WANTER WANTER TO THE PARTY OF T

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR THE NUMERICAL SOLUTION OF SPACE MECHANICS PROBLEMS ON AN IBM 7090 COMPUTER

by William C. Strack and Vearl N. Huff

Lewis Research Center Cleveland, Ohio

TECHNICAL NOTE D-1730

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR THE NUMERICAL SOLUTION OF SPACE MECHANICS PROBLEMS ON AN IBM 7090 COMPUTER

By William C. Strack and Vearl N. Huff

Lewis Research Center Cleveland, Ohio

CONTENTS

SUMMA	RY	• •		•	*	•	•	•	•	*	•	•		•	•		•				•	•				•	•	•	•	•	٠	Page 1
INTRO:	DUCTION	*		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	1
Orion Cell Property Aer Oth METHOLINT R	MENT OF gin Bod estial pulsive odynami er Forc D OF SO egratio ectangurbit el egratio gin Tra	y Gr Body Thr c Fo es LUTI n Va lar emen n Me	avi Pe ust rce ON ria coo ts	tatertusses	cio urb • • • • • • •	na • • • • • • • • • • • • • • • • • • •	il vic	Fins	el	.d		nd .	01		ate			* * * * * * * * * * * * * * * * * * * *	eı	etu	irk	at.	:i(ons	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	•		•	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	2 2 3 4 4 6 6 6 7 7
THE C Eph Mul Ste Com	ODE AND emeride tistage p-Size, puter Oputer I	ITS s . Veh Out utpu nput	US icl put t	es	and	Ţ	er	· mi	• • .na •	ti	i or	* 1 (čoi	• 1 1 •	rol	• • • Ls •	* * * * * *	* * * * * * * * * * * * * * * * * * * *	•	* * * * * *	* * * * * *	* * * * * *	* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	•	• • • • • •	•	•	• • • • • •	*	8 9 9 10 10
Gen	eral . mples					٠	•	•	•	•	•	•	•		•	•	•	•		•			٠	•	•	٠	•	٠	٠			11
B -	SYMBOL VECTOR TRANSF	RES ORMA	OLU TIO	TTC I NC	ON EQU	IAI	·IC	Ns	·	· RO	• OM	• QI	RB.	·	EI	Ē	• MEI	VIS	3 5	[O	•	•	*	•	•	•	•	•	•	•	•	16 19
E - F - G - H - I -	RECTAN RUNGE- GLOSSA LEWIS INPUT- PROGRA EXAMPL	KUTT RY O RESE DATA M LI	A A F V ARC RE STI	AND VARI CH (C EQUI ING	LO CAR CEN CRE	W- LE TE ME	OF S R NI	EF	R HE	IN ME	vili ER:	EGI IS •	* * * * * * * * * * * * * * * * * * *	FIC		S(CHI	eme	• • • • • • • • • • • • • • • • • • •	WI	·		ERI	ROI	? (COI	TTV	RO]	L •	•	•	21 23 26 34 38 47 85
T-1111111	TINTATIO																															00

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR THE

NUMERICAL SOLUTION OF SPACE MECHANICS

PROBLEMS ON AN IBM 7090 COMPUTER

By William C. Strack and Vearl N. Huff

SUMMARY

A general astronomical integration code designed for a large class of problems in space mechanics that may be solved by numerical integration is described. The equations of motion provide for the effects of up to eight gravitating celestial bodies, oblateness and aerodynamic forces from the celestial body at the problem origin, propulsion system thrust, and rotation of the body at the origin. The coding in this report is intended for use on an IBM 7090. An earlier version was reported in NASA Technical Note D-1455 and was designed for use on an IBM 704.

INTRODUCTION

The general problems of space mechanics (i.e., n-bodies plus nonconservative forces such as thrust) cannot be solved analytically. Therefore, numerical integration through the use of computing machinery is usually employed.

Several codes have been written for the numerical solution of problems in orbit mechanics; for example, the Themis Code of reference 1 is a double-precision code intended primarily for close satellites or interplanetary coasting flight. Reference 2 describes a space-trajectory program of considerable merit. A listing of several other trajectory codes may be found in reference 3.

The general purpose code described herein has several distinctive features not all of which are found in any one of the previously available codes. As described herein, this code is designed to operate on an IBM 7090 computer that has a 32,000 word (32 K) memory. The fact that the program is written in FORTRAN should make it applicable to installations having other types of equipment that accept the FORTRAN language. An earlier version of this program designed for an IBM 704 with an 8-K core and at least 1 K of drum storage has been previously published in reference 4. This report has incorporated a number of improvements. The most important ones are: (1) only one core load is required, (2) all stage data for multistage vehicles may be loaded simultaneously, (3) the third harmonic term is included in the Earth's oblateness equations, and (4) there are additional program controls available that provide increased flexibility.

The program is compartmented into 25 subroutines to facilitate modifications

for specific problems. The integration is carried out in either rectangular coordinates or orbit elements at the option of the user. A compact ephemeris that occupies about one-seventh of a reel of tape is utilized for positions and velocities of the planets (except Mercury) and the Moon. An atmosphere is included so that aerodynamic forces may be considered.

STATEMENT OF PROBLEM

The problem to be solved may be stated as follows: Given certain initial conditions, compute, using three degrees of freedom, the path of an object, such as a space vehicle, subject to any or all of the following forces:

Origin body gravitational field

Other celestial body gravitational fields

Propulsive thrust

Aerodynamic forces

Any other defined forces

Alternately, in equation form, with respect to a noninertial Cartesian coordinate system,

$$\ddot{\vec{r}} = \nabla U + \left[k^2 \sum_{i=1}^n m_i \nabla \left(\left| \frac{1}{\vec{r} - \vec{r}_i} \right| - \frac{\vec{r} \cdot \vec{r}_i}{r_i^3} \right) \right] + \frac{\vec{F}}{m} + \frac{\vec{L}}{m} + \frac{\vec{D}}{m} + \frac{\vec{X}}{m}$$
 (1)

where n equals the number of perturbating bodies and ∇ denotes the del operator. (All symbols are defined in appendix A.)

Origin Body Gravitational Field and Oblateness Perturbations

The first term, VU, in the equation of motion (eq. (1)) represents the gravitational forces due to the origin body. When the origin body is spherical and made up of homogeneous layers, this term becomes simply $-\mu\vec{r}/r^3$. In the case of the Earth, however, the effect of oblateness may be important, and additional terms must be added to account for the oblateness effects. The expression for the gravitational potential U of an oblate spheroid may be written, according to reference 5, as

$$U = \frac{k^2 m_r}{r} \left\{ 1 + J \left(\frac{R_r}{r} \right)^2 \left[\frac{1}{3} - \left(\frac{z}{r} \right)^2 \right] + H \left(\frac{R_r}{r} \right)^3 \left[\frac{3}{5} - \left(\frac{z}{r} \right)^2 \right] \frac{z}{r} + \frac{2}{35} \left(\frac{R_r}{r} \right)^4 \left[3 - 30 \left(\frac{z}{r} \right)^2 + 35 \left(\frac{z}{r} \right)^4 \right] \right\}$$
(2)

where the x,y plane lies in the equatorial plane. The components of gravitational acceleration are as follows:

$$U_{X} = \frac{\partial U}{\partial x} = \frac{k^{2}m_{T}}{r^{2}} \left\{ -1 + J \left(\frac{R_{T}}{r} \right)^{2} \left[5 \left(\frac{z}{r} \right)^{2} - 1 \right] + H \left(\frac{R_{T}}{r} \right)^{3} \left[7 \left(\frac{z}{r} \right)^{2} - 3 \right] \frac{z}{r} \right.$$

$$+ \mathcal{D} \left(\frac{R_{T}}{r} \right)^{4} \left[-\frac{3}{7} + 6 \left(\frac{z}{r} \right)^{2} - 9 \left(\frac{z}{r} \right)^{4} \right] \right\} \frac{x}{r}$$

$$U_{Y} = \frac{\partial U}{\partial y} = \frac{k^{2}m_{T}}{r^{2}} \left\{ -1 + J \left(\frac{R_{T}}{r} \right)^{2} \left[5 \left(\frac{z}{r} \right)^{2} - 1 \right] + H \left(\frac{R_{T}}{r} \right)^{3} \left[7 \left(\frac{z}{r} \right)^{2} - 3 \right] \frac{z}{r} \right.$$

$$+ \mathcal{D} \left(\frac{R_{T}}{r} \right)^{4} \left[-\frac{3}{7} + 6 \left(\frac{z}{r} \right)^{2} - 9 \left(\frac{z}{r} \right)^{4} \right] \right\} \frac{y}{r}$$

$$U_{Z} = \frac{\partial U}{\partial z} = \frac{k^{2}m_{T}}{r^{2}} \left\{ -1 + J \left(\frac{R_{T}}{r} \right)^{2} \left[5 \left(\frac{z}{r} \right)^{2} - 3 \right] + H \left(\frac{R_{T}}{r} \right)^{3} \left[7 \left(\frac{z}{r} \right)^{2} - 6 + \frac{3}{5} \left(\frac{r}{z} \right)^{2} \right] \frac{z}{r}$$

$$+ \mathcal{D} \left(\frac{R_{T}}{r} \right)^{4} \left[-\frac{15}{7} + 10 \left(\frac{z}{r} \right)^{2} - 9 \left(\frac{z}{r} \right)^{4} \right] \right\} \frac{z}{r}$$

$$(3)$$

The first terms exist for a spherical planet composed of concentric layers of uniform density. The terms containing J, H, and $\mathcal D$ are frequently called the second, third, and fourth harmonic terms, respectively, while J, H, and $\mathcal D$ are known as the harmonic coefficients.

It is expected that oblateness perturbations need to be computed only for the origin body, since at large distances, such as that between celestial bodies, the gravitational field of an oblate body is essentially an inverse-square field. Consideration of oblate bodies other than the Earth requires only different values of J, H, and $\mathcal D$ if that body's rotation axis is parallel to the z-axis. When the body has triaxial asymmetry or when the z-axis cannot conveniently be alined with the rotation axis of the origin body, the equations must be extended if oblateness is to be included.

Celestial Body Perturbations

The presence of more than one gravitating body in addition to the object results in the inclusion of the second term of equation (1). The evaluation of this term requires a knowledge of the positions of the bodies as a function of time. The degree of precision desired determines the method to be used to obtain the positions such as elements of ellipses or an ephemeris.

Propulsive Thrust

The propulsive acceleration is completely specified by a direction and a magnitude. The thrust direction may be referred to the velocity vector by two angles: α , the angle between the velocity and the thrust vectors and β , the angle between the orbit plane and the velocity-thrust plane. The sense of each angle is indicated in sketch (a).

The velocity may be referenced with respect to one of several coordinate systems. If the computation refers to a takeoff of a rocket or winged vehicle, the coordinate system rotating with the Earth may be preferred. In such cases the relative velocity (i.e., the velocity of the object relative to the atmosphere) will serve to orient the thrust vector. Resolution of the thrust-vector components along the x,y,z axes is shown in appendix B.

The thrust magnitude for most types of problems is of the form

$$F = F(\tilde{n}, I, t, ...)$$

Any such function (or even a more complicated relation) may quite easily be inserted into the program. For many space powerplants, the rocket engine thrust equation

$$F = -MIg_c - PA_e$$
 (4)

is sufficient and is used as a standard in the present program.

Aerodynamic Forces

The aerodynamic forces are usually divided into the two components, lift and drag. The drag force is directed opposite to the relative wind vector, and the lift vector is perpendicular to the relative wind vector. The angles α and β , defined in the previous section, serve as the angles of attack and roll, respec-

tively. Yaw effects are not considered. Resolution of the lift and drag vectors into components along the x,y,z axes is given in appendix B.

The magnitudes of the lift and drag forces may be conveniently determined through use of a tabular group of coefficients in relatively simple equations. The lift and drag magnitudes may then be expressed (as is usual in aerodynamics) as

$$L = C_{L}(\alpha, N_{M}) qS$$
 (5)

$$D = C_D(C_L, N_M) qS$$
 (6)

where

$$\alpha = \alpha(t)$$

$$C_{T_i} = f_1(N_M) \sin \alpha$$

$$\mathbf{C}_{\mathrm{D}} = \mathbf{C}_{\mathrm{D},\mathrm{O}} + \mathbf{C}_{\mathrm{D},\mathrm{i}} = \mathbf{C}_{\mathrm{D},\mathrm{O}}(\mathbf{N}_{\mathrm{M}}) + \mathbf{f}_{\mathrm{2}}(\mathbf{N}_{\mathrm{M}})\mathbf{C}_{\mathrm{L}}^{2}$$

$$q = \frac{1}{2} \rho(V^{\dagger})^2$$

$$\rho = \rho(P,T) = \rho(h)$$

If $\alpha(t)$, $C_{D,0}(N_M)$, $f_1(N_M)$, and $f_2(N_M)$ are assumed to be quadratic functions and β is assumed to be constant, the expressions for α , β , C_L , $C_{D,0}$, and $C_{D,1}$ become

$$\alpha = a_{11} + a_{12}t + a_{13}t^{2}$$

$$\beta = \beta_{0}$$

$$C_{L} = \left(a_{21} + a_{22}N_{M} + a_{23}N_{M}^{2}\right)\sin \alpha$$

$$C_{D,0} = a_{31} + a_{32}N_{M} + a_{33}N_{M}^{2}$$

$$C_{D,i} = \left(a_{41} + a_{42}N_{M} + a_{43}N_{M}^{2}\right)C_{L}^{2}$$

where the quadratic constants $a_{i,j}$ may have different values for different regions of the independent variables t and $\mathbb{N}_{M^{\bullet}}$

It should be remembered that these choices are arbitrary and are not restrictive because other functions may easily be used by simply changing the equations where they appear in the program. In fact, any propulsion system and aerodynamic configuration can presumably be incorporated by writing proper thrust and aerodynamic subroutines.

Pressure, temperature, and density are determined as functions of altitude in accordance with the U.S. Standard Atmosphere, 1962. The atmospheric data

are in the form of a short table, which may be altered conveniently to account for a different atmospheric model.

Other Forces

The \overrightarrow{X} forces may be any forces such as electrostatic, magnetic, or solar radiation pressure that affect the trajectory. While these forces are not considered further herein, their inclusion would usually be feasible and would be similar to thrust, lift, and drag.

METHOD OF SOLUTION

A description of several numerical integration techniques and their relative merits are contained in reference 6. A straightforward method for finding the position of the object as a function of time is to integrate the total acceleration of the object expressed in rectangular components. An example of this method is Cowell's method (ref. 6).

However, when the system under investigation consists of two nonoblate bodies (one of which is the object) with no forces other than gravitational attraction forces, an exact analytical solution for the motion of the body exists. Further, if the conditions of the actual problem are such as to approximate the two-body problem closely, another approach is to use the exact two-body solution as a basis and simply integrate the changes in the two-body parameters, since they should be slowly varying. This technique, sometimes called the "variation of parameters," will be referred to as "integration of orbit elements."

Since problems both remote and near to the exact two-body problem are encountered in orbit mechanics and since either type of problem is solved more efficiently by using the technique most suitably applicable, it was considered desirable to use either of the previously mentioned integration techniques at will. Accordingly, two methods of integration are provided in the program, namely, rectangular coordinates and orbit elements.

Integration Variables

To use either of these integration techniques, it is necessary to select a suitable set of variables. Because a differential equation may determine the mass of the object (i.e., spacecraft), mass has been selected as a variable to be integrated. Selection of the remaining parameters follows in the subsequent paragraphs.

Rectangular coordinates. - In the first technique, the total acceleration components \ddot{x} , \ddot{y} , and \ddot{z} are integrated to obtain x, y, and z where x, y, and z are the rectangular components of the origin to object radius \ddot{r} . The positive x-axis points in the direction of the mean vernal equinox of 1950.0. The positive y-axis lies in the mean equator of 1950.0 and is perpendicular to and counterclockwise from the positive x-axis. The z-axis points north and

completes the righthanded orthogonal set. The integration in rectangular coordinates involves numerical solution of three second-order differential equations; that is, a double integration is required for integrating the accelerations to obtain velocities and the velocities to obtain positions. The rectangular variables have advantages of complete generality and a minimum amount of computing per step.

Orbit elements. - In the variation-of-parameters technique, a set of six independent two-body parameters called orbit elements are integrated. These six parameters may be arbitrarily chosen from a host of possibilities. The set selected for this program is composed of the eccentricity e, the argument of pericenter ω , the equatorial longitude of ascending node Ω , the inclination of the orbit plane to the equatorial plane i, the mean anomaly M, and the semilatus rectum p. The transformation equations from orbit elements to rectangular coordinates are given in appendix C.

The integration of orbit elements requires the numerical solution of six first-order differential equations. The rather involved transformation by which the three second-order differential equations in \ddot{x} , \ddot{y} , and \ddot{z} are reduced to six first-order equations in \dot{e} , $\dot{\omega}$, $\dot{\Omega}$, \dot{i} , \dot{M} , and \dot{p} is contained in reference 7. Integration in orbit elements is frequently advantageous because the smaller orbit-element derivatives may permit larger integration intervals that result in fewer steps. In the special case of two-body motion, the derivatives are zero (except \dot{M} , which is a constant).

Mathematical difficulties may arise occasionally with most sets of orbit elements. In particular, for the selected set, these occur when e approaches unity (parabolic trajectory), which causes a loss of numerical accuracy in the frequently used quantity $(1-e^2)$, and when an asymptote is approached too closely, which causes numerical difficulties in the iterative solution for eccentric anomaly from Kepler's equation. The selected solution to these difficulties is to shift temporarily to rectangular-coordinate integration whenever the difficulty arises.

Integration Method

It is clear that regardless of the choice of integration technique, the magnitudes of the derivatives of the variables to be integrated may vary considerably along the trajectory. With fixed step size (constant intervals in time), the integration scheme will take unnecessary steps in the regions where the changes in the derivatives are small and thus will waste computing time and increase roundoff error. When the derivatives are large and change rapidly, a fixed step size will result in large truncation error (error due to excessive step size). Thus, in the interest of computing accuracy and economy, use of variable step size along the trajectory becomes desirable.

One of the integration schemes that allows variable step-size control to be incorporated easily is the Runge-Kutta scheme. For this and other reasons, it was decided to use a fourth-order Runge-Kutta method with variable step-size control.

Truncation error and step size may be controlled by examining the relative errors between the fourth-order Runge-Kutta integration scheme and a lower-order integration procedure. The arbitrarily chosen low-order integration scheme was an unequal-interval Simpson rule method. Details of the fourth-order Runge-Kutta integration method and the step-size control are given in appendix D. Roundoff error may be reduced by accumulating the integration variables in double precision.

Origin Translation

As noted previously, machine computing time and roundoff error may be minimized by maximizing the integration interval. The largest intervals are possible in orbit elements when the celestial body at the problem origin is the one that has the greatest influence on the vehicle motion. For this and sometimes other reasons, it may become desirable to translate the problem origin occasionally as the vehicle moves along its path.

Such translations of the origin may be made when the object enters a body's "sphere of influence," that is, the sphere about a body within which the greatest influence upon the object is due to forces originating from that particular body. In this program, the orientation of the coordinate system is always alined with the system determined by the Earth's mean equator and equinox of 1950.0, as is standard in astronomy.

THE CODE AND ITS USAGE

The stated problem was programed in FORTRAN routines that are separately designed to accomplish one task but when combined form a complete program. This feature facilitates modifications.

The program is labeled as a general-purpose code, but an efficient general-purpose code cannot be a reality. As a result, this code is not especially general, but an attempt has been made to retain efficiency and to provide for easy modification of the routines to recover generality as needed. For example, the program is an "open system"; that is, it solves an initial-value problem. There is no link provided to obtain specific end conditions. Provision of this link is left to the user for his specific needs. In particular, when certain end conditions of a trajectory are to be met by determining the correct initial conditions (two-point boundary-value problem), the user may program an iteration scheme to compute initial conditions from end conditions of previous runs. Figure 1 is a simplified diagram that shows how the various major subprograms (and exits) are arranged.

In the following sections, the program is sometimes discussed in terms of the FORTRAN variables and routines. A glossary of these variables is given in appendix \mathbf{E}_{\bullet}

Ephemerides

To determine the position of each celestial body, there is offered a choice between ellipses and a precision ephemeris. Any appropriate ellipse data may be used, and an example of such data is given in table I.

The precision-ephemeris tape that is used in the program was so made that position and velocity were obtainable through the use of a fifth-order polynomial whose coefficients are stored on tape. The details concerning the making of the tape and its structure are given in appendix F. This master tape is a merged ephemeris containing all the planets (except Mercury), the Moon, and the Earth-Moon barycenter from October 25, 1960 to about 2000 (except for the Moon, which has an ending date of 1970).

Direct use of the master merged ephemeris tape would, in general, waste computing time, since excess tape handling would occur in order to bypass data not required for the particular problem. To minimize tape handling during execution, a shorter merged ephemeris containing only that data needed for a specific problem is constructed at execution time. Several of these working ephemerides may be constructed before the integration of the problem. (Several problems may be loaded simultaneously with the same ephemeris, or each problem may require a distinct ephemeris, or several ephemerides may be desired for a single problem.)

Multistage Vehicles

The code is designed to handle the case of multistage vehicles in the following way: The stage data for all stages is intended to be loaded simultaneously. This results in several initial values of those parameters classified as stage parameters. Also, this may be expensive in terms of machine storage if either the number of stage parameters or number of stages is large. Therefore, only parameters of a basic group were defined to be arrays, and the number of stages was limited to 10. This group is composed of values for the initial mass, propellant flow rate, vacuum specific impulse, engine exit area, aerodynamic reference area, burning time, initial integration step size, and an input identification number. The input identification number is a provision that allows other parameters to be loaded just prior to integration of a particular stage.

Step-Size, Output, and Termination Controls

Truncation error and step size are controlled by computing the relative errors between the Runge-Kutta integration and the lower-order integration procedure. If the greatest relative error between the methods is greater than a maximum limit (ERLIMT), the integration step will be repeated after a smaller step size is computed. In either case, a new step size is computed from the relative errors of the previous steps and is intended to result in an error that is close to a reference value (EREF). Further, the step size may then be reduced by the output controls. In any case, a step can be no larger than three times the size of the previous successful step. (See appendix D.)

Output is sometimes desired at specific points along the trajectory, while at other times this is unimportant. This option is provided for the user so that he may choose output to occur at equal intervals in step number or equal time intervals (which places a constraint on the step size). Also, he may choose to change from one mode to another along the trajectory. These choices of output spacing are effected through the use of the FORTRAN variables MODOUT, DELMAX, STEPS, and TMIN, which is explained under the MODOUT entry of table II, a table of program control parameters.

In addition to the output control discussed in the previous paragraph, there is another facility that may be quite useful. The integration process may be interrupted at an arbitrary point along the trajectory where the point in question is not necessarily a specific time. For instance, it may be desirable to interrupt the flight at a specific altitude, velocity, dynamic pressure, and so forth. If the point is indeed attained along the path (it may not be), output occurs, input cards may be read in, and a decision is made whether to continue the stage, terminate the stage, or terminate the flight. The control of this facility is described under the entries in table II for LOOKX, XLOOK, LOOKSW, SWLOOK, and END.

Computer Output

A basic output format was programed to serve as a basis for modification and is illustrated in table III. It is intended that a user of the code modify the output to suit his purpose. In addition to examining the normal output, it is sometimes desirable to examine the error-control data such as the relative errors in the integration variables along the path. These data are printed as a single block after completion of a stage if the sign of the input error reference value EREF is negative. The sign of EREF is irrelevant in the error-control portion of the program, since its absolute value is taken.

Computer Input

The user has a choice of three possible sets of input data that specify position and velocity: (1) six orbital elements, (2) three Cartesian components of velocity and position, and (3) latitude, longitude, azimuth, elevation, velocity, altitude, and time.

The third set mentioned is programed for the Earth only, where the latitude and longitude are the geocentric latitude and longitude measured from the equator and Greenwich, respectively. The azimuth angle is measured in a plane tangent to the sphere of radius r at the point on the sphere determined by the geocentric latitude and longitude, and relative to the local meridian, positive eastward from north. The elevation angle is then measured in a plane normal to the tangent plane, positive outward (sketch (b)). The tangent plane is taken to be horizontal with the effects of oblateness and rotation considered if these effects are "on." If oblateness and rotation are "off," the horizontal is perpendicular to the radial direction. This input option ignores the correction between universal time and ephemeris time and between the instantaneous equator and equinox and the mean equator and equinox of 1950.0.

Long = longitude measured from Greenwich in Earth's equatorial plane, positive east

Lat = latitude, measured positive north, geocentric

Azi = azimuth angle, measured east from north from local meridian

Elev = elevation angle, positive
 outward

Vel = vehicle's initial velocity

r = radius of vehicle from Earth's center

A list of input instructions is contained in appendix G along with an input check list.

The input routine described in reference 8 was used because of its simplicity; however, another input routine may be used if it is desired.

CODING

General

Appendix H contains the code listing of the program. A magnetic tape is available (from Lewis) so that the code listing in printed form and/or on cards can be reproduced. In addition, the tape contains the merged ephemeris data in proper format for use with the code.

Some of the FORMAT statements are of the G-type. These statements will print output in I, E, or F format depending on the nature of the variable. Fixed-point variables will take the I format, while floating-point variables will assume the F format unless the magnitude of the variable falls outside the useful F range, in which case the E format is used. FORTRAN facilities that do not accept the G-type format statements may easily substitute E-type formats.

A condensed description of the program supervisory control is shown in the flow diagram of figure 2. Table IV is a map of COMMON allocation (blanks are left for the user) and table II contains a description of the program control parameters. The elements of the integration variable array (XPRIM) are given in table V. The assumed values of the astronomical constants are given in table VI. These values are consistent with those given in reference 9.

Examples

Two examples of code usage are presented. The first example, which is described in the following paragraph, is a problem of raising a low-altitude satellite into a 24-hour orbit by using tangential, low acceleration. The other example is a more complex problem involving a ground-launched lunar probe with a three-stage rocket, which is described in appendix I. Both problems were selected to illustrate the usage of the program rather than to attempt a detailed analysis of the example problem.

For Example I for low-tangential thrust, the trajectory to be determined is that used to raise a 3850-kilogram package from an initial 300-statute-mile circular equatorial orbit to a 24-hour orbit using a 60,000-watt nuclear electric system with a specific impulse of 2540 seconds and an overall efficiency of 40 percent. The required engine parameters may be calculated as follows:

Thrust force:

$$F = \frac{2P_{W}\eta}{Ig_{C}} = \frac{2 \times 60,000 \times 0.4}{2540 \times 9.80665} = 1.927 \text{ newtons}$$

Initial acceleration:

$$\frac{F}{m_0} = \frac{1.927}{3850} = 5.0051948 \times 10^{-4} \text{ m/sec}^2$$

Propellant flow rate:

$$-\dot{m} = \frac{F}{Ig_c} = \frac{1.927}{2540 \times 9.80665} = 7.7361935 \times 10^{-5} \text{ kg/sec}$$

A detailed account is given in the following paragraphs for the solution of this problem by the prescribed program. Only those features of the program that have a direct bearing on this particular problem are discussed. Additional program features are discussed in the account of the second example problem. It may prove beneficial to refer to figure 2 during these two discussions. Also, all statement numbers referred to in the following text correspond to the program listing in appendix H.

It is assumed in the program that all memory data stores are cleared (set equal to zero) before operation begins. Control begins when the main program is entered. Then a set of so-called "standard data" is "initialized" by executing SUBROUTINE STDATA. Before initializing, STDATA clears that area of COMMON C no longer needed.

The next step is calling for input at statement 8. The following list of parameters constitutes the input:

Parameter	FORTRAN name	Value
Initial mass, mo, kg Semilatus rectum, p, m Specific impulse, I, sec Flow rate, -m, kg/sec Time limit, sec Initial step size, sec Step number limit, steps Frequency of output, steps/output	RMASS P SIMP FLOW TB DELT STEPMX STEPS	3850 6.86×10 ⁶ 2540 7.7361935×10 ⁻⁵ a42590.2 a1500 a2000 a2000

aAssumed value.

Variables such as eccentricity and mean anomaly that are initially zero are not included in this list, since all memory data stores are initially zero.

In accordance with the input routine of reference 8, the input cards may appear as

```
$DATA=1,$TABLE,83=RMASS,718=P,103=SIMP,

93=FLOW,143=DELT,73=TB,26=STEPMX,27=STEPS/

$$ TABLE DEFINITION

$$

RMASS=3850,SIMP=2540,FLOW=7.7361935E-5 $$ VEHICLE MASS, ISP, MASS FLOW

P=6.86E6,TB=42590.2,STEPMX=2000 $$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT

DELT=1500,STEPS=200 $$ INITIAL STEP SIZE, OUTPUT EVERY 2001H STEP
```

where the entries between the TABLE and slash (/) reference the subsequent entries to the second argument C of the calling statement. Thus, for example, STEPS is equivalent to C(27), the 27th location from the beginning of COMMON C.

Part 11 of SUBROUTINE ORDER computes the gravitational constants μ and $\sqrt{\mu}$. Next, SUBROUTINE STAGE is called where the stage data for the first (and only) stage are moved into the proper stores for use in the SUBROUTINE NBODY. The vacuum value, PUSHO, for the thrust is computed, and then SUBROUTINE NBODY is called to integrate the path.

The next sequence is that of integrating the first two steps. These two steps are of equal size and are integrated before an error check is made. If the first two steps are satisfactory (determined by statement 25), the remaining steps are integrated while the relative error is being checked at the end of each step. Parts 1 and 5 of NBODY are concerned solely with this starting phase. Part 1 sets up the starting sequence and causes the initial conditions to appear on the output sheet. Parts 2 to 4 accomplish the Runge-Kutta integration for a single step.

The derivatives used in the integration are obtained from SUBROUTINE EQUATE. The first half of this subroutine finds the Cartesian coordinates and velocities through use of Kepler's equation. SUBROUTINE THRUST is called to determine the components of the thrust acceleration in the Cartesian coordinate system. (After

control is returned to SUBROUTINE EQUATE, the thrust acceleration is resolved into circumferential, radial, and normal components.) Finally, the derivatives of the orbit elements are calculated, and a return is made to NBODY.

After the Runge-Kutta integration is performed, the error check is made in part 5B (part 6 after the starting sequence) by computing the difference between the Runge-Kutta integration and the low-order integration. SUBROUTINE ERRORZ is called to determine the largest of the relative errors. If the largest of the relative errors is greater than the limit value, ERLIMT (set in STDATA), part 8, which computes a smaller step size for the same interval, is entered and control is returned to part 1. If the greatest relative error is smaller than the limit value, part 7, which advances the variables of integration, is entered and calls SUBROUTINE STEP to compute the next step size and print out the variables of the first step. Part 7 also counts the revolutions past the x-axis and adjusts the argument of pericenter and mean anomaly to within $\pm \pi$ to retain accuracy in the sine-cosine routines. If the step size exceeds 1/2 revolution, the revolution count may be short by an integral number. Control is finally transferred to part 1 to begin computation of the next step.

The problem is terminated when the time limit TB is reached. This check is done in SUBROUTINE STEP. Had the problem exceeded the step number limit STEPMX, it would have terminated at that point. In either case, control is returned to the main program to begin the next problem. When no data for another problem are given, the execution is terminated (i.e., control is returned to the monitor by SUBROUTINE INPUT as a result of an end-of-file on tape 7). The output of the last step is

```
STEP=
      822. + 46.
                  TIME= 42590.200
                  SEMILATUS R.= 6898546.50
                                             TRU A= 1.57107785
JDAY= 2440000.4927
                  MEAN ANDMALY= 1.57060298
                                              NODE = 0
ALFA= 0
                    PATH ANGLE= 1.36042929E-02
                                              INCL= 0
V = 7601.36401
                 R= 6898546.94
                                  REFER=EARTH ORBIT
VX = 26.5485928
                 X = -6898498.81
                                  RMASS= 3846.70511
VY = -7601.31769
                 Y = -25731.9050
                                  REVS.= 7.50059360
VZ = -0
                                   DELT= 312.139160
                 Z = -0
```

The time histories of several trajectory parameters for this example are shown as solid lines in figure 3. The oscillations of the eccentricity and mean anomaly cause a rather small step size, as noted in the figure. To indicate how exercising care in selecting the input can increase the computational efficiency, the same problem may again be run with the following initial values (according to ref. 10) of eccentricity and mean anomaly:

$$e_{O} = \frac{2(F/m_{O})p^{2}}{\mu}$$

$$M_0 = \frac{\pi}{2} - 3e_0 - \frac{e_0 V_0}{2Ig_c}$$

The input cards for this case make use of the algebraic properties of the input routine to compute the desired value of these parameters. The cards are

```
$DATA=1,$TABLE,83=RMASS,718=P,103=SIMP,
93=FLOW,143=DELT,73=TB,26=STEPMX,27=STEPS/
```

\$\$ IDENTIFICATION AND \$\$ TABLE DEFINITION \$\$

RMASS=3850,SIMP=2540,FLOW=7.7361935E-5 \$\$ VEHICLE MASS, ISP, MASS FLOW
P=6.86E6,FB=4259C.2,STEPMX=2000 \$\$ SEMILATUS-RECTUM, TIME LIMIT, STEP LIMIT
DELT=1500,STEPS=200 \$\$ INITIAL STEP SIZE, OUTPUT EVERY 200TH STEP
\$TABLE,713=E,717=MA,714=OMEGA/ E=2*5.0051948E-4*P*P/3.983667E14\$\$ ECCENTRICITY
MA=-7620.429/SIMP/9.80665-6*E+3.1415926/2,STEPS=5 \$\$ MEAN ANOMALY,OUTPUT CONTROL
CMEGA=-2*E-MA \$\$ ADJUST OMEGA (TO START PATH ON THE X-AXIS)

The dashed lines in figure 3 show the time histories of the same trajectory parameters when initial values of e and M given immediately preceding are used. The increase in average step size is 15 to 1. To compare the accuracy of this approximation with the exact case ($e_0 = M_0 = 0$), the final time was chosen when the corresponding orbit positions were identical (when the true anomalies were equal). At t = 42,590.2 seconds, the orbit positions are nearly identical, and, at this time, the values of position and velocity may be compared as follows:

	Case A: e _O = M _O = O	Case B: e_0 and $M_0 \neq 0$
Radius, m	6898546.94	6898546.94
Velocity, m/sec	7601.36401	7601.36407
Number of steps	822	55

For most purposes the two answers would be accepted as equivalent, and case B would be preferred because less computer time is required.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, July 12, 1963

APPENDIX A

SYMBOLS

$\vec{\mathbb{A}}$	relative angular momentum per unit mass, $\vec{r} \times \vec{V}$ (appendix B)
A_{e}	engine exit area, m ²
$a_{i,j}$	coefficients for quadratic functions
$\mathtt{C}_{\mathbb{D}}$	total drag coefficient
$c_{\mathrm{D,i}}$	induced drag coefficient
C _{D,O}	zero angle-of-attack drag coefficient
$\mathtt{c}_{\mathtt{L}}$	lift coefficient
D	drag force, newtons
D	fourth harmonic coefficient in oblateness equations
E	eccentric anomaly, radians
е	eccentricity
F	thrust force, newtons
f_1, f_2	functions of Mach number
gc	gravitational conversion factor, 9.80665 m/sec 2 (sometimes referred to as standard Earth gravity)
H	third harmonic coefficient in oblateness equations
h	altitude above Earth's surface, m
I	vacuum specific impulse, sec
i	orbit inclination to mean equator of 1950.0, radians
J,	second harmonic coefficient in oblateness equations
k^2	universal gravitational constant, 1.32452139 \times 10 ²⁰ , $m^3/(\sec^2)$ (sun mass units)
L	lift force, newtons
M	mean anomaly, radians
m	object mass, kg
16	

```
mass of ith perturbating body, sun mass units
m_{i}
             mass of reference body plus m, sun mass units
m_{\Upsilon}
             Mach number
N_{M}
             atmospheric pressure, newtons/m<sup>2</sup>
P
\overrightarrow{P}
             \overrightarrow{V}' \times \overrightarrow{A} (appendix B)
P_w
             power, w
             semilatus rectum, m
р
             dynamic pressure, \frac{1}{2} \rho(V')^2, newtons/m<sup>2</sup>
q
             radius of reference body, m
R_r
             radius from origin to object, m
r
             radius from origin to ith perturbating body, m
r_i
             aerodynamic reference area, m<sup>2</sup>
S
             temperature, OK
\mathbf{T}
             time, sec
t
             gravitational potential
U
             x,y,z accelerations due to gravity, m/sec<sup>2</sup>
U_{x}, U_{v}, U_{z}
             absolute velocity, m/sec
V,
             relative velocity, m/sec
             true anomaly, radians
             forces acting on object other than gravity, thrust, lift, drag, and
X
                perturbations due to perturbating bodies
             components of r, m
x,y,z
             angle between thrust and velocity vectors (sketch (a)), deg
\alpha
             angle of rotation of thrust out of orbit plane (sketch (a)), deg
             power efficiency factor
             k^2 m_r
             atmospheric density, kg/m<sup>3</sup>
```

- ω argument of pericenter, radians
- $\boldsymbol{\Omega}$ equatorial longitude of ascending node, radians Subscript:
- O initial value

APPENDIX B

VECTOR RESOLUTION

Relative Velocity

The relative velocity is defined as the velocity of the object with respect to the origin body. If the origin body is assumed to rotate about the z-axis, this velocity is given by

$$\vec{V}' = \vec{V} - \vec{\omega} \times \vec{r}$$
 (B1)

In x,y,z component form,

$$V_{x}' = V_{x} + \omega y \tag{B2a}$$

$$V_y' = V_y - \omega x$$
 (B2b)

$$V_{Z}^{1} = V_{Z}$$
 (B2c)

In the following sections, the atmosphere of the origin body is assumed to rotate as a solid body at the rate $\vec{\omega}$.

