 7
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The curve of the log kQ is - except for one constant - identical

with the curve of the log k s.

One may therefore utilize the well-known logarithmic power curves

for the determination of s.

One obtains

dy Z 2 n' Z
dV V 2 + s V

whence

n | ___ m

2

2+ s

It suffices to measure the absolute slope of the logarithmic charac-

teristic of the propeller to find n'.
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APPENDIX II

The solution

5u = Clexlt + C2 ex2t + C3eX3t + C4e x4t

Bw = Z1Olexlt + Z2C2eX2t + Z3C3e x3t + %4C4e x4t

etc., can be transformed into

5U = ektAu sin(st + _u) + ek'tA'u sin(s't + qg'u)

ktA w (st + ek'5w = e sin _w) + tA' w sin(s't + _ w)

etc.

Since the roots Xl, 2 are conjugate imaginaries, the factors _i

and Z2, ml and m2, etc., also are conjugate imaginaries.

Let us write

= + L2i m I = M I + M2i

Z2 = LI - L2i m2 = M I - M2i

The integration constants which one determines by identifying the

5u for t = 0, with the initial conditions determining the kind of case

studied, also are conjugate imaginaries.

Let us write

CI = A+ Bi

C2 = A - Bi

The transformation of the solution in exponential form to the solu-

tion in sinusoidal form then takes place by means of the following

transformations:
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= ekt [(_ + _2C2)cos st + i(,_lCl + z2C2) sin st_ZlCI exlt + Z2C2 ex2t ICI

= ekt[12ALl _ 2BL2)cos st - i(2AL2 + 2BL1)sin st_

__. ektAw sin (st + _w)

with

sin q_w = Aw

cos _w = Aw

For the solution in 5u where the constants Cl . . . C4 are not

multiplied by any of the factors _I " . n4, one obtains quite simply

#.a = 2 _2 + B2

2A

sin q_u = A-_

2B

cos _u Au
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APPENDIX III

One calculates

yO tb 0o(tb t_.[Au + Ze ktA sin(st + _)]dt5u = + _m _ cos - u
/

for very large tb and negative k_ according to hypothesis.

Let us calculate successively

t b

+AUnm /
_0

cos _(t b - t)dt

i-tb zekteos c0(tb - t)sin(st - _)dt
et_m_ J 0

For the first integral

f tb

Jo

i tb

cos _(t b - t)dt = cos 6otbJO

tbJ
cos _t dt + sin _tb/ sin _t dt

JO

cos O_b l_in _j tb tb= + sin _t b _[-cos _t]
0 0

= i_ cos _tb sin _t b - i sin _tb cos _tb + i_ sin _t b
6O 60 6O

= i sin _t b
6O

The first integral gives therefore

+NmAu sin 6orb

For the second integral, we shall calculate one of the terms of X

rt b

JO ektsin(st + _)c°s(afCb - _t)dt
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which is equal to

/ tb ekt[sin st sin _ + cos st cos _] _os _tb cos arc + sin _tb sin c0t]dt

_0

or to the sum of

/tb
ektsin st cos _t dt +

sin @ cos _tb J0

ftb

sin _ sin _tb / ektsin st sin _t dt +
_o

/tb kt

cos _ sin _t b _JO e cos st cos _t dt +

cos _ cos _t b JO tb ektcos st sin _t dt

For the solution of these integrals we shall make use of the formula

given on page 115 of the table of indefinite integrals published by the
!

Service de Documentation et d'Information Aeronautlque (Trad. no. 4221).

I eax_a sin(b + c)x - (b + c)cos(b + c)xeaXsin bx cos cx dx = _ [ a2 + (b + c) 2
+

l

a sin(b - c)x - (b - c)cos(b - c)x_ cte

a2+ (b+ c) 2 j +

This integral must be taken as definite integral with very largt

as upper limit, 0 as lower limit.

Since a is negative by hypothesis, the exponential factor = 0

when tb is sufficiently large and the integral is zero at the upper

limit. We have to concern ourselves only with the lower limit x = 0,

and we obtain

 tb 1 -(b+ c) - (b - o)/ eaXsin bx cos cx dx = - --

J 2 a2 + (b + c)210

b

a2 + (b + c)2

tb
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In order to find

_tb
I

Jo
eaXsin bx sin cx dx

tb eaXcos bx cos cx dx

JO

we must transform these expressions.

Let us integrate by parts. We obtain

ax . i ax a ax
I e sln bx sin cx dx = - -- e sin bx cos cx + c sin bx cos cx dx +! C

b S

-- /eaXcos bx cos cx dx
c

J

/ ax i ax a /ax
-- e cos bx sin cx - -- ie cos bx sin cx dx +

lle cos bx cos cx dx = c c ,_

i

b /eaXsin bx sin cx dxC

Let us introduce the limits of integration. We then have

aXsin bx cos cx_ tb

0

= _eaXcos bx sin cx] tb

0

=0

_0 _tb

%b +b b ,
eaXsin bx sin cx dx = a_ + -- I

e a2 + (b + c) 2 c gO

eaXcos bx cos cx dx

i_tb

'/_0 eaXcos bx cos cx dx =

Ftb
a +C + b_ /

c a2 + (b + C) 2 C JO

eaXsin bx sin cx dx

whence one obtains immediately

_0 tb eaXsin bx sin cx dx = 0

eaXcos bx cos cx dx =
-a

a2 + (b + c)2
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If one substitutes in these expressions

a = k, b = s, c = _

the sum of the four integrals becomes

I _s sin _ cos _t b - k cos _ cos _t b + _ cos _ sin _tb]
k2 + (s + _)2

Taking into account the factors placed before the ign, one obtains

as the total of the expression to be calculated

+Nm Au sin

_2cos

_tb'gAu k 2 + (s + _)2+_m sin

+_m cos _tbZA u sm sin _ - k_ cos
k2 + (s + _)2

The g

tion and of the slow oscillation:

(s, k, q_ in one case,

If one defines

indicates that one must take account of the rapid oscilla-

s' k' ' other), , _ in the

5u b = (C sin _tb + D cos _t)_ m

one obtains

2cos q)

C = l_u + Au k2 + (s + o_)2

_2cos q)'
+A'

u k,2 + (s' + _)2

D

se,_sin q) - kLo cos Cp
+ A' u

s'_ sin _' - k'm cos

_2 + (s + _)2 k,2 + (s'+ _)2
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We divide the bibliography into four parts which we treat in a very
different manner.

I. Stability of airplanes.- The investigation of the stability of

airplanes, flying with controls fixed, does not constitute the ultimate

goal of our report, but on the contrary, the starting point for our
calculations.

We have, therefore, not attempted to give a complete bibliography

regarding this question and are content to point out some classical books

and several reports on particular points of a special interest for the

aim we strive for.

II. Stabilizers or instruments for automatic pilotin_ of airplanes.-

Here we have tried to give, on the contrary, a bibliography complete up

to October i, 1948, and have eliminated only a few popularized articles.

Ill. Servo-mechanisms in general.- The theoretical investigation of

these instruments has made considerable progress during these last years.

We have to limit ourselves to pointing out a few general books.

IV. Symbolic or operational calculus.- There exist already complete

bibliographies pertaining to this question. We refer only to the reports
of which we made use.
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