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SUMMARY

Some of the more commonly used real-gas I hypersonic-nozzle flow parameters

have been calculated and charted for nitrogen in thermodynamic equilibrium; the

study covered a range of stagnation pressures up to 1, O00 atmospheres and stagna-

tion temperatures from 1,800 ° R to 5,000 ° R. The flow parameters are presented

in correction-factor form which indicates the magnitude of the departure of the

various parameters from ideal-gas 2 (perfect gas) behavior. It is shown that

significant error can be incurred in the values of the various flow parameters by

using the ideal-gas relationship, particularly at the higher stagnation pressures.

For the range of stagnation conditions considered in the study, the results pre-

sented will have direct application to such practical problems as calibration and

performance estimation of hypersonic test facilities which use nitrogen as the

test fluid.

INTRODUCTION

The Langley Research Center has presently under construction the Langley

hypersonic nitrogen facility which is designed to operate at a Mach number of 17,

at stagnation pressures up to 1,000 atmospheres, and at a stagnation temperature

of approximately 4,000 ° F; this facility will have the capability of run times

on the order of minutes. At these elevated stagnation conditions, the test gas

ceases to behave as an ideal fluid, and the real-gas effects on the thermodynamic

properties of the flow, both upstream and downstream of the normal shock, must

be taken into account if the flow in the hypersonic nozzle is to be properly

iThe term "real gas" as used herein relates to the effects associated with

high densities and also the variation of heat capacity with temperature.

2The term "ideal gas" as used herein refers to a perfect gas with constant

ratio of heat capacities as defined in reference 1.



interpreted and analyzed; for example, these effects must be taken into account
in the Machnumbercalibration and total temperature survey of the test region of
the facility.

It is the purpose of this report to present the results of calculations, in
easy-to-use graph form, which were made to determine the magnitude of the real-

gas effects on hypersonic-nozzle flow parameters; the study covered a range of

stagnation pressures up to 1,000 atmospheres and stagnation temperatures from
O O . .

1,800 R to 5,000 R. In the present analysis, the nltrogen was at all tlmes

assumed to be in thermodynamic equilibrium; however, at moderately high tempera-

tures the gas may be in vibrational nonequilibrlumwhich will have an effect on

the free-stream flow properties as indicated in reference 2.

SYMBOLS

a

Cp

F

h

M

P

R

S

s/R

T

V

Z

P

velocity of sound

heat capacity at constant pressure

correction factor (ratio of real-gas flow parameter to ideal-gas flow

parameter for 7 = 1.4 at a given value of free-stream Mach number)

specific enthalpy

Mach number

pressure

gas constant

entropy

entropy, dimensionless

temperature

velocity

compressibility factor

ratio of specific heats

density
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Subscripts:

i

p, T, p

ref

t,l

t_2

i

2

ideal

pressure, temperatures, and density, respectively

reference condition used in equation (i)

stagnation conditions upstream of normal shock

stagnation conditions downstreamof normal shock

static conditions upstream of normal shock

static conditions downstreamof normal shock

METHODOFCALCULATION

The following assumptions were madeconcerning the expansion of the gas
from the stagnation chamberdownstreamof the nozzle to the test section: the
flow was assumedto expand at a constant value of entropy (determined by the stag-
nation pressure and temperature), and, at the test section, the free-stream gas
was assumedto behave as a perfect or ideal gas with constant ratio of heat capac-
ities. The latter assumption was felt to be a good approximation in view of the
fact that all the results presented are for free-stream static pressures of
0.01 atmosphere or less and for static temperatures of less than 540° R.

In the region where the real-gas effects are significant, the state proper-
ties of the gas were based on the tabulated thermodynamicproperties of nitrogen
which are presented in references 3 and 4. An IBM7090 electronic data processing
system was used to obtain the numerical results presented. For the range of stag-
nation conditions considered in the study, the initial input thermodynamicdata
to the computer were obtained from reference 4. The tabulated thermodynamicdata
of reference 3 were programed into the computer for a pressure range from
lO atmospheres to O.O1 atmosphere. Below O.O1 atmosphere, the thermodynamic
properties of interest were computedby treating the nitrogen as a perfect gas.