Thrust Resolution Along x,y,z Axes

The thrust direction is specified with respect to the relative velocity vector V' by the angles α and β , as shown in sketch (a) (p. 4). For resolution of thrust vector into x,y,z components, it is convenient to define vectors. A and P normal to and within the r,V' plane, respectively, such that V', A, and P form an orthogonal set. Thus,

$$\vec{A} \equiv \vec{r} \times \vec{V}' = \text{relative angular momentum per unit mass}$$
 (B3)

$$\vec{P} \equiv \vec{V}^{1} \times \vec{A} \tag{B4}$$

The thrust vector can then be resolved in the $\vec{V}', \vec{A}, \vec{P}$ set as:

$$\vec{F} \cdot \vec{V}' = FV' \cos \alpha$$
 (B5a)

$$\vec{F} \cdot \vec{A} = FA \sin \alpha \sin \beta$$
 (B5b)

$$\vec{F} \cdot \vec{P} = FP \sin \alpha \cos \beta$$
 (B5c)

Solving for \vec{F} yields

$$\vec{F} = \frac{F}{P^2} (V' \cos \alpha \vec{A} \times \vec{P} + A \sin \alpha \sin \beta \vec{P} \times \vec{V}' + P \sin \alpha \cos \beta \vec{P})$$
 (B6)

or, in x,y,z component form,

$$F_{X} = \frac{F}{P^{2}} \left[V' \cos \alpha (A_{y}P_{z} - A_{z}P_{y}) + A \sin \alpha \sin \beta (P_{y}V_{z}' - P_{z}V_{y}') + P \sin \alpha \cos \beta P_{x} \right]$$
(B7a)

$$F_{y} = \frac{F}{P^{2}} \left[V^{1} \cos \alpha (A_{z}P_{x} - A_{x}P_{z}) + A \sin \alpha \sin \beta (P_{z}V_{x}^{1} - P_{x}V_{z}^{1}) + P \sin \alpha \cos \beta P_{y} \right]$$

(B7b)

$$F_{Z} = \frac{F}{P^{Z}} \left[V^{I} \cos \alpha (A_{X}P_{Y} - A_{Y}P_{X}) + A \sin \alpha \sin \beta (P_{X}V_{Y}^{I} - P_{Y}V_{X}^{I}) + P \sin \alpha \cos \beta P_{Z} \right]$$
(B7c)

Aerodynamic Lift and Drag Resolution Along x,y,z Axes

The drag vector \overrightarrow{D} is alined with the relative velocity vector \overrightarrow{V}^1 and is therefore given in x,y,z components as

$$\vec{D} = -D \frac{V_X^i}{V^i} - D \frac{V_Y^i}{V^i} - D \frac{V_Z^i}{V^i}$$
(B8)

The lift vector \vec{l}_i may be resolved into components along the previously defined orthogonal set \vec{V}' , \vec{A}_i , and \vec{P} by the following relations:

$$\vec{L} \cdot \vec{V}^{i} = 0 \tag{B9a}$$

$$\vec{L} \cdot \vec{A} = LA \sin \beta$$
 (B9b)

$$\vec{L} \cdot \vec{P} = LP \cos \beta$$
 (B9c)

Solving for \vec{L} yields

$$\vec{L} = \frac{L}{P^2} (A \sin \beta \vec{P} \times \vec{V}^i + P \cos \beta \vec{P})$$
 (Blo)

or, in x,y,z component form,

$$L_{X} = \frac{L}{P^{2}} \left[A \sin \beta (P_{y}V_{z}^{i} - P_{z}V_{y}^{i}) + P \cos \beta P_{x} \right]$$
 (Blla)

$$L_{y} = \frac{L}{P^{2}} \left[A \sin \beta (P_{z}V_{x}^{i} - P_{x}V_{z}^{i}) + P \cos \beta P_{y} \right]$$
 (B11b)

$$L_{z} = \frac{L}{P^{2}} \left[A \sin \beta (P_{x}V_{y}^{i} - P_{y}V_{x}^{i}) + P \cos \beta P_{z} \right]$$
 (Bllc)

APPENDIX C

TRANSFORMATION EQUATIONS FROM ORBIT ELEMENTS

TO RECTANGULAR COORDINATES

From spherical trigonometry used in reference to the celestial sphere shown in sketch (c), the following relations may be derived for the position coordinates:

$$x = r(\cos \Omega \cos u - \sin \Omega \sin u \cos i)$$
 (Cla)

$$y = r(\sin \Omega \cos u + \cos \Omega \sin u \cos i)$$
 (Clb)

$$z = r(\sin u \sin i)$$
 (Clc)

where

$$r = \frac{p}{1 + e \cos v}$$
 (C2a)

$$u = \omega + v \tag{C2b}$$

and v can be obtained from

$$\cos v = \frac{\cos E - e}{1 - e \cos E} \tag{C2c}$$

and

$$M = E - e \sin E$$
 (C2d)

The velocity components may be obtained by differentiating the position equations using the two-body relations $\dot{\mathbf{u}}=\dot{\mathbf{v}}=\frac{\sqrt{\mu p}}{r^2}$ and $\dot{\mathbf{r}}=\sqrt{\frac{\mu}{p}}$ e sin v:

$$\dot{x} = -\sqrt{\frac{\mu}{p}} (N \cos i \sin \Omega + Q \cos \Omega)$$
 (C3a)

$$\dot{y} = \sqrt{\frac{\mu}{p}} (N \cos i \cos \Omega - Q \sin \Omega)$$
 (C3b)

$$\dot{z} = \sqrt{\frac{\mu}{p}} \text{ (N sin i)}$$
 (C3c)

where

$$N = e \cos \omega + \cos u$$
 (C4a)

$$Q = e \sin \omega + \sin u$$
 (C4b)

APPENDIX D

RUNGE-KUTTA AND LOW-ORDER INTEGRATION

SCHEMES WITH ERROR CONTROL

The Runge-Kutta formula used is of fourth-order accuracy in step size h. It is of the form

$$X \Big]_{1}^{2} = X_{2} - X_{1} = \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
 (D1)

where

X = a dependent variable

$$X$$
 = increment in the dependent variable

 h_2 = increment in the independent variable t

$$k_{1} = h_{2}\dot{x}_{2}(t_{1}, X_{1})$$

$$k_{2} = h_{2}\dot{x}_{2}\left(t_{1} + \frac{h_{2}}{2}, X_{1} + \frac{k_{1}}{2}\right)$$

$$k_{3} = h_{2}\dot{x}_{2}\left(t_{1} + \frac{h_{2}}{2}, X_{1} + \frac{k_{2}}{2}\right)$$

$$k_{4} = h_{2}\dot{x}_{2}(t_{1} + h_{2}, X_{1} + k_{3})$$

A lower-order formula may be found by utilizing the three derivatives at $t=t_0$, t_1 , and t_2 . If $h_1=t_1-t_0$ and $h_2=t_2-t_1$, the following Lagrangian interpolation formula gives the derivative at any time $t_0 \le t \le t_2$:

$$\dot{x} = \dot{x}_{0} \frac{(t - t_{1})(t - t_{2})}{h_{1}(h_{1} + h_{2})} - \dot{x}_{1} \frac{(t - t_{0})(t - t_{2})}{h_{1}h_{2}} + \dot{x}_{2} \frac{(t - t_{0})(t - t_{1})}{h_{2}(h_{1} + h_{2})}$$
(D2)

Integration of this equation from t_1 to t_2 yields

$$X' \Big]_{1}^{2} = \frac{1}{6} \left[\left(\frac{h_{2}}{h_{1}} \right)^{2} \left(\frac{-h_{2}}{1 + \frac{h_{2}}{h_{1}}} \right) \dot{x}_{0} + \frac{h_{2}}{h_{1}} \left(h_{2} + 3h_{1} \right) \dot{x}_{1} + \left(2h_{2} + \frac{h_{2}}{1 + \frac{h_{2}}{h_{1}}} \right) \dot{x}_{2} \right]$$
(D3)

The difference in the increments over the interval h_2 between the Runge-Kutta scheme and the low-order scheme may be divided by a nominal value of the dependent variable \overline{X} to obtain the relative error δ_2 . Thus,

$$\delta_2 = \left| \frac{x' \int_1^2 - x \int_1^2}{\overline{x}} \right| \tag{D4}$$

The error is expected to vary as approximately the fifth power of h, which leads to

$$\delta = Ah^5 \tag{D5a}$$

(where A is a suitable coefficient) or in the logarithmic form

$$\log \delta = A^{i} + 5 \log h \tag{D5b}$$

where

$$A' = \log A \tag{D6a}$$

Let it be assumed that A' will vary linearly with t, the variable of integration. Then A' at a time corresponding to t_3 can be found from A' at two previous points t_1 and t_2 as

$$A_{3}^{1} = A_{2}^{1} + \frac{A_{2}^{1} - A_{1}^{1}}{t_{2} - t_{1}} (t_{3} - t_{2})$$
 (D6b)

and if $h_3 = (t_3 - t_2)$ and $h_2 = (t_2 - t_1)$,

$$A_3' = A_2' + (A_2' - A_1') \frac{h_3}{h_2}$$
 (D6c)

and on this basis δ_3 would be predicted to be

$$\log \delta_3 = A_3^1 + 5 \log h_3 \tag{D7}$$

It is desired that δ_3 should approximate $\overline{\delta}_i$, the reference error; therefore,

$$\log h_3 = \frac{1}{5} \left(\log \overline{\delta} - A_3^1 \right) \tag{D8}$$

Each dependent variable has an associated relative error and would lead to computation of a different step size for each variable; however, the maximum relative error of all variables may be selected for 8. Obviously, inaccurate predictions of step size can occur when the maximum relative error shifts from one variable to another or when any sudden change occurs. When a step size produces

an excessively large error ($\delta > \delta_{limit}$), a reduced step size must be used. It may be obtained from the reference error δ as

$$h_3 = \exp\left[\frac{1}{5} \left(\log \delta - A_2^1\right)\right] \tag{D9}$$

Starting the integration. - The Runge-Kutta scheme is simple to start, since integration from X_n to X_{n+1} requires no knowledge of X less than X_n . Since the error control coefficient A has no value at t=0, a prediction of the second step size is difficult. To overcome this difficulty, two equal size first steps may be made before checking the error. The A for the first step may be arbitrarily set equal to the A for the second step so that h_3 may be predicted. The low-order integration scheme equation in this case becomes, with $h_2 = h_1$,

$$X'$$
 $= \frac{h_1}{3} (\tilde{X}_0 + 4\tilde{X}_1 + \tilde{X}_2)$ (Dlo)

Failures. - Should two consecutive predictions of the same step fail to produce an error δ less than δ_{limit} , a return to the starting procedure will be made with a third prediction on step size, which is no larger than one-half of the second estimate. The step-size control described here will operate stably with nearly constant error per step only for a well-behaved function. For most problems it will repeat a step occasionally to reduce a large error, and on sharp corners it will restart. This action is not regarded as objectionable. The objective is to attain a desired level of accuracy with a minimum total number of steps.

APPENDIX E

GLOSSARY OF VARIABLES

VARIABLE	COMMON LOCATION	DEFINITION
A (700)	C(11)	ARRAY CONTAINING THE INITIAL DATA AND THE PROGRAM CONTROL VARIABLES
Al	B(10)	ERROR CONTROL PARAMETER DEFINED BY EQ. (D6A) AT T(1)
A2	B(11)	ERROR CONTROL PARAMETER DEFINED BY EQ. (D6A) AT T(2)
ACOEF1	B(12)	INTERPOLATION POLYNOMIAL COEFFICIENT FOR VARIABLE STEP SIZE, EQ. (D3)
ACOEF2	B.(13)	INTERPOLATION POLYNOMIAL COEFFICIENT FOR VARIABLE STEP SIZE, EQ. (D3)
ACOE#3	B(14)	INTERPOLATION POLYNOMIAL COEFFICIENT FOR VARIABLE STEP SIZE, EQ. (D3)
AEXIT1 (10)	A(103)	ENGINE EXIT AREAS FOR AT MOST 10 STAGES, M**2
AEXIT	B(3)	AEXIT1(NSTAGE)
AK (3)	A(51)	RUNGE KUTTA COEFFICIENTS, SET IN STDATA
ALPHA	A(49)	ANGLE BETWEEN VELOCITY AND THRUST VECTORS, SEE SKETCH (A)
ALT	A(4)	VEHICLE ALTITUDE ABOVE EARTH, M
AM ·	B(90)	TOTAL VEHICLE ANGULAR MOMENTUM PER UNIT MASS, M**2/ SEC
AMASS (30)	A(347)	PERMANENT LIST OF BODY MASSES IN ORDER OF PNAME LIST, SET IN STDATA, MASSES FROM ELIPS DATA BEGIN AT AMASS (21), SUN MASS UNITS
AMC (3)	B(87)	X,Y,Z COMPONENTS OF ANGULAR MOMENTUM PER UNIT MASS, **2)/SEC
AMSQRD	B(91)	SQUARE OF TOTAL ANGULAR MOMENTUM PER UNIT MASS, M**4/ SEC**2
AREA1 (10)	A(113)	AERODYNAMIC REFERENCE AREAS FOR AT MOST 10 STAGES, M**2
AREA	B(6)	AREAL(NSTAGE)
ASYMPT	A(7)	SEE TABLE II
ATMN	A(21)	SEE TABLE II
AU	A(29)	ASTRONOMICAL UNIT, M
AW (4)	A(55)	RUNGE KUTTA COEFFICIENTS, SET IN STDATA
AZI	A(35)	INITIAL AZIMUTH ANGLE, USED WHEN IMODE = 4, SEE SKETCH (B), DEGREES

B (800)	C(1111)	ARRAY CONTAINING INTERNAL PARAMETERS NOT UNDER USER CONTROL
BETA	A150)	ANGLE BETWEEN VELOCITY-THRUST PLANE AND ORBIT PLANE, SEE SKETCH(A)
BMASS (8)	B(137)	BODY MASSES SELECTED FROM AMASS LIST IN SEQUENCE COR- RESPONDING TO BNAME LIST
BNAME (8)	8(122)	ORDERED LIST OF BCD BODY NAMES
BODYCD (10)	A(143)	ORIGINAL UNORDERED LIST OF BCD BODY NAMES READ IN AT INPUT
80DYL (10)	B.(153)	AUXILIARY ORDERED LIST OF BCD BODY NAMES
€D.	A(165)	TOTAL DRAG COEFFICIENT
CDI	A(163)	INDUCED DRAG COEFFICIENT
CHAMP	B(25)	SMALLEST CRITICAL RADIUS (RBCRIT(J)) WITHIN WHICH OBJECT LIES
CINCL	8(55)	COSINE OF INCLINATION
CIRCUM	B(82)	CIRCUMFERENTIAL COMPONENT OF TOTAL PERTURBATIVE ACCELERATION, M/SEC**2
CL	A(164)	LIFT COEFFICIENT
CLEAR	C(3)	SEE TABLE II
COEFN (192)	A(407)	STORAGE ARRAY FOR COEFFICIENTS USED TO COMPUTE ALPHA, CL,CDI,CD OR OTHER PARAMETERS
COMPA (3)	B(63)	COMPONENTS OF TOTAL PERTURBATIVE ACCELERATION ALONG x , y , z axes.
CONSU	A(31)	SEE TABLE II
CONSTU	A(32)	SEE TABLE II
COSALF	B(48)	COSINE OF ALPHA
COSBET	B(49)	COSINE OF BETA
COSTRU	8(53)	COSINE OF TRU
cosv	B(57)	COSINE OF THE ARGUMENT OF LATITUDE
D (1100)	C(2111)	ARRAY WHERE SAVED DATA IS STORED FOR LATER USE. ARRAYS A, XPRIM, AND XPRIMB MAY BE SAVED.
DELMAX	A(19)	SEE TABLE II
DEL	A(43)	OUTPUT CONTROL PARAMETER USED IN STEP
DELT1 (10)	A(133)	INITIAL STEP SIZES FOR AT MOST 10 STAGES, SEC
DELT	B(1)	DELT1(NSTAGE)
DNSITY	8(29)	ATMOSPHERIC DENSITY, KG/M**3
DONE	B(39)	CONTROL PARAMETER FROM STEP WHICH INFORMS NBODY TO STOP INTEGRATING

DRAG (3)	B(69)	X,Y,Z COMPONENTS OF THE DRAG ACCELERATION, M/SEC++2
DTOFFJ	A(23)	JULIAN DATE OF TAKEOFF
E2	B(18)	LARGEST OF THE RELATIVE ERRORS BETWEEN R-K AND LOW- ORDER INTEGRATION METHODS, EQ. (D4)
EFMRS (7)	B(130)	LIST OF BCD BODY NAMES WHOSE POSITIONS ARE TO BE DETERMINED FROM TAPE DATA
ELEV	A(36)	INITIAL ELEVATION ANGLE, USED WHEN IMODE=4, SKETCH(B), DEGREES
ELIPS (12,10)	A(167)	ELLIPSE DATA FOR PERTURBATING BODIES, READ FROM CARDS, 12 PIECES OF DATA PER BODY
EMONE	8(28)	ECCENTRICITY -1
END	A(5)	SEE TABLE II
EPAR	B(26)	SQUARE ROOT OF (ECCENTRICITY SQUARED -1)
EREF	A(13)	SEE TABLE II
ERLIMT	A(14)	SEE TABLE II
ERLOG	B(17)	NATURAL LOGARITHM OF EREF
ETOL	A(30)	SEE TABLE II
EXITA	8(392)	AEXIT(NSTAGE)/100, NEWTONS/MB
EXMODE	B(27)	ECCENTRICITY CALCULATED WHEN IMODE=3
FILE	B(22)	SEE TABLE II
FLOW1 (10)	A(83)	RATE OF PROPELLENT FLOW, KG/SEC
FLOW	B(5)	FLOW1(NSTAGE)
FORCE (3)	B(66)	X,Y,Z COMPONENTS OF THRUST ACCELERATION, M/SEC++2
GASFAC	A(46)	DEFINED IN SUBROUTINE AERO, SET IN STDATA
GEOH	B(32)	GEOPOTENTIAL, M
GK2M	B(36)	GRAVITATIONAL CONSTANT, MU, OF THE SYSTEM, M**3/SEC**2
GKM	B(37)	SQUARE ROOT OF GK2M
H2	B(15)	VALUE OF DELT FOR PREVIOUS STEP
IBODY (8)	B(177)	DEFINED IN SUBROUTINE ORDER
ICC (10)	A(153)	SEE TABLE II
IDENT (10)	A(123)	INPUT IDENTIFICATION NUMBERS ASSOCIATED WITH EACH STAGE
IMODE	A(1)	SEE TABLE II
IND (3)	A(60)	SET OF INDICES, SET IN STDATA
INDERR	B(51)	NUMBER OF SETS OF ERROR DATA, SET IN ERRORZ FOR USE IN NBODY

INLOOK	A(599)	INPUT IDENTIFICATION NUMBER FOR INPUT AFTER FINDING C (LOOKX) = XLOOK
KSUB	B(19)	INDEX OF RUNGE-KUTTA SUBINTERVALS
ŁAT	A(33)	INITIAL GEOCENTRIC LATITUDE, USED WHEN IMODE=4, SKETCH (B), DEGREES
LONG	A(34)	INITIAL LONGITUDE RELATIVE TO GREENWICH, USED WHEN IMODE=4, SKETCH(B), DEGREES
LOOKX	(8)A	SEE TABLE II
ŁOOKSW	A(9)	SEE TABLE II
ESTAGE	A(38)	TOTAL NUMBER OF STAGES INTEGRATED BEFORE RETURNING TO THE MAIN PROGRAM
MBODYS	B(42)	NUMBER OF PERTURBATING BODIES (NBODYS-1)
MODOUT	A(20)	SEE TABLE II
NBODYS	B(41)	TOTAL NUMBER OF BODIES, EXCLUDING THE VEHICLE
NCASES	A(600)	SAVED VALUE OF NCASE
NCASE	C(1)	CASE NUMBER, RAISED ONCE EACH TIME CONTROL PASSES THROUGH THE MAIN PROGRAM
NEFMRS (8)	B(185)	DEFINED IN SUBROUTINE ORDER
NEQ	A(2)	NUMBER OF EQUATIONS TO BE INTEGRATED, SET TO 8 IN STDATA
NSAVE	C(4)	SEE TABLE II
NSTAGE	A(3)	THE INDEX INDICATING THE PARTICULAR STAGE CURRENTLY BEING INTEGRATED.
NSTART	B(24)	INTERNAL CONTROL IN NBODY AND EQUATE
OBLATJ	A(26)	OBLATENESS COEFFICIENT OF SECOND HARMONIC
OBLATO	A(27)	OBLATENESS COEFFICIENT OF FOURTH HARMONIC
OBLATH	A(28)	OBLATENESS COEFFICIENT OF THIRD HARMONIC
OBLA#N	A(40)	SEE TABLE II
OBLAT (3:)	B(75)	X,Y,Z COMPONENTS OF OBLATENESS ACCELERATION, M/SEC**2
OLDDEL	B(9)	VALUE OF DELT FOR PREVIOUS GOOD STEP
ORBELS (6)	B(116)	ARRAY OF OUTPUT VARIABLES, EITHER RECTANGULAR OR ORBIT ELEMENTS
OUTPOT	B(399)	CAUSES ABSENCE OF OUTPUT WHEN NONZERO
P (3)	B(84)	DEFINED IN EQ. (B4)

PAR (3)	B(60)	DEFINED BY EQUATIONS IN SUBROUTINE THRUST
PMAGN	B(50)	DEFINED IN EQUATION FORM BY SUBROUTINE THRUST
PNAME (30)	A(287)	PERMANENT LIST OF BODY NAMES MADE FROM PNAA LIST IN SUBROUTINE ORDER, ELIPS NAMES BEGIN AT PNAME(21)
PRESS	B(33)	ATMOSPHERIC PRESSURE, MB
PSI	B(30)	PATH ANGLE, ANGLE BETWEEN PATH AND LOCAL HORIZONTAL, DEGREES
PSIR	8(398)	RELATIVE PATH ANGLE, TAKEN RELATIVE TO A ROTATING ORIGIN BODY, DEG
PUSH	A(166)	THRUST FORCE, NEWTONS
PUSH0	B(391)	VACUUM THRUST FORCE, NEWTONS
Q	B(59)	DYNAMIC PRESSURE, NEWTONS/M**2
XAMQ	B(44)	MAXIMUM VALUE OF Q DEVELOPED DURING A SINGLE TRAJECTORY (SET TO ZERO WHEN CONTROL PASSES THROUGH SUBROUTINE EXTRA)
QX (3)	B(78)	X,Y,Z COMPONENTS OF PERTURBATIVE ACCELERATION DUE TO PERTURBATING BODIES, M/SEC**2
R (8)	B(102)	DISTANCES OF ALL BODIES FROM OBJECT, IN ORDER OF BNAME LIST, M
RADIAL	B(81)	RADIAL COMPONENT OF TOTAL PERTURBATIVE ACCELERATION, POSITIVE OUTWARD, M/SEC**2
RAMC (5)	B(393)	RELATIVE ANGULAR MOMENTUM PER UNIT MASS COMPONENTS, TOTAL RELATIVE ANGULAR MOMENTUM PER UNIT MASS, AND ITS SQUARE, M**2/SEC
RATM	A(22)	RADIUS OF ATMOSPHERE, M
RATMOS	8(23)	SET EQUAL TO RATM WHEN ATMN EQUALS THE REFERENCE BODY NAME: BNAME(1)
RATIO	B(58)	RATIO OF ADJACENT STEP SIZES, DELT
RB (3,8)	8(193)	X,Y,Z COMPONENTS OF DISTANCE FROM ALL BODIES TO THE OBJECT,M
RBCRIT (8)	B(145)	LIST OF SPHERE-OF-INFLUENCE RADII OF ALL BODIES IN BNAME LIST, M
RCRIT (30)	A(377)	PERMANENT LIST OF SPHERE-OF-INFLUENCE RADII CORRES- PONDING TO PNAME LIST OF BODY NAMES. RADII FROM ELIPS DATA BEGIN AT RCRIT(21), M
RE	A(25)	RADIUS OF EARTH EQUATOR, M
RECALL	C(5)	SEE TABLE II
REFER (30)	A(317)	LIST OF REFERENCE BODIES CORRESPONDING TO PNAME LIST, REFERENCE BODIES FROM ELIPS DATA BEGIN AT REFER(21)
RESQRD	B(7)	SQUARE OF RE
RETURN	B(400)	CAUSES CONTROL NOT TO RETURN TO MAIN PROG. IF NONZERO

REVS	A(48)	REVOLUTION COUNTER, USED ONLY FOR OUTPUT
REVOLV	8(21)	ROTATION RATE OF REFERENCE BODY WHEN ATMN=BNAME(1), RAD/SEC
RMASS1 (10)	A.(73)	INITIAL MASSES FOR AT MOST 10 STAGES, KG
ROTATE	A(39)	ROTATION RATE OF A REFERENCE BODY, RAD/SEC
RSQRD	B(45)	RADIUS SQUARED OF OBJECT TO ORIGIN, M**2
SIGNAL	B(31)	SEE TABLE II
SIMPA (10)	A(93)	SPECIFIC IMPULSES FOR AT MOST 10 STAGES, SEC
SIMP	8(2)	SIMP1(NSTAGE)
SINALF	B(46)	SINE OF ALPHA
SINBET	8.(47)	SINE OF BETA
SINTRU	B(52)	SINE OF TRU
SINCL	B(54)	SINE OF INCLINATION
SINV	8(56)	SINE OF THE ARGUMENT OF LATITUDE
SPACES	B(16)	NUMBER OF EQUAL TIME UNITS UNTIL NEXT OUTPUT
SPD	A(44)	SECONDS PER DAY, SET IN STDATA, SEC/DAY
SQRDK1	A(47)	GRAVITATIONAL CONSTANT OF THE SUN, AU**3/DAY**2
SQRDK	B(35)	GRAVITATIONAL CONSTANT OF THE SUN, M**3/SEC**2
STEPMX	A(16)	SEE TABLE II
STEPS	A(17)	SEE TABLE II
STEP G O	A(41)	COUNT OF SUCCESSFUL INTEGRATION STEPS
STEPNO	A(42)	COUNT OF UNSUCCESSFUL INTEGRATION STEPS (THOSE WHICH DO NOT PASS ERROR CONTROL TEST)
SWLOOK	A(10)	SEE TABLE II
TABLI	B(20)	TIME MEASURED RELATIVE TO THE JULIAN DATE OF TAKEOFF, DAYS
TABLE (200)	C(1911)	ARRAY OF INPUT PARAMETERS AND THEIR COMMON STORE LO- CATIONS
TAPE3	C(2)	SEE TABLE II
TB (10)	A(63)	FLIGHT TIMES FOR AT MOST 10 STAGES, SEC

TDATA (6,3,7)	8(265)	COEFFICIENTS FROM EPHEMERIDES TAPE TO BE USED IN DE- TERMINING POSITIONS AND POSSIBLY VELOCITIES OF PER- TURBATING BODIES, ONE SET FOR EACH OF 7 BODIES
TDEL (7)	B(170)	ONE-HALF OF TIME SPACING BETWEEN TWO ADJACENT ENTRIES OF LIKE BODY NAME ON EPHEMERIDES TAPE, READ FROM TAPE FOR EACH BODY
TFILE	A(6)	SEE TABLE II
TIM (7)	B(163)	TIME FOR SET OF EPHEMERIS DATA, READ FROM EPHEMERIDES TAPE, ONE FOR EACH BODY
TKICK	A(15)	INITIAL STEP SIZE OF A TRAJECTORY TO BE COMPUTED IN CLOSED-FORM, FOR USE WHEN IMODE=4, WHICH FACILITATES STARTING OF SOME TYPES OF TRAJECTORIES
TM	B(34)	ATMOSPHERIC TEMPERATURE TIMES THE RATIO OF MOLECULAR TO ACTUAL MOLECULAR WEIGHT, DEGREES KELVIN
XAMT	B(4)	SEE TABLE II
TMIN	A(18)	SEE TABLE II
TOFFT	A(24)	FRACTIONAL PART OF JULIAN DATE OF TAKEOFF, DAYS
TRSFER	B(8)	SEE TABLE II
∓RÜ	B(40)	TRUE ANOMALY, RAD
TIEST	A(54)	SEE TABLE II
TTOL	A(45)	TIME TOLERANCE WITHIN WHICH PROBLEM TIME MINUS TMAX MUST LIE TO END STAGE
u	A(59)	ECCENTRIC ANDMALY, RAD
¥	B(95)	VELOCITY OF OBJECT RELATIVE TO THE ORIGIN, M/SEC
VATM (3)	B(97)	X,Y,Z COMPONENTS OF THE RELATIVE VELOCITY, VQ,M/SEC
VEFM (3,8)	B(241)	X,Y,Z COMPONENTS OF OBJECT VELOCITY RELATIVE TO ALL BODIES, M/SEC
VEL	A(37)	INITIAL RELATIVE VELOCITY, USED WHEN IMODE=4, SKETCH (B), M/SEC
VMACH	B(38)	MACH NUMBER OF OBJECT
VQ	B(100)	VELOCITY OF OBJECT RELATIVE TO ATMOSPHERE, M/SEC
VQSQRD	B(101)	SQUARE OF VQ, M**2/SEC**2
VSQRD	B(96)	SQUARE OF V, M**2/SEC**2
٧x	B(92)	X COMPONENT OF VELOCITY, M/SEC
VY	B(93)	Y COMPONENT OF VELOCITY, M/SEC
V Z	B(94)	Z COMPONENT OF VELOCITY, M/SEC
X (100)	B(401)	WORKING SET OF INTEGRATION VARIABLES
XDOT (100)	B(501)	TIME DERIVATIVES OF THE SET X

XIFT (3)	B(72)	X,Y,Z COMPONENTS OF LIFT ACCELERATION, M/SEC**2
XINC (100)	B(601)	INCREMENTS OF THE INTEGRATION VARIABLES PER STEP
XLOOK	A(12)	SEE TABLE II
XP (3,8)	B(217)	X,Y,Z COMPONENTS OF PERTURBATING BODY POSITIONS RELATIVE TO ORIGIN
XPRIM (100,2)	C(711)	TWO 100-ELEMENT SETS, THE FIRST SET CONTAINS VALUES OF THE INTEGRATION VARIABLES AT THE PREVIOUS GOOD STEP, THE SECOND SET IS UNDER THE INTEGRATION PROCESS, SEE TABLE V
XPRIMB (100,2)	C(911)	LEAST SIGNIFICANT HALF OF DOUBLE PRECISION INTEGRATION VARIABLES XPRIM
XTOL	A(11)	TOLERANCE ON THE DISCIMINATION C(LOOKX)-XLOOK TO BE SATISFIED
XWHOLE (6)	B(110)	RECTANGULAR COORDINATES AND VELOCITIES, SET ASIDE FOR USE IN ORIGIN TRANSLATIONS
ZN	B(43)	MEAN ANGULAR MOTION OF OBJECT, RAD/SEC
ZORMAL	B(83)	Z COMPONENT OF TOTAL PERTURBATIVE ACCELERATION, M/SEC**2

APPENDIX F

LEWIS RESEARCH CENTER EPHEMERIS

General Description

The ephemeris data initially available on magnetic tape were from the Themis code prepared by the Livermore Laboratory, evidently from U.S. Naval Observatory data. Later, an ephemeris was obtained from the Jet Propulsion Laboratory assembled as a joint project of the Jet Propulsion Laboratory and the Space Technology Laboratory. These data are given relative to the mean vernal equinox and equator of 1950.0 and are tabulated with ephemeris time as the argument.

An ephemeris was desired for certain uses in connection with the IBM 7090 computer that would be shorter than the original ephemeris tapes mentioned and would be as accurate as possible consistent with the length. A short investigation of the various possibilities led to adoption of fitted equations. In particular, fifth-order polynomials were simultaneously fitted to the position and velocities of a body at three points. This procedure provides continuity of position and velocity from one fit to the next, because the exterior points are common to adjacent fits. Polynomials were selected rather than another type of function, because they are easy to evaluate. Three separate polynomials are used for the x, y, and z coordinates, respectively.

Procedure Used to Fit Data

The process of computing the fitting equations is as follows:

- (1) A group of 50 sets of the components of planetary position was read into the machine memory for a single planet together with differences as they existed on the original magnetic tape. The differences were verified by computation (in double precision because some data required it); and any errors were investigated, corrected, and verified. Published ephemeris data were adequate to correct all errors found.
- (2) The components of velocity v_x , v_y , and v_z were computed and stored in the memory for each of the 50 positions by means of a numerical differentiation formula using ninth differences; namely,

$$\dot{X} = (T_1 - T_{-1}) \left[\frac{\Delta I_{-1} + \Delta I_{+1}}{2} - \frac{\Delta III_{-1} + \Delta III_{+1}}{12} + \frac{\Delta V_{-1} + \Delta V_{+1}}{60} - \frac{\Delta VII_{-1} + \Delta VII_{+1}}{280} + \frac{\Delta IX_{-1} + \Delta IX_{+1}}{1260} \right]$$
(F1)

(See ref. 11, pp. 42 and 99 for notation.) Double-precision arithmetic was used for differences, but velocities were tabulated with single precision.

(3) Coefficients C, D, E, and F in the fifth-order polynomial

$$X = X_O + \dot{X}_O(T - T_O) + C(T - T_O)^2 + D(T - T_O)^3 + E(T - T_O)^4 + F(T - T_O)^5$$
 (F2)

and its derivative

$$\dot{X} = \dot{X}_{O} + 2C(T - T_{O}) + 3D(T - T_{O})^{2} + 4E(T - T_{O})^{3} + 5F(T - T_{O})^{4}$$
 (F3)

were found to fit a first point (which was far enough from the beginning point to have all differences computed) and two equally spaced points for each component of position and velocity. (The initial spacing is not important, as will be seen later.) Spacing is defined as the number of original data points fitted by one equation. Single-precision arithmetic was used.

- (4) The coefficients C, D, E, and F in step (3) were then used in equations (F2) and (F3) to calculate components of all positions and velocities given in the original data and lying within the interval fitted. These values were checked with the original data. Radius R and velocity V were computed at the times tabulated in the original data. If any component of the position differed from the original data by more than $R \times 10^{-7}$ or if any velocity differed from the original by more than $V \times 10^{-6}$, the fit was considered unsatisfactory.
- (5) If the fit was considered unsatisfactory, this fact was recorded, and the spacing was reduced by two data points. Steps 2 to 4 were then repeated. If the fit was considered satisfactory, this fact was recorded, and the spacing was increased by two spaces. Steps 2 to 4 were repeated. The largest satisfactory fit was identified when a certain spacing was satisfactory and the next larger fit was not satisfactory.
- (6) The coefficients that corresponded to the largest satisfactory fit were recorded on tape in binary mode as follows:

Word number	Data	Mode	Definitions and/or units	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Planet name Julian date Delta T Fx Dx Cx x Fy Dy y y Fz Cz cz z	BCD Floating point	Six characters (first six) Date of midpoint of fit, Julian date Number of days on each side of midpoint aAU/day5 aAU/day4 aAU/day3 aAU/day2 aAU/day aAU aAU/day5 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day2 aAU/day2 aAU/day2 aAU/day2 aAU/day4 aAU/day3 aAU/day4 aAU/day4 aAU/day3 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day4 aAU/day2 aAU/day4 aAU/day2 aAU/day2 aAU/day4 aAU/day2 aAU/day4 aAU/day2 aAU/day4	

^aExcept for Moon data, which are in Earth radii and days.

(7) As soon as a set of coefficients was selected for an interval, additional data were read from the source ephemeris tape and used to replace the points already fitted (except the last point). These data were processed as described in steps 1 and 2 so that the next 50 points were ready to be fitted. Steps 3 to 6 were then used to find the next set of coefficients, and steps 1 to 6 were repeated until all data for all planets were fitted.

Data Treated

The preceding process was applied to all data available at the time. For the Moon, the technique usually led to the use of every point in the fitted interval (i.e., only three points were fitted). Thus, a check of accuracy was not available. The error in the attempt to fit the next greater interval (five points) was not excessive, however, and it is judged that the accuracy obtained from these fits is about equal to that held on the other bodies.

Merged Ephemeris Tape

Once all the positions and velocities of all the bodies then available were fitted, the coefficients were merged in order of the starting date of each fit. The resulting tape was written in binary mode with 12 sets of fits per record.