Free-StreamConditions

For a given stagnation temperature Tt, I and stagnation pressure Pt, l, the
flow in the nozzle is expandedisentropically to a free-stream static pressure
Pl of 0.01 atmosphere. The value of temperature TI at this point is calculated
from the following ideal-gas equation:

t,l ref = -R--l°ge Tref l°ge Pref-- (i)

3



At this point the subscript "ref" in equation (i) indicates the state properties

of a pressure of 0.01 atmosphere and a temperature of 630 ° R.

Once TI is known_ the other free-stream static-flow properties may be cal-

culated from the following equations:

hi = Cp(Ti) (2)

VI = _(ht, I - hl)_ I/2 (3)

Pl

and

From the point where the pressure Pl was equal to 0.01 atmosphere, the

flow in the system was further expanded by reducing the value of TI in 18 °

increments, still maintaining a constant value of (S/R)t,I. The pressure at

each temperature increment was found by using equation (i) with a reference con-

dition of pressure equal to 0.01 atmosphere and entropy equal to (S/R)t,I. The

remaining flow properties at each particular point were calculated by using
equations (2) to (5).

Conditions Just Downstream of Normal Shock

The thermodynamic properties of the gas downstream of the normal shock may

now be determined by using the previously calculated free-stream flow properties

in conjunction with the conservation equations and the equation of state. These
equations are:

Conservation of mass -

oiV i = 02V 2 (6)

Conservation of momentum -

Pl+ plVl2 = P2 + o2v22 (7)

Conservation of energy -

VI 2 V22

ht, 1 = h I +-_-= h2 +-_-- (8)



and the equation of state -

P2 = z2 2R2 2 (9)

In order that the free-stream static condition downstream of the normal shock

be found, equations (6) to (9) must be solved by an iterative procedure. First,

an initial value of P2 is assumed; the velocity V 2 is then calculated from

equation (6). With the values of P2 and h2 which are found from equations (7)

and (8), respectively, the temperature T2 is interpolated from the programed

tabulated thermodynamic data. The value of D2 is then calculated from equa-

tion (9) and compared with the assumed value of D2. The solution is found when

the assumed value of D2 is in agreement with the calculated value of P2"

Stagnation Condition Downstream of the Normal Shock

The determination of the stagnation conditions downstream of the normal shock

involves an iteration for the assumed initial value of the stagnation tempera-

From the free-stream values of P2 and T2, the value of (S/R) 2
ture Tt, 2.

was determined from programed tabulated thermodynamic data. Downstream of the

normal shock, the value of the static entropy (S/R) 2 is equal to the stagnation

entropy (S/R)t,2; therefore, the stagnation pressure Pt,2 is found from the

programed thermodynamic data with the known value of (S/R)t, 2 and the assumed

value of Tt, 2. The values of Tt, 2 and Pt,2 are then used to determine a

value of ht, 2 from the tabulated thermodynamic data. It can be seen from equa-

tion (8) that the stagnation enthalpy is constant throughout the flow system;

thus, the solution is found when the value of ht, I is in agreement with ht, 2.

RESULTS AND DISCUSSION

The results of the calculations are presented in easy-to-use form in fig-

ures i to 9, wherein the correction factor for the various hypersonic-nozzle flow

parameters is plotted against stagnation pressure for a range of stagnation tem-

peratures. A correction factor is defined as the ratio of the real-gas flow

parameter to the ideal-gas flow parameter at a given value of free-stream Mach

T[Tt_ I . All the results, when presented in

number_ that is, FT, 1 = (TITt,I) i

correction-factor form, were found to be essentially independent of free-stream

Mach number; however_ because of small inaccuracies in the programed data (caused

by cross-plotting the thermodynamic data of ref. 3), there was some slight numer-

ical variation in the calculated values of the various correction factors with

Mach number. The variation in values was generally within ±0.3 percent. In

order to compensate partially for the variation, a numerical average of the
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values for the particular correction factor was taken for a minimum of three

different free-stream Mach numbers.

The use of the charts presented in figures i to 9 may be best shown by exam-

ple. In the calibration of a hypersonic nozzle (M > i0), the pressure and tem-

perature in the stagnation chamber and the pitot pressure in the test section are

usually known from measurements; the real-gas Mach number in the test section

is desired. For example, assume that Pt, l = 500 atmospheres, Tt, I = 4,200 ° R,

and the measured stagnation pressure downstream of the normal shock in the test

section Pt, 2 is 0.125 atmosphere. Then the real-gas ratio Pt,2/Pt, I equals

Pt,2/Pt_l
2.5 X 10 -4 atmosphere. From figure 7, it is seen that the value of

(Pt, 2/Pt, i) i

at the assumed stagnation conditions is 0.804; therefore, the value of

is 2.50 × 10 -4 or 5. ii × 10 -4 . The real-gas Mach number in the test
(Pt, 2/Pt, i) i 0.804

section based on this ideal-gas ratio may be obtained from reference I; for this

particular case, M I = 16.11. Other desired flow properties may be obtained in a
similar manner.

In order that a check on the results presented be provided, values of

Fp, l, Fp, l, and FT, I have been calculated for a few stagnation conditions con-

sidering only the effect of variable heat capacity due to temperature; a flow

condition such as this would exist at low stagnation pressures_ that is, Pt, l

approaches O. A comparison of the results showed that values of the correction

factors at this limiting condition agree within 0.2 percent.

Presented in figure i0 is a plot showing the approximate maximum Mach num-

bers obtainable just prior to flow condensation for a few stagnation temperatures.

The values presented in this figure were obtained by using the real-gas calcula-

tions and the vapor pressure data presented in reference 3- It should be noted

that it is possible to operate a hypersonic facility with some amount of super-

saturation present in the flow without affecting the pitot pressure or free-stream

static pressure (e.g., see ref. 5). A small decrease in the free-stream static

temperature (slightly below the saturated vapor line) produces a decrease in the

total temperature (increase in free-stream Mach number) required to operate a

hypersonic facility. For example, at a stagnation pressure of 800 atmospheres

and a stagnation temperature of 3_400 ° R, a i0 ° decrease in static temperature

below the saturated vapor line will increase the free-stream Mach number from

approximately 15.2 to 16.2.

As would be expected, a comparison of the real-gas correction factors for

nitrogen with those for air, as presented in reference 6, showed that there was

close agreement between the two gases, particularly in the lower range of stagna-

tion temperatures (Tt, I < 3,000 ° R); however, the deviation in values became more

pronounced as stagnation temperature was increased because of dissociation of the

oxygen in the air. For example, the difference between the values of the correc-

tion factor for the ratio of free-stream static pressure to stagnation pressure at

a stagnation pressure of 200 atmospheres and a stagnation temperature of 3,000 ° R
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is approximately i percent; however, the difference between the values at a stag-

nation temperature of 5,000 ° R is approximately 4 percent.

CONCLUDING REMARKS

Calculations have been made to assess the magnitude of the real-gas effects

on some of the more commonly used hypersonic-nozzle flow parameters for nitrogen

in thermodynamic equilibrium. The results of the calculations are presented in

easy-to-use correction-factor form and covered a range of stagnation pressures

up to 1,000 atmospheres and stagnation temperatures from 1,800 ° R to 5,000 ° R.

The results showed that by taking the real-gas effects of the thermodynamic prop-

erties into account in calculating the various flow parameters, a significant

difference in the values as predicted by the ideal-gas relationship occurred.

As would be expected, a comparison of the real-gas correction factors for

nitrogen with those for air showed that there was good agreement between the two

gases, particularly in the lower range of stagnation temperatures (stagnation

temperatures less than 3,000 ° R); however, the deviation in the values became

more pronounced as the stagnation temperature was increased because of dissocia-

tion of the oxygen in the air.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August % 1963.
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Figure 9.- Correction factor for Fp,(t,2 ) as a function of stagnation pressure for various

stagnation temperatures where M I > i0.
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