The detail of this record is as follows:

```
lst word: FORTRAN compatible
2nd word: file number, fixed point in decrement
3rd word: planet name, code in BCD, first six characters
4th word: Julian date, floating point
- etc., according to list in paragraph 6
- 21 words
23rd word: z

24th word: planet name, code in BCD, first six characters
25th word: Julian date, floating point
- 44th word: z
```

Successive sets follow one another with a total of 12 sets.

```
Set 12 (last set) 

{
234th word: planet name 235th word: Julian date, floating point 254th word: z End-of-record gap
```

One record contains 254 words, the first is for FORTRAN compatibility, the second is a file number used for identification in the system. It is a fixed point 2. The third is the beginning of the first set of data, and 12 sets follow each with 21 words. The last word is the 254th word (counting the FORTRAN compatible word)

followed by an end-of-record gap. The remaining records are compiled in the same manner with an end-of-file recorded as a terminating mark.

Because of the merging operation, all bodies are given in one list in a random order according to the starting date of the interval. The starting date is the Julian day (word 2) minus the half interval (word 3) (see procedure, paragraph 6). The entire ephemeris occupies about one-seventh reel of tape. A summary of data is given in table VII.

APPENDIX G

INPUT-DATA REQUIREMENTS

The procedure needed to run actual problems with the aid of this routine is described herein. It is intended to permit the user with a specific problem in mind to make a complete list of data required and to select desirable operating alternatives from those available. The details of this procedure are contained in the following instructions:

- (1) Provision has been made for two types of ephemeris data to specify the locations of celestial bodies that perturb the vehicle. They are ellipse data and ephemeris-tape data. If the problem does not involve perturbing bodies (except a reference body) or if elliptic data are used for all the perturbing bodies, skip to instruction 5.
- (2) If the perturbing-body data are to be taken from an ephemeris tape, list the names of the ephemerides and Julian dates to be covered along with the following auxiliary information:

lst card: \$DATA = 300, \$TABLE, 2 = TAPE 3, 17 = ELIST, 29 = TBEGIN, 30 = TEND/

Other cards: TAPE 3 = 0

TBEGIN = ephemeris beginning Julian date

TEND = ephemeris ending Julian date

ELIST = (names of perturbing bodies in "ALF" format, see example in text)

The ephemerides of all planets except Earth bear the name of the planet. The ephemeris giving the distance from Earth to the Sun is called "sun," as is astronomical practice.

(3) If successive files on the ephemeris tape are to be made, punch the corresponding sets as follows:

\$DATA = 300, TAPE 3 = 0, TBEGIN = , TEND = , ELIST =

As many similar sets as are needed may be appended.

- (4) If ellipse data are to be loaded from cards, they are prepared later under instruction 11.
- (5) On the first execution after loading the routine, the common area is cleared whether an ephemeris tape is constructed or not. It is now necessary to load a table of variable names. Once loaded, this table will not be cleared again (except if the control variable TAPE 3 is set equal to zero). These names are for use on the input cards. If a different name is desirable for any

variable, it may be changed in the table and where it appears on the input card (ref. 7). The cards are:

\$DATA=1,\$TABLE, 33=DTOFFJ, 34=TOFFT, 711=TIME, 716=X, 717=Y, 718=Z, 713=VX, 714=VY, 715=VZ, 11.=IMODE, 713=E, 714=OMEGA, 715=NODES, 716=INCL, 717=MA, 718=P, 43=LAT, 44=LONG, 45=AZI, 46=ELEV, 14=ALT, 47=VEL, 16=TFILE, 28=TMIN, 153=BODYCD, 177=ELIPS, 30.=MODOUT, 27=STEPS, 29=DELMAX, 26=STEPMX, 23=EREF, 24=ERLIMT, 4.=NSAVE, 5=RECALL, 3=CLEAR, 18.=LOOKX, 22=XLOOK, 19.=LOOKSW, 20=SWLOOK, 609.=INLOOK, 15=END, 31=ATMN, 32=RATM, 49=ROTATE, 417=COEFN, 163.=ICC, 60=BETA, 50=OBLATN, 73=TB, 93=FLOW, 103=SIMP, 123=AREA, 143=DELT, 83=RMASS, 113=AEXIT, 133.=IDENT, 48.=LSTAGE, 25=TKICK /

(6) The initial position and velocity of the vehicle may be given in any one of the three coordinate systems. If the initial data are given in orbit elements, skip to instruction (8). If the initial data are given in rectangular coordinates, skip to instruction (7). If the initial data are given in Earthcentered spherical coordinates, the following variables should be punched:

LAT = latitude, deg, positive north of equator

LONG = longitude, relative to Greenwich, deg

ALT = altitude above sea level, m

AZI = azimuth angle, east from north, deg

ELEV = elevation angle, horizontal to path, deg

VEL = initial relative velocity, m/sec

TKICK = size of initial vertical, nondrag step to facilitate starting, sec

If the Earth is assumed to be rotating but aerodynamic forces are not to be considered, set

ROTATE = Earth rotation rate, 7.29211585×10⁻⁵ radian/sec

If integration in rectangular coordinates is desired set IMODE = 4

or else if integration in orbit elements is desired set IMODE = -4

Skip to instruction (9).

(7) If the initial data are in rectangular coordinates, set the following variables:

X = x-component of position in x,y,z coordinate system, m

Y = y-component of position in x,y,z coordinate system, m

Z = z-component of position in x,y,z coordinate system, m

VX = x-component of velocity in x,y,z coordinate system, m/sec

VY = y-component of velocity in x,y,z coordinate system, m/sec

VZ = z-component of velocity in x,y,z coordinate system, m/sec

If integration in rectangular coordinates is desired set IMODE = 2

or else, if integration in orbit elements is desired set IMODE = -2

Skip to instruction (9).

(8) If the initial data are in orbit elements, set the following variables:

E = eccentricity

OMEGA = argument of pericenter, radians

NODES = longitude of ascending node (to mean vernal equinox of 1950.0), radians

INCL = orbit inclination to mean equator of 1950.0, radians

MA = mean anomaly, radians

P = semilatus rectum, m

If integration in orbit elements is desired set IMODE = 1

or else, if integration in rectangular coordinates is desired set ${\tt IMODE} = -1$

(9) To specify takeoff time, set the following variables:

DTOFFJ = Julian day number

TOFFT = fraction of day

TIME = time from previously set Julian date, sec

Takeoff occurs at the instant (ephemeris time) corresponding to the sum of the last three quantities. If a specific date or time is not required, these variables may be skipped. In that case, the SUBROUTINE STDATA sets DTOFFJ to 2440 000.

(10) To specify the origin and any perturbing bodies, list them as BODYCD = (list of body names in "ALF" format, see text example). The first body in the list is taken to be the reference body. The distances between the bodies in

this list must be computable from either ellipse data (instruction (11)) or ephemeris-tape data (instruction (2)). There may be no more than eight names in the list. Also, if the ephemeris tape is being used, the correct file must be found on it. For this purpose, set TFILE = desired ephemeris-tape file. The ephemeris files were numbered in sequence when written in instruction (2). If TFILE is not given, it will be set equal to 1.0 by the SUBROUTINE STDATA.

- (11) For each body whose path is represented by an ellipse, a 12-element set of data must be loaded. A 12-element set consists of:
 - 1. Body name in "ALF" format (maximum of six characters)
 - 2. Reference body name in "ALF" format (maximum of six characters)
 - 3. Mass of body, sun mass units
 - 4. Radius of sphere of influence, m
 - 5. Semilatus rectum, AU
 - 6. Eccentricity
 - 7. Argument of pericenter, radians
 - 8. Longitude of ascending node (to mean vernal equinox of 1950.0), radians
 - 9. Orbit inclination (to mean equator of 1950.0), radians
 - 10. Julian day at perihelion
 - 11. Fraction of day at perihelion
 - 12. Period, mean solar days

It is convenient to punch a 12-element set in sequence and to separate the elements by commas on as many cards as are required. Several sets may then be loaded consecutively. The order of the sets is immaterial. Ellipse data, if present, take precedence over ephemeris-tape data. The sets are loaded consecutively, in any order, as follows:

ELIPS = set 1, set 2, set 3, . . ., set n; $n \le 10$ (see example in appendix I)

- (12) If oblateness effects of the Earth are to be included, set

 OBLATN = (ALF5)EARTH
- (13) Provision has been made to fly multistage vehicles with up to 10 stages. At least one stage must be loaded. There are eight parameters for each stage with provision for input-controlled modifications of other variables. The 10 values of each parameter are stored in an array corresponding to the

10 stages. Input cards are as follows:

TB = burning time for 1st stage, 2nd stage, etc., sec

FLOW = propellant flow rate for 1st stage, 2nd stage, etc., kg/sec

SIMP = vacuum specific impulse of lst stage, 2nd stage, etc., sec

AREA = aerodynamic reference area of 1st stage, 2nd stage, etc., m^2

AEXIT = engine exit area for 1st stage, 2nd stage, etc., m^2

RMASS = initial mass or jettison mass for 1st stage, 2nd stage, etc., kg

DELT = initial integration step size for 1st stage, 2nd stage, etc., sec

IDENT = input identification number 1st stage, 2nd stage, etc.

TB must be loaded for as many stages as are to be flown. Others may be omitted if zero is appropriate. If RMASS(i) is not positive, the ith stage begins with the final mass of the previous stage reduced by the fixed amount RMASS(i). In the case of DELT, zero will result in use of TB/100. IDENT of a nonzero value will cause any data cards of that identification number to be read in after the stage is set up and before integration begins. This permits the user to make almost any change desired. The order of data cards is discussed in instruction (24).

(14) The thrust orientation must be specified by setting

BETA = angle β , deg (see sketch (a) (p. 4))

COEFN (I) = angle-of-attack schedule, $\alpha = \alpha(t)$ (see instruction (16))

ICC = fixed-point integer (see instruction (16))

For the special case of tangential thrust, none of the last three variables need be set.

(15) If aerodynamic forces are present, set in addition to AREA in instruction (13):

ATMN = name of body that has atmosphere, in "ALF" format, (Earth)

RATM = radius above which atmospheric forces are not to be considered, m

ROTATE = atmospheric-rotation rate, radians/sec $(7.29211585 \times 10^{-5})$ for Earth)

BETA = angle β , deg (see sketch (a))

COEFN (I) = angle-of-attack schedule, α = α (t), $C_L/\sin \alpha$, $C_{D,0}$, and $C_{D,i}/C_L^2$ curves (see instruction (16))

ICC = fixed-point integers (see instruction (16))

(16) If neither thrust nor aerodynamic forces are present, skip to instruction (18). The relations $\alpha(t)$, $C_L/\sin\alpha$, $C_{D,0}$, and $C_{D,i}/C_L^2$ are assumed to be quadratic functions that involve coefficients, which are located in the COEFN(J) array. The arrangement of these coefficients is best explained by an example. Suppose the function $\alpha(t)$ is as follows:

$$\alpha = \begin{cases} a_{11} + a_{12}t + a_{13}t^2 & (t_1 \le t \le t_2) \\ a_{21} + a_{22}t + a_{23}t^2 & (t_2 \le t \le t_3) \\ a_{31} + a_{32}t + a_{33}t^2 & (t_3 \le t \le t_4) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & &$$

The coefficients $a_{i,j}$ should then be loaded into the COEFN(J) array as:

$$\texttt{COEFN}(J) = \texttt{t}_1, \texttt{a}_{11}, \texttt{a}_{12}, \texttt{a}_{13}, \texttt{t}_2, \texttt{a}_{21}, \texttt{a}_{22}, \texttt{a}_{23}, \texttt{t}_3, \texttt{a}_{31}, \texttt{a}_{32}, \texttt{a}_{33}, \texttt{t}_4, \dots, \texttt{t}_n$$

Furthermore, additional sets of coefficients for the other functions may simply be added to the COEFN(J) array, which results in a string of sets of coefficients, and can be represented, for example, as:

$$\begin{aligned} \text{COEFN}(J) &= \alpha & \text{coefficients, } C_{L}/\sin \alpha & \text{coefficients, } C_{D,0} & \text{coefficients, etc.} \\ &= t_{1}, a_{11}, a_{12}, \dots, t_{n}, N_{M,1}, b_{11}, b_{12}, \dots, N_{M,k}, \text{ etc.} \end{aligned}$$

The starting point in the COEFN(J) array of each function must also be loaded to identify the correct region of coefficients. To this end, the following array must also be loaded:

ICC(1) = fixed-point value of J where α coefficients begin

ICC(2) = fixed-point value of J where $C_{L}/\sin \alpha$ coefficients begin

ICC(3) = fixed-point value of J where $c_{\mathrm{D,i}}/c_{\mathrm{L}}^{2}$ coefficients begin

 $ICC(4) = fixed-point value of J where <math>C_{D,0}$ coefficients begin

For this purpose, all values in the COEFN(J) array are called coefficients (i.e., the t's and the N_M 's are coefficients). The sequence of the sets is arbitrary, since changing the sequence requires only a change in the ICC(I) array. (See appendix I for Example II, the lunar orbiting probe.)

(17) The size of the integration steps is determined primarily by the error control variables. These are loaded as:

EREF = error reference value; $\overline{\delta}$ in appendix D

 $ERLIMT = maximum value of \delta$ that is acceptable on any particular step

EREF is always treated as a positive number; however, if it is loaded with a minus sign, this will cause error information to be printed at the completion of the problem. If no error control data is loaded, SUBROUTINE STDATA will set EREF = 1×10^{-6} , ERLIMT = 3×10^{-6} .

(18) The output control offers a choice on the frequency of output data as follows:

If MODOUT = 1, output will occur every n^{th} step (n = STEPS) until t = TMIN, and then MODOUT is set equal to 2 by the program

If MODOUT = 2, output occurs at equal time intervals of DELMAX until t = TMAX

If MODOUT = 3, output occurs at equal time intervals of DEIMAX until t = TMIN, then MODOUT is set equal to 4 by the program

If MODOUT = 4, output occurs every n^{th} step (n = STEPS) until t = TMAX

STEPMX = maximum step limit before problem is completed

DELMAX = time interval between outputs

STEPS = number of steps between outputs

TMIN = time when MODOUT changes

Note that output control may, at times, strongly influence the integration step size especially if MODOUT is 2 or 3 and DEIMAX is small. STDATA will put MODOUT = 4 and STEPS = 1.

Note that TMAX = time at start of a stage, plus the stage time, TB(NSTAGE), and is computed internally.

(19) Provision has been made to interrupt the integration procedure when an arbitrary value of an arbitrary parameter is attained. By interrupt it is meant that an output will occur at this point, input is permissible, and a decision is made whether to continue the stage, terminate the stage, or terminate the flight. Skip to instruction (20) if this facility is not desired. To cause an interrupt, set

LOOKX = COMMON C location of arbitrary parameter

XLOOK = value of C(LOOKX) where an interrupt is desired

INLOOK = input identification number for interrupt

END = a <u>negative</u> number if flight should be terminated, <u>zero</u> if stage should continue, or a positive number if stage should be terminated

If the interrupt is not desired the first time C(LOOKX) = XLOOK, set

LOOKSW = COMMON C location of a second arbitrary parameter

SWLOOK = value of C(LOOKSW), which must be equaled or exceeded before an interrupt may occur (interrupt occurs if C(LOOKSW) = XLOOK and $C(LOOKSW) \ge SWLOOK$)

Typically, time may be the second arbitrary parameter; thus, STDATA sets LOOKSW = 711, the COMMON location of time. INLOOK of a nonzero value will cause any data cards of that identification number to be read-in prior to the interrogation of END. The order of the cards is discussed in instruction (24).

(20) Provision has been made to save a block of initial conditions and program control parameters prior to the integration of the nth stage. This allows the flight to be flown again from the nth stage onward with prescribed alterations. Skip to instruction (21) if this facility is not desired. To save the program control variable array, A, and the integration variable array, XPRIM + XPRIMB, just prior to integration of the nth stage, set

MSAVE = the number of the nth stage

The saved data, stored in the D array, will be returned to the A and XPRIM + XPRIMB arrays after the flight is completed if

RECALL = any nonzero number

It is intended that changes in the succeeding flight will be made at the main input station (\$DATA=1). NSAVE and RECALL are not contained in the array A and are therefore unaffected by the save-recall sequence. The correct sequence of these controls is not always simple and an understanding of the main program and input stationing is quite desirable.

(21) If the standard set of data contained in the SUBROUTINE STDATA is not desired, set

CLEAR = any nonzero number

It is intended that this control shall be set nonzero by the DATA = 99 input station at the beginning of the main program. It is not affected by the saverecall sequencing explained in instruction (20).

(22) If the number of stages to be flown is not equal to the number of consecutive nonzero flight times, TB, set

LSTAGE = number of last stage to be flown

- (23) When a transfer of origin occurs, provision has been made to read input into the program. This is done with the aid of \$DATA = 101, followed by the data statements desired.
- (24) The sequencing of the input cards is not always simple and no rigid rules may be written down. Inspection of the program may be necessary to answer some questions. However, in general, the first input cards belong to the \$DATA = 300 group if an ephemerides tape is required. This group is followed by the \$DATA = 1 group, which consists of the main input for a single flight. Following this are the in-flight input cards, if any, which may be any combination of \$DATA = 101, \$DATA = INLOOK, or \$DATA = IDENT (NSTAGE) groups. The order of these groups of cards matches the order of the time sequence of events in the flight itself. For multiple flights, sets of the above groups may be added in tandem. It is usually desirable in this case, however, to read all the \$DATA = 300 sets at the same time (as in instruction (3)) to avoid excessive tape handling.
 - (25) Following is an input check list that may be helpful at execution time:

INPUT CHECK LISTA

Takeoff ti	me		Position and velocity letely fill in one and only one block)				Reference and perturbing bodies	
•				Orbit elements		Spherical	BODYCD =	
		Rectangular					Tape	Elliptic
DTOFFJ = TOFFT = TIME =		X = Y = Z = VX = VY = VZ = IMODE = 2		E = OMEGA = NODES = INCL = MA = P = IMODE = 1		LAT = LONG = AZI = ELEV = ALT = VEL = TKICK IMODE = 4	bTAPE 3 = 0 bTBEGIN = bTEND = bELIST = TFILE =	ELIPS =
Output control				tart ture	Parameter search	Atmosphere and coefficients	Oblateness - rotation	Stage data
TMIN = MODOUT = STEPS = DELMAX = STEPMX =	ERLIMT = F		REC.	NSAVE = LOOKX = XLOOK = LOOKSW = SWLOOK = INLOOK = END =		ATMN = RATM = COEFN = ICC = BETA =	OBLATN = ROTATE =	TB = FLOW = SIMP = AREA = DELT = RMASS = AEXIT = IDENT = LSTAGE =

a The following standard data are loaded by SUBROUTINE STDATA:

bAt input 300, setting TAPE 3 = 0 is necessary to make an ephemeris tape.

APPENDIX H

PROGRAM LISTING

```
THIS MAIN PROGRAM IS THE SUPERSTRUCTURE ABOVE ALL SUBPROGRAMS.
SUBROUTINE TAPE CLEARS COMMON 1 THRU 4000 AND MAY CONSTRUCT AN
EPHEMERIS TAPE, ALSO, IT ALWAYS SETS TAPE3 =0. SUBROUTINE STOATA
LOADS A STANDARD SET OF DATA. IF RECALL DOES NOT EQUAL ZERO, A
PREVIOUSLY SAVED SET OF DATA (FROM STAGE) IS MOVED TO THE INITIAL
DATA LOCATION. THE MAIN INPUT STATION IS STATEMENT 8(INPUT!)
HHERE THE VEHICLE DATA FOR ALL STAGES MAY BE LOADED. SUBROUTINE ORDER IS
CALLED TO ORDER THE LIST OF BODIES, DETERMINE THE GRAVITATIONAL CONSTANT,
ORIGIN ROTATION RATE, ATMOSPHERIC RADIUS, RELOCATE ELLIPTIC EPHEMERIS DATA
AND POSITION THE EPHEMERIS TAPE.
   C
                      DIMENSION A(600), B(700), C(4000),
L TB(10), D(1100)
   С
                      EQUIVALENCE
                                                                  ( 11)),(B ,C (2111)),(LSTAGE,A ( 600)),(NSTAGE,A ( 63)),(TAPE3 ,C
                                                                                                                                          (1111)),(CLEAR ,C
( 38)),(NCASE ,C
( 3)),(RECALL,C
( 2)),(TABLE ,C
                   1(A
2(D
                                     , C
, C
                    3(NCASES, A
         4118
                                          , A
                     GD TO 1
END
                    SUBROUTINE AERO COMPUTES THE LIFT AND DRAG ACCELERATIONS. AS IN SUBROUT-INE THRUST, THESE VECTORS ARE REFERENCED TO THE RELATIVE WIND VELOCITY, COEFFICIENTS OF LIFT, INDUCED DRAG, AND DRAG AT ZERO ANGLE OF ATTACK ARE ASSUMED TO BE FUNCTIONS OF MACH NUMBER AND ANGLE OF ATTACK. TABLES OF CDI/CL*2, CL/SIN(ALPHA), AND CDO ARE ASSUMED AS FITTED QUADRATIC EQUATIONS IN THE COEFN ARRAY. GASFAC IS THE SQRTF(SPECIFIC HEAT RATIO * STANDARD ACCELERATION OF GRAVITY * UNIVERSAL GAS CONSTANT). FOR EARTH, GASFAC=20.064881 (METERS / SEC*2 / KELVIN DEGREE)**1/2.
 c
                 DIMENSION A(600), B(700), C(4000),
1VATM(3), P(3), XIFT(3), DRAG(3), PAR(3), X(100)
 c
                     EQUIVALENCE
                                                                                                                                       ( 49)),(AREA ,B
( 50)),(CD ,A
( 164)),(CDSALF,B
( 29)),(DRAG ,B
( 84)),(PAR ,B
( 59)),(R ,B
                  1(A
2(B
                                                                ( 11)),(ALPHA ,A
(1111)),(BETA ,A
( 163)),(CL ,A
( 49)),(DNSITY,8
( 46)),(P ,8
( 50)),(Q ,8
( 46)),(SINBET,8
( 97)),(VMACH ,B
( 101)),(X ,8
                                                                                                                                                                                                                ( 165)),
( 48)),
( 69)),
                  3(CDI
                 4(COSBET, B
5(GASFAC, A
6(PMAGN, B
                                                                                                                                                                                        , B
                                                                                                                                                                                                                         6011.
                                                                                                                                                                                                                  ( 102))
                  7(SINALF.B
                8(VATM .8
9(VQSQRD.B
                                                                                                                                                  38)).(VQ
                                                                                                                                                                                                                ( 100)).
                                                                                                                                        ( 401)),(XIFT ,B
c
                   Q = 0.5*DNSITY*VQSQRD
QVAL = Q*AREA/X(2)
VMACH=SQRTF(VQSQRD/TM)/GASFAC
             COMPUTE THE X,Y,Z COMPONENTS OF LIFT. IF (ALPHA) 2,1,2
1 CL = 0.0
           1 CL = 0.0

CDI=0.0

GO TO 4

2 CL = QUAD(VMACH,2)*SINALF

AA = QVAL*CL/PMAGN

AB = SINBET/VQ

DO 3 K=1,3

3 XIFT(K) = AA*(AB*PAR(K)+COSBET*P(K))

7 CDI=QUAD(VMACH,3)*CL*CL
           COMPUTE THE X,Y,Z COMPONENTS OF DRAG.

4 CD = CDI+QUAD(YMACH,4)

AC = -CD+QVAL/VQ

DD 5 K=1,3
            5 DRAG(K) = AC+VATM(K)
             6 RETURN
                   END
```

```
FUNCTION ARCTAN (Y,X)
THE FORTRAN II LIBRARY ATANF(+ OR - Z=TAN(THETA)) USES A SINGLE
ARGUMENT HITH ITS SIGN TO GIVE THETA IN THE FIRST (+Z) OR FOURTH
CCC
                 (-2) QUADRANT.
                THE ARCTAN FUNCTION MAY BE USED IF + OR - Z IS DERIVED FROM A FRACTION SO THAT ARCTAN (\gamma_1 X) = TAN-1 ((+OR-Y=SIN(THETA))/(+OR-X=COS(THETA))). THUS THE ARCTAN (\gamma_1 X) GIVES THETA IN ITS PROPER QUADRANT FROM -180 DEGREES TO +180 DEGREES.
          IF (X) 2,1,2
1 ARCTAN=SIGNF(1.57079632,Y)
GQ TO 4
2 ARCTAN=ATANF(Y/X)
           IF(X) 3,1,4

3 ARCTAN=ARCTAN+SIGNF(3.14159265,Y)
            4 RETURN
                 SUBROUTINE CONVIL (V,AMC)
THIS ROUTINE COMPUTES -- (1) ANGULAR MOMENTUM, AMC(4)
(2) ANGULAR MOMENTUM SQUARED, AMC(5)
(3) X,Y,Z COMPONENTS OF ANG. MOM., AMC(J)
(4) VELOCITY, V(4)
(5) VELOCITY SQUARED, V(5)
                 COMMON C
C.
                 DIMENSION A(600), B(700), C(4000),
L AMC(3), V(5), RB(3), IND(3)
С
                 EQUIVALENCE
                                                          ( 11)),(B
( 193))
                               , С
, В
                                                                                                    • C
                                                                                                                         (1111)),(IND ,A
                                                                                                                                                                                         ( 60)).
               2(RB
C
                 DO 1 J1=1,3
J2=IND(J1)
           J2=1NU(J1)

J3=1NU(J2)

1 AMC(J3) = Rb(J1)*V(J2)-RB(J2)*V(J1)

AMC(5) = AMC(1)**2+AMC(2)**2+AMC(3)**2

AMC(4) = SQRTF(AMC(51)

V(5) = V(1)**2+V(2)**2+V(3)**2

V(4) = SQRTF(V(5))
                  RETURN
                  END
                 SUBROUTINE CONVETS RECTANGULAR COORDINATES INTO ORBIT ELEMENTS.
RECTANGULAR COORDINATES— POSITION COMPONENTS,X,AND VELOCITY COMPONENTS,VX.
THE ORBIT ELEMENTS ARE IN THE ORBELS ARRAY—
(1) ECCENTRICITY (4) INCLINATION
(2) ARGUMENT OF PERICENTER (5) MEAN ANOMALY
(3) LONGITUDE OF ASCENDING NODE (6) SEMILATUS RECTUM
0000000
                  COMMON C
С
                 DIMENSION A(600), B(700), C(4000),
AMC(3), ORBELS(6), RB(3)
                  EQUIVALENCE
                                                         ( 11)),(AM ,B
( 87)),(B ,C
( 26)),(GK2M ,B
( 102)),(RB ,B
( 40)),(V ,B
                                                                                                                          ( 90)),(AMSQRD,B
(1111)),(COSTRU,B
( 36)),(ORBELS,B
( 193)),(SINTRU,B
( 95))),(VSQRD,B
( 93)),(VZ,B
                                                                                                                                                                                         ( 91)),
{ 53)),
( 116)),
               1(A ,C
2(AMC ,B
               3(EPAR .8
4(R .8
5(TRU .8
                                                                                                                                                                                         ( 52)),
( 96)),
                                                          ( 92)),(VY
                  ORBELS(6)=AMSQRD/GK2M
                  R=SQRTF(Rb(1)**2+RB(2)**2+Rb(3)**2)
TRU=ARCTAN(AM/GK2M*(RB(1)*VX+RB(2)*VY+RB(3)*VZ);ORBELS(6)-R)
            IF(AMC(1)) 2,1,2
1 OR8ELS(3)=0.
          1 ORBELS(3)=0.
GO TO 3
ORBELS(3)=ARCTAN(AMC(1),-AMC(2))
3 ORBELS(4)=ARCTAN(SQRTF(AMC(1)**2+AMC(2)**2),AMC(3))
$NODE=$SIMF(ORBELS(3))
AA=R81(1)=CNODE+R8(2)**SNODE
AB=R8(3)*SINF(ORBELS(4))+COSF(ORBELS(4))*(R8(2)*CNODE-R8(1)*SNODE)
ORBELS(2)=ARCTAN(AA,AA)-TRU
ORBELS(1)=SQRTF(1ABSF(1.+CORBELS(6)*(VSQRD/GK2M-2./R)))
EPONE=$QRTF(1ABSF(1.+CORBELS(1))
EPM1=1.-ORBELS(1)**2
EPAR=$QRTF(ABSF(EZH1))
SINTRUPSINF(TRU)
COSTRU=COSF(TRU)
EPAS=$QRTF(ABSF(1.-ORBELS(1))*SINTRU/(1.+COSTRU)
ETHETA=ORBELS(1)*SINTRU/(1.+ORBELS(1))*EPAR
            ETHETA=ORBELS(1)*SINTRU/(1.*ORBELS(1))*OSTRU)*EPAR
4 IF(EZM1) 5,6,6
5 ORBELS(5)=LUGF((EPONE*EPAS)/(EPONE-EPAS))-ETHETA
GO TO 7
6 ORBELS(5)=2.*ARCTAN(EPAS,EPONE)-ETHETA
7 RETURN
```

```
SUBROUTINE ERRORZ
           THIS SUBROUTINE COMPUTES THE RELATIVE ERRORS BETWEEN THE R-K AND LOM-ORDER INTEGRATION SCHEMES. IT ALSO COMPUTES THE ERROR COEFFICIENT, A, AND SAVES THE ERROR DATA WHEN EREF HAS A - SIGN. THE BRANCH ON IMODE DETERMINES WHICH SET OF NORMALIZING FACTORS ARE TO BE USED.
 C
                DIMENSION A(600), B(700), C(4000),
1 RELERR (8), XPRIM (200), XINC (100)
 C.
                 EQUIVALENCE
                EQUIVALENCE

1(A , C ( 111)), (A1 , B

2(B , C ( 1111)), (DELT , B

3(EREF , A ( 13)), (IMODE , A

4(R , B ( 102)), (STEPGO, A

5(V , B ( 95)), (XINC , B

EQUIVALENCE (RELERR, XINC)
                                                                                                             ( 10)),(A2 ,B
( 1)),(E2 ,B
( 1)),(INDERR,B
( 41)),(STEPNO,A
                                                                                                                                                                             11)),
18)),
51)),
             3(EREF ,A
4(R ,B
5(V ,B
                                                                                                              ( 601)), (XPRIM ,C
                 RELERR(2) = XINC(2)/XPRIM(2)
IF (IMODE-1) 2,1,2
                 COMPUTE THE NORMALIZED INTEGRATION ERRORS FOR THE ORBIT ELEMENTS.
           1 RELERR(3)=XINC(3)/(XPRIM(3)+1.)/10.
                 RELERR(8)=XINC(8)/XPRIM(8)/10.
                 DO 10 J=1.4
               RELERR(J+3)=XINC(J+3)/62.831853
GO TO 3
           COMPUTE THE NORMALIZED INTEGRATION ERRORS IN RECTANGULAR VARIABLES. 2 VI = V+100. DO 20 3=1,3 RELERR(3+2)=XINC(3+2)/VI
         20 RELERR(J+5)=XINC(J+5)/R
                 SELECT MAXIMUM ERROR, COMPUTE ERROR COEFFICIENT, POSSIBLY SAVE ERROR DATA.
           3 DO 5 J=2,8
IF (ABSF(RELERR(J))-E2) 5,5,4
           4 K=J
                        ,
= ABSF(RELERR(J))
           5 CONTINUE
E2 = E2 + 2E-8
A1 = A2
          A2 = LOGF(E2)-5.*LOGF(ABSF(DELT))

IF (EREF) 6,7,7

6 WRITE TAPE 4,STEPGG,STEPNG,XPRIM(1),DELT,A2,E2,(RELERR(J),J=2,8),K

INDERR = INDERR + 1
           7 RETURN
              SUBROUTINE EQUATE
THIS SUBROUTINE IS CALLED FROM NBDDY TO EVALUATE THE DERIVATIVES OF THE
VARIABLES OF INTEGRATION. EITHER RECTANGULAR COORDINATES OR ORBIT ELE-
MENTS MAY BE USED AS THE VARIABLES OF INTEGRATION, BUT IN THE CASE OF THE
LATTER, THE CORRESPONDING RECTANGULAR COORDINATES MUST FIRST BE FOUND.
THIS IS DONE AT THE BEGINNING THRU THE USE OF KEPLERS EQUATION. THE
PERTURBATING ACCELERATIONS ARE FOUND BY CALLING VARIOUS OTHER SUBROUTINES
AND THEIR SUM RESOLVED ALONG THE X,Y,Z EATLS. FINALLY, THE DERIVATIVES
ARE CALCULATED. IN THE CASE OF ORBIT ELEMENTS, THE X,Y,Z PERTURBATING
ACCELERATION COMPONENTS MUST FIRST BE RESOLVED INTO CIRCUMFERENTIAL, RADIAL
AND NORMAL COMPONENTS. THIS ROUTINE ALSO CHANGES THE INTEGRATION VARI-
ABLES FROM GRBIT ELEMENTS TO RECTANGULAR VARIABLES IF THE ECCENTRICITY
APPROACHES UNITY. THE X,XPRIM, AND XOOT ARRAYS ARE AS FOLLOWS.
ORBIT ELEMENTS
                                                                                                               RECTANGULAR COORDINATES
                x
                                                 MASS
                                                                                                                  MASS
                                                 MASS
ECCENTRICITY
ARGUMENT OF PERICENTER
ARGUMENT OF ASC. NODE
INCLINATION
                                                                                                                 X-VELOCITY
                                                 MEAN ANOMALY
                                                 SEMILATUS RECTUM
                COMMON C
              DIMENSION A(600), B(700), C(4000),
1 XPRIM (L00,2), VX (3),
2 RB (3), NEFMRS (8),
3 XPRIMB (L00,2), FORCE (3),
4 DRAG (3), DBLAT (3),
                                                                                                                                QX (3),
X (100),
XIFT (3),
COMPA (3),
                       XPRIMB (100,2),
DRAG (3),
XDOT (100)
С
```

49

```
EQUIVALENCE
                                                                                                                                                       91)),(ASYMPT,A
                                                                             11)), (AMSQRD, B
                1(A ,C
2(B ,C
3(CIRCUM,B
                                                                  ( 11)), (AMSQRD, B
(1111)), (BNAME, B
82)), (COMPA, B
( 53)), (COSV, B
( 28)), (EPAR, B
( 27)), (FLOW, B
( 36)), (GKM, B
( 19)), (MBODYS, B
( 24)), (DR) ATN, A
                                                                                                                                              ( 122)),(CINCL, 8
( 63)),(CONSTU, A
( 57)),(DRAG, B
( 26)),(ETUL, A
( 5)),(FORCE, B
( 37)),(IMODE, A
                                                                                                                                                                                                                                    55)),
32)),
69}),
                4(COSTRU, B
5(EMONE +8
                                                                                                                                                                                                                                    6611,
                6(EXMODE, B
                7(GK2M ,B
8(KSUB ,B
9(NSTART,B
                                                                                                                                                                                                                                       1)),
                                                                                                                                                          421), (NEFMRS, B
                                                                                                                                                                                                                           ( 185)).
                                                                                                                                               ( 40)), (OBLAT , B
                                                                    ( 24)), (OBLATN, A
                EQUIVALENCE
1(PRESS +B
2(RADIAL+B
                                                                    ( 33)),(PUSHO, B

( 81)),(RATMUS, B

( 102)),(RSQRO, B

( 52)),(SINV, B

( 20)),(TUFFT, A

( 54)),(U, A

( 96)),(VX, B

( 72)),(XPRIM, C

( 401)),(ZORMAL, B
                                                                                                                                               ( 391)),(QX ,8
( 23)),(RB ,8
( 45)),(SINCL ,8
( 56)),(SPD ,A
( 24)),(TRSFER,8
( 59)),(V ,8
( 92)),(XDDI ,8
( 711)),(XPRIMB,C
( 83)),(ZN ,8
                                                                                                                                                                                                                          ( 193)),
( 54)),
( 44)),
( 8)),
                 3(R ,B
4(SINTRU,B
                 5(TABLT ,8
6(TTEST ,A
7(VSQRD ,B
8(XIFT ,B
9(X ,8
                                                                                                                                                                                                                                   9511,
                                                                                                                                                                                                                                  911)),
С
                      TABLT=X(1)/SPO+TOFFT
                     IMODE = IMODE
               1 GO TO (2,16,16), IMODE
                     STATEMENTS 2 TO 16 FIND THE RECTANGULAR POSITION AND VELOCITY FROM ORBIT ELEMENTS AND TRUE ANOMALY. THE TRUE ANOMALY IS FOUND FROM ITERATIVE SOLUTION OF KEPLERS EQUATION.
              2 E2 = X(3)**2

E2M1 = 1.-E2

EMONE = X(3)-1.

EPAR=SQRTF(ABSF(E2M1))
                       VCIRCL=GKM/SQRTF(X(8))
                      COMPUTE SINE AND COSINE OF TRUE ANOMALY.
                       PART A. E=1
                     IE (EMONE) 10.4.5
                     SINTRU = 0.
COSTRU = 1.
                      GO TO 14
                      PART B. E IS GREATER THAN 1
              PART B. E IS GREATER THAN 1
5 00 7 J=1,100
DELM = X(7)-U+X(3)*SINHF(U)
ECOSU = X(3)*COSHF(U)
DELU = DELM/(1.0-ECUSU)
U = U+DELU
6 IF (ABSF(DELM)-CONSTU) 9,9,7
7 CONTINUE
ASYMPT = 1.0
               ASYMPT = 1.0

IF (MBODYS) 8,23,8

8 CALL EPHMRS

GO TO 23

9 COSU = COSHF(U)

DEMI = 1-X(3)*COSU

COSTRU = (CUSU-X(3))/DEMI

SINTRU =-EPAR*SINHF(U)/DEMI

GO TO 14
            PART C. E IS LESS THAN 1

10 00 12 J=1,15

DELM = X(7)~U+X(3)*SINF(U)

ECOSU = X(3)*COSF(U)
                       DELU = DELM/(1.0-ECOSU+0.01*ECOSU**3)

U = U+DELU

IF (ABSF(DELM)-CONSTU) 13,13,12
                       CONTINUE
WRITE OUTPUT TAPE 6,55,U,DELU
            WRITE UDIPOT TAPE 0,555,0,000
CALL EXIT

13 COSU = COSF(U)
DEM1 = 1.-x(3)*COSU
COSTRU = (COSU-x(3))/DEM1
SINTRU = EPAR*SINF(U)/DEM1
14 POVR = 1.+x(3)*COSTRU
                    COMPUTE POSITION AND VELOCITY FROM ORBIT ELEMENTS AND TRUE ANUMALY.
ALSO, CLEAR THE PERTURBATING ACCELERATIONS.

SOMEGA = SINF(X(4))
SONDE = SINF(X(4))
SONDE = SINF(X(5))
SINCL = SINF(X(5))
SINCL = SINF(X(6))
SINVESINTRUECOMEGA+COSTRU*SOMEGA
COSV=COSTRUECOMEGA+SINTRU*SOMEGA
AR=COSVECNOUE-SINVENDOMEGA+CINCL
BI=SINVECNOUE+COSV*SNODE*CINCL
CI=COSV*SNODE+SINVENDOME*CINCL
CI=COSV*SOME*CINCL=SNODE
R = X(8)/PDVR
RSQRD = R*AR
RSQRD = R*AR
RSQL = R*AR
RSL(2) = R*AR
RSL(2) = R*AR
                          RB(1) = R*AR
RB(2) = R*C1
RB(3) = R*SINVY
                          VX(1)=-VCIRCL*AS
VX(2)=VCIRCL*B2
VX(3)=VCIRCL*F1*SINCL
                           GO TO 18
```

```
16 DD 17 K=1,3

VX(K) = X(K+2)

17 RB(K) = X(K+5)

RSQRD = RB(1)*RB(1) + RB(2)*RB(2) + RB(3)*RB(3)
        VSQRD=VX(1)*VX(1)*VX(2)*VX(2)*VX(3)*VX(3)
V = SQRTF(VSQRD)
   DO 19 I=1,15
19 FORCE(I) = 0.
  TEST FOR PRESENCE OF PERTURBING BODIES. IF (MBODYS) 20,21,20
20 CALL EPHMRS
21 IF (XABSF(IMODE)-1) 26,22,26
          TEST FOR CHANGE FROM ORBIT ELEMENTS TO TEMPORARY RECTANGULAR
  COORDINATES IF E IS TOO NEAR TO UNITY.
22 IF (ETOL-ABSF(EMONE)) 26,23,23
23 IF (IMODE) 54,24,24
  23 IF (IMUDE) 54,24,24
24 IMODE=-3
IF (NSTART) 25,54,25
25 ITEST = X(1)
27 CALL TESTTR
  TEST FOR OBLATENESS PERTURBATION COMPUTATION. 26 IF(OBLATN-BNAME)30,29,30 29 CALL OBLATE
         TEST FOR PRESENCE OF THRUST.
  1831 FUR PRESENCE OF TO

30 XDDT(2) = -FLOW

IF (R-RATMOS) 31,31,32

31 CALL ICAO

GO TO 33

32 PRESS=0,
  33 IF (PUSHO) 37,36,37
36 ASSIGN 40 TO NDONE
GO TO 38
37 CALL THRUST
        ASSIGN 41 TO NOONE
  TEST FOR EXISTENCE OF ATMOSPHERE. FIND AERODYNAMIC FORCES.
38 IF (PRESS ) 39,42,39
39 GO TO NOONE, (40,41)
40 CALL THRUST
41 CALL AERO
        SUM COMPONENTS OF THE PERTURBING ACCELERATION.
  42 DO 43 J=1,3
43 COMPA(J) = -QX(J)+DBLAT(J)+FORCE(J)+XIFT(J)+DRAG(J)
44 GO TO (47,45,45),IMODE
        COMPUTE DERIVATIVES FOR THE RECTANGULAR VARIABLES OF INTEGRATION.
  45 AA = GK2M/R/RSQRD
DO 46 K=1,3
XDOT(K+5) = X(K+2)
  46 XDOT(K+2) = COMPA(K)-AA+X(K+5)
GO TO 54
COMPUTE THE DERIVATIVES OF THE DRBIT ELEMENTS. (AFTER RESOLVING PERTURBATING ACCELERATION INTO CIRCUMFERENTIAL, RADIAL, NORMAL COMPONENTS)

47 CIRCUM=COMPA(3)*COSV*SINCL-COMPA(1)*B1-COMPA(2)*D1
RADIAL=COMPA(1)*AR*COMPA(2)*CI+COMPA(3)*SINVY
2ORMAL=COMPA(1)*SNODE*SINCL-COMPA(2)*CNODE*SINCL+COMPA(3)*CINCL
ZN=VCIRCL*EZM1*EPAR/X(8)
RDVPP1 = 1.º/PDVR + 1.
RDVA = EZM1/PDVR
XDOT(8) = 2.*R/VCIRCL*CIRCUM
IF (X(3)) 484,49

48 CSQRD = CIRCUM*CIRCUM
RASQRD = RADIAL*RADIAL
DEM1 = (4.*CSQRD+RASQRD)*VCIRCL
TEST FOR IN-PLANE PERTURBATION.
XUUIT/1=ZN+EPAR/VCIRCL*((COSTRU/X(3)-2.
IRDVPP1*(IRCUM))
50 IF(SINCL) 51,52,51
51 XDOT(5) = SINV/SINCL*ZORMAL/VCIRCL/PDVR
GO TO 53
52 XDOT(5) = 0.
 53 XDDT(6) = CUSV*ZORMAL/PDVR/VCIRCL
 54 RETURN
 55 FORMAT(41HOKEPLERS EQUATION CONVERGENCE FAILURE, U=G15.8,7H DELU=
    1G15.8)
      EΝΩ
```

```
SUBROUTINE EPHMRS
SUBROUTINE EPHMRS IS CALLED TO COMPUTE THE POSITIONS OF THE PERTURBING BODJES RELATIVE TO THE VEHICLE AND, FROM THESE, THEIR PERTURBING ACCELERATIONS UPON THE VEHICLE. OCCASIONALLY THIS ROUTINE IS CALLED FOR THE PURPUSE OF TRANSLATING THE ORIGIN IN WHICH CASE (TRSFER=1) THE RELATIVE VELOCITIES ARE ALSO CALCULATED. IF A BODYS POSITION IS TO BE COMPUTED FROM AN ELLIPTIC APPROXIMATION SUBROUTINE ELIPSE IS CALLED. OTHERWISE, THE POSITION WILL BE CALCULATED IN FPHMRS FROM THE PRECISION TAPE EPHEMERIS. THE DO 19 LOOP ENCOMPASSES ALMOST THE ENTIRE EPHMRS SUBROUTINE AND ,IN EFFECT, ELIPSE TOO.
00000
С
              DIMENSION A(600), B(700), C(4000),

QX(3), 1bODY(8), EFMRS(7), XP(3,8), RB(3,8), R (8), TIM(7),

NEFMRS(8), TDATA(6,3,7), TDEL(7), BMASS(8), VEFM(3,8), DATA(21)

3 , TOAT(18,7)
C
                 EQUIVALENCE
1(A , C ( 11)),(AU , A
2(BMASS , B ( 137)),(DTOFFJ, A
3(180DY , B ( 177)),(MB0DYS, B
4(QX , B ( 78)),(R , B
5(SQROK , B ( 35)),(SPD , A
6(TDATA , B ( 265)),(TDEL , B
EQUIVALENCE ([BF,FIB), (TDAT,TDATA)
                                                                                                                         ( 29)),(B ,C
( 23)),(EFMRS,B
( 42)),(NEFMRS,B
( 102)),(RB ,B
( 44)),(TABLT,B
( 170)),(TIM ,B
( 241)),(XP ,B
              1(A ,C
2(BMASS ,B
3(IBODY ,B
4(QX ,B
5(SQRDK ,B
                                                                                                                                                                                        ( 130)),
( 185)),
( 193)),
( 20)),
               6(TDATA .B
                  PART 2. SET INDEXS, FIND POSITION IF ELLIPSE IS USED (NEFMRS = 20 OR UP). DO 19 JB=1,MBODYS
             DO 19 JB=1,MBODYS
JB1 = JB+1
IBF = IBODY(JB1)
IB = XABSF(IBF)
IF (NEFMRS(JB)-20) 2,2,1
1 CALL ELIPSE (JB1)
IF (TRSFER) 12,12,17
            PART 3. TAPE EPHEMERIS IS TO BE USED. FIND DIFFERENCE (DT) BETWEEN CURRENT PROBLEM TIME (OTOFFJ-TABLT) AND MIDPOINT TIME (TIM) OF CURRENTLY STORED TAPE DATA. THEN SEE IF CURRENT DATA IS DKAY. TDEL = TIME INTERVAL ON EITHER SIDE OF TIM FOR WHICH CURRENT DATA IS GOOD.

2 DT = TABL T - (TIM(JB) -DTOFFJ)
IF (ABSF(DT)-TDEL(JB)) 10,10,3
            PART 4A. CURRENT DATA NOT UKAY. READ IN NEXT DATA SET. IF DT IS -, BACK UP THE TAPE 2 RECORDS BEFORE READING.
3 IF (DT) 4,5,5
             4 BACKSPACE 3
BACKSPACE 3
5 READ TAPE 3, (DATA(I), I=1,21)
            PART 48. IF THIS DATA IS FOR A BODY IN THE BNAME LIST, STORE IT.

(1F NOT STORED, WE MIGHT HAVE TO RETURN FOR IT.) IF ELLIPSE DATA IS
PROVIDED FOR THE BODY FOUND, BY-PASS THE TAPE DATA AND READ IN NEXT SET.
DO 7 J = 1,MBODYS
IF ((DATA(1)+EFHRS(J)))*(-(DATA(1)*EFMRS(J)))) 7,6,7
6 IF (NEFMRS(J)-20) 8,8,3
7 CONTINUE
GO TO 3
 В
  C
             PART 4C. MOVE THE DATA INTO PLACE AND THEN GO BACK AND SEE IF IT IS DKAY. 8 TIM(J) = DATA(2) TDEL(J) = DATA(3) DD 9 JJ=1.18
                    TDAT(JJ,J) = DATA(JJ+3)
             9 CONTINUE
                   GO TO 2
         PART 5. CURRENT DATA IS OKAY. GET POSITION FROM THE POLONOMIAL P = A + BX + CX**2 + DX**3 + EX**4 + FX**5.

10 DO 11 K=1,3

XP(K,JBL) = TDATA(1,K,JB)

DO 11 K=2.6
          DO 11 KT=2,6

XP(K,JB1) = XP(K,JB1)* DT +TDATA(KT,K,JB)

11 CONTINUE
                    IF (TRSFER) 12,12,15
         PART 6. COMPUTE DISTANCE FROM REFERENCE AND FROM ROCKET . 12 00 13 K=1,3  
 XP(K,JB1) = XP(K,IB) + XP(K,JB1) * SIGNF(AU,FIB)  13 RB(K,JB1) = RB(K,1) - XP(K,JB1)
                   PART 7. COMPUTE PERTURBING ACCELERATIONS (QX). 4194304=2**22 IS REMOVED TO PREVENT OVERFLOW. 2048=2**11 AND 8589934592=2**33 RESTORE THE SCALE. PRSORD = (Rb(1,JB1)**2 + RB(2,JB1)**2 + RB(3,JB1)**2)/4194304. RRELL = SQRTF(PRSQRD) RSQRD = (XP(1,JB1)**2 + XP(2,JB1)**2 + XP(3,JB1)**2)/4194304. RCUBE = RSQRD * SQRTF(R SQRD) PRCUBE = PRSORD * RRELL R(JB1) = RELL*2048.
           60 TO 19
                    PART 8. COMPUTE VELOCITY FROM V = 8 + 2CX + 3DX**2 + 4EX**3 + 5FX**4
AND FROM REFERENCE BODY VELOCITY (VEFM(IB)).
            15 00 16 K=1,3
VEFM(K,JB1) = 0.
00 16 KT=1,5
            16 VEFM(K,JB1) = (VEFM(K,JB1)*DT+TDATA(KT,K,JB)*FLDATF(-KT+6)}
17 DD 18 K=1,3
18 VEFM(K,JB1) = VEFM(K,IB) + VEFM(K,JB1)*SIGNF(AU/SPD,FIB)
                     GO TO 12
            19 CONTINUE
                     RETURN
                     END
```

```
SUBROUTINE EXTRA
  C
                                  THIS ROUTINE IS EXECUTED BETWEEN FLIGHTS AND MAY THEREFORE BE EXPANDED TO DO ADDITIONAL COMPUTATION BETWEEN SUCCESSIVE FLIGHTS.
                                   COMMON C
  c
                                   DIMENSION A(600), B(700), C(4000)
  C
                                   EQUIVALENCE
                             LIA ,C
2(SIGNAL,B
                                                                                                                                                                                                     , C
                                                                                                                                                                                                                                           (1111)),(QMAX ,B
                                                                                                                                                                                                                                                                                                                                                                    ( 44)).
  c
                                   SIGNAL = 0.
QMAX = 0.
RETURN
                                  SUBROUTINE EXTRAS
THIS ROUTINE IS EXECUTED BETWEEN STAGES AND MAY THEREFORE BE EXPANDED TO
DO CALCULATIONS BETWEEN SUCCESSIVE STAGES OF A FLIGHT.
                                   RETURN
                                   END
                    SUBROUTINE ELIPSE (JB1)
THIS SUBROUTINE IS CALLED FROM EPHMRS TO COMPUTE THE POSITION OF A BODY
USING APPROXIMATE ELLIPTIC DATA. THE VELOCITY IS ALSO COMPUTED IF THE
ORIGIN IS BEING TRANSLATED (TRSFER=1.0). THE ELLIPSE DATA IS READ FROM
INPUT CARDS AND ORGANIZED IN SUBROUTINE ORDER. TPD IS TIME SINCE PERIHELION
PASSAGE, ZM IS MEAN ANOMALY, U IS ECCENTRIC ANOMALY.

TDATA ARRAY — (K) SEMILATUS RECTUM

(K+1) ECCENTRICITY

(K+8) SIN OMEGA

(K+2) OMEGA

(K+3) NODE

(K+3) NODE

(K+4) INCLINATION

(K+1) COS MOBEGA

(K+5) JD OF PERIHELION

(K+12) COS NODE

(K+6) FRACTIONAL PART OF (K+5)

(K+13) COS INCLINATION
C
                                DIMENSION A(600), B(700), C(4000),
L XP(3,8), VEFM(3,8), TDATA(121)
€
                                 EQUIVALENCE
                                                                                                              ( 11)),(B ,C
( 23)),(TABLT ,B
( 8)),(VEFM ,B
                             1(A ,C
2(DTOFFJ,A
                                                                                                                                                                                                                                        (1111)),(CONSU ,A
                                                                                                                                                                                                                                        ( 20)),(TDATA ,B
( 241)),(XP ,B
                            3(TRSFER, B
C
                                K = 18*(J81-2)+1
TPD = (DTOFFJ-TDATA(K+5))+(TABLT-TDATA(K+6))
ZN = 6.28318533/TDATA(K+7)
ZM = ZN*MODF(TPD,TDATA(K+7))
                                 GET THE SINE(SINTRU) AND THE COSINE (COSTRU) OF THE TRUE ANOMALY BY ITERATING KEPLERS EQUATION. THEN COMPUTE X,Y,Z (XP).
U = ZM+TDATA(K+1)*SINF(ZM)+.5*TDATA(K+1)**2*SINF(2.*ZM)
                                U = 2M-IDATA(K-I)*SINF(2M)*SINF(U)

DELM = ZM-U+TDATA(K+1)*SINF(U)

DELU = DELM/(1-TDATA(K+1)*COSF(U))

U = U+DELU

IF (ABSF(DELM)-CONSU) 2,2,1
                            IF (ABSF(DELM)-CONSU) 2,2,1
CDNTINUE
COSU = CDSF(U)
DENOM = 1.-TDATA(K+1)*COSU
COSTRU = (COSU-TDATA(K+1)*COSTRU)
COSTRU = (COSU-TDATA(K+1)*COSTRU)
SINTRU = SQRTF(1.-TDATA(K+1)*2)*SINF(U)/DENOM
SINVE = SINTRU*DDATA(K+1)+COSTRU*DATA(K+8)
COSV = COSTRU*TOATA(K+1)+COSTRU*DATA(K+8)
COSV = COSTRU*TOATA(K+11)-SINTRU*TDATA(K+8)
XP(1,JB1) = R*(COSV*TDATA(K+12)-SINV*TDATA(K+9)*TDATA(K+13))
XP(2,JB1) = R*SINV*TDATA(K+10)
IF (TRSFER) 3,4,3
                  COMPUTE THE VELOCITIES FOR THE TRSFER OF ORIGIN.

3 EX = TDATA(K+1)*TDATA(K+8)*SINV
FX = TDATA(K+1)*TDATA(K+11)*COSV

CFACT = ZN*TDATA(K+1)*TDATA(K+11)*COSV

AX = EX*TDATA(K+12)*FX*TDATA(K+9)*TDATA(K+13)
BX = FX*TDATA(K+12)*TDATA(K+13)-EX*TDATA(K+9)

VEFM(1, JB1) = -AX*CFACT

VEFM(2, JB1) = BX*CFACT

VEFM(3, JB1) = FX*CFACT

VEFM(3, JB1) = FX*CFACT

VEFM(4, JB1) = FX*C
                   4 RETURN
                              END
```

```
REM SUBROUTINE EXADD (A,B,C)
REM THIS ROUTINE WILL ADD IN DOUBLE PRECISION A QUANTITY C TO THE DOUBLE
REM PRECISION VARIABLE A+B WHERE A IS THE MOST SIGNIFICANT PART AND B IS
REM THE LEAST SIGNIFICIANT PART.
EXADD
COMMON -206
                   COMMON
  TEMP1 COMMON
TEMP2 COMMON
                  HTR
BCI
                                         1,EXADD
                                         *-4.1
*-4.2
                    SXD
                    SXD
EXADD
                   SXD
                                         #-4.4
                                         1,4
                   FAD*
                   STQ
FAD*
                                         Q1
2,4
                    STQ
FAD
                    STO
                    STO
CLA
                                          TEMP1
                                          Ql
                    FAD
                    FAD
                                          TEMP2
                   FAD
                                          TEMP1
                                          Q1
                    FSB
STO*
                                          TEMP2
                                          1.4
                    STQ
CLA
FAD
                                          02
                    STO*
                    TRA
           SUBROUTINE ICAO DETERMINES THE ATMOSPHERIC TEMPERATURE, PRESSURE, AND DENSITY AS A FUNCTION OF ALTITUDE ABOVE THE EARTH IN ACCORDANCE WITH THE 1962 U.S. STANDARD ATMOSPHERE (ICAO TO 20 KM.). A SHORT FAP PROGRAM FOLLOWS ICAO WHICH PROVIDES A MEANS OF LOADING DATA INTO MACHINE. IT MUST BE LOADED DIRECTLY AFTER ICAO. IF THE LENGTH OF ICAO IS CHANGED,
            THE DATA MUST BE RELOCATED.
                      R IS DISTANCE TO CENTER OF EARTH IN METERS.

ALT IS VEHICLE ALTITUDE ABOVE EARTH IN METERS.

TABLE H IS METERS OF ALTITUDE FROM THE EARTHS SURFACE AND IS THE ARGUMENT OF ATMOSPHERE PROPERTY TABLE.

ALM IS THE MEAN SLOPE OF THE TABLE H VS. TM CURVE AT TABLE H.

TMR IS TM AT TABLE H.

REF P IS THE PRESSURE IN MILLIBARS AT TABLE H.

TM IS THE TEMPERATURE TIMES STD. MOLECULAR WEIGHT / ACTUAL MOLECULAR WEIGHT. DEGREES KELVIN.

PRESS IS PRESSURE IN MILLIBARS.

DNSITY IS DENSITY IN KILOGRAMS PER CUBIC METER.

HEIGHT IS EITHER GEOPOTENTIAL ALTITUDE OR GEOMETRIC ALTITUDE IN METERS.
 Č
 c
               DIMENSION A(600), B(700), C(4000),
1 TABLEH(23), TMR(23), REFP(23), ALM(23) , RB(3)
                  EQUIVALENCE
               1(A ,C
2(DNSITY,B
3(PRESS,B
4(RE ,A
5(RESQRD,B
                                                                                                                     ( 4)),(8 ,C
(OBLATN,A
( 102)),(R8 ,8
                                                                                                                                                                                   (1111)),
                                                              11)),(ALT ,A
                                                         ( 29)),
( 33)),(R ,B
( 25)),(TABLT ,B
                                                                                                                                                                                   ( 40)),
( 193)),
                                                                                                                                                                .8
                                                                                                                      ( 20)), (TM
                                                                                                                                                                                          34)),
                  EQUIVALENCE (TABLEH(24), TMR), (TABLEH(47), ALM), (TABLEH(70), REFP)
      IF (OBLATN) 102,101,102

101 ALT = R - RE
GO TO 103

102 ALT = R-6356783.28/SQRTF(.9933065783+.006693421685(RB(3)/R)**2)

103 IF (ALT-90000.) 105,104,104

104 HEIGHT = ALT
GO TO 106

105 HEIGHT = ALT/(1.0+ALT/6356766.)
        106 K=K
             FIND THE

ARRANGED IN DECENDING ALT WITH 21 REGIONS. ABOVE THAT, PRESSURE AND DENSITY ARE SET = 0. TEMPERATURE IS SET TO 3000.

1 IF (K-22) 2,6,6
2 IF (HEIGHT-TABLEH(K+1)) 5,3,3
3 K = K+1
GO TO 1
             4 K = K-1

5 IF (K) 7,7,6

6 HINC = HEIGHT - TABLEH(K)

IF (H INC) 4,8,8
                  K = 1
IF (ALM(K)) 9,100,9
```

```
CONTROL COMES HERE FOR NONISOTHERMAL LAYERS

9 TM = TMR(K) + ALM(K)*H INC
IF (ALT-90000.) 107,107,108

107 PRESS = REFP(K)*(TMR(K)/TM)**(.0341631947/ALM(K))
                        TO 10
      108 IF (K-KC) 109,110,109
     108 IF (K-No. 2...)
109 KC = K
C1 = RE+TABLEH(K)
C2 = THR(K)/ALM(K)
C3 = 1./(C1-C2)
C4 = -.0341631947*RESQRD*C3/ALM(K)
      GO TO 13
                 CONTROL COMES HERE FOR ISOTHERMAL LAYERS
     100 IF (K-22) 11,12,12
11 TM = TMR(K)
PRESS = REFP(K)*EXPF(-.0341631947*HINC/TMR(K))
                 GD TO 10
        CONTROL COMES HERE FOR EXTREME ALTITUDES

12 PRESS = 0.0
DNSITY = 0.0
                 TM = 3000.
        13 RETURN
                   REM THIS IS THE FAP PROGRAM WHICH LOADS ICAO DATA INTO MACHINE.
REM THE 256 IN ORG 256 WAS FOUND BY SUBTRACTING 22 FROM THE DEC LOCATION
REM OF REF P (FROM FAP LISTING OF ICAO, THIS WAS FOUND TO BE 278)
REM THUS, 278-22=256. DISCARD THE FIRST TWO BINARY CARDS AFTER ASSEMBLY
REM AND PLACE REMAINING CARDS IMMEDIATELY BEHIND ICAO BINARY DECK.
                   REM
                                  A1 IS REF P(23)
A2 IS ALM(23)
A3 IS TMR(23)
A4 IS TABLE H(23)
                   REM
                   REM
                  ORG 256

DEC 0.,1.1918E-9,3.4502E-9,1.0957E-8,4.0304E-8,1.8838E-7

DEC 6.9604E-7,1.6852E-6,2.7926E-6,3.6943E-6,5.0617E-6,2.5217E-5

DEC 7.3544E-5,3.0075E-4,1.6438E-3,.010377,.182099,.590005

DEC 1.10905,8.680814,54.7487,226.320,1013.25

DEC 0.,0.,.0011,.0017,.0026,.0033,.004,.005,.007,.01,.015,.02,.01

DEC .005,.003,0.,-..004,-.0028,.001,0.,-.0065

DEC 0.,2700.65,2590.65,2420.65,2160.65,1830.65,1550.65,1350.65

DEC 1210.65,1110.65,960.65,360.65,260.65,210.65,180.65,180.65

DEC 252.65,270.65,270.65,228.65,216.65,216.65,288.15

DEC 1830,7E5,6E5,5E5,4E5,3E5,2.3E5,1.9E5,1.7E5,1.6E5,1.5E5,1.2E5

DEC 1.1E5,1E5,.9E5,79000.61000.,52000.,47000.,32000.,20000.
                   ORG 256
  Αl
   Δ2
   A3
   A4
                   DEC 11000.,0.
                                                                                                                                       SUBROUTINE NBODY
                NBODY COMPUTES THE TRAJECTORY IN EITHER ORBIT ELEMENTS OR RECTANGULAR COORDINATES USING THE RUNGE-KUTTA TECHNIQUE. A LOWER ORDER INTEGRATION TECHNIQUE IS ALSO PERFORMED TO FACILITATE AUTOMATIC STEP SIZE CONTROL. THE X,YPRIM, XDOT, XINC, ETC. ARRAYS ARE AS FOLLOWS.
ORBIT ELEMENTS
                                                                                                                       RECTANGULAR COORDINATES
                                                     TIME
                                                                                                                          TIME
                                                     MASS
                                                                                                                          MASS
                                                    MASS
ECCENTRICITY
ARGUMENT OF PERICENTER
ARGUMENT OF ASC. NODE
INCLINATION
                                                                                                                          X-VELOCITY
                                                                                                                          Z-VELOCITY
                                                     MEAN ANOMALY
SEMILATUS RECTUM
                 IMODE
                                            VARIABLES
                                ORBIT ELEMENTS
                                RECIANGULAR

RECTANGULAR TEMPORARY

EARTH SPHERICAL--CHANGE TO RECTANGULAR

ORBIT ELEMENTS--CHANGE TO RECTANGULAR

RECTANGULAR--CHANGE TO DRBIT ELEMENTS

ORBIT ELEMENTS--CHANGE TO TEMPORARY RECTANGULAR

EARTH SPHERICAL -- CHANGE TO ORBIT ELEMENTS
c
               DIMENSION A(600), B(700), C(4000),
1 XPRIM (100,2), XPRIMB (100,2),
2 X(100), XINC (100),
3 XDDT (100), RB (3),
                                                                                                                                       XDOTPM (100,2),
OLDINC (100),
XK (100),
AW (4),
                                 AMC (3),
                                                                                           AK (3)
                         XWHOLE (6),
                                                                                            VX (3),
c
```

```
EQUIVALENCE
                                                         ( 11)),(A1 ,8
( 12)),(ACOEF2,8
( 51)),(AMC ,8
( 90)),(ASYMPT,A
(1111)),(CGNSTU,A
( 39)),(E2 ,8
( 14)),(ETOL ,A
( 36)),(H2 ,8
( 51)),(KSUB ,8
                                                                                                                         ( 10)),(A2 ,8
( 13)),(ACDEF3,8
( 87)),(AMSQRD,8
( 7)),(AH ,A
( 32)),(DELT ,8
( 18)),(EMDNE ,8
( 30)),(EMDNE ,8
( 30)),(EMDDE ,A
( 15)),(IMDDE ,A
               1(A ,C
2(ACOEF1,B
                                                                                                                                                                                                  14)).
                               ,A
,B
,C
                                                                                                                                                                                                 91)),
                3 (AK
                4 (AM
                                                                                                                                                                                                1)),
28)),
27)),
                6 (DONE
                7(ERLIMT,A
8(GK2M ,B
9(INDERR,B
               9(INDERR, B
EQUIVALENCE
1(NEQ , A
2(QMAX , B
3(REVS , A
4(STEPGO, A
                                                                                                                         ( 24)), (DLDDEL, 8
( 58)), (RB , 8
( 102)), (STEPMX, A
( 42)), (TRSFER, 8
( 54)), (VSQRD , 8
( 501)), (XINC , 8
( 911)), (XWHOLE, 8
( 17)), (EREF , A
                                                                                                                                                                                                   911,
                                                                     2)),(NSTART,B
                                                                                                                                                                                       . 9)),
( 193)),
( 1611
                                                        ( 2)),(NSTART,B
( 44)),(RATIO ,B
( 48)),(R ,B
( 41)),(STEPHO,A
( 40)),(TTEST ,A
( 92)),(XOOT ,B
( 71)),(XPAIMB,C
( 401)),(ERLOG ,B
( 59)),(OUTPOT,B
                                                                                                                                                                                             16)),
8)),
96)),
               5ITRU .B
6(VX ,B
7(XPRIM ,C
                                                                                                                                                                                         ( 60111.
               8(X
9(Q
                                                                                                                                                                                                13)),
                                                                                                                         ( 39911
                                      • B
                  PART 1. SET UP THE STARTING SEQUENCE FOR ERROR CONTROL AND DELAY CHECKING THE ERROR UNTIL TWO STEPS ARE COMPLETED. THE ASSIGNED GO TOS NSTART AND
           THE ERROR UNTIL TWO STEPS
IBEGIN CONTROL STARTING.
NEQ = NEQ
1 DD 2 J=1,NEU
XPRIMI(J,2) = XPRIM(J,1)
XPRIMB(J,2) = XPRIMB(J,1)
XPRIMB(J,2) = XPRIMB(J,1)
NSTART = 0
IRSFER = 0.
    TRSFER = 0.

H2 = DELT

DELT = DELT/2.

220 CALL EQUATE

IF (OUTPOT) 222,221,222

221 CALL OUTPUT

222 DO 3 J=1,3

XWHOLE(J)=XX(J)

3 XWHOLE(J)=XX(J)

3 XWHOLE(J)=XX(J)

4 CHANGE INTEGRATION VARIABLES IF IMODE IS -.

IF (IMODE) 4,5,5

4 CALL TESTIR

GO TO 1
    IF I IMUSE 4,3,5

CALL TESTTR
GO TO 1

S CALL TESTTR
IF (TRSFER) 1,205,1

205 ASSIGN 21 TU NSTART

STATEMENTS 7 TO 9 INITIALIZE NREV1 AND NREV2 FOR USE IN PART 7A.

IF (RB12)) 7,6,8
6 IF(VX(2)) 7,8,8
7 ASSIGN 37 TO NREV1
ASSIGN 35 TO NREV2
GO TO 9
8 ASSIGN 33 TO NREV1
ASSIGN 37 TO NREV2
9 DO 10 J=1,NEQ
DOTPM(J,1) = XDOT(J)
XINC(J) = 0.
10 CONTINUE
11 KSUB = 1
        11 KSUB = 1
ASSIGN 16 TO N
                 PART 2. RUNGE-KUTTA SUBINTERVAL SCHEME. EQUATE PRODUCES THE NECCESSARY DERIVATIVES XDOT(J).
       12 DO 13 J=1,NEQ

XK(J) = XDDT(J) * DELT

XINC(J) = XINC(J) + AH(KSUB)*XK(J)

13 X(J) = XPRIM(J,2) + AK(KSUB)*XK(J)

14 CALL EQUATE

15 GO TO N,(16,17,18,20)
                 PART 3. SUBINTERVALS 2, 3, AND 4, TO STATEMENT 19 FINISH A RUNGE-KUTTA STEP AND INCREMENT XPRIM(J,2) IN DOUBLE PRECISION.
       16 KSUB = 2
ASSIGN 17 TO N
        GO TO 12
17 KSUB = 3
ASSIGN 18 TO N
     ASSIGN 18 TU N

GO TO 12

18 DO 19 J=1,NEQ

XINC(J) = XINC(J) + AW(4) *XDDT(J) * DELT

180 CALL EXADD(XPRIMIJ,2), XPRIMB(J,2), XINC(J))

X(J) = XPRIM(J,2)
        19 CONTINUE
CCC
                PART 4. BEGIN A NEW RUNGA-KUTTA STEP. THIS ALSO GIVES DERIVATIVES FOR THE LOWER ORDER INTEGRATION CHECK. ASSIGN 20 TO N GO TO 14 ^{\circ}
       20 GO TO NSTART, (27,23,21)
       XDOTPM(J,2) = XDOT(J)
22 CONTINUE
                 GO TO 11
```

```
PART 58. MAX ERROR TEST-STARTING ONLY-CHECK THE MAX ERROR AND
PART 58. MAX ERROR TEST--STARTING ONLY--CHECK THE MAX ERROR EITHER ENTER RUNNING MODE OR REPEAT START WITH SMALLER STEP.

23 DO 24 J=2,NEQ
24 XINC(J) = (XINC(J)+OLDINC(J))*3.-(XDOTPM(J,1)*XDOTPM(J,2)*4.
1*XDOTTJ))*DELT
240 CALL ERRORZ
25 IF(EZ-ERLIMT) 26,26,56
26 ASSIGN 27 TO NSTART
ASSIGN 11 TO IBEGIN
A1 - A2
                   A1 = A2
GO TO 31
PART 6. RUNNING PHASE PROGRAM.

PART 6. RUNNING PHASE PROGRAM.

PART 6. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST

RUNGE KUITA STEP BUT USE DOTS FOR LAST TWO INTERVALS, OLDDEL

AND DELT RESPECTIVELY. STATEMENT 28 IS THE LOWER INTEGRATION

MINUS RUNGE-KUITA INCREMENTS. ERRORZ COMPUTES THE MAXIMUM RELATIVE

ERROR AND STATEMENT 29 TESTS THIS ERROR AGAINST THE LIMIT VALUE.

27 RATIO = DELT/OLDDEL

HFACT=DELT/(1.*RATIO)

ACDEF1=-RATIO*RATIO*HFACT

ACDEF2=RATIO*(DELT+3.*OLDDEL)

ACDEF3=DELT+DELT+HFACT

DO 28 J=2,NEQ

28 XINC(J) = ACDEF1*XDOTPM(J,1)+ACDEF2*XDOTPM(J,2)-6.*XINC(J)

1+ACDEF3*XDOT(J)

280 CALL ERRORZ

29 IF (E2-ERLIMT) 30,30,57
    PART 7A. LAST POINT OKAY. COUNT THE REVOLUTIONS PAST THE X-AXIS.
A STEP GREATER THAN 1/2 REV. MAY FAIL TO ADD IN.
30 H2 = DELT
31 QMAX = MAXIF(Q,QMAX)
IF(RB(2)) 32,34,34
32 GO TO NREV1, (37,33)
33 ASSIGN 37 TO NREV1
ASSIGN 35 TU NREV2
GD TO 37
    ASSIGN 35 IU NREVZ

GO TO 37

34 GO TO NREV2, (37,35)

35 ASSIGN 33 TO NREV1

ASSIGN 37 TO NREV2

36 REVS = REVS + 1.

37 IF (XABSF(IMODE)-1) 42,38,42
                  PART 78. IN ORBIT ELEMENTS. ADJUST ARGUMENT OF PERICENTER AND MEAN ANOMALY TO + OR - PI TO MAINTAIN ACCURACY IN SIN-COS ROUTINES. IF (EMONE) 39,42,42
 38 IF (EMUNE) 39,42,42
39 D0 41 J=4,7,3
ADJ2=INTF(XPRIM(J,2)/6.28318532+SIGNF(.5,XPRIM(J,2)))
IF (ADJ2) 40,41,40
40 ADJ3 = -ADJ2*6.28125
400 CALL EXADD(XPRIM(J,2),XPRIMB(J,2),ADJ3)
ADJ3=-ADJ2*.0019353072
  401 CALL EXADD(XPRIM(J,2),XPRIMB(J,2),ADJ3)
                    PART 7C. ADVANCE THE REMAINING PARAMETERS, FIND NEW STEP SIZE, AND TEST FOR AN ORIGIN TRANSLATION.
                  AND TEST FOR AN ORIGIN TR/
DO 43 K=1,3
XHHOLE(K)=VX(K)
XWHOLE(K+3) = RB(K)
DO 44 J=1,NEQ
XDOTPM(J,1) = XDOTPM(J,2)
XDOTPM(J,1) = XDOT(J)
XPRIM(J,1) = XPRIM(J,2)
XPRIMB(J,1) = XPRIMB(J,2)
XINC(J) = 0.
CONTINUE
OLDDEL = DELT
                    OLDDEL = DELT
 OLDDEL = DELT
45 CALL STEP
IF (DONE) 67,450,67
450 IF (NSTART) 451,1,451
451 IF (MBGDYS) 46,47,46
46 CALL TESTIR
IF (TRSFER) 1,47,1
47 IF (XABSF(IMODE)-3) 11,48,11
   47 IF (XABSF(IMODE)=3) 11,48,11

PART 7D. IF IN TEMPORARY RECTANGULAR COORDINATES, TEST FOR RETURN
TO ORBIT ELEMENTS. FIRST, E IS FOUND. IF TIME HAS NOT ADVANCED
SUFFICIENTLY, INTEGRATION CONTINUES IN RECTANGULAR VARIABLES (STATE. 48
STATEMENT 49 DETERMINES IF KEPLERS EQUATION CAUSED IMDDE = 3. IF NOT,
AN E CLOSE TO 1 CHECK IS MADE IN STATEMENT 50. IF IT DID, RECTANGULAR
VARIABLES WILL BE USED IF THE LIMIT IS TOO SMALL (STATEMENT 52), OR
IF E IS 5 OR GREATER (STATEMENT 53) OR IF THE PATH LIES CLOSE TO AN
ASYMPTOTE (STATEMENT 55).

48 CALL CONVIL (VX,AMC)
EXMODE=SQRTF(1.+AMSQRD/GKZM*(VSQRD/GKZM-2./R))
EMONE=EXMODE-1.
IF ((XPRIM(1)-TTEST)*DELT) 11,11,49

49 IF (ASYMPT) 51,50,51
50 IF (ETOL.-ABSF(EMONE)) 55,11,11
51 IF(EMONE) 55,55,52
52 IF(CONSTU-1.E-7) 11,53,53
53 IF (EXMODE-5.7) 54,11,11
54 CALL CONVIZ
IF (ABSF(TRU)-2.2/SQRTF(EXMODE)) 55,55,11
55 ASYMPT = 0.0
IMODE=-2
     55 ASYMPT = 0.0
IMODE=-2
555 CALL TESTIR
GO TO 1
```

```
PART 8. COMES HERE WHEN ERROR TEST FAILED—BOTH STARTING AND RUN.
RETRIEVE DLD POINT AND RECOMPUTE WITH SMALLER INTERVAL.
IF TWO CONSECUTIVE TRYS FAIL (STATEMENT 59) THE STARTING SEQUENCE OCCURS.

56 ASSIGN 1 TO IBEGIN
57 DD 58 J=1,NEQ
XPRIM(J,2) = XPRIM(J,1)
XPRIMB(J,2) = XPRIM(J,1)
XDOT(J) = XDOTPM(J,2)
XINC(J) = 0.

58 CONTINUE
STEPNO=STEPNO+1.
                              STEPNO=STEPNO+1.
H2 = DELT
                               DELT=SIGNF(EXPF((ERLOG-A2)/5.),DELT)
             DELI=SIGNTEXPF((ERLOG-AZ)75.),DELI)
A2 = A1
59 IF (FAIL-STEPGO) 60,61,60
60 FAIL = STEPGO
GO TO IBEGIN, (11,1)
61 ASSIGN 1 TO IBEGIN
IF (STEPNO+ STEPGO - STEPMX) 62,62,45
62 GO TO IBEGIN, (11,1)
                           PART 10. PRINT OUT THE ERROR INFO. IF EREF HAS A - SIGN. THEN RETURN. IF (EREF) 68,72,72
WRITE OUTPUT TAPE 6,70
REWIND 4
DO 69 I=1.INDERR
READ TAPE 4, BEX
WRITE OUTPUT TAPE 6,71,8EX
                          FORMAT(F5.,1H+F3.,1P11G10.2,12)
                               END
                              SUBROUTINE ORDER
THIS ROUTINE TAKES THE BODY LIST READ FROM CARDS AND SORTS THEM IN
ORDER SO THAT THE DISTANCE FROM THE REFERENCE TO EACH BODY IS
DEPENDENT UPON ALREADY COMPUTED DISTANCES ONLY.
                              ELLIPSE DATA ARE READ INTO A BLOCK OF 120 STORES RESERVED FOR TEN ELLIPSES. ONE ELLIPSE IS READ INTO A 12 STORE BLOCK. THE SINES AND COSINES OF THE 3 ANGLES ARE COMPUTED AND STORED IN THE TOATA ARRAY ALONG WITH THE REST OF THE ELLIPSE DATA. A BLOCK IS ARRANGED AS FOLLOWS!
                             (1) = NAME OF BODY IN BCD, ONLY 6 CHARACTERS.
(2) = NAME UF REFERENCE BODY IN BCD, SAME RESTRICTION.
(3) = MASS OF THE BODY IN SUN MASS UNITS.
(4) = RADUIS INSIDE OF WHICH COORDINATES WILL BE TRANSLATED TO THIS BODY.
(5) = SEMILATUS RECTUM IN ASTRONOMICAL UNITS.
(6) = ECCENTRICITY OF THE ORBIT.
(8) = LONGITUDE OF ASCENDING NODE.
(7) = ARGUMENT OF PERIHELION.
(9) = INCLINATION OF THE ORBIT.
(10) = PERIGEE PASSAGE JULIAN DAY.
(11) = PERIGEE PASSAGE FRACTION OF DAY.
(12) = PERIOD OF THE ELLIPSE IN MEAN SOLAR DAYS.
                         AMASS = MASS OF EACH BODY, SUN MASSES. ORDER OF PNAME.
BMASS = SELECTED FROM AMASS. CORRESPONDS TO BNAME LIST.
BMAME = THE ORDERED LIST OF BCD BODY NAMES. CAN BE USED IN OUTPUT.COMMON.
BODYCO = THE ORIGINAL BCD NAMES READ FROM CAROS.
BODY L = THE LIST OF BCD BODY NAMES WITH THE REFERENCE BODY AT TOP.
INITIALLY EQUAL TO BODY CARD LIST (BODYCO).

BODY = ARRAY OF SUBSCRIPTS. WHEN A DISTANCE IS FOUND FROM EPHEMERIS, IT MAY BE ADDED (OR SUBTRACTED) FROM THE BODY POSITION GIVEN BY XPI IBODY) TO OBTAIN THE POSITION OF THE PRESENT BODY. COMMON.

KZERO = COUNT OF ZERO REFERENCES. THERE MUST BE ONE AND ONLY ONE ZERO.
FROM LOCATION IN BNAME LIST. NOT IN COMMON.

MANE = ARRAY OF SUBSCRIPTS. INVERSE OF NAME. GIVES NEW LOCATION OF BNAME LIST IN TERMS OF BODYL. NOT IN COMMON.

MBODYS = COUNTED INTERNALY. TOTAL NUMBER OF BODYS.

MBODYS = COMPUTED INTERNALY. TOTAL NUMBER OF EPHEMERIDES (NBODYS-1).

NAME = ARRAY OF SUBSCRIPTS. GIVES OLD LOCATION OF NAMES IN BODYL.

NEFMRS = ARRAY OF SUBSCRIPTS. GIVES LOCATION OF BODY IN PNAME LIST
IN TERMS OF THE EFMRS LIST. STORED IN COMMON.

NREFER = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERENCE BODY IN BODYL.

ORUER OF THE ARRAY CORRESPONDS TO BODYL. NOT IN COMMON.

NNREFF = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERS AND CORRESPONDS TO BNAME LIST. NOT IN COMMON.

NNREFF = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERS AND CORRESPONDS TO BNAME LIST. NOT IN COMMON.

PNAME = APRAMANENT LIST OF BCD BODY NAMES. 1 WORD EACH (6 CHARACTERS MAX). USED TO IDENTIFY MASS, REFERENCE NAMES, ETC. THE LIST IS A MAXIMUM OF 30 NAMES. PRECISION TAPE NAMES ARE FROM 1 TO 20,

ELLIPPIC NAMES ARE FROM 21 TO 30.

REFER = A PERMANENT LIST OF BCD BODYS THAT ARE THE REFERENCES OF DISTANCES GIVEN IN EPHERMERIDES (TAPES OR ELLIPSE). CORRESPONDS TO PNAME LIST.
                              COMMON C
С
                             DIMENSION A(600), B(700), C(4000),
AMASS (30), BMASS (8),
BODYL (8), EFMES (7),
                                                                                                                                                                                                                                                    BNAME (8),
IBODY (8),
NEFMRS (8),
                                                  AMASS (30),
BODYL (8),
MANE (8),
                                                                                                                                                         NAME (8).
                                             NEFMRT (8),
NREFER (8),
RCRIT (30),
                                                                                                                                               NNREFR (8),
PNAME (30),
                                                                                                                                                                                                                                                   BODYCD (8),
RBCRIT (7),
                                                                                                                                                                                                                                                        TDATA (18,7)
ELIPS (120),
                                                                                                                                                     REFER (30).
                                                                                                                                                     TIM (7),
XPRIM (200)
                                                      NDUD (9),
С
```

```
EQUIVALENCE
                                                                                                        { 11}},(AMASS,A

{ 29}),(B

( 122)},(BOYCO),A

( 130)),(ELIPS,A

( 36)),(GKM,B

( 42)},(NBODYS,B

( 287)),(RATMOS,B

( 145)),(RCRIT,A

( 25)),(RESQRD,B
                                                                                                                                                                                                                       ( 347)),(ATMN ,A
(1111)),(BMASS ,B
( 143)),(BODYL ,B
( 167)),(FILE ,B
( 37)),(IBODY ,B
                              1(A ,C
2(AU ,A
                                                                                                                                                                                                                                                                                                                                      ( 21)),
( 137)),
                              3 (BNAME , B
                                                                                                                                                                                                                                                                                                                                        ( 153)),
                              4(EFMRS ,B
5(GK2M ,B
                                                                                                                                                                                                                                                                                                                                       ( 22)),
                             5(GK2M ,B
6(MBODYS,B
7(PNAME ,A
8(RBCRIT,B
                                                                                                                                                                                                                       ( 41)),(NEFMRS,B
( 23)),(RATM ,A
( 377)),(REFER ,A
( 7)),(REVOLV,B
                                                                                                                                                                                                                                                                                                                                                     2211.
                              9(RE ,A
EQUIVALENCE
                                                                                                                                                                                                                                                                                                                                                     21))
                                  EQUIVALENCE ( 39)),(SPD ,A (1ROTATE,A ( 39)),(TDATA ,B ( 35)),(TIM ,A ( 5)),(TIM ,A (1)),(TIM ,A
                                                                                                                                                                                                                       ( 44)),(SQRDK1,A
( 265)),(TDEL ,B
( 163)),(TRSFER,B
                              I(ROTATE, A
                                                                                                                                                                                                                                                                                                                                                     471).
                              2(SQRDK ,B
3(TFILE ,A
4(XPRIM ,C
                                                                                                                                                                                                                                                                                                                                       ( 170)).
                                                                                                                                                                                                                                                                                                                                                         8)).
                                 THIS SECTION SEES WHAT ELLIPSE DATA WAS READ FROM CARDS AND PUTS THE NAMES IN PLACE SO THAT DATA WILL BE USED IF NEEDED. ELLIPSE DATA HAS PRIORITY OVER TAPE DATA BECAUSE LAST DATA IN LIST IS THAT ACTUALLY USED. FUNCTION COMPARF(A,B) IS EQUIVALENT TO (A-B) BUT WILL NOT OVERFLOW.
                                  COMPARF(A,B) = (A+B)*(-(A*B))
                               COMPARF(A,B) = (A+B)*(-(A*

DO 2 K=1,120,12

IF(ELIPS(K)) 1,2,1

KOUNT = (K-1)/12*21

PNAME(KOUNT) = ELIPS(K)

REFER(KOUNT) = ELIPS(K+1)

AMASS(KOUNT) = ELIPS(K+2)

RCRIT(KOUNT) = ELIPS(K+3)

CONTINHE
                       2 CONTINUE
                                PART O. THROW AWAY BLANKS AND DUPLICATES IN BNAME LIST.

ALSO COUNT THE BODIES.

IF (TRSFER) 4,3,4

BNAME(1) = BODYCD(1)

DO 5 K=1,8
                                 BNAME(K+1)= BODYCD(K)
                                 L = 1
BODYL(0) = 0.
DO 8 I=1,9
BODYL(I) = 0.
                                  DO 6 K=1,L
IF (COMPARF (BNAME(I), BODYL(K-I))) 6,7,6
                       6 CONTINUE
BODYL(L) = BNAME(I)
                                BNAME(I) = 0.
                       8 CONTINUE
                                NBODYS = L-1
MBODYS = NBODYS-1
                                PART 1. FIND THE REFERENCE BODY FOR EACH BODY IN THE LIST OF BODYS READ FROM CARDS. CLEAR NREFER AND BNAME.

DO 13 KL=1,NBODYS
               DO 13 KL=1,NBODYS
NREFER(KL) = 0
NEFMRT(KL) = 0
BNAME (KL) = 0.
DO 12 KP= 1,30
IF (COMPARF(8BDYL(KL),PNAME(KP))) 12,9,12
9 NEFMRT(KL) = KP
DO 11 KR = 1,8
IF (COMPARF(REFER(KP),BODYL(KR))) 11,10,11
10 CONTINUE
12 CONTINUE
13 CONTINUE
              12 CONTINUE
13 CONTINUE
13 CONTINUE
14 IF (NBODYS) 24,24,15
15 KZEROS = 0
MISPEL = 0
DO 20 K = 1,NBODYS
NNREFR(K) = NREFER(K)
16 IF (NEFMRT(K)) 18,17,18
17 MISPEL = MISPEL + 1
18 IF(NREFER(K)) 20,19,20
19 KZEROS + ZEROS + 1
20 CONTINUE
21 IF (KZEROS - 1) 24,22,24
22 IF (MISPEL) 24,23,24
23 IF (NBODYS-8) 28,28,24
             PART 3 . REPORTS ERRORS IN BODY LIST.

24 WRITE OUTPUT TAPE 6,25 ,NBODYS,MISPEL,KZEROS,(BODYL(K),K=1,NBODYS)
WRITE OUTPUT TAPE 6,26 ,(RREFER(K),K=1,NBODYS)
WRITE OUTPUT TAPE 6,27 ,(K,PNAME(K),REFER(K),K=1,30)

25 FORMAT (26HOGOOFY BODY LIST (NBODYS =12,13H, MISSPELL =12,

1 11H, KZEROS =12,1H)/11HOBODYLIST =8(3X,A6))

26 FORMAT (11H NREFER =16,719)

27 FORMAT (15/3H K3X,4HBODY4X,5HREFER5X,)/5(13,2X,A6,2X,A6,5X))
CALL FXIT
                               CALL EXIT
                              PART 4. TRACES OUT .. REFERENCE TO BODY.. RELATIONSHIPS
              28 KK = 2
KN = 1
                               NAME(1) = 1
              AME(1) = 1
29 IF (NREFER(KN)) 24,31,30
30 NAME(KK) = NNREFR(KN)
NNREFR(KN) = 0
KN = NAME(KK)
KK = KK + 1
                               GO TO 29
¢
```

```
PART 5. TRACES OUT ..BODY TO REFERENCE.. RELATIONSHIP
31 DO 34 KN = 1,NBODYS
DO 34 K = 1,NBODYS
32 IF (NNREFR(K) - NAME(KN)) 34,33,34
33 NAME(KK) = K
       34 CONTINUE
               PART 6. INVERTS NAME TO MANE, STORES BNAME, BMASS, RBCRIT, AND A TEMPORARY NEFMRS. DO 35 K = 1,NBODYS N = NAME(K)
               N = NAME(K)

MANE(N) = K

NEF = NEFMRT(N)

BNAME(K) = PNAME(NEF)

BMASS(K) = AMASS(NEF)

RBCRIT(K) = RCRIT(NEF)

NEFMRS(K) = NEF
       35 CONTINUE
C
                PART 7. FINDS NNREFR REFERENCE FOR BNAME LIST , ALSO TEMP. IBODY
       DO 36 K = 1, NBODYS
N = NAME(K)
NRF = NREFER(N)
NNREFR(K) = MANE(NRF)
36 IBODY(K) = MANE(NRF)
       PART 8 . FINDS IBODY FOR BACKWARD REFERENCE.
DO 39 K=1,8
37 1F(NNREFR(K)) 24,40,38
       38 N = NNREFR(K)
IBODY(N) = -K
       39 CONTINUE
                IBODY LIST IS COMPLETE.
               PART 9 • WRITES OUT EPHEMERIS LIST TO BE USED IN STORING DATA AND MAKES FINAL NEFMRS LIST.
       40 KK = 1
      PART 10. SAVES ELLIPSE DATA
FILE = 0.
IF (MBODYS) 430,480,430
430 DO 48 K=1,MBODYS
44 IFINEFMRS(K)-20) 47,47,45
       44 IF(NEFMRS(K)-20) 47,47,45

45 D0 46 J=5,12

L= (NEFMRS(K) - 21) * 12 +J

46 TOATA(J-4,K) = ELIPS(L)

D0 50 J=7,9

L = (NEFMRS(K)-21)*12+J

TOATA(J+2,K) = SINF(ELIPS(L))

50 TOATA(J+5,K) = COSF(ELIPS(L))

GO TO 48
                GO TO 48
               PART 10A. LOADS A FALSE (VERY EARLY) TAPE TIME TO FORCE TAPE READING BY THE EPHMRS ROUTINE. FILE = 0 UNLESS TAPE IS USED.
       READING

47 TDEL(K) = 0

TIM(K) = 2400000.5

FILE = 10.
        48 CONTINUE
               PART 11. COMPUTE GRAVITATIONAL CONSTANTS. 1.9866 E+30 = KILOGRAMS/SUN MASS IF ORIGIN BODY HAS AN ATMOSPHERE, SET ROTATION RATE AND ATMOSPHERE RADIUS. POSITION THE EPHEMERIDES TAPE AT THE BEGINNING OF THE CORRECT EPHEMERIS BY MATCHING THE EPHEMERIS NUMBER READ FROM TAPE (FILE) WITH THE DESIRED EPHEMERIS NUMBER (TFILE).
     480 RESQRD = RE**2
SQRDK = SQRDK1*AU**3/SPD**2
GRZM = SQRDK(BMASS(1) + XPRIM(2)/1.9866 E30)
GKM = SQRDK(GMASS(1) + XPRIM(2)/1.9866 E30)
GKM = SQRTF(GKZM)
REVOLV = 0
RATMOS = 0
      RATMOS = 0.

IF (ATMN-BNAME(1)) 51,49,51

49 REVOLV = ROTATE
RATMOS = RATM
51 IF (FILE) 56,56,52

52 CALL BSFILE(1)
53 READ TAPE 3, FILE
IF (FILE-TFILE) 54,56,55

54 CALL SKFILE(1)
GD TO 53

58 BACKSPACE 3
BACKSPACE 3
GO TO 52
       PART 12. WRITES THE BNAME LIST ON TAPE 6.
56 IF (OUTPOT) 58,59,58
59 WRITE OUTPUT TAPE 6,57,BNAME(1),(BNAME(K),K=2,NBODYS)
57 FORMAT (19HOREFERENCE BODY IS A6,5x,23H PERTURBING BODIES ARE
1 7(2x,A6))
58 RETURN
FND
```

```
SUBROUTINE OBLATE
THIS SUBROUTINE COMPUTES THE OBLATENESS ACCELERATIONS (OBLAT) DUE TO AN
AXIALLY SYMMETRIC EARTH. THE 2ND, 3RD, AND 4TH SPHERICAL HARMONIC COEFF.
ARE OBLATJ, OBLATH, AND OBLATO RESPECTIVELY.
 C
               DIMENSION A(600), B(700), C(4000),
1 RB(3), OBLAT(3)
 C
                EQUIVALENCE
             1(A ,C
2(OBLATJ,A
                                                          11)).(8
                                                                                                          (11111)).(GK2M
                                                  ( 26)),(OBLATD,A
( 75)),(R ,8
( 25)),(RSQRD ,8
                                                                                                          ( 27)),(OBLATH,A
( 102)),(RB ,B
( 45)),(RESQRD,B
                                                                                                                                                                 ( 193))
 c
                AA = RB(3)/R
AB = AA*AA
IF (ABSF(AA)-1.E-6) 1,1,2
          1 AA=0.
         1 AA=0.
    AB=0.
2 AC = RESQRD/RSQRD
AD = GK2M/RSQRD/R*AC
AE = OBLATJ*AD
AF = OBLATH*AD*RE/R
AG = OBLATD*AD*AC
AH = AE*(5.AB=1.)+AF*(7.AB=3.)*AA+AG*(6.AB=9.AB**2=0.4285714286)
OBLAT(1) = AM*BQR(1)
               OBLAT(1) = AH=RB(1)
OBLAT(1) = AH=RB(2)
OBLAT(3) = (AH=2.AE+AG*(4.AB=1.714285714))*RB(3)-AF*(3.AB=0.6)*R
               END
                                                                                                                          SUBROUTINE DUTPUT
              SUBMOUTINE DUTPOIL
ENTS AND RECTANGULAR COORDINATES ARE OUTPUTTED. IF THE OBJECT IS NOT WITH
THIS IS THE ROUTINE WHICH FORMS THE BASIC DATA OUTPUT. BOTH ORBIT ELEM-
IN AN ATMOSPHERE (PRESS=0.). ONE LINE OF DATA IS DELETED. LIKEWISE,
ONLY THOSE PERTURBING BODIES PRESENT HAVE THEIR DISTANCES OUTPUTTED.
               COMMON C
C.
              DIMENSION A(600), B(700), C(4000),
L R (8), ORBELS (6),
2 BNAME (8), RB(3,8),
                                                                                                                               VATM (3)
                                                                                                                               DIRCOS(3,8),
                        XPRIM (200)
C
              EQUIVALENCE
                                                                                                       (-49)), (ALT ,A
(-90)), (AREA ,B
(1111)), (CO ,A
(-40)), (COSTRU,B
(-15)), (IMODE ,A
(-41)), (ORBELS,B
(-84)), (PSI ,B
(-84)), (PSI ,B
(-166)), (Q ,B
           1(A ,C
2(AMC ,B
3(BNAME ,B
                                                      11)),(ALPHA ,A
                                                                                                                                                               ( 4)),
( 6)),
( 165)),
( 53)),
                                                ( 11)),(ALPHA ,A
( 87)),(AM ,B
( 122)),(B ,C
( 164)),(COSALF,B
( 23)),(H2 ,B
( 42)),(NBODYS,B
( 33)),(P ,B
( 398)),(PUSH ,A
( 393)),(RB ,B
           4(CL A
51DTOFFJ,A
6(MBODYS,B
7(PRESS,B
8(PSIR,B
9(RAMC,B
                                                                                                                                                                         1)),
                                                                                                                                                                ( 1161),
                                                                                                                                                                     30)),
                                                                                                                                                                       48))
             EQUIVALENCE
                                                 ( 102)),(SINALF,B
( 41)),(STEPNO,A
( 40)),(VATM ,B
( 95)),(VX ,B
           1(R ,B
2(STEPGO,A
                                                                                                               46)). (SINTRU. B
                                                                                                                                                                      5211
                                                                                                       ( 40)),(INIRU,B
( 42)),(TABLT ,B
( 97)),(VQ ,B
( 92)),(VY ,B
( 711)),(OUTPOT,B
                                                                                                                                                               ( 20)),
( 100)),
           3(TRU ,8
4(V ,8
           SIVZ
                                                 ( 94)),(XPRIM ,C
      DAYJ=(DTOFFJ-2.4E6)+TABLT
ALPHA1 = ALPHA*57.29577951
REV = REVS+ARCTAN(-RB(2),-RB(1))/6.28318532 + .5
16 CALL CONVTI(VX,AMC)
IMODE=IMODE
             GD TO (2,1,1), IMODE CODE=6HRECTAN
      18 CALL CONVT 2
        GO TO 4
2 DO 3 K=1,6
        3 ORBELS(K) = XPRIM(K+2)
CODE=5HORBIT
        CODE=>HORBII
TRU=ARCTAN(SINTRU,COSTRU)

4 PSI = ATANF((RB(1)*VX+RB(2)*VY+RB(3)*VZ)/AM)57*2957795
IF (OUTPOT) 19,6,19
6 WRITE OUTPOT 14PE 6, 11,STEPGO,STEPNO,ORBELS(1),ORBELS(2),V,R(1),B
1NAME(1),CODE,IMODE,XPRIM(1),ORBELS(6),TRU,VX,RB(1),XPRIM(2),DAYJ,D
2RBELS(5),ORBELS(3),VY,RB(2),REV,ALPHA1,PSI,ORBELS(4),VZ,RB(3),H2
     IF WITHIN AN ATMOSPHERE COMPUTE DRAG, LIFT, G, ETC., AND PRINT EXTRA LINE.

19 IF (PRESS) 5,7,5

5 XIFT = Q*AREA*CL
DRAG = Q*AREA*CD
G = (PUSH-DRAGS*CDSALF+XIFT*SINALF)/XPRIM(2)/9.80665

17 CALL CONVILORINGAMC)
            G = (FOSITION TELESCOPE | FOSITION | FOSITION | FOSITION |
CALL CONVTI(VATM.RAMC)
PSIR = ATANF((RB(1)*VATM(1)*RB(2)*VATM(2)*RB(3)*VATM(3))/RAMC(4))*
          1 57-2957795
    1 51.2751797
IF (OUTPOT) 7,14,7
14 WRITE OUTPUT TAPE 6,12,ALT,PSIR,DRAG,VQ,G,PUSH
```

```
IF PERTURBATING BODIES ARE PRESENT, FIND THEIR DISTANCES AND PRINT THEM.
С
        10 RETURN
11 FORMAT(6HOSTEP=F6-,2H +F4-,3X,13HECCENTRICITY=1PG15-8,7H OMEGA=G15
1.8,4H V=G15.8,3H R=G15.8,7H REFER=A6,1X,A6,12/6H TIME=1PG14-7,14
2H SEMILATUS R.=G15.8,7H TRU A=G15.8,4H VX=G15.8,3H X=G15.8,7H RMAS
3S=G15.8/9H JDAY= 240PF10.4,15H MEAN ANOMALY=1PG15.8,7H NODE=G15.
46,4H VY=G15.8,3H Y=G15.8,7H REVS.=G15.8/6H ALFA=G14.7,14H PATH A
5NGLE=G15.8,7H INCL=G15.8,4H VZ=G15.8,3H Z=G15.8,7H DELT=G15.8)
12 FORMAT(6H ALT.=1PG14.7,14H R PATH ANGLE=G15.8,7H DRAG=G15.8,4H VR
1=G15.8,3H G=G15.8,7H PUSH=G15.8)
13 FORMAT(2(1X,A6,3H R=1PG14.7,0P3F10.6,11X))
FND
                                                                                                                                FUNCTION QUAD (X,IC)
                 FUNCTION QUAD (X,IC)

THIS ROUTINE COMPUTES ANY VARIABLE, QUAD, AS A QUADRATIC FUNCTION OF X.

QUAD = A + BX + CXX. THERE MAY BE SEVERAL SETS OF COEFFIENTS, EACH SET

BELONGING TU A PARTICULAR REGION OF X. THE COEFN ARRAY IS ARRANGED AS --

X1,A1,B1,C1,X2,A2,B2,C2,X3,A3,B3,C3,X4, ...............

WHERE A1,B1,C1 ARE THE COEFFIENTS TO BE USED FOR X BETWEEN XI AND X2,ETC.

AND X1 IS LESS THAN X2, X2 IS LESS THAN X3, X3 IS LESS THAN X4, ETC.

IC IDENTIFIES WHICH DEPENDENT VARIABLE, QUAD, IS BEING SOUGHT.

ICC(IC) DEFINE THE STARTING LOCATIONS IN THE COEFN ARRAY FOR VARIABLES X.
000000
C.
               DIMENSION A(600), B(700), C(4000), CCEFN(190), ICC(5)
¢
                  EQUIVALENCE
               1(A ,C
2(ICC ,A
                                                         ( 11)),(B
( 153))
                                                                                                                         (1111)),(COEFN ,A
C
                   I=ICC(IC)
            1 IF (X-COEFN(1)) 2,3,3
2 I = I-4
GO TO 1
                  IF(X-COEFN(I+4)) 5,5,4
                  00 TO 3
QUAD = COEFN(I+1)+X*(COEFN(I+2)+X*COEFN(I+3))
ICC(IC)=I
                   RETURN
                                                                                                                                                  SUBROUTINE STAGE
                  THIS ROUTINE IS CALLED TO PREPARE DATA FOR USE IN NBODY. STAGE DATA IS TAKEN FROM PERMINENT STORES AND LOADED INTO WORKING STORES. STAGE DATA MAY BE SET ASIDE FOR LATER USE (IF ON NSAVE-NSTAGE). WHEN INDOE IS 4, CONVERSION FROM EARTH-SPHERICAL TO RECTANGULAR OR ORBIT ELEMENTS TAKES
С
 00000
                   PLACE IN TUDES.
 C.
                DIMENSION A(600), B(700), C(4000),
1XPRIM(200),XPRIMB(200),TB(10),FLOW1(10),AEXITI(10),SIMP1(10),
2AREA1(10),DELT1(10),IDENT(10),TABLE(200),RMASS1(10),D(600)
 C
                  EQUIVALENCE
               1(A ,C
2(AREA1 ,A
3(DELT1 ,A
                                                                                                                                       3)),(AEXIT1,A
                                                          ( 11)),(AREA ,8
( 113)),(DELT ,8
( 133)),(DELT ,8
( 43)),(DELHAX,A
( 13)),(ERLOG ,8
( 5)),(FLOWL ,A
( 1)),(LSTAGE,A
( 1)),(NCASES,A
( 3)),(PUSHO ,8
                                                                                                                         ( 3)),(AEXIT1,A
( 6)),(B ,C
( 1)),(D ,C
( 19)),(DONE ,B
( 17)),(EXITA ,B
( 83)),(IDENT ,A
( 38)),(MODOUT,A
( 600)),(NSAVE ,C
( 391)),(RMASS1,A
                                                                                                                                                                                           (1111)),
                                                                                                                                                                                           (2111)),
               4(DEL ,A
5(EREF ,A
6(FLOW ,B
7(IMODE ,A
8(NCASE ,C
                                                                                                                                                                                           ( 39)),
                                                                                                                                                                                           ( 123)),
                                                                                                                                                                                           ( 201),
                                                                                                                                                                                           ( 4)),
( 73))
                9(NSTAGE.A
                   EQUIVALENCE
                                                          ( 93)),(SIMP ,B
(1911)),(TKICK ,A
( 45)),(XPRIMB,C
( 400)),(OUTPOT,B
                                                                                                                           ( 2)),(TB ,A
{ 15}),(TMAX ,8
( 911)),(XPRIM ,C
( 399))
                1(SIMP1 .A
2(TABLE .C
                                                                                                                                                                                           ( 63)).
                 3(TTOL
                 4(RETURN.B
 С
```

```
PART 9. COMES HERE FOR END OF SUB TRAJECTORY.
IF (DDNE) 113,111,111
111 DONE = 0.
IF (NSTAGE-LSTAGE) 112,115,115
112 NSTAGE = NSTAGE+1
GO TO 100
113 DONE = 0.
115 CALL EXTRA
IF (RETURN) 103,116,100
116 RETURN
END
          SUBROUTINE STEP
SUBROUTINE STEP TESTS FOR THE END OF THE PROBLEM, COMPUTES STEP SIZE, AND
CONTROLS QUANTITY OF OUTPUT DATA. END OF PROBLEM OCCURS IF TIME = TMAX,
STEPGO+STEPNO = STEPMX, OR C(LOOKX) = XLOOK. THE LAST OPTION ALLOWS STUP-
PING ON A DEPENDENT VARIABLE. THE TEST FOR STOPPING AT XLOOK IS NOT MADE
UNTIL C(LOOKSW) IS GREATER THAN SWLOOK. CONTROL UN QUANTITY OF DUTPUT IS
               END
0000000000
               MODOUT=1 OUTPUT EVERY NTH STEP(N=STEPS) UNTIL TIME = TMIN, THEN
                                      GO TO MODE 2 .

OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = TMAX.

OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = TMIN, THEN
                                 GO TO MODE 4 .
4 OUTPUT EVERY NTH STEP UNTIL TIME = TMAX.
С
               DIMENSION A(600), B(700), C(4000),
L XPRIM(200), DELT1 (10)
c
               EQUIVALENCE
             1(A ,C
2(B ,C
3(DELT ,B
4(END ,A
                                                   ( 11)),(A1 ,B
(1111)),(DELMAX,A
( 1)),(DONE ,B
( 5)),(ERLOG ,B
                                                                                                                    10)),(A2
                                                                                                                                                                            11)),
                                                                                                                    19)),(DEL
39)),(E2
17)),(H2
                                                                                                                                                                            43)),
18)),
15)),
8)),
                                                   ( 5)),(ERLOG ,B
( 599)),(LOOKSW,A
( 20)),(NSTAGE,A
( 58)),(SIGNAL,B
( 41)),(STEPMX,A
( 17)),(SWLOOK,A
             5(INLOOK,A
6(MODOUT,A
7(RATIO,B
                                                                                                                    9)),(LOOKX ,A
3)),(DELT1 ,A
31)),(SPACES,B
                                                                                                                                                                        ( 1331),
                                                                                                                                                                          16)),
             8(STEPGO, A
9(STEPS , A
EQUIVALENCE
                                                                                                                     16)),(STEPNO,A
10)),(TABLE ,C
            1(TMAX ,8
2(XLOOK ,A
3(NSTART,8
                                                   ( 4)),(TMIN ,A
( 12)),(XPRIM ,C
( 24)),(SWITCH,A
                                                                                                             ( 18)),(TTOL ,A
( 711)),(XTOL ,A
(601)),(OUTPOT,B
                                                                                                                                                                   ( 45)),
( 11)),
( 399))
                (NSTART.B ( 24)),(SWITCH,A ( CHECKF(A,B,C) = ABSF(A-B) - ABSF(A-C)
               PART 1. TEST FOR END OF THE PROBLEM (MAXIMUM PROBLEM TIME OR MAXIMUM NUMBER OF STEPS).

STEPGO = STEPGO + 1.
OUT = OUTPOT

IF (ABSF(TMAX-XPRIM(1))-TTOL) 1,1,3
     IF (ABSF(TMAX-XPRIM(1))-TTOL) 1,1,3
1 DONE = 1.0
112 CALL OUTPUT
1F (OUTPOT) 26,111,26
111 WRITE OUTPUT TAPE 6,2,NSTAGE
2 FORMAT(6HOSTAGE12,11H COMPLETED.//)
GO TO 26
3 IF (STEPGO+STEPNO-STEPMX) 7,4,4
4 CALL OUTPUT
1 KRITE OUTPUT TAPE 6,5,STEPMX
5 FORMAT (22HOSTEPGO+STEPNO-STEPMX=F6.)
CALL EXIT
                CALL EXIT
```

```
C
                                    PART 2. COMPUTE STEP SIZE (DELT) AND CONTROL OUTPUT.
                      7 N=1
A3 = (A2-A1)*RATIO+A2
'COLOG-A3)/5.
               A3 = (A2-A1)*RATIO+A2
AA = (ERLOG-A3)/-08.028)*ABSF(SWITCH)) 8,8,60
BDLT = SIGNF(EXPF(AA),DELT)
IF (DELT/H2-3.) 10,10,9
DELT = 3.*H2
10 MODOUT = MOUDUT
GO TO (11,15,13,21),MODOUT
11 IF(DELT*(XPRIM(1) + 3.*DELT-TMIN)) 21,12,12
12 MODOUT = 2
DEL = TMIN - XPRIM(1)
GO TO 16
13 IF(DELT* (XPRIM(1) - TMIN)) 15,15,14
14 MODOUT = 4
GO TO 21
                 14 MDDUUI = 4
GO TO 21
15 DEL = DEL-H2
16 SPACES = INTF((DEL/DELT)+SIGNF(.9,(DEL/DELT)))
17 IF(SPACES) 20, 18,20
18 CALL OUTPUT
               N=2
DEL = DELMAX
IF (ABSF(DEL) - ABSF(DELT)) 19,16,16
19 DELT = SIGNF(DEL,DELT)
GO TO 16
20 DELT = DEL/SPACES
GO TO 23
21 IF (MODE(STEPGO,STEPS)) 23,22,23
22 CALL OUTPUT
             PART. 3. SEARCH FOR C(LOOKX) = XLOOK UNLESS LOOKX=0.

23 IF(LOOK X) 27,42,27

27 LOOK X = LOOK X
LOOK SW = LOOK SW
OUTPOT = 1.
60 TO (44,45),N

44 CALL OUTPUT

45 IF(SWITCH) 32,28,33

28 IF(SWITCH) 32,28,33

28 IF(SWITCH) 31,30,31

30 XTOL1 = XTOL*ABSF(XLOOK)
IF (XTOL1) 31,30,31

30 XTOL1 = XTOL

31 SWITCH = -1.
60 TO 41

32 SWITCH = 1.
ASSIGN 43 TO MODE
OVER = 0.
                                   OVER = 0.
F = 0.
T=0.
        F = U.
T=0.
T=0.
33 SLOPE = (C(LQOKX)-OLDX)/H2
GO TO MODE, (43,35)
43 IF(SLOPE *(C(LQOK X) - X LOOK)) 350,41,41
350 ASSIGN 35 TO MODE
35 IF(ABSF(C(LOOK X) - X LOOK) - XTOL1) 36,36,37
60 T=1.
36 IF (OUT) 63,46,63
46 OUTPOT = 0.
CALL OUTPOT
63 IF (T) 61,47,61
61 IF (OUT) 62,51,62
51 MRITE OUTPUT TAPE 6,64, LOOKX,C(LOOKX),H2,LOOKX,SLOPE
64 FORMAT(3HOC(14,4H) = 1PG15.8,31H CONVERGENCE TROUBLE.
IG15.8,14H SLOPE OF C(14,13H) VS. TIME = G15.8//)
GO TO 62
47 IF (OUT) 62,50,62
50 WRITE OUTPUT TAPE 6,48,LOOK X, C(LOOK X)
48 FORMAT(3HOC(14,2H)=1PG15.8//)
62 LOOKX = 0
                                                                                                                                                                                                                                                                                                                                                                                            DELT=
      50 WRITE OUTPUT TAPE 6,48,LOOK X, C(LOOK X)

48 FORMATISHOC(14,2H)=1PG15.8//)

62 LOOKX = 0

XTOL1 = 0.

SIGNAL = 1.

SHITCH = 0.

DONE = END

NSTART = 0

NSTARE=NSTAGE

DELT = DELTI(NSTAGE)

49 CALL INPUT(INLDOK,C,TABLE)

IF (DONE) 110,42,110

110 IF (DUT) 26,111,26

37 SIGN = CHECKF(DLDX,XLOOK,C(LOOK X))

IF(SIGN) 40,40,38

40 OVER = 1.

GO TO 400

38 IF (DVEN) 400,401,400

401 XGUESS = C(LOOKX)+SLOPE*DELT

IF (CHECKFIC(LOOKX),XLOOK,XGUESS)) 402,41,41

402 F = F+1.

IF (F-7.) 400,400,403

403 SLOPE = SLOPE/F

400 IF (SLOPE) 404,60,404

404 DELT = SIGNF(ABSF(XLOOK-C(LOOKX))/SLOPE,SIGN*H2)

41 OLDX = C(LOOK X)

42 IF (ABSF(TMAX-XPRIM(1))-ABSF(DELT)) 25,26,26

DELT = TMAX-XPRIM(1)

GO TO (26,24,24,26),MODOUT

26 OUTPOT = OUT

RETURN

END
                                 RETURN
END
```

```
SUBROUTINE STDATA
THIS ROUTINE CLEARS THE A, XPRIM, XPRIMB ARRARYS AND LOADS A SET OF
STANDARD DATA INTO THE MACHINE. ANY VALUES SET HERE MAY BE OVERWRITTEN BY
INPUT 1 IN THE MAIN PROGRAM.
0000
С
                  DIMENSION A(600), B(700), C(4000),
1 PNAME (12), AMASS (30),
2 COEFN (190),
3 AK (3), XDOT (100),
4 REFER (12), RCRIT (30),
                                                                                                                                                         XPRIM (200),
ICC (4),
IND (3),
AW (4),
               3 AK (3),
4 REFER (12),
5 RMASS1 (10)
С
                   EQUIVALENCE
                                                            ( 11)),(AK ,A
( 29)),(AW ,A
( 143)),(COEFN ,A
( 31)),(DTOFFJ,A
( 14)),(ETOL ,A
( 153)),(IMDODE ,A
( 9)),(MODOUT,A
( 3)),(OBLATD,A
( 26)),(PNAME ,A
                                                                                                                                ( 51)), (AMASS , A
( 55)), (B , C
( 407)), (CONSTU, A
( 23)), (EREF , A
( 30)), (GASFAC, A
( 1)), (IND , A
( 20)), (NEQ , A
( 20)), (NEQ , A
( 27)), (OBLATH, A
               1(A ,C
2(AU ,A
3(BODYCD,A
                                                                                                                                                                                                      ( 347)),
                                                                                                                                                                                                      ( 347)),
(1111)),
( 32)),
( 13)),
( 46)),
( 60)),
               4(CONSU ,A
5(ERLIMT,A
6(ICC ,A
7(LOOKSW,A
8(NSTAGE,A
                                                                                                                                                                                                           211,
               9(OBLATJ,A
EQUIVALENCE
1(REFER,A
2(SQRDK1,A
3(TFILE,A
4(XTOL,A
                                                                                                                                                                                                      ( 377))
                                                             ( 317)),(RE ,A
( 47)),(STEPMX,A
( 6)),(XDOT ,B
( 11)),(RMASSI,A
                                                                                                                                 ( 25)),(SPD ,A
( 16)),(STEPS ,A
( 501)),(XPRIM ,C
( 73))
C
                   CLEAR INITIAL CONDITIONS AND CONTROL PARAMETERS.
             00 1 J=1,1100
1 A(J) = 0.
                  THE FOLLOWING NH STAPNAME(1) = 3HSUN
PNAME(2) = 6HMERCUR
PNAME(3) = 5HVENUS
PNAME(4) = 5HEARTH
PNAME(5) = 4HMARS
PNAME(6) = 6HJUPITE
PNAME(7) = 6HSATURN
PNAME(8) = 6HNEANUS
PNAME(9) = 6HNEATURN
PNAME(10) = 5HPLUTO
PNAME(11) = 4HMOON
PNAME(12) = 6HEARTHM
                    THE FOLLOWING NH STATEMENTS LOAD THE BODY NAMES INTO THE MACHINE.
                  FILL OUT SUN REFERENCE LIST. INITIALIZE MASS ARRAY.
00 2 K=1,10
RMASSI(K) = 1.
REFER(K+1) = PNAME(1)
REFER(12) = PNAME(1)
C
                   FILL OUT EARTH REFERENCE LIST.
REFER(1) = PNAME(4)
REFER(4) = 5HZERO+
REFER(11) = PNAME(4)
С
```

```
LOAD THE REMAINING STANDARD DATA.

AK(1) = 0.5

AK(2) = 0.5

AK(3) = 1.0

AMASS(1) = 1.0

AMASS(2) = 1.0/6120000.0

AMASS(3) = 1.0/408645.0

AMASS(4) = 1.0/332951.3

AMASS(5) = 1.0/308000.0

AMASS(6) = 1.0/1047.39

AMASS(7) = 1.0/3500.0

AMASS(8) = 1.0/2869.0

AMASS(8) = 1.0/12869.0

AMASS(10) = 1.0/400000.0

AMASS(11) = AMASS(4) + AMASS(11)

AU = 1.49599 £11

AU(1) = 1.60

COEFN(1) = -1620

COEFN(189) = 1620

COEFN(189) = 1620

COEFN(189) = 1620

COESTU = 1.0 E-6

ETOL = 0.01

DTOFFJ = 244.64

EREF = 1E-6

ERLIMT = 38-6

GASFAC = 20.064881

ICC(1) = 185

ICC(2) = 185

ICC(2) = 185

ICC(2) = 185

ICC(2) = 185

ICC(4) = 185

ICC(4) = 185

IMODE = 1

IND(1) = 2

IND(1) = 2

IND(2) = 3

IND(3) = 1

COBLATD = 7.875 E-6

OBLATH = -5.75 E-6

OBLATH = -5.75 E-6

OBLATD = 7.875 E-6

RCRIT(1) = 1.0 E+20

RCRIT(2) = 1.0 E+8

RCRIT(4) = 9.25 E+8

RCRIT(5) = 5.78 E+8

RCRIT(4) = 9.25 E+8

RCRIT(5) = 5.78 E+8

RCRIT(6) = 5.78 E+8

RCRIT(1) = 3.81 E+10

RCRIT(1) = 1.0

SYPENME = 100-0

STEPS = 1.

TFILE = 1.

XDOT(1) = 1.0

XDOT(1) = 1.0

XDOT(1) = 1.0

XDOT(1) = 1.0

XDOT(1) = 5E-8

WAITE OUTPUT TAPE 6, 3

BFORMAT (15HOSTANDARD DATA.)

BETIEMS
С
                                                                                                                                                                                                                                                 RETURN
END
```

```
SUBROUTINE TESTTR
             SUBROUTINE TESTIR
SUBROUTINE TESTIR MAY BE CALLED FOR ONE OF TWO REASONS, (1) TO TEST FOR AND POSSIBLY TRANSLATE THE DRIGIN (WHEN IMODE IS +) OR (2) TO CHANGE THE VARIABLES OF INTEGRATION (WHEN IMODE IS -). A TRANSLATION OF THE URIGIN OCCURS WHEN THE OBJECT MOVES INTO A SPHERE OF INFLUENCE WHICH IS SMALLER THAN ANY OTHERS IT MAY ALSO BE IN. WHEN THIS HAPPENS, THE NAME OF THE NEW ORIGIN IS MOVED TO THE BEGINNING OF THE BNAME LIST AND ORDER IS CALLED TO REORDER THE BNAME LIST.
 C
 Č
 C
                      COMMON C
 С
                  C
                      EQUIVALENCE
                                                                    ( 11)), (AMC , B
(1111)), (BMASS , B
( 25)), (DELT , B
( 1)), (NBDDYS, B
( 145)), (RB , B
( 145)), (SQROK , B
( 4)), (TRSFER, B
( 54)), (VEFM , B
( 711)), (XPRIMB, C
                                                                                                                                                ( 87)), (ASYMPT, A
( 137)), (BNAME, B
( 1)), (GK2M, B
( 41)), (GRBELS, B
( 193)), (TREVS, A
( 35)), (TABLE, C
( 8)), (TRU, B
( 241)), (VX, B
                 1(A ,C
2(B ,C
3(CHAMP ,B
4(IMODE ,A
5(RBCRIT,B
                                                                                                                                                                                                                               ( 122)),
                                                                                                                                                                                                                               ( 36)),
                                                                                                                                                                                                                                         48)),
                 6(R ,B
7(TMAX ,B
8(TTEST ,A
9(XPRIM ,C
                                                                                                                                                                                                                               (1911)),
                                                                                                                                                                                                                                    401),
921),
                                                                                                                                                  ( 241)),(VX ,B
( 911)),(XWHOLE,B
                                                                                                                                                                                                                               ( 110))
                     EQUIVALENCE
                 1(OUTPOT,8
С
                     IMODE = IMODE
                      IF (IMODE) 12,12,1
                      IF IMODE IS +, TEST FOR TRANSLATION OF THE ORIGIN.
             1 CHAMP= 1.E+30
             1 CHAMP= 1.E+30

DO 4 JB=1.NBODYS

IF (R(JB)-RBCRIT(JB)) 2,4,4

2 IF (CHAMP-RBCRIT(JB)) 4,4,3

3 CHAMP = RBCRIT(JB)

NCHAMP = JBCRIT(JB)

NCHAMP = ABCRIT(JB)
             4 CONTINUE
IF (NCHAMP-1) 26,26,5
         IF (NCHAMP-1) 26,26,5

5 TRSFER = 1.0

8 BTEMP = BNAME(1)
BNAME(1) = BNAME(NCHAMP)
BNAME(NCHAMP) = BTEMP
TTEST = 0.
REVS = 0.
IF (OUTPOT) 6,9,6

9 WRITE OUTPUT TAPE 6,10,BNAME(NCHAMP),BNAME(1)
10 FORMAT (28HOORIGIN IS TRANSLATING FROM A6,4H TO A6)
6 CALL FPHMRS
        10 FORMAT (28HOORIGIN IS TRANSL.
6 CALL EPHMRS
DO 11 K=1,3
VX(K) = VX(K)-VEFM(K,NCHAMP)
RB(K) = RB(K,NCHAMP)
XPRIM(K+2,1)=XX(K)
XPRIM(K+2,1)=XX(K)
XPRIMB(K+2,1) = 0.
XPRIMB(K+2,1) = 0.
XPRIMB(K+2,1) = 0.
XHHOLE(K)= XX(K)

11 XMHOLE(K)= XX(K)
GO TO 20
                     GO TO 20
       15 IMODE = 3
GO TO 17
16 IMODE = 2
17 CODE = 6HRECTAN
18 NCHAMP = 1
      17 CUDE = GHRECIAN
18 NCHAMP = 1
1F (OUTPOT) 20,7,20
7 WRITE OUTPOT) Z0,7,20
7 WRITE OUTPOT TAPE 6,19,CODE
19 FORMAT (33HOINTEGRATION MODE IS CHANGING TO A6)
20 GO TO (21,26,26),IMODE
21 CALL CONVTI(VX,AMC)
GKZM= SQROK*(BMASS(NCHAMP)+XPRIM(2,1)/1.9866 E+30)
30 CALL CONVTZ
1F ORIGIN TRANSLATION CAUSES PATH TO LIE NEAR AN ASYMPTOTE, CHANGE INTEGRATION VARIABLES TO RECTANGULAR IF THEY ARE ORBIT ELEMENTS.
1F (ORBELS(1)-1.) 24,24,22
22 IF (ABSF(TRU)-2.3/SQRTF(ORBELS(1))) 24,24,23
23 ASYMPT = 1.0
GO TO 15
24 DO 25 J=1,6
25 XPRIM(J+2,1) = ORBELS(J)
26 IF (TRSFER) 27,28,27
27 CALL INPUT (101,C,TABLE)
29 CALL ORDER
        29 CALL ORDER
28 RETURN
                   END
```

```
SUBROUTINE THRUST
THIS ROUTINE COMPUTES X,Y,Z THRUST ACCELERATIONS. THE THRUST VECTOR IS
ASSUMED COINCIDENT WITH THE LONGITUNDINAL AXIS OF THE VEHICLE, WHICH IS
ORIENTED TO THE RELATIVE WIND VELOCITY BY THE ANGLE OF ATTACK (ALPHA) AND
THE ROLL ANGLE (BETA). ALPHA IS ASSUMED TO BE A QUADRATIC FUNCTION OF TIME
WHEREAS BETA IS ASSUMED TO BE CONSTANT.
REVOLV IS THE EARTHS ROTATION RATE IN RADIANS/SEC (7.29211585E-5) AND THE
FACTOR 8589934592.= 2**33 IS REMOVED TO PREVENT OVERFLOW.
                                                                                                                                                                              SUBROUTINE THRUST
000000
C
                  DIMENSION A(600), B(700), C(4000),
1 FORCE(3), PAR(3), VATM(3), P(3), IND(3), RAMC(5), RB(3), X(100)
                     EQUIVALENCE
                                                                      ( 11)),(AEXIT ,B
(1111)),(BETA ,A
( 49)),(EXITA ,B
( 66)),(IND ,A
( 50)),(PRESS ,B
( 391)),(PRESS ,B
( 23)),(RB ,B
( 102)),(RSQRD ,B
( 46)),(SINBET,B
                                                                                                                                                    ( 3)),(ALPHA ,A
( 50)),(COSALF,8
( 392)),(FLOW ,B
( 60)),(PAR ,B
( 33)),(P ,B
( 166)),(RAMC ,B
( 193)),(REVOLV,8
( 45)),(SIMP ,B
( 47)),(VATM ,B
                                                                                                                                                                                                                                              49)),
                                         , C
                                                                                                                                                                                                                                           48)),
5)),
60)),
                   218
                   3(COSBET,B
                   4(FORCE ,8
5(PMAGN ,B
6(PUSHO ,B
                                                                                                                                                                                                                                              8411.
                                                                                                                                                                                                                                          21)),
                   7(RATMOS, B
                   8(R ,B
9(SINALF,B
                                                                                                                                                                                                                                    ( 97))
                      EQUIVALENCE
                                                                                                                                                     ( 101)),(VX
( 94)),(X
                   1(VQ ,B
2(VY ,B
                                                                        ( 100)), (VQSQRD, B
                                                                                                                                                                                                                                    ( 92))
( 401))
                                                                                 93)),(VZ
                                                                                                                                                                                                           , B
               SINBET = SINF(BETA/57.2957795)

COSBET = COSF(BETA/57.2957795)

VATM(1)=VY+REVOLV*RB(2)

VATM(2)=VY-REVOLV*RB(1)

VATM(3)=V2

3 CALL CONVII(VATM.RAMC)
                A LPHA = QUAD(XI(1),1)/57.2957795

SINALF=SINF(ALPHA)

CDSALF=COSF(ALPHA)

DO 1 J1=1,3

J2=IND(J1)
                     J2=IND(J1)
J3=IND(J2)
P(J1) = {vATH(J2)*RAMC(J3)-VATM(J3)*RAMC(J2)}/8589934592.
PMAGN= SQRTF(P(1)*P(1)*P(2)*P(2)*P(3)*P(3))
PUSH = PUSHO-EXITA*PRESS
TDPMAG = PUSH/PMAGN/XI(2)
R4 = SINBET/VQ
R5 = COSALF/RAMC(4)
D0 2 1=1-3
                        DD 2 J1=1,3
J2=IND(J1)
                        J3=[ND(J2]
                JS-1RUJ32)

PAR(J1)=P(J2)*VATM(J3)-P(J3)*VATM(J2)

2 FORCE(J1) = TUPMAG*(SINALF*(COSBET*P(J1)+R4*PAR(J1))-R5*(P(J2)*

1 RAMC(J3)-P(J3)*RAMC(J2)))
                        RETURN
                      SUBROUTINE TUDES
THIS ROUTINE COMPUTES THE RECTANGULAR POSITION AND VELOCITY COMPONENTS
WITH RESPECT TO THE EARTH MEAN EQUINOX AND EQUATOR OF 1950.0 FROM THE
LATITUDE, LONGITUDE, AZIMUTH, ELEVATION, ALTITUDE, TOTAL VELOCITY, AND
TIME. ALSO, WHEN TKICK DOES NOT EQUAL ZERO, A NON-DRAG VERTICAL STEP OF
SIZE TKICK IS MADE IN CLOSED FORM (STATEMENTS 2 TO 4). THE INTEGRATION
WILL THEN BEGIN AT TIME EQUAL TO TIME+TKICK WITH THE ORIENTATION SPECIFIED
BY THE ABOVE FOUR ANGLES AND THE COMPUTED VALUES OF ALTITUDE AND VELOCITY-
FOR THE CLOSED FORM APPRUXIMATION, A CONSTANT FLOW RATE (FLOW), VACUUM
SPECIFIC IMPULSE (SIMP) AND ENGINE EXIT AREA (AEXIT) ARE ASSUMED KNOWN.
THE ATMOSPHERIC PRESSURE IS TAKEN TO BE THE SEA LEVEL VALUE.
  C
                        DIMENSION A(600), B(700), C(4000),
1 SINA(4), COSA(4), ANGLEB(4), XPRIM(200)
                         EQUIVALENCE
                                                                         ( 11)), (AEXIT , B
( 35)), (B , C
( 36)), (FLOW , B
( 33)), (LONG , A
( 40)), (RE , A
( 39)), (SIMP , B
( 41)), (STEPNO, A
                                                                                                                                                        ( 3)), (ALT ,A
(1111)), (DTOFFJ,A
( 5)), (GKZM ,B
( 34)), (OBLATJ,A
( 25)), (RESURD,B
( 2)), (SPD ,A
( 42)), (TKICK ,A
( 37)), (XPRIM ,C
                                                                                                                                                                                                                                               411,
                     1(A ,C
2(AZI ,A
                                                                                                                                                                                                                                               23)),
36)),
26)),
7)),
44)),
15)),
                     3(ELEV .A
4(LAT ,A
5(OBLATN,A
                      6(ROTATE, A
                      71STEPGO.A
                      8(TOFFT ,A
9(OUTPOT,8
                                                                          ( 24)),(VEL
                          EQUIVALENCE (QLAT, LAT), ( QLONG, LONG)
    С
```

```
ALT1 = 0.
                   ALTI = 0.

VELI = VEL

DELI = 0.

DEL = 0.

ASSIGN 1 TO NGO

DAYS = DTOFFJ - 2433282.5

GREEN = MODF(100.0755426+.985647346DAYS+2.9015E-13DAYS*2

1+7.29211585E-5*(TOFFT*SPO+XPRIM(1))*57.2957795,360.)

SINA(1) = SINF(QLAT/57.2957795)

IF (OBLATN) 102,101,102

RADIUS = RE + ALT

GO TO 8
                        GO TO 8
 GO TO 8
102 RADIUS=6356783.28/SQRTF(.9933065783+.006693421685*SINA(1)**2)+ALT
GO TO 8
1 XPRIM(6) = COSA(2)*COSA(1)*RADIUS
XPRIM(7) = SINA(1)*RADIUS
XPRIM(8) = SINA(1)*RADIUS
XPRIM(8) = SINA(1)*RADIUS
XPRIM(8) = XPRIM(2)-FLOW*TKICK
IF (OUTPOT) 12.11,12
11 WRITE OUTPUT TAPE 6,3,STEPGO,STEPNO,LAT,LONG,AZI,ELEV,ALT,XPRIM(
11),VEL,RMASSO,(XPRIM(J),J=6,8)
3 FORMAT(6MOSIEP=F5-,2H +F4*.4%,6H LAT.=1PG15.8,7H LONG.=G15.8,6H AZ
11.=G15.8,7H ELEV.=G15.8,6M ALT.=G15.8/6H TIME=G15.8,6H VEL.=G15.8,
67H RMASS=G15.8,4X,2HX=G15.8,5X,2HY=G15.8,4X,2HZ=G15.8)
12 IF (TKICK) 2,50,2
2 XPRIM(1) = XPRIM(1)+TKICK
81 = LGGF(RMASSO/XPRIM(2))
SIMPSL = SIMP-AEXIT/FLOW*10332.275
VEL1 = VEL*SIMPSL*9.80665*BL*G*FKICK
ALT1 = TKICK*(VEL-G*TKICK/2.+9.80665*SIMPSL*(1.-B1*XPRIM(2)/
1 (RMASSO-XPRIM(2)))
4 RADIUS = RADIUS + ALTI
GREEN = GREEN + 7.29211585E-5*TKICK*57.2957795
ASSIGN 5 TO NGO
GO TO 8
5 XPRIM(6) = COSA(2)*COSA(1)*PADIUS
102 RADIUS=6356783.28/SQRTF(.9933065783+.006693421685*SINA(1)**2)+ALT
                       SO TO 8
                      XPRIM(6) = COSA(2)*COSA(1)*RADIUS
                   XPRIM(7) = SINA(2)*COSA(1)*RADIUS
XPRIM(8) = SINA(1)*RADIUS
IF (OBLATN) 6-7-6
DEL1 = ATANF((C2-1-)/(C3-1-)*SINA(1)/COSA(1))*57.2957795-QLAT
DEL2 = RADIUS/C*SINA(1)*COSA(1)*ROTATE*ROTATE*57.29577951
                    DEL = DEL1 + DEL2

ASSIGN 10 TO NGO

ANGLEB(1) = QLAT + DEL

ANGLEB(2) = QLONG + GREEN

ANGLEB(3) = AZI
                       ANGLEB(4) = FIFV
                    ANGLEB(4) = ELEV

00 9 I=1,4

SINA(1) = SINF(ANGLEB(1)/57.2957795)

COSA(1) = COSF(ANGLEB(1)/57.2957795)

C1 = 5.*RESQRD/RADIUS/RADIUS*OBLATJ

C2 = C1*(SINA(1)*SINA(1)-.6)

C3 = C1*(SINA(1)*SINA(1)-.2)
                  C3 = C1*(SINA(1)*SINA(1)-.2)
G = GK2M/RADIUS/RADIUS
GD TO NGO, (1,5,10)
COS1 = C0SA(1)*SINA(4)-C0SA(4)*COSA(3)*SINA(1)
COS2 = COSA(4)*SINA(3)
XPRIM(3) = VEL1*(COS1*COSA(2)-COS2*SINA(2))-XPRIM(7)*ROTATE
XPRIM(4) = VEL1*(COS1*SINA(2)+COS2*COSA(2))*XPRIM(6)*ROTATE
XPRIM(5) = VEL1*(SINA(1)*SINA(4)+COSA(1)*COSA(3)*COSA(4))
PETIDN

PETIDN
                      RETURN
               SUBROUTINE TAPE

SUBROUTINE TAPE

SUBROUTINE TAPE

SUBROUTINE TAPE USES THE MASTER MERGED EPHEMERIDES TAPE (TAPE 9 AT LEWIS)
TO COMPILE A WORKING EPHEMERIS TAPE (TAPE 3 AT LEWIS) WHICH CONTAINS ONLY
THAT DATA NEEDED AT EXECUTION TIME. THIS MINIMIZES TAPE HANDLING DURING
EXECUTION. 2 EPHEMERIS FILES ARE ON TAPE 9, FIRST FILE HAS DATA AND IS
IDENTIFIED BY THE SECOND WORD OF EACH 254 WORD RECORD (FIRST WORD IS THE
DUMMY FORTRAN COMPATIBLE WORD, SECOND WORD=2). THE SECOND FILE IS ONLY 2
WORDS LONG, FIRST WORD IS FORTRAN COMPATIBLE, SECOND WORD=3).

MASTER FILE 1 — PLANETS (EXCEPT MERCURY AND EARTH), SUN, MOON, AND
EARTH-MOON BARYCENTER FROM SEPT.25, 1960 TO ABOUT 2000.

EACH EPHEMEMIS COMPILED REQUIRES A SET OF INPUT 300 DATA. THE FIRST PIECE
OF DATA WRITTEN ON A FILE IS THE FILE IDENTIFICATION NUMBER, FILE. EACH
FILE IS NUMBERED CONSECUTIVELY STARTING WITH FILE=1. SINCE MOUN DATA IS IN
TERMS OF EARTH RADII, THE CONVERSION OF MOON DATA TO A.U. IS MADE BEFORE
WRITING ON TAPE 3. THE COMMON USED IN SUBROUTINE TAPE IS LOCAL AND ALL
BUT TAPE3 IS CLEARED BY A FINAL CLEARING LOOP.
FUNCTION COMPARE(A,B) IS EQUIVALENT TO (A-B) BUT WILL NOT OVERFLOW.
NORMAL INPUT — ELIST, TBEGIN, TEND, TAPE3
                                                                                                                                                                                                                                                                                                    SUBROUTINE TAPE
                ELIST—
THE BCD LIST OF EPHEMERIS DATA NAMES TO BE PLACED ON TAPE 3. THE NAMES ARE READ FROM CARDS, AND IS USED TO MAKE THE TMAKE LIST. ELIST IS NOT CHANGED IN STORAGE UNTIL THE FINAL CLEAR FOR THIS SUBROUTINE.

TMAKE—
THE LIST OF EPHEMERIS NAMES WITH DUPLICATES DROPPED AND ZERO SPACES CLOSED IN. AS THE EPHEMERIDES ARE FINISHED THE NAMES ARE ERRASED FROM THIS LIST.

LIKE TMAKE BUT IS HELD FOR OUTPUT.
THE BEGINNING DATE EXPRESSED AS A JULIAN DAY.
ENDING DATE EXPRESSED AS A JULIAN DAY.
THE APPROX. NUMBER OF DAYS COVERED BY ONE SET OF COEFF. IT IS USED TO DECIDE WHICH DATA ARE TO BE ENTERED DOUBLE. THE DOUBLE ENTRIES PERMIT FASTER OPERATION IF REVERSAL OF INTEGRATION IS REQUIRED FOR ANY REASON.

EDATE—
EDATE—
EARTH RADII PER A.U.
                   ERTOAU- EARTH RADII PER A.U.
                   COMMON
                                                                          С
```

```
DIMENSION
                            C (700),
EDATE (12),
ELIST (11),
PNAME (30),
                                                                                    TMAKE (12),
INTVAL (30),
TMADE (12),
TDATUM (252),
                                                                                                                                                 LIST (30),
KTAG (12),
INTVA (2),
                                                                                                                                                DATUMT (21,12)
C
               T( TAPE3,C( 2)),(ERTOAU,C( 3)),( KTAG,C( 4)),( FILE,C( 16)),
2( ELIST,C( 17)),(TBEGIN,C( 29)),( TEND,C( 30)),( PNAME,C( 31)),
3( KHAMP,C( 61)),( TMADE,C( 73)),( TMAKE,C( 85)),(TDATUM,C(441)),
4( EDATE,C(127)),(INTVAL,C(157)),( INTVA,C(156)),(DATUMT,C(189))
                  COMPARF(A,B) = {A+B}*{-{A*B}}
            REWIND 3
DD 1 K=1,4000
1 C(K) = 0.0
                 THE FOLLOWING NH STATEMENTS LOAD THE BODY NAMES INTO THE MACHINE.
NOTE. THE EARTH IS NOT IN THIS LIST (NO EPHEMERIS FOR EARTH.)
PNAME(1) = 3HSUN
PNAME(2) = 6HMERCUR
PNAME(3) = 5HVENUS
PNAME(4) = 4HMARS
PNAME(4) = 6HMPATS
PNAME(6) = 6HSATURN
PNAME(6) = 6HURANUS
PNAME(7) = 6HURANUS
PNAME(7) = 6HURANUS
PNAME(8) = 6HWEPTUN
                  PNAME(8) = 6HNEPTUN
PNAME(9) = 5HPLUTU
PNAME(10)= 4HMOON
PNAME(11)= 6HEARTHM
                  PART 2. SET UP JULIAN DATES ENDING EACH EPHEMERIS.

EDATE(1) = 2451872.5

EDATE(3) = 2451848.5

EDATE(4) = 2451020.5

EDATE(5) = 2473520.5

EDATE(6) = 2473520.5

EDATE(6) = 2473520.5

EDATE(8) = 2473520.5

EDATE(8) = 2473520.5

EDATE(1) = 2473520.5

EDATE(1) = 2470520.5

EDATE(1) = 2470520.5
 C
                                                                                                                                                                                                                    11/24/00
                                                                                                                                                                                                                    10/31/00
                                                                                                                                                                                                                       7/26/98
                                                                                                                                                                                                                              2060
                                                                                                                                                                                                                                2060
                                                                                                                                                                                                                              2060
                                                                                                                                                                                                                              2060
                  EDATE(10) = 2440916.5

EDATE(11) = 2451848.5

INTVA = 30000

INTVAL(1) = 8

INTVAL(2) = 5

INTVAL(3) = 15

INTVAL(4) = 44

INTVAL(5) = 330

INTVAL(6) = 825

INTVAL(7) = 1211

INTVAL(8) = 1172

INTVAL(9) = 1101

INTVAL(10) = 2

INTVAL(11) = 15
                                                                                                                                                                                                                    10/31/00
                    INTVAL(11) = 15
             FILE = 1.
ERTDAU = 4.26546512 E-5
2 MOON = 0
                   PART 28. CALL INPUT AND SEE IF TAPE IS TO BE MADE. INPUT MUST ALWAYS
MAKE TAPE3=0.0 IF TAPE IS TO BE MADE.
          MAKE TAPE3=0.(
TAPE3 = 3.
8 CALL INPUT(300,C,LIST)
IF (TAPE3) 63,3,63
3 IF (FILE-1.) 20,10,20
10 CALL SKFILE(9,2)
  C
          PART 3. TAPE IS TO BE MADE SO MOVE EPHEMERIS LIST TO TMAKE AND TO TMADE (FOR OUTPUT), CANCEL ANY ZERO OR DUPLICATE NAMES. 20 KOUNT = 1 DO 6 K=1,11
             UU 6 K=1,11
TMAKE(K) = 0.
TMADE(K) = 0.
4 DO 5 J=1,KOUNT
1F (COMPARF(ELIST(K),TMAKE(J-1))) 5,6,5
5 CONTINUE
                    TMAKE(KOUNT) = ELIST(K)
TMADE(KOUNT) = ELIST(K)
                    KOUNT = KOUNT+1
             6 CONTINUE
KOUNT = KOUNT - 1
          PART 4. FINU INPUT ERRORS.
7 IF(TBEGIN-2437202.5) 66,9,9
9 KM = 2
11 ERROR = 0.
WRITE TAPE 3.FILE
DO 21 J=1,KOUNT
KTAG(J) = 0
12 DO 13 K=1,20
IF (COMPARF(PNAME(K),TMAKE(J))) 13,16,13
           PART 5. PRINTS OUT THE MISSPELLED NAMES AND OTHER ERRORS.

14 PRINT 15, TMAKE(J), TBEGIN, TEND
WRITE OUTPUT TAPE 6 , 15, TMAKE(J), TBEGIN, TEND,(PNAME(K),
  Ç
                 lEDATE(K), K=1,20)
5 FORMAT( 23H TROUBLE ON TAPE 3 MAKE / 2X,A6,10H T BEGIN= F10.1,8H
1 T END= F10.1//2(2X,A6,F20.1))
                     ERROR = 1.
GO TO 21
   С
```

```
PART 48. CHECKS DATES AND STORES INDEX FOR MOON SO THAT EARTH RADII CAN BE CONVENTED TO A-U. 16 IF (10-K) 18,17,18
           17 MOON = J
18 KTAG(J) = K
19 IF (EDATE(K)- TEND) 14,21,21
           21 CONTINUE
ASSIGN 36 TO NS1
IF (ERROR) 22,22,68
         PART 6. FIX UP A TAG (KTAG) TO INDICATE WHETHER TO ENTER DATA DOUBLE OR
NOT. KHAMP WILL BE SHORTEST INTERVAL. KTAG WILL BE NON-ZERO IF
ANY DATA ENTERS MORE THAN ONCE FOR 10 ENTRIES OF THE MOST
FREQUENT DATA.

22 KHAMP = INTVAL(0)
DO 23 J=1;KOUNT
K = KTAG(J)
KHAMP = XMINOF(KHAMP,INTVAL(K))

23 CONTINUE
KHAMP = KHAMP *10
DO 24 J=1;KOUNT
K = KTAG(J)

24 KTAG(J) = INTVAL(K) / KHAMP
          PART 7. LUCATE FILE 2 ON TAPE 9.
25 READ TAPE 9, KFILE
26 IF (KM-KFILE) 27,31,29
27 IF (KFILE - 3) 28,28,29
28 BACKSPACE 9
BACKSPACE 9
CALL BSFILE(9)
GD TO 25
BY PASS A FILE.
29 CALL SKFILE(9)
GD TO 25
           PART 8. THIS IS CORRECT FILE ON TAPE 9, READ DATA. THERE CAN BE UP TO 12 SETS OF DATA PER RECORD. A SET OF DATA IS 21 WORDS.

31 BACKSPACE 9
32 READ TAPE 9, KTAPE,(TDATUM(I), I=1,252)
Č.
                       GO TO NS1, (36,46)
                     PART 9. IS THIS A SATISFACTORY STARTING POINT, QUESTION MARK. THE 1ST SET OF DATA FOR EACH PLANET MUST PRE DATE TBEGIN.
PART 9 IS EXECUTED ONLY ONCE.
DO 42 J=LI,KOUNT
DO 37 K=1,232,21
IF (COMPARF(TDATUM(K),TMAKE(J))) 37,39,37
                     CONTINUE
                      LI = J
BACKSPACE 9
           BACKSPACE 9
BACKSPACE 9
GO TO 32
39 IF (TDATUM(K+1)-TDATUM(K+2)-TBEGIN) 40,40,38
40 DO 41 KJ=1,21
K1 = K + KJ - 1
41 DATUM(KJ,J) = TDATUM(K1)
            42 CONTINUE
           42 CUNI INUE
IF (MOON) 43,45,43
43 00 44 KJ=4,21
44 DATUMT(KJ,MOON) = DATUMT(KJ,MOON)*ERTOAU
45 ASSIGN 46 TO NSI
0000000
                     PART 10. PUT AWAY NEEDED DATA. TEST NAME, TIME OF BEGIN AND END. DO NOT WRITE TAPE 3 UNTIL TBEGIN PREDATES THE END OF THE FITTED INTERVAL. 50 REPEATS OLD DATA, 57 NRITES NEW DATA. THE NAMES ARE ERASED FROM TMAKE AS SOON AS THE DATA POST DATES TEND. WHEN ALL NAMES ARE GONE, RETURN TO INPUT 300 TO SEE IF ANOTHER EPHEMERIS IS TO BE CONSTRUCTED.
           46 DO 65 K=1,232,21
DO 47 J=1,KOUNT
IF (COMPARF(TDATUM(K),TMAKE(J))) 47,48,47
         DO 47 J=1,KOUNT
IF (COMPARF(TOATUM(K),TMAKE(J))) 47,48,47
47 CONTINUE
GO TO 65
48 SNT = IBEGIN-TDATUM(K+1)-TDATUM(K+2)
IF (SWI) 49,49,52
49 IF(KTAG(J)) 50,52,50
50 MRITE TAPE 3,(DATUMT(KJ,J), KJ=1,21)
52 DO 53 KJ=1,21
K1 = K + KJ
53 DATUMT(KJ,J) = TDATUM(K1-1)
IF (J-MOON) 56,54,56
54 DO 55 KJ = 4,21
55 DATUMT(KJ,J) = DATUMT(KJ,J)*ERTOAU
56 IF (SWI) 57,57,58
57 WRITE TAPE 3,(DATUMT(KJ,J),KJ=1,21)
58 IF(TEND-DATUMT(Z,J)-DATUMT(3,J)) 59,59,65
59 IMAKE(J) = 0.
DO 60 KK=1,KOUNT
IF (TMAKE(KK)) 65,66,65
60 CONTINUE
WRITE OUTPUL TAPE 6, 61, FILE,TBEGIN,TEND, KOUNT,(TMADE(KK),
IKK=1,KOUNT)
          MKTIE UOUPO TAPE 0, 01, FILE; DEGIN, TEND, ROUNT, (THADELKNY)

1KK-I, KOUNT)

61 FORMAT(28HOEPHEMERIS COMPLETED, FILE=F3.,6H, FROM F10.1,3H TO

1 F10.1, 4H FOR 12, 18H BODIES AS FOLLOWS / 12(2X,A6))

FILE = FILE + 1.

END FILE 3

GO TO 2

63 MRITE TAPE 3, FILE
           63 WRITE JAPE 3, 1
REWIND 3
REWIND 9
TAPE3 = 3.
DO 64 J=3,4000
64 C(J) = 0.
RETURN
```

```
65 CONTINUE
                                     65 CUNITINGE
GO TO 32
66 PRINT 67, TBEGIN
WRITE OUTPUT TAPE 6,67,TBEGIN
67 FORMAT(33H TBEGIN PREDATES 2437202.5,IT IS Fl0.1)
68 CONTINUE
                                                                     REWIND 9
                                                                         REM BSFILE(1,J) BACKSPACES TAPE I UNTIL IT IS POSITIONED JUST REM BEHIND THE J TH EOF MARK. REM
                                                                         REM
ENTRY BSFILE
PZE
PZE
PZE
   CAL 2,4
ANA =0777777700000
ERA =0007400000000
TNZ ONEARG
                                                                       CLA* 2,4
TZE BACK
PDX ,1
AKC *+1,
KEC* $(TC
BTTA **
TRA *+1
BSFA **
KEC* $(MX
KEC* $(M
                                                                                                                                  1

*+1,4

$(TCO)

**

*+1

*(RDS)

$(BSR)

*+1,4

$(TCO)
       BTT1
       BSF
     BTT2
                                                                                                                                    *+1,4
$(TCO)
*+1,4
$(TRC)
       BACK
                                                                                                                                        *+1,4
$(TEF)
XEC* $(TEF)
NOP
LXO BSFILE-4,1
LXD BSFILE-2,4
TRA 3,4
TXL BACK,1,1
LXD BSFILE-2,4
CLA ERR+1
STO 0
CLA* 1,4
LOO* 2,4
ERR TSX B,4
TXI BACK,0,14
PZE BSFILE-2,0,ERR
GNEARG CLA BSFILE-2
LXD CHECK,1
TRA BTT1-2
A07000 CCT 7000
END
                                                                           END
```

```
REM SKFILE(I,J) SKIPS TAPE I OVER J EOF MARKS.
          REM
ENTRY
                      SKFILE
          PZE
           PZE
                       *-3,1
*-3,2
*-3,4
SKFILE
          SXD
           SXD
                                               CHECK LAST READ
                       $(RER).4
           TSX
           TEFA
           TEFB
           LXD
                       SKFILE-1,4
                                              PICK UP THE TPE NUMBER
SET UP THE TAPE ADDRESSES
LOAD IT AGAIN--MAN
IS THERE A SECOND ARGUMENT
                       1,4
$(105),4
           TSX
          LXD
                       SKFILE-1.4
                       2,4
=0777777700000
           ANA
                       =0007400000000
DNEARG
                                               NO SECOND ARGUMENT
           TNZ
GOGO
                       2,4
BUMP+1
                                              PICK UP THE SECOND ARGUMENT
DID SOME DUMMY WANT NO FILES
           T7F
           SUB
XEC*
                       =D1000000
$(RDS)
LOOP
RDS
                                              READ THE TAPE
           TCOA
                                              DID WE HIT
AN END OF FILE
GO READ SOME MORE
           TEFA
                       BUMP
           TEFB
TRA
                       BUMP
RDS
                       LOOP
SKFILE-3,1
          TNZ
RUMP
          LXD
                       SKFILE-2.2
           L XD
NDP
                       SKFILE-1,4
           TRCA
                       *+1
                                               TURN OFF TAPE CHECK
           TRCB
                       *+1
                       3,4
SKFILE-1
=01000000
SKFILE-1
          TRA
CLA
ONEARG
                                               SET UP XR4 FOR PROPER RETURN
           ADD
           STO
                                               SET UP FOR ONE FILE
           PXD
                       0..0
           TRA
                       RDS
          END
          COUNT
                                                                                                                    00020
                      1200
          REM INPUT ROUTINE USING ARITHMETIC STATEMENTS. CF NASA TN D-1092
LBL INPUT,6
ENTRY INPUT
                                                                                                                    00030
                                                                                                                    00040
                                                                                                                    00050
          ENTRY INPUT
REM THIS IS SUBROUTINE INPUT. ITS CALLING SEQUENCE
REM CONTAINS THREE ARGUMENTS---AN IDENTIFICATION
REM CODE NUMBER, THE FIRST LOCATION RELATIVE TO WHICH
REM ALL DATA IS TO BE LOADED, AND THE FIRST LOCATION
REM OF A TABLE TO BE USED BY THE ROUTINE.
                                                                                                                    00060
00070
                                                                                                                    00080
                                                                                                                    00100
          REM
                                                                                                                    00110
                                                                                                                    00120
          REM
                 INCLUDED IN THIS ASSEMBLY ARE SUBROUTINES
1 INPUT
2 CHRCTR
                                                                                                                    00130
00140
          REM
          REM
                                                                                                                    00150
                          CLEAR
          REM
REM
REM
                          COMPAR
                                                                                                                    00170
                          ERROR
                                                                                                                    00180
                                                                                                                    00190
                          LOOK
                          NAME
NUMBR
                                                                                                                    00200
                                                                                                                    00210
          REM
                     8
          REM
                          STORE
                                                                                                                    00220
                    10
          REM
REM
REM
                          TEST
ACCUM, FIX, FLT, BINARY
PRINX
                                                                                                                    00240
                                                                                                                    00250
00260
                   13
          REM
                          READ.
                                                                                                                    00270
                                             LEWIS INPUT TAPE NOT STD.
FORTRAN STANDARD OUTPUT TAPE
STORAGE FOR IRA
INTAPE PZE
OUTAPE PZE
                       0,,7
                       0,,6
                                                                                                                    00290
 INDX
          PZE
                                                      IRB
                                                                                                                    00300
                                                                                                                    00310
          PZE
          BCI
                       1. INPUT
                                                                                                                    00320
                                             SAVE INDEX REGISTER A.
SAVE INDEX REGISTER B.
SAVE INDEX REGISTER C.
IF THE IDENTIFICATION NUMBER IS Z
INPUT
                       INDX,1
INDX+1,2
                                                                                                                     00330
          $XD
                                                                                                                    00340
          SYD
          SXD
                       INDX+2,4
                                                                                                                    00350
                       1.4
4,4
=1835
                                                                                                                    00360
          N-Z T w
                                             RETURN TO THE CALLING PROGRAM.
                                                                                                                    00370
                                                                                                                     00380
          CLA
          ADD
STA
STA
                       2,4
SET
                                             2.4 IS THE BASE LOCATION.
                                                                                                                    00390
                                                                                                                    00400
                       1001
                                                                                                                    00410
                       LOC4
TSXBS
                                                                                                                    00420
00430
                                             OPEN BACKSPACE GATE
          CLA
          STO*
                                             CALL CHAIN WILL BACKSPACE
1,4 IS THE IDENTIFICATION NUMBER.
                                                                                                                    00440
00450
                       $(LINK)
                       1,4
NREG1
                                                                                                                    00460
                      36,1
I+1,1
*-1,1,1
ILOC1
                                             INITIALIZE 36
                                                                                                                    00470
                                            LOCATIONS
TO ZERO.
MAKE NON'ZERO.
3,4 IS THE LOCATION OF THE TABLE.
PREPARE
                                                                                                                    00480
          STZ
          TIX
                                                                                                                    00490
          CLA
                       3,4
LOCFC
                                                                                                                    00510
                                                                                                                    00520
                                                                                                                    00530
          STA
                       NREGI-1
                      =1835
LOCFA
          ADD
                                                                                                                    00540
                                               ARGUMENT STORAGES
                                                                                                                    00550
          STA
          STA
                       LUCKE
                                                                                                                    00560
                                             CLEAR THE VAR REGION.
                       CLEAR,4
```

```
LOCA1 CLA
                            =0076100000000 INHIBIT READING UNTIL
                                                                                                                                          00580
                           READ. ARRAY RECORD REFRESHED
43,2 43 FORCES RECORD TO BE FILLED
             SŦO
                                                                                                                                          00590
             AXT
SXD 1.2 IN CHRCTR
REM LOOK AT THE FIRST CHARACTER ON THE FIRST CARD
REM IN SEARCH OF A $ SIGN.
LOCAA TSX CHRCTR.4
SUB =H0000$0 CHECK FOR A $ SIGN
                                                                                                                                          00610
                                                                                                                                          00630
                                                                                                                                          00640
                                                                                                                                          00650
 LOCA. STO
                            WORD
                                                                                                                                          00660
             TSX
                            COMPAR, 4
242517630000
                           242517630000 D, E, FILE FLAG, T
NREG1,4 ZERO IF $D HAS BEEN READ.
*+2,4,0
                                                                                                                                          00680
             LXA
                                                                                                                                          00700
                           *+1,2,4
ERRU,2,7
                            *+1,2,4 BEFORE $D ADD 4 TO INDEX 2.
ERRU,2,7 JUNK
SGNOUT,2,6 $17 BEFORE $D. FILE FLAG. OFF
                                                     BEFORE $D ADD 4 TO INDEX 2.
             TXI
                                                                                                                                          00720
              TXH
                                                                                                                                          00730
                            *+3,2,5
READ.+1,4
                                                     SE BEFORE SD
CRASH READ GATE
              T X I
                                                                                                                                          00750
             TRA
                            LOCAL
                                                     SHOULD NOW HAVE SO CARD
                           LOCAL SHOULD NOW HAVE SO CARD LOCAD, 2,4 FIRST $D. LOCAD, 2,3 $T AFTER $D. LOCK, 2,2 $17 AFTER $D. FILE FLAG LOCBG, 2,1 $E AFTER $D.
                                                                                                                                          00770
              TXH
                                                                                                                                          00780
              TXH
                                                                                                                                          00790
              TXH
                                                                                                                                          00800
             REM
            REM
LXA READ.,4 $D AFTER $D. TEST IF BUFFER
TXL ERRU,4,0 OVERWRITTEN
REM THIS IS THE PROGRAM RETURN.
                                                                                                                                          00810
            TXL ERRU,4.0 SD AFTER $D. TEST IF BUFFER OVERWRITTEN OVERWRITTEN REM THIS IS THE PROGRAM RETURN.

LXD INDX,1 RESET INDEX A.

LXD INDX+1,2 RESET INDEX C.

TRA 4,4 RESET INDEX C.

TRA 4,4 RESET INDEX C.

TRA 4,4 RESET INDEX C.

TRA 4,5 RETURN TO CALLING PROGRAM.

REM HUNT FOR THE = SIGN OF THE $ DATA CARD.

CLA =00761000000000 INHIBIT READING UNTIL

STO READ. $DATA FIELD SCANNED

TSX CHRCTR,4

TSX COMPAR.4
LOCAC
                                                                                                                                          00820
                                                                                                                                          00840
RTN
                                                                                                                                          00850
00860
                                                                                                                                          00870
                                                                                                                                          00890
 LOCAD CLA
                                                                                                                                          00910
                                                                                                                                          00920
             TSX
BCI
                           COMPAR,4
1,=00000
                                                                                                                                          00930
                                                                                                                                          00940
                           *+5,2,2
ERRD
             TRA
                                      JUNK
ALPHABETIC
NUMERIC
= SIGN
                                                                                                                                          00960
                           LOCAD
             TRA
                                                                                                                                          00970
                           ERRD
                                                                                                                                          00980
             SXD
                            ALF.4
                                                                                                                                          00990
             REM USE ALF MODE TO TEST ALL CHARACTERS.
                                                                                                                                          01000
            REM COMES HERE WHEN = SIGN HAS BEEN FOUND. GET THE REM IDENTIFICATION NUMBER FROM THE CARD.
                                                                                                                                          01010
                                                                                                                                          01030
  LOCAF
            LXD
                       I,4
*+2,4,43
                                                                                                                                          01040
             TXH
                                                                                                                                          01050
                           LOCAG,4,42 CARD SCANNED OUT.
CHRCTR,4
COMPAR,4
                                                                                                                                          01060
             TSX
                                                                                                                                          01080
             BCI
                           1,,$+- 0
                                                                                                                                          01090
                                                                                                                                          01100
                           ERRM
                                                    JUNK
                                                     JUNK
ALPHABETIC
FORM BIN WD IN VAR
             TRA
                                                                                                                                          01110
           TEX BINARY,4 FORM BIN WD IN VAR

TRA LOCAF BLANK
SXD ERSW.2 MINUS SET TO BY PASS.

TRA LOCAF PLUS NO EFFECT.

STO SIGN DULLARS
REM COMES HERE TO CHECK THE REGION CODE AND THE
REM VALUE APPEARING ON THE $DATA CARD.

CLA VAR COMMA

TZE ERRU DATA SET NO. MISSING

ALS 18

STO ** SAVE IDENT AT TABLE(1),

SUB ** PLACE FIRST ARG IN THIS ADDRESS.

TNZ RTN 01 FCALL CODE = $DATA CODE

STZ ALF 0 MEANS NO ALF INFO.

SXA NREGI,0 INDICATE $DATA IS READ.

REM INST. BELOW ALSO EXECUTED AT READ., PLACED THERE BY CHRCTR

TSX READ.+1,4

END TESTUK,0

TRA LOCAN

DEM
                           ERRM
BINARY,4
                                                                                                                                          01120
 LOCAE TEX
                                                                                                                                          01130
                                                                                                                                          01140
                                                                                                                                          01150
                                                                                                                                          01170
                                                                                                                                          01180
                                                                                                                                          01190
LOCAG
                                                                                                                                          01200
                                                                                                                                          01220
NREG1
                                                                                                                                          01240
                                                                                                                                          01250
                                                                                                                                          01260
                                                                                                                                          01270
  TSXRD TSX
                                                                                                                                          01290
            SXD
TRA
                                                                                                                                          01310
             REM
                                                                                                                                          01320
             REM COMES HERE IF IT WAS A $ TABLE CARD.
                                                                                                                                          01330
LOCAJ
             TSX
                          TABLE.4
                                                                                                                                          01340
             TRA
                          LOCAN3
                                                                                                                                          01360
             REM COMES HERE IF AN ALPHABETIC CHARACTER WAS FOUND.
                           NAME,4
SET-1
LOCAK
                                                                                                                                          01380
                                         ZERD MEANS ON LEFT OF = $1GN.
                                                                                                                                          01390
01400
01410
             TNZ
                           SE1-1
JK1,1
ERRL,1,**
TESTJK,2
                                                    IF JK1 DIDNOT INCREASE THEN
AN = SIGN WAS NOT USED.
SAVE JK1 FOR NEXT TEST.
SAVE SIGN OF TABLE ENTRY.
            1 XD
            SXD
             CLA
                            ILOC
ILOCI
                                                                                                                                          01430
                                                                                                                                          01440
             TRA
                            LOCAN2
             REM
                                                                                                                                          01460
01470
                                         PREPARE TO ACCUMULATE THE NUMBERS IN THE PSEUDO ACCUMULATOR.
             LXD
                            JK,2
SET
             CLA
                            **,2
TEMP
                                                                                                                                          01480
            STO
CLA
                            ILUC
                                                                                                                                          01500
                                         MINUS MEANS FLOAT THE NUMBER.
             TPL
                           LOCAM
             TSX
                                                                                                                                          01520
                           LOCAM
             TRA
                                                                                                                                          01530
             REM
REM COMES HERE IF NUMERIC FIELD.
                                                                                                                                          01550
LOCAL
            TSX
                          NUMBER,4
TEMP
                                                                                                                                          01570
```

```
ACCUM,4
CLEAR,4
WORD,4
 1 OCAM
           TSX
                                                ACCUMULATE RESULTS IN ACC.
                                                                                                                          01590
            1 X A
                                                                                                                          01600
                         0,4
LOCAR,4,58
                                                         + WORD IN ACC FOR LOCAR
                                                                                                                          01610
            TXL
                                                NOT COMMA
                                                NOT COMMA
                         LOCAR,4,59
                                                                                                                         01630
01640
01650
            LXD
                          JK1.2
            CLA
                         ACC.
                         ACC
                                                INITIALIZE
                                                                                                                         01660
01670
            L DQ
TQP
                         ILOC1
                                                IS THIS VARIABLE FIXED POINT. NEGATIVE IS FIXED POINT.
                         LOC1
FIX,4
                                                                                                                         01680
             TSX
                                                                                                                         01690
01700
                         **,2
JK1,2
 LOC1
                                                STORE THE NUMBER RELATIVE TO BASE.
LOCAN LXD
                                                                                                                         01710
                         *+1,2,1
JK1,2
OPER,1
                                               RAISE STORING INDEX BY ONE. SAVE IT.
ANY OPERATORS LEFT OVER.
 LOCAN2 SXD
LOCAN3 LXD
                                                                                                                         01730
                                                                                                                         01740
01750
                         *+3,1,0
ERROR,4
 ERRL
            TSX
                                                                                                                         01760
            BCI
                         1.0(L)
                                               ANY DATA LEFT OVER.
                                                                                                                         01780
            TNZ
                         FRRI
                                                                                                                         01800
            REM CALL THIS THE SWITCH HOUSE.
                                                                                                                         01810
FOCAD
FOCAD
                         CLEAR,4
CHRCTR,4
                                                                                                                         01820
                                                                                                                         01830
01840
01850
            TSX
                         COMPAR,4
1,.(0000
++6,2,2
 LOCAQ
            BCI
                                                                                                                         01860
            TRA
                         LOCAR
                                               $D, $T, OR OPERATORS.
ALPHABETIC
                                                                                                                         01870
                         LOCAK
                                                                                                                         01880
           TRA LOCAK ALPHABETIC
TRA LOCAT ( SIGN
TRA LOCAT ( SIGN
TRA LOCAL DECIMAL
LXD OPER,1 ANY OPERATORS LEFT OVER.
TXH ERL,1,0 HIGH MEANS ALREADY HAS OPERATOR.
SUB =H0000$0 SPLIT OFF $ FROM OTHERS
TPL LOCA. IF + PROCESS $ TYPE CH
REM WHAT KIND OF OPERATOR IS THIS.
TXY COMPAP.4
                                                                                                                         01890
01900
                                                                                                                         01910
01920
 LOCAR
                                                                                                                         01930
01940
                                                                                                                         01950
                                                                                                                         01960
                         COMPAR,4
                                                                                                                         01970
                        1,+-/*,0
ERRL,2,5
LOCAN,2,4
            BCI
                                                                                                                         01980
            TXH
                                               REMOVE THE JUNK.
                                                                                                                         01990
            TXH
                                               COMMA
SAVE REST, WILL BRANCH IN SUB ACCU
AFTER BOTH OPERANDS HAVE BEEN FOUN
                                                                                                                         02000
02010
                        OPER,2
LOCAP
            CX2
                                                                                                                         02020
           REM COMES HERE IF THE OCT OR ALF MODE.
TSX CHRCTR.4
                                                                                                                         02030
                                                                                                                         02040
LOCAT
                        CHRCTR,4
COMPAR,4
1,10A000
*+5,2
ERRL
                                                                                                                         02050
            TSX
BCI
                                                                                                                         02060
                                                                                                                         02070
            TRA
                                                                                                                         02080
                                               JUNK
                                                                                                                         02090
                                               A CHARACTER
O CHARACTER
            TRA
                        L DCA7
                        LOCAU
                                                                                                                         02110
                                                                                                                        02120
02130
02140
            REM
           REM COMES HERE IF EMPTY PARENTHESIS WERE FOUND.
TSX CHRCTR,4 )SIGN, GET NEXT CHARACTER.
TQP ++2 MINUS FOR NEW CARD
TSX TEST,4 INSERT COMMA IF NEEDED.
                                                                                                                         02160
            CLA
                         ILOCI
                                              PREPARE TO GET VALUE OF CURRENT LEFT SIDE.
            STO
                         ILOC
                                                                                                                         02180
            LXD
                         JK1,2
                                                                                                                        02190
            TRA
                         SET
            REM COMES HERE IF OCTAL MODE.
                                                                                                                        02210
LOCAU
           TSX
                        CHRCTR, 4
=H00000)
                                                                                                                         02220
                                                                                                                        02230
            TNZ
                        LOCAU
                                                                                                                         02240
                        LOCAW
VAR
                                              ) SIGN
                                                                                                                        02250
  LOCAV
           LDQ
                                                                                                                        02260
                                              REPLACE TOP 3 BITS
BY NEXT OCTAL CHARACTER
PUT IN BOTTOM OF MQ
           ROL
                        3
                                                                                                                        02280
           ROL
                                                                                                                        02290
                        VAR
           REM COMES HERE WHEN ) IS FOUND.
TSX CHRCTR,4
TQP *+2 MINUS FOR
TSX TEST,4
                                                                                                                        02310
02320
LOCAM
                                              MINUS FOR NEW CARD
                                                                                                                        02330
                       WORD,4
LOCAV,4,7
ERRJ,4,58
ERRJ,4,59
                                               CHARACTER TO IRC
                                                                                                                        02350
                                              OCTAL DIGITS
ALPHABETIC, JUNK, 8, 9.
SPLITS (
           TXL
                                                                                                                        02360
                                                                                                                        02370
           TXH
                                                                                                                        02380
           LXD
                        JK1,2
VAR
LOCAX
                                               COMMA
                                                                                                                        02390
                                                                                                                        02400
                       CONVERT THE NUMBER TO BINARY.
                        LOCI
           TRA
                                                                                                                        02410
           REM
TSX
                                                                                                                        02420
LOCAY
                                                                                                                        02430
           REM
           REM COMES HERE IF ALF MODE.
                                                                                                                        02450
                       CHRCTR,4
COMPAR,4
1,100000
*+5,2,2
ERRK
LOCAZ
           TSX
                                                                                                                        02460
           TSX
BCI
                                                                                                                        02470
                                                                                                                        02480
02490
           TRA
                                              JUNK
                                                                                                                        02500
                       LOCAZ
           TRA
                                              ALPHABETIC
                                                                                                                        02510
                                                                                                                        02520
           REM COMES HERE WHEN ) IS FOUND
                                                                                                                        02530
```

```
FOCRY FXV
                               VAR,1
ERRK,1,0
                                                             ) SIGN
                                                            ALF COUNT WAS ZERO.
               TNX
                                                                                                                                                             02550
              SXD
                               ALF,1
CLEAR,4
                                                                                                                                                             02560
                                                                                                                                                             02570
                                                            PULL THROUGH CHARACTERS AND STORE
FILE FLAG, NEVER NEG.
COUNT MENT PAST E O JOB.
THEM ONE AT A TIME.
GO BACK TILL NCHAR = 1
                               CHRCTR,4
                                                                                                                                                             02580
                               =017
ERRB
              SUB
                                                                                                                                                             02590
               TŽE
                                                                                                                                                             02600
                               STORE,4
               TSX
                                                                                                                                                             02610
                               *-4,1,1
J,1
MSHIFT,4
               TIX
                                                                                                                                                             02620
               LXD
               T XD
                                                                                                                                                             02640
                               BLANK
               LGR
                               42,4
                                                                                                                                                             02660
               ORS
                               VAR+1,1
                                                            FILL IN PARTIAL WORD WITH BLANKS. IRC TO 1
  LOCBB AXT
                               1,4
JK1,2
                                                                                                                                                             02680
               LXD
                                                                                                                                                             02690
                                                            PREPARE TO STORE ALF WDS
                                                                                                                                                             02700
                               J
LOCBC1
               SID
                                                                                                                                                             02710
  LOCBC SXD
                               JK1,2
VAR+1,4
              CLA
                                                                                                                                                              02730
LOC4
              STO
                               **,2
*+1,4,1
                                                                                                                                                             02740
                                                            J = J + 1
                                                                                                                                                              02750
LOCBC1 TXH
                               10680.4.**
                                                                                                                                                             02760
                                                           JK=JK+1
                               LOCBC,2,1
                                                                                                                                                              02770
LOCBD STZ
                               ALF
CLEAR, 4
CHRCTR, 4
                                                                                                                                                              02780
               TSX
                                                            LUOK AT NEXT CHARACTER.
MINUS FOR NEW CARD
PUT IN COMMA IF NEEDED.
                                                                                                                                                              02800
               TOP
                               *+2
TEST,4
                                                                                                                                                              02810
                                                                                                                                                              02820
               SUB
                                =H00000.
                                                                                                                                                             02830
                                                            GO RAISE AND STORE JK1.
               REM
                                                                                                                                                             02850
               REM THESE ARE ERROR CALLS
ERRB
                               ERROR,4
                                                                                                                                                              02870
               BCI
                               1,0(B)
ERROR,4
                                                                                                                                                              02880
ERRD
                                                                                                                                                              02890
               BCI
                                1.0(D)
                                                                                                                                                              02900
ERRJ
                                ERROR,4
               BÇI
                                1,0(J)
                                                                                                                                                              02920
ERRK
                                ERROR 4
                                                                                                                                                              02930
               BCI
                                1.0(K)
                                                                                                                                                              02940
FRRM
               TSX
                                ERROR + 4
                                                                                                                                                              02950
ERRU
                               ERROR,4
               TSX
                                                                                                                                                              02970
               BCI
                                                                                                                                                              02980
               REM
                                                                                                                                                              02990
               REM

REM $E COMES HERE AFTER $D

CLA =0076100000000 NOP

STO* $(LINK) CLOSE BACKSPACE GATE

TRA LOCAC RETURN

REM PURPOSE OF $END CARD IS TO PROTECT FORIEGN DATA FROM

REM BACKSPACE WHEN CHAIN IS CALLED.
                                                                                                                                                              03000
LOCBG
                                                                                                                                                              03010
               $10*
                                                                                                                                                              03020
                                                                                                                                                              03030
                                                                                                                                                              03040
             REM BACKSPACE MILLS
REM
REM END OF THE MAIN SEGMENT
REM THIS A ROUTINE TO BACKSPACE THE INPUT TAPE WHEN A
REM CALL CHAIN IS GOING TO SPILL THE BUFFER.
REM THIS ROUTINE IS EXECUTED FROM CHAIN VIA THE ONE
REM WORD SUBROUTINE (LINK) WHICH CONTAINS EITHER TSX OR NOP
TSX LOC85,4 TO BE STORED AT (LINK
SXA *+4,4 SAVE INDEX 4
CLA INTAPE INPUT TAPE NUMBER
CALL $(10S) SELECT INPUT TAPE
XEC.* $(15S) BACKSPACE IT
AXT **,4 RESTORE INDEX
TRA 1,4 RETURN TO THE CHAIN ROUTINE
                                                                                                                                                              03060
                                                                                                                                                              03080
                                                                                                                                                              03090
                                                                                                                                                             03100
03110
TSXBS
LOCBS
                                                                                                                                                             03130
                                                                                                                                                             03150
                                                                                                                                                             03160
                                                                                                                                                             03170
               RETURN TO THE CHAIN ROUTINE
EJECT
REM THIS IS SUBROUTINE CHRCTR. IT STORES SUCCESSIVE
REM CHARACTERS FROM THE CARD AT LOCATION WORD, READS
REM SUCCESSIVE CARDS INTO THE ARRAY RECORD, AND PRINTS
REM $5 TYPE CARDS. THE FIRST CHARACTER FROM A NEW CARD
REM IS STORED IN WORD WITH A MINUS SIGN.
                                                                                                                                                              03190
                                                                                                                                                              03200
                                                                                                                                                             03210
                                                                                                                                                              03220
                                                                                                                                                              03230
               R.E.M.
                                                                                                                                                              03250
                                                                                                                                                              03260
CHRCTR SXD
                               TEMP-10,2
TEMP-17,4
                                                                                                                                                              03270
               SXD
                                                                                                                                                              03280
                               1,2
                                                             CARD COL COUNT, SAW COUNT
                                                                                                                                                              03290
                                                             TOO EARLY TO READ.
GATE MAY BE CLOSED
HAS UNUSED CHARACTERS FROM BEFORE
                TXH
                                                                                                                                                              03300
                XEC
                                READ.
                                                                                                                                                              03310
                                                            GATE MAY BE CLUSED
HAS UNUSED CHARACTERS FROM BEFORE
ZERO OR $ GOES TO TAG
SHIFT LEFT 1 CHARACTER
CLEARS OR PRELOADS TAG
NONZERO MEANS ALF MODE.
SAW COUNT GIVES COL 81 = 43.
MAS COL 80 PROCESSED.
CLEAR ACCUMULATOR.
SHIFT NEXT CHARACTER INTO ACC.
COUNT DOWN BY 14
LOAD NEXT WORD
JUMP BACK COUNTER.
RETURN IF ALF MODE.
MOVE CHR. INTO INDEX 1
TRA MEANS GOOD CHARACTER.
TRA IF BLANK
TRA IF GOOD CHARACTER.
TRA IF GOOD CHARACTER.
TRA IF GOOD CHARACTER.
TRA IF GOOD CHARACTER.
HERE ON $
HERE ON $
HERE ON $
GOES TO TAG.
               LDQ
                                                                                                                                                              03320
               CLA
                                SIGN
                                                                                                                                                              03330
LOCCA
                                                                                                                                                              03340
                                6
TAG
               SLW
                                                                                                                                                              03350
              LXD
                               ALF,4
LOCCD,2,43
LOCCC
                                                                                                                                                              03370
               TXH
                               LOCCG,2,42
                                                                                                                                                              03380
FOCCD BXD
                                                                                                                                                              03390
               LGL
                                                                                                                                                              03400
                               LOCCE,2,14
RECORD+3,2
*+1,2,69
LOCCF,4,0
                TIX
                                                                                                                                                              03410
               LDO
                                                                                                                                                              03420
LOCCE TXH
                                                                                                                                                              03440
                               LOCCF,1,48
LOCCC,1,47
LOCCF,1,43
LOCCF,1,42
               PAX
                TXH
                                                                                                                                                              03460
                TXH
                                                                                                                                                              03470
                TXL
                                                                                                                                                              03490
                ZET
                                                                                                                                                              03500
                                PRINT
                TRA
                                                                                                                                                              03510
                TRA
                                LOCCA
                                                                                                                                                              03520
```

```
SAVE SAW COUNT
SAVE UNUSED CHARACTERS.
ATTACH $ SIGN IF PRESENT.
SAVE THE CHARACTER AT WORD.
SIGN OF MQ NEGATIVE IF NEW CARD.
CLEAR SIGN.
CLEAR TAGO OF ANY $
 LOCGE SKD
                                                                                                                                   03550
03560
                           Q
TAG
             Ann
                           WORD
                                                                                                                                   03570
             LDQ
                           SIGN
                                                                                                                                   03580
             STZ
                           SIGN
                                                                                                                                   03590
                           TAG
                                                                                                                                   03600
                           TEMP-17.4
             LXD
                                                                                                                                   03610
             LXD
                           TEMP-10,2
                                                                                                                                   03620
             TRA 1,4 RETURN
REM PRINT OUT THE $$ CARDS.
                                                   RETURN
                                                                                                                                   03640
 PRINT
             STQ
XEC+
                           Q
$(TES)
                                                   CHECK FOR QUIET BUFFERS. FETCH NEXT CARD.
                                                                                                                                   03660
                                                                                                                                   03670
03680
             XEC
                           READ.
             LDQ
                                                   SPACE CONTROL SAFE IN ACC
             LGL
                                                                                                                                  03690
03700
             L DQ
AKT
STQ
                           SI ANK
                                                   FILL END OF OUTPUT
BUFFER WITH BLANKS.
                           4,4
OUTBUF+19,4
                                                                                                                                   03710
                                                                                                                                  03720
03730
03740
             TIX
                           *-1,4,1
                                                   SPACE CONTROL BACK TO MQ. STORE SPACE CONTROL.
                           OUTBUE
             STO
                                                                                                                                   03750
                           14,4
RECORD+2,4
                                                                                                                                   03760
             LDQ
                                                                                                                                  03770
03780
             STO
                           OUTBUF+15,4
                                                                                                                                   03790
                           PRINX,4
                                                                                                                                   03800
                           #+3
READ.
                                                                                                                                   03810
                                                   ALMOST ALMAYS A NOP.
WAIT FOR QUIET READ BUFFER.
CLEAR THE $$ CHARACTERS.
FETCH CARD.
14 WORDS
 LOCCG
             XEC
                                                                                                                                   03820
             XEC*
                           $(TES)
                                                                                                                                   03830
                           TAG
14,2
INBUF+14,2
             STZ
                                                                                                                                  03840
             AXT
                                                                                                                                   03850
             LDQ
                                                                                                                                  03860
             STQ
                           RECORD+2,2
                                                                                                                                  03870
                           *-2,2,1
TSXRD
                                                                                                                                  03880
                                                   OPEN READ. GATE
                                                                                                                                  03890
                           READ.
                                                                                                                                  03900
LOCCJ
                                                   CARD COL 1 IS 84
SET MINUS ZERO IN SIGN
             AXT
                           84,2
=0
             CLS
                           SIGN
                                                   SAVE COLUMN 79 AND 80
BLANK OUT COLUMN 81 TO 84
             LGR
                           12
                                                   MAY HAVE LOOK AHEAD
                           RECORD+1
             LDQ
                           RECORD-12
                                                                                                                                  03940
            TRA
REM
                                                                                                                                  03950
                                                                                                                                  03960
             REM
                                 COMES HERE ON END OF FILE FLAG
  LOCCK LXD
                          TESTJK,4
RTN,4,0
$(TES)
                                                                                                                                  03980
                                                  WAS DATA LOADED. YES RTN WAIT FOR QUIET OUTPUT BUFFER
                                                                                                                                  03990
04000
 SCHOUT XEC+
             AXT
                          6,4
DUT+6,4
                                                                                                                                  04010
             LDO
             STQ
                          OUTBUF+6,4
                                                                                                                                  04030
                          *-2,4,1
13,4
BLANK
                                                                                                                                  04040
04050
             TIX
            LDQ
                                                                                                                                  04060
             STO
                          OUTBUF+19,4
                          *-1,4,1
PRINX,4
                                                                                                                                  04080
             TSX
                                                                                                                                  04090
XEC*
                                                  WAIT FOR QUIET BUFFER.
THIS WAY OUT FOR KEEPS
                                                                                                                                  04100
                                                                                                                                  04110
04120
                          SEXIT
OUT
                          6, LEND OF FILE INPUT TAPE JOB COMPLETE
            BCI
                                                                                                                                  04130
             REM END OF THE SAP SUBROUTINE CHRCTR.
                                                                                                                                  04160
            EJECT
REM THIS IS SUBROUTINE CLEAR. IT INITIALIZES
REM NECESSARY PARAMETERS FOR SUBROUTINE STORE.
                                                                                                                                  04170
04180
                                                                                                                                  04190
                                                                                                                                  04200
                                                 SET J TO 0.
CLEAR VAR(1).
RESET MSHIFT.
RETURN TO CALLING PROGRAM
                          J,0
  CLEAR
            SXD
                                                                                                                                  04210
                                                                                                                                  04220
                          MSHIFT,0
                          1.4
                                                                                                                                  04240
             REM END OF THE SAP SUBROUTINE CLEAR.
                                                                                                                                  04260
            REM
                                                                                                                                  04280
            REM THIS IS FUNCTION COMPAR. IT EXAMINES THE CURRENT
                                                                                                                                 04290
04300
           REM THIS IS FUNCTION COMPAR. IT EXAMINES THE CURREN REM CHARACTER AND TESTS IT AGAINST THE CHARACTERS REM FOUND IN THE ARGUMENT. ALPHABETIC AND NUMERIC REM SPLITS ARE MADE IF THE CHARACTER IS NOT FOUND REM IN THE ARGUMENT. THESE TESTS ARE COUNTED AND REM THE NUMBER LEFT IN INDEX 2 CORRESPONDS TO THE REM SUCCESSFUL TEST. IF NO TEST IS SUCCESSFUL REM THEN INDEX 2 CORRESPONDS TO THE REM SUCCESSFUL TEST. IF NOT TEST IS SUCCESSFUL REM THEN INDEX 2 CORRESPONDS TO THE TOTAL TESTS +1.
                                                                                                                                 04310
04320
                                                                                                                                 04330
04340
                                                                                                                                  04350
                                                                                                                                 04360
COMPAR LDQ
                                                  USE FIRST ARGUMENT IN CALLING
                          1.4
                                                                                                                                 04380
04390
                          1,2
ŁOCDA
                                                                                                                                  04400
                                                  PULL IN 1ST TEST CHARACTER.
DONE IF ZERO.
CHECK TEST WORD AGAINST CARD
            LGL
TZE
                                                                                                                                 04410
04420
                          LOCOD
            CAS
                          WORD
                                                                                                                                  04430
                          LOCDA . 2 . 1
                                                                                                                                 04440
                                                  CHARACTER.
                                                 EQUAL.

EQUAL.

CHARACTER.

CHARACTER.

PROGRAM RETURN.
                         LOCOC
LOCDA,2,1
LOCDS
            CLA
LOCDC
                           WOKD
                          2.4
                                                                                                                                 04480
```

```
60004
                                                        USE SECOND ARGUMENT IN THE CALLING
                                                                                                                                                 04490
                             0,1
LOCOC,1,1024
LOCOC,1,1024
LOCOF,1
WORD,1
SEQUENCE (DECREMENT) AS THE TEST
FOR ALPHABETIC-NUMERIC SPLIT.
BECOMES INCREMENT
CHARACTER TO IRA
                                                                                                                                                04500
04510
04520
04530
              PDX
              TNX
                            04540
04550
04560
              TXI
              TXH
TXH
TXL
                                                                                                                                                04570
04580
04590
              REM
TXH
                                                                                                                                                 04600
            TXH LOCOF, 2,-1 AUJUST INTEREM LOCOC, 2,-+ ADJUST IRE REM END OF THE SAP SUBROUTINE COMPAR-
                                                                                                                                                 04610
04620
04630
  LOCDE
  LOCDE
                                                                                                                                                 04640
04650
04660
             REM THIS IS SUBROUTINE ERROR. IT IS CALLED IF AN REM ERROR WAS DETECTED ON ANY OF THE INPUT CARDS.
                                                                                                                                                 04670
                                                                                                                                                04670
04680
04690
04700
04710
04720
04730
              REM
  ERROR SKA
XEC+
                                                        SAVE SOURCE
WAIT FOR QUIET BUFFERS
                             *+2,4
$(TES)
                             **,4
1,4
OUTBUF
              AXT
                                                        GET PRINT ARGUMENT
              STO
                                                                                                                                                 04740
04750
04760
              ΔXT
                             1,1
              CAS
TRA
TXI
                                                        S THROUGH V
                                                                                                                                                 04770
                             BLANK+4,1
=7817
                                                                                                                                                 04780
  MESSA
             PXD
                                                        A THROUGH N
              ANA
ARS
                                                                                                                                                 04800
04810
04820
04830
              ACL
                             MESSA
              STA
                              102.
                             4,4
  102.
                                                                                                                                                04840
04850
             LDO
              STQ
                             OUT8UF+5.4
                             *-2,4,1
14,4
                                                                                                                                                 04860
                                                                                                                                                04870
04880
04890
04900
              AXT
              LDQ
STQ
TIX
                             RECORD+2.4
                             OUTBUF+19,4
+-2,4,1
PRINX,4
                                                                                                                                                04900
04910
04920
04930
04940
04950
04960
04970
                             $(TES)
19,2
BLANK
                                                        WAIT FOR QUIET BUFFER
                             OUTBUF+19,2
*-1,2,1
=H *
              STO
                                                        PICK UP *
              LĐQ
                             1,2
*+2,2,71
*+3,2,-69
                                                        SAW COUNT
BACK UP IF OVER 71
                                                                                                                                                04980
              I XD
              TXL
TXI
RQL
                                                                                                                                                05000
                                                        ROTATE ACCORDING TO CHR PART.
                             6
*-1,2,14
OUTBUF+19,2
                                                                                                                                                05010
05020
05030
                                                       ROTATE ACCORDING TO CHR PART.
COUNT CHARACTER PART.
STORE ACCORDING TO RESIDUAL
PRINT THE *
MAIT FOR THE * TO BE PRINTED
PICK UP ERROR SWITCH.
NUN ZERO MEANS TRY NEXT SET
PYORSS MAP
              TIX
              TSX
                             PRINX.4
                                                                                                                                                05040
05050
                             ERSW,4
LOCOUT,4,0
              L XD
T XL
                                                                                                                                                05060
                                                                                                                                                05070
                             1208,4
BLANK,4
NREG1,4
                                                        BYPASS MARK
MARK BYPASSED CARDS
                                                                                                                                                05080
              SXD
                                                        NONZERO IF THIS $DATA CARD.
                                                                                                                                                05100
                             *+2,4,0
READ.+1,4
CHRCTR,4
                                                                                                                                                05110
05110
05120
05130
              TXI
                                                        CRASH READ GATE IF $DATA CARD.
SKIP TO NEXT $DATA AND TRY THAT SET.
LOCEB
                                                                                                                                                05140
05150
05160
              TOP
                             LOCER
                             =H0000$D
LOCEC
NREG1-1
                                                       TRA NOT A $DATA CARD
PUTS - SIGN IN TABLE(1)
              STO:
                                                                                                                                                05170
                             BLANK+7,4
BLANK,4
INDX+2,4
              I KD
                                                                                                                                                05180
05190
             LKD
                                                                                                                                                05200
                            LOCA
=5
SGNOUT
                                                                                                                                                05210
LOCEC
                                                       TEST FOR END FILE FLAG
END FILE.. GET OFF
                                                                                                                                                05220
              TRA
                             LOCEB
                                                       OTHER
                                                                                                                                                05240
05250
              REM ERROR MESSAGES. FIRST WORD ALSO USED AS A BLANK.
                                                                                                                                                05260
                            UK MESSAGES. FIRST WURD ALS
4. REDUNDANCY CHECK
4,1LLEGAL CHARACTER
4,NO MANTISSA BEFORE E.
4,NO ENTRY IN TABLE
4,$TYPE MISSING OR WRONG
4,EXPON. OUT OF RANGE
  BLANK BCI
                                                                                                                                                05270
05280
             BCI
                                                                                                                                                05290
              BCI
BCI
                                                                                                                                                05300
05310
05320
05330
              BCI
              RÆM
              REM END OF THE SAP SUBROUTINE ERROR.
                                                                                                                                                05340
05350
             REM END OF THE SAL CONSIDER THE TABLE REM FOR THE NAME STORED AT LOCATION VAR. IF FOUND, REM THE ACC IS NON-ZERO AT THE RETURN.
                                                                                                                                                05360
                                                                                                                                                05370
05380
05390
LOOK
              SXD
                             TEMP-12.4
                                                       SAVE INDEX REGISTER C. SUBROUTINE.
                                                                                                                                                05400
                                                                                                                                                05410
05420
05430
                            LOCFE
2,2
1,1
**,2
LOCFG
LOCFD
             STD
                                           JK = 2 IN INDEX 8
                                                      J1 = 1 IN INDEX A

CAL TABV(JK).

NO ENTRY THIS VARIABLE

DECREMENT HAS NEXT
                                                                                                                                                05440
05450
05460
LOCFA
                                                                                                                                               05470
05480
05490
05500
             STD
                             =0377777000000
=0377777000000
                                                       O ENTRY LOC. SAVE DECR
ONLY. CHECK ENTRY LENGTH.
IF NOT THE SAME, LOOK AT NEXT ENTR
              SUB
TNZ
                             LOCFD
                            0,2
                                                       JM = JK IN INDEX C.
                                                                                                                                                05530
```

```
VAR+1,1 SEE IF VAR AND THIS

**,4

**,4

**,2

IF SO, CHECK REST OF NAME

**,2,4,1

LOCFA-1,2,**

**,1,1

LOCFB,1,**

CLEAR,4

CLEAR,4

CLEAR,4

CLEAR,4

SEE IF VAR AND THIS

ENTRY AGREE

IF SO, CHECK REST OF NAME

IF NOT SO, GO TO NEXT ENTRY.

RAISE JI BY ONE.

CLEAR,6

CLEAR IF THE ENTRY AGREES.
                                                                                                                                 05540
LOCES
         C1 A
LOCFC
                                                                                                                                 05560
           TRA
TXI
LOCED
            TXI
                                                                                                                                 05590
Ł0CF€
                                                                                                                                 05610
 LOCFF CLA+
                         LOCFA
                                                                                                                                 05620
                                                 SAVE COMMON INDEX AT ILOC.
PREPARE TO RETURN.
RETURN TO THE CALLING PROGRAM.
           STO
                         HOL
                                                                                                                                 05630
LOCFG
                         TEMP-12,4
                                                                                                                                 05640
            TRA
                         1.4
            REM
                                                                                                                                 05660
            REM
            REM END OF THE SAP SUBROUTINE LOOK.
                                                                                                                                 05680
           EJECT ESTATE SAN SUBROUTINE NAME. IT IS USED TO REM CORRELATE NAMES FROM INPUT CARDS WITH INTERNAL REM MEMORY LOCATIONS BY REFERRING TO THE TABLE.
                                                                                                                                 05690
05700
                                                                                                                                 05710
                                                                                                                                 05730
                                                                                                                                 05740
05750
            REM
           SXD TEMP-20,4 SAVE INDEX C.
REM GET THE REST OF THE VARIABLE NAME. STOP AT ANY
REM NON ALPHANUMERIC CHARACTER.
NAME
                                                                                                                                 05760
LOCGR
                         STORE.4
                                                                                                                                 05780
05790
LOCGC
                         CHRCTR,4
                                                 MINUS FOR NEW CARD
COMMA MAY BE NEEDED.
LOOK FOR ZERO. IF ZERO, MAKE IT
A LETTER D
                                                                                                                                 05800
            TOP
                          *+2
                         TEST,4
*+3
=H000000
            ΔCI
                                                                                                                                 05830
                         WORD
COMPAR.4
LOCGE
                                                                                                                                 05850
           TSX
                         1,=(0000
*+5,2,1
LOCGF
LOCGB
                                                                                                                                 05860
            TRA
            TRA-
                                                 JUNK OR OPERATORS
NUMERIC OR ALPHABETIC
                                                                                                                                 05880
           TRA LOCGB
TRA LOCGG ( SIGN
STZ ILOCI = SIGN
REM GO TO THE TABLE LOCKUP ROUTINE IF AN * SIGN
REM OR AN OPERATOR WAS FOUND.
TSX LOCK,4 FIND THE NAME IN TABLE.
RRT NAME WAS FOUND IN TABLE IF NON-ZER
                                                                                                                                 05900
                                                                                                                                 05910
                                                                                                                                05930
05940
LOCGF
                                                                                                                                 05950
                                                                                                                                 05960
           REM GO TO THE TABLE VARIABLE LOOKUP ROUTINE IF A REM ( SIGN WAS FOUND. TSX LOOK,4 TNZ LOCG.)
                                                                                                                                 05980
05990
                                                                                                                                 06000
LOCGG
            TNZ
                         LOCGJ
                                                                                                                                 06020
                         ERROR,4
ERRT
           SCI 1.0(T)

REM CONVERT THE INDEX TO BINARY.

BINARY,4

REM GET THE NUMERICS FOR THE INDEX TO THE VARIABLE.

TSX CHRCTR,4

IXL LOCGH,11,9 NUMERIC
                                                                                                                                 06040
                                                                                                                                 06050
LOCGH TSX
                                                                                                                                 06060
                                                                                                                                 06070
LOCGJ TSX
                                                                                                                                 06080
                                                                                                                                 06090
                         ERRC,1,27
ERRC,1,29
                                                  JUNK
            TXH
                                                 JUNK
                                                                                                                                 06110
                                                 JOHN
J SIGN. GET NEXT CHARACTER.
MINUS FOR NEW CARD
COMMA MAYBE NEEDED.
                         CHRCTR,4
            TOP
                         *+2
TEST.4
                                                                                                                                 06130
            TSX
                                                                                                                                 06140
                         COMPAR,4
                         1,=00000
*+4,2,1
            BCI
                                                                                                                                 06160
                                                 OPERATORS
                         LOCGK
            TRA
                                                                                                                                 06180
                                                 ALPHABETIC AND NUMERIC = SIGN
                         FRRI
                                                                                                                                 06190
                         ILUCI
            REM
                                                                                                                                 06210
LOCGK
                         VAR
                                                 COMPUTE STORING INDEX.
                         ILUC
            ACL
                                                                                                                                 06230
                         0,2
*+1,2,-1
                                                 STORE ADDRESS AT DECREMENT WITHOUT
                                                                                                                                 06240
                                                                                                                                 06250
            TXI
                         JK,2
ILUC1
                                                 ACCUMULATOR OVERFLOW.
LOCGL
            SXD
                                                                                                                                 06260
                                                 RESTORE INDEX C.
                         TEMP-20.4
            LXD
                                                                                                                                 06280
                         1.4 RETURN TO CALLING PROGRAM.
CONSTANTS AND ERROR CALL.
            RFM
                                                                                                                                 06300
                         ERROR,4
1,0(C)
                                                                                                                                 06310
06320
ERRC
            BCI
           REM REM END OF THE SAP SUBROUTINE NAME.
                                                                                                                                 06330
            EJECT
                                                                                                                                 06350
           EJECT
REM THIS IS SUBROUTINE NUMBER. IT IS USED TO
REM ASSEMBLE NUMERIC DATA FROM CARDS. ALL VALUES ARE
REM TREATED AS FLOATING POINT NUMBERS IN THIS ROUTINE.
                                                                                                                                 06360
06370
                                                                                                                                 0.6380
            REM
NUMBER SXD
                         TEMP-23.4
                                                 SAVE INDEX C.
                                                                                                                                 06400
                         KNT2,4
                                                  INITIALIZE
                                                 THE SUBROUTINE
BRANCH PARAMETERS.
            STZ
                         KNT3
                                                                                                                                 06420
                         KNT1
                                                                                                                                 06430
            STZ
                         KNT4
                                                                                                                                 06440
06450
                         LUCHB
            TRA
                                                                                                                                 06460
            REM
TSX
                         CHRCTR,4
                                                                                                                                 06480
                                                 MINUS MEANS FROM NEW CARD
            TOP
                         *+2,
TEST,4
                                                                                                                                 06500
```

```
TSX
                         COMPAR, 4
1,.E0000
++6,2,2
                                                                                                                                 06510
06520
06530
LOCHB
            BC I
Tra
                                                  JUNK OR AN OPERATOR
ALPHABETIC
NUMERIC
            TRA
TRA
                          LOCHK
ERRE
                                                                                                                                 06540
            TRA
                          LOCHC
                                                                                                                                  06560
                         LOCHE
KNT2
            TRA
                                                                                                                                  06570
            CLA
TNZ
TSX
BCI
STZ
STZ
                                                  DECIMAL POINT.
                                                                                                                                  06580
                                                  ZERO MEANS THIS IS THE SECOND POIN
                                                                                                                                 06590
06600
06610
06620
                          ERROR.4
                         1,0(N)
KNT2
                          NEXP
                                                                                                                                  06630
            TRA
CLA
ADD
                         =1R32
FOCHY
                                                                                                                                 06640
06650
                                                  COUNT THE NUMBER OF DIGITS BEHIND THE. IF THERE IS ONE
LOCHC
                                                                                                                                  06660
            STO
LXA
TXH
                                                                                                                                 06670
06680
                          NEXP
 LOCHD
                         KNT1,1
LOCHD2,1,10
                                                            DO NOT ACCUMULATE PAST 10
                                                                                                                                  06690
                                                  CONVERT THE DIGIT TO BINARY.
DO NOT COUNT LEADING ZEROS.
COUNT TOTAL NO. OF DIGITS
                                                                                                                                 06700
06710
06720
LOCHOL TEX
                          BINARY, 4
                          LOCHA
LOCHD2
                         #+1,1,1
KNT1,1
                                                                                                                                  06730
            TRA LOCHA
REM COMES HERE WHEN THE EXPONENT FIELD IS
CLA KNT1 ENCOUNTERED.
                                                                                                                                 06740
06750
                                                  ENCOUNTERED.

THERE MUST BE AT LEAST ONE DIGIT
BEFORE THE E OF AN E FORMAT NUMBER
FOCHE
                                                                                                                                  06760
                         KNT1
LOCHH
ERROR,4
1,0(S)
KNT3
            TNZ
                                                                                                                                  06780
                                                                                                                                 06790
LOCHE
            CLA
                                                  SEE IF EXPONENT DIGITS HAVE ARRIVE
                                                                                                                                  06800
            TRA
CLS
TNZ
                                                                                                                                 06810
06820
06830
                          *+2
KNI3
                                                  SEE IF EXPONENT DIGITS HAVE ARRIVE
NON ZERO MEANS SIGN IS OPERATOR.
STORE SIGN OF EXPONENT.
LOCHG
                          LOCHK-2
            STO
CLA
TNZ
                         TEMP
KNT4
ERRF
                                                                                                                                 06840
06850
06860
                                                  NONZERO MEANS MORE THAN 1 EXP SIGN
             SKD
                          KNT4,2
                                                  MAKE NOZERO.
                                                                                                                                  06870
                         CHRCTR,4
*+2,
TEST,4
            TEX
                                                                                                                                 06880
06890
FOCHH
                                                  MINUS MEANS FROM NEW CARD
            TSX
                                                                                                                                  06900
                          COMPAR, 4
1,+-.000
++7,2,2
                                                                                                                                 06910
06920
                                                                                                                                 06930
06940
06950
            TRA
TRA
                          LOCHK-2
ERRF
                                                  OTHERS
                                                  ALPHABETIC
NUMERIC
                          LOCHJ
                                                                                                                                  06960
             TRA
TRA
                                                                                                                                 06970
06980
                          ERRF
                                                  DEC IMAL
            TRA
                                                  MINUS
PLUS
                          LOCHG
                                                                                                                                  06990
                          LOCHE
            REM CONVERT THE EXPONENT TO BINARY.
                                                                                                                                  07000
                          TEMP
2
                                                                                                                                 07010
07020
LOCHJ
            ADD
                          TEMP
                                                                                                                                  07030
                                                                                                                                 07040
07050
                           1
Word
            STO
                          TEMP
            JAU KNT3,2 RECORD FACT FOR SECOND SIGN.

TRA LOCHH
REM COMES HERE WHEN AN OPERATOR WAS FOUND.
CLA KNT3 TEST FOR THE PRESENCE OF EXPONENT.
TZE ERRF ZERO MEANS NO EXPONENT CAME.
CLA KNT2
TZF #**2*
                                                                                                                                 07060
                                                                                                                                  07070
                                                                                                                                 07080
07090
                                                                                                                                  07100
                                                                                                                                 07110
07110
07120
07130
FOCHK
            CLA
                           *+2
            STZ
CLA
SUB
                          NEXP
KNT1
                                                                                                                                 07140
07150
                                                  SEE IF MORE THAN TEN NUMBERS HAVE BEEN CONVERTED IF SO, USE THE DIFFERENCE IN THE CUMPUTATION OF THE EXPONENT.
                          =10835
                                                                                                                                  07160
             TPL
                          #+2
                                                                                                                                  07170
                          0,0
NEXP
TEMP
                                                                                                                                 07180
07190
07200
            PX0
SUB
            ADD
            STO NEXP
REM MANTISSA IN VAR AND THE EXPONENT IS IN NEXP.
CLA VAR
TZE LOCHQ SHORT CUT IF ZERO.
                                                                                                                                  07210
                                                                                                                                 07220
07230
                         LOCHQ 5
=0233000000000
                                                                                                                                  07240
                                                            CHARACTERISTIC FOR LOW BITS
LOW 8 BITS TO MQ
                                                                                                                                 07250
07260
            LDQ
            LGR
RQL
                                                                                                                                  07270
            LRS
                                                            BRING SIGN
                                                                                                                                  07280
                                                                                                                                 07290
07300
                           =0243000000000
                                                            CHARACTERISTIC FOR HIGH BITS
            ORA
            FAD
FRN
STO
                                                                                                                                  07310
                                                                                                                                 07320
07330
                          VAR
            CLA
AXT
EDQ
                          NEXP
1,2
=1.
                                                  THE EXPONENT
                                                                                                                                  07340
                                                                                                                                 07350
07360
07370
                                                  PUT I IN MQ
EXPONENT IN ACCU
  LOCHL LBT
            TRA
TXH
STO
                          LOCKM
                                               FOUND NO BIT.
EXPONENT EXCEEDS 63
                                                                                                                                  07380
                                                                                                                                 07390
07400
07410
                          ERRV,2,6
VAR-2
                                               THIS FORMS 10 **NEXP SAVE IN MQ
            FNP
                          TAB+1,2
                                                                                                                                 07420
07430
07440
                          VAR-2
  LOCHM ARS
                          LOCHN
                                                                                                                                  07450
07460
07470
                                                10**NEXP FINISHED.
                          LOCHL,2,1
                                               MULTIPLY IF PLUS.
  LOCHN THI
             FNP
                          VAR
                                                                                                                                  07480
                          LOCHQ
                          VAR-2
VAR
VAR-2
                                                                                                                                  07510
  LOCHO STO
            CLA
                                                                                                                                  07520
07530
                                                  DIVIDE IF NEXP IS MINUS.
                                                  ANSWER BACK TO THE ACCUM
                                                                                                                                  07540
07550
             XCA
            LXD TEMP-23,4 RESTORE INDEX C.
TRA 1,4 RETURN TO CALLING PROGRAM.
REM THESE ARE THE ERROR CALLS FOR SUB NUMBR.
LOCHQ
```

1

```
ERRE
                        ERROR,4
                                                                                                                       07580
                                                                                                                       07590
           BCI
                        1.0(E)
           TSX
BCI
FRRE
                        ERROR 4
                                                                                                                       07600
                        1,0(F)
FRRV
           TSX
                        FRROR.4
                                                                                                                       07620
                                                                                                                       07630
07640
                        1.0(V)
           REM
           REM THIS IS THE FLOATING PT. TABLE USED IN DBC
DEC 1E+32,1E+16,1E+8,1E+4,1E+2 CONVER:
DEC 1E+1
                                                                                                                       07650
                                                                          CONVERSION TABLE
  TAB
                                                                                                                       07670
                                                                                                                       07680
                 END OF THE SAP SUBROUTINE NUMBER.
           EJECT
                                                                                                                       07700
           REM THIS IS SUBROUTINE STORE. IT STORES CHARACTERS REM AT THE ARRAY VAR. REM SXD TEMP-13.1 SAVE INDEX A.
                                                                                                                       07710
07720
07730
                                             SAVE INDEX A.
SAVE INDEX B.
PUT J INTO INDEX REGISTER A.
LOAD INDEX B WITH MSHIFT.
ADVANCE MSHIFT.
REFRESH MSHIFT.
RAISE J BY ONE IF MSHIFT IS OVER
CLEAR NEXT CELL
LEAVE SIGN BEHIND
                       TEMP-13,1
TEMP-14,2
STORE
           SKO
                                                                                                                       07750
           LXD
                        J,1
MSHIFT,2
                                                                                                                       07760
07770
LOCJA
                        LOCJB,2,6
                                                                                                                       07780
           TXI
                        36,2
*+1,1,1
                                                                                                                       07790
                                                                                                                       07800
                       VAR,1
WORD
=0
42,2
TEMP-7
TEMP-7
                                                                                                                       07810
07820
07830
  LOCJB
           CLA
                                              MOVE CHARACTER
PLACES TO THE LEFT.
           LGR
STQ
                                                                                                                       07840
                                                                                                                       07850
07860
           CAL
ORS
SXD
SXD
                                             STORE THE CHARACTER AT VAR-
SAVE MSHIFT.
SAVE J.
RESTORE INDEX A-
RESTORE INDEX B.
                        VAR+1.1
                                                                                                                       07870
                        MSHIFT,2
                        J,1
TEMP-13,1
                                                                                                                       07890
           LXD
                                                                                                                       07900
                        TEMP-14,2
                                                                                                                       07910
           TRA 1,4 RETURN TO CALL!!
REM
REM END OF THE SAP SUBROUTINE STORE.
                                             RETURN TO CALLING PROGRAM.
                                                                                                                       07920
                                                                                                                       07930
07940
           REM END OF THE SAP SUBROUTINE STORE.
EJECT
REM THIS IS SUBROUTINE TABLE. IT IS USED TO
REM CONSTRUCT A TABLE OF NAMES TO BE USED ON CARDS
REM AND THEIR MEMORY LOCATIONS RELATIVE TO ARG 2 OF
REM THE CALLING SEQUENCE.
REM
                                                                                                                       07950
                                                                                                                       07970
                                                                                                                       07990
                                                                                                                       08000
           REM
TABLE
                        TEMP-15,4
                                             SAVE INDEX C.
                                                                                                                       08020
                        TEMP
                                                                                                                       08030
                       TEMP
CHRCTR,4
COMPAR,4
1,,00000
++5,2,2
LOCKD+1
LOCKA
           TEX
                                                                                                                       08050
           BC I
TRA
                                                                                                                       08060
08070
           TRA
                                              JUNK
                                                                                                                       08080
                       LOCKA
LOCKD+1
TEMP
                                             ALPHABETIC
NUMERIC
COMMA
           TRA
TRA
                                                                                                                       08100
LOCKS
           STZ
                                                                                                                       08110
           TRA LOCKD
REM COMES HERE TO CONVERT THE ADDRESS TO OCTAL FOR
CLA TEMP THE TABLE:
                                                                                                                       08130
           CLA
ALS
ADD
                                                                                                                       08140
08150
LOCKE
                       2
TEMP
                                                                                                                       08160
           ALS
ACL
STO
                                                                                                                       08180
                       TEMP
                                             ADDS TO MAGNITUDE
                                                                                                                       08190
           REM COMES HERE TO GET NUMERICS.
                                                                                                                      08210
EDCKD
                       CHRCTR,4
COMPAR,4
                                                                                                                       08220
           TSX
                       1,.=/000
#+7,2,2
ERRA
ERRA
                                                                                                                       08240
           TRA
TRA
TRA
                                                                                                                       08250
                                             JUNK
ALPHABETIC
                                                                                                                       08260
                                                                                                                      08270
           TRA
                       LOCKC
                                             NUMERIC / CHARACTER
                                                                                                                       08290
                                             = SIGN
           TRA
                       LOCKE
                                                                                                                      08300
           REM
REM COMES HERE IF A DECIMAL PT WAS FOUND.
                                                                                                                       08320
 LOCKE CAL
                       TEMP
                                             DECIMAL POINT
MAKE SIGN MINUS
          CHS
                                                                                                                      08340
                       TEMP
                                                                                                                      08350
           TRA
REM
                       LOCKO
                                                                                                                      08370
           REM COMES HERE IF AN = SIGN WAS FOUND.
                       CLEAR,4
CHRCTR,4
          TSX
TSX
LOCKE
                                                                                                                      08390
LOCKG
                                                                                                                      08400
           TOP
                                             MINUS MEANS FROM NEW CARD
                                                                                                                      08420
           TZE
                       LOCKH
                                                                                                                      08430
           TEX
BCI
TRA
                       COMPAR-4
                       1,/,0000
                                                                                                                      08450
                                                                                                                      08460
           TRA
                       FRRG
                                             JUNK
                                             ALPHABETIC OR NUMERIC
COMMA
                       LOCKJ
                                                                                                                      08480
           SXD
                       B.2
                                                                                                                      08490
           SXD
TRA
                       B,2
LOCKK
                                                                                                                      08510
          REM COMES HERE TO STORE CHARACTER.
                                                                                                                      08530
 LOCKH ACL
                       =H000000
WORD
STORE+4
                                        REPLACE ZERO WITH LETTER O
                                                                                                                      08540
          STO
                                                                                                                      08560
          TRA
                       LOCKG
          REM COMES HERE AT END OF NAME.
```

08580

```
LOOK,4
LOCKR
                                                                                                                                           08590
                                                     GOES TO LOCKR IF THERE IS AN ENTRY
             TNZ
                                                                                                                                           08600
                           J,1
*+1,1,1
            LXD
                                                                                                                                           08610
                                                     ASSEMBLE KEY IRB HAS FIRST FREE LOC.
                                                                                                                                           08620
08630
08640
            PXD
                           O,1
TEMP
 TXI
LOCKT STM
EXP
                           **,2
*+1,1
*+1,2,**
VAR+1,1
                                                     STORE KEY INTO TABLE ADVANCE TO END
                                                                                                                                           08650
                                                                                                                                           08670
                                                     MOVE NAME, O TO TABLE
SLW IN TABLE
TRANSFER WHEN DONE
GO BACK TO FINISH
KEEP ZONE OF 1ST VAR CH.
WAS NUMERIC, OR J=0
  LOCKM
                                                                                                                                           08680
            XEC
                                                                                                                                           08690
08700
             TXI
ARS
TZE
                           LOCKM, 2,-1
                                                                                                                                           08710
                          34
ERRG
             REM
                                                                                                                                           08740
            REM
LXD
TXH
                           REEXAMINE THE CUT OFF CHARACTER.
LOCKP
                           B,2
LOCKB,2,1
TEMP-15,4
                                                                COMMA
                                                                                                                                           08770
10060
            LXD
                                                     / CHARACTER
                                                                                                                                           08780
                            1,4
             REM
                                                                                                                                           08800
                           COMES HERE TO REPLACE KEY

=0377777000000 J+1 IN DECREMENT

TEMP LOCATION AND SIGN

LOCKL SLW IN TABLE
             REM
                                                                                                                                           08810
 LOCKR ANA
AGL
LOCKS XEC
                                                                                                                                           08820
08830
08840
                            LOCKP
TEMP
                                                                                                                                           08850
             GAL
                                                                IS / LEGAL
                           LOCKO
                                                                 YES
                                                                      NO, NUMERICS WAITING
             REM TRA
                               ERRA
                                                                                                                                           08880
             REM
REM THESE ARE THE ERROR CALLS.
                                                                                                                                           08890
08900
                           ERROR,4
1,0(A)
ERROR,4
1,0(G)
FRRA
                                                                                                                                           08910
                                                                                                                                           08920
08930
08940
ERRG
             BCI
                                                                                                                                           08950
                    END OF THE SAP SUBROUTINE TABLE
             EJECT
                                                                                                                                           08970
             REM THIS IS SUBROUTINE TEST. IT LOOKS AHEAD TO CLASSIFY REM A NEW CARD. ACOMMA WILL BE PUT INTO THE CURRENT
                                                                                                                                           08980
                                                                                                                                           08990
            REM CHARACTER POSITION ONLY IF EITHER (1) THE NEXT
REM CARD BEGINS WITH A $ SIGN FOLLOWED BY SOME OTHER
REM CHARACTER OR (2) THE NEXT CARD BEGINS WITH AN
REM ALPHABETIC AND AN = SIGN IS FOUND AND IT PRECEEDS
REM ALL, $ AND . CHARACTERS ON THAT CARD.
                                                                                                                                           09000
                                                                                                                                           09010
                                                                                                                                           09030
09040
                                                                                                                                           09050
             REM
                                                     SAVE INDEX FOR RETURN.
TEST FOR A $ SIGN.
POSITIVE MEANS $ SIGN.
SAFE TO REFILL BUFFER
NUMBERS AND SPECIAL
FIX SO SLASH IS SPECIAL
MOD OUT ZONE
SPECIALS
ALPHARETIC COME THOU
             REM
                                                                                                                                           09060
                                                                                                                                           09070
09080
TEST
                            TEMP-12,4
=H0000$0
             SUB
             TPL
XEC
TXL
                            LOCLA
                                                                                                                                           09090
                            READ.
LOCLB,1,16
                            *+1,1,33
*,1,16
LOCLB,1,9
              TIX
                                                                                                                                           09130
                                                                                                                                           09140
                                                      ALPHABETIC COME THRU.
SCAN THE CARD.
              RFM
             AXT
LDQ
TXI
                            15,1
RECORD+3,1
*+1,1,69
FOCTC
                                                                                                                                            09160
                                                                                                                                           09170
09180
                                                      FOR CHARACTER COUNT
DONE IF WHOLE CARD SCANNED
OK TO-SEARCH 84 COLUMNS
                            LOCLB,1,70
                                                                                                                                            09190
                                                                                                                                           09200
09210
FOCFD
                            0,0
             LGL
                            0,2
=017
=013
                                                      ZONE TO IRB
KEEP DIGIT
DIGIT PART OF ,$.= CHR.
CHECK ZONE
                                                                                                                                            09220
              ANA
                                                                                                                                           09230
              TZE
                            1.001.1
                                                                                                                                            09250
                             LOCLD,1,14
LOCLC+1
                                                       TRY NEXT CHARACTER
                                                                                                                                            09260
                                                                                                                                            09270
09280
                             LOCL8,2,15
                                                                     . $ NEED NO COMMA
  LOCLJ
             AXT
SXD
CLA
                            84,1
I,1
RECORD-12
                                                      84 IS CARD COL 1
RESET CHRCTR TO BEGIN CARD
                                                                                                                                            09290
                                                                                                                                           09300
09310
                                                                                                                                            09320
              STO
                              нооооо,
                                                      SUBSTITUTE A COMMA.
                                                                                                                                            09330
                                                                                                                                            09340
09350
                             WORD
TEMP-12.4
 LOCL8
                                                      IN AC FOR SR NAME, TABLE RETURN TO THE CALLING PROGRAM.
                                                                                                                                            09360
                                                                                                                                            09370
09380
              REM
                                FOR TABLE SUB STATEMENTS
                            TEMP-12,4
                                                                                                                                            09390
   TESTT SXD
                                                      IF NEXT CARD HAS VALID
LEFT PART OF SUBSTATEMENT
                                                                                                                                            09400
09410
09420
              AXT
                             84,4
RECORD-12
              LDO
   LOCNB
                                                                                                                                            09430
09440
09450
              LGL
PAX
                            LOCLB,2,48
LOCNC,2,47
LOCLB,2,27
                                                       O ZONES EXCEPT BLANK
                                                      BLANK
11 ZONES AND )
                                                                                                                                            09470
09480
              TXH
                            LOCLA,2,26
LOCLB,2,11
LOCLA,2,10
              TXH
TXH
                                                       12 ZONES AND 8-4
                                                                                                                                            09490
09500
              TXH
                            LOCNB,4,14
RECORD+3,4
LOCLB,4,1
LOCNB,4,70
                                                       NUMERICS AND BLANK
                                                                                                                                             09510
 LOCNO
              TIX
              LDQ
                                                                                                                                            09530
09540
09550
              TXI
              REM END OF THE SAP SUBROUTINE TEST.
                                                                                                                                             09560
09570
09580
              EJECT
              REM THE FOLLOWING FOUR SUBROUTINES ARE USED TO
              REM CONVERT DECIMAL DIGITS TO BINARY IN VAR,
REM FIX FLOATING POINT NUMBERS, FLOAT FIXED POINT
REM NUMBERS, AND FORM ARITHMETIC RESULTS IN THE
REM PSEUDO ACCUMU LATOR (ACC) FOR EACH OPERATION
REM ON A CARD.
                                                                                                                                             09590
              REM
REM
REM
                                                                                                                                             09620
                                                                                                                                             09630
09640
```

```
BINARY CLA
ALS
ADD
                                                    ACCUMULATE A SERIES OF BASE 10 DIGITS IN BINARY IN VAR.
                           VAR
                            2
VAR
                                                                                                                                        09660
                                                                                                                                        09680
09680
09690
             ALS
                           WORD
VAR
1,4
             ACL
STO
             TRA
FLT
                           TEMP
                                                    CONVERT TO FLOATING POINT THE
                                                                                                                                        09730
             LRS
                                                    CONTENTS OF THE STORAGE CALLED
                                                                                                                                       09740
09750
                           18
                           =0233000000000
=0233000000000
TEMP
             FAD
STO
TRA
                                                                                                                                        09760
                                                    LEAVE THE ANSWER IN TEMP.
                                                                                                                                       09770
09780
09790
             REM
UFA
  FIX
                           =0233000000000
                                                               CONV TO FIXED PT THE CONT
                                                                                                                                        09800
                                                    OF THE ACCUMULATOR.
             LRS
                                                                                                                                       09810
09820
                            u
=0377777
             ANA
             LLS
                                                                                                                                       09830
                                                    LEAVE THE FIXED POINT NUMBER IN
             ALS
TRA
                                                                                                                                       09840
                           1,4
                                                    THE ACCUMULATOR.
             REM
LXD
STZ
                                                                                                                                       09860
                                                    BRANCH FOR OPERATOR PREPARE FOR NEXT OPERATOR.
ACCUN
                           OPER,2
                                                                                                                                       09870
                           OPER
TEMP
*+5,2
LOCMB
                                                                                                                                       09880
09890
 STZ
CLA
TRA
TRA
CHS
FAD
ACCUN STO
                                                                                                                                       09900
                                                                                                                                       09910
09920
                           LOCMA
                                                    MINUS
PLUS
                                                                                                                                       09930
                           ACC
ACC
                                                                                                                                       09940
09950
09960
09970
09980
09990
                                                              NONE
            TRA
REM
CLA
FDP
                           AGC
TEMP
LOCMA
                                                    DIVIDE.
            STQ
                           ACC
1,4
                                                                                                                                       10010
            REM
                                                                                                                                        10020
            LDQ
FMP
TRA
                           ACC
TEMP
F-DCMB
                                                    MULTIPLY.
                                                                                                                                       10030
                                                                                                                                       10040
                           ACCUN
                                                                                                                                       10050
             REM
                                                                                                                                       10070
            REM END OF THE SAP SUBROUTINES ACCUM, FIX, FLOAT.
                                                                                                                                       10080
           REM END OF THE SAT SCHOOL REM SUBROUTINE PRINX DRAINS PRINT BUFFER TO LOGICAL TAPE REM GIVEN IN DECREMENT OF OUTAPE SXA PRINY,4 BUFFERED WRITE ROUTINE CLA OUTAPE LOGICAL OUTPUT TAPE NUMBER
 PRINX
                                                                                                                                       10110
            CLA
CALL
AXC
                          OUTAPE
(IOS)
IOCD,4
                                                                                                                                      10130
                                                                                                                                       10140
10150
            XEC+
XEC+
PXA
STA+
                                                              =WTDL 6
=RCHL 0,4
SAVE LOC OF
IO COMMAND FOR (WER)
PRESET END ACTION
                          $(WRS)
$(RCH)
                                                                                                                                      10160
                                                                                                                                       10170
                           0,4
$(WTC)
                         $(WTC)
TSXWR
$(TES)
##,4
1,4
(WER)
OUTBUF,,19
 CLA
STO*
PRINY AXT
                                                                                                                                       10190
                                                                                                                                       10200
                                                                                                                                       10210
                                                                                                                                       10220
10230
 TSXWR
IOCD
            CALL
                                                              EXECUTED FROM (TES)
                                                                                                                                      10240
            EJECT
           REM SUBROUTINE READ. FILLS READ BUFFER FROM LOGICAL TAPE 7.
TSX READ.+1,4 READ. GATE INITIALLY OPEN
                                                                                                                                      10260
 READ.
                                                                                                                                      10270
            CLA
STO
                          =0076100000000
                                                              CLOSE READ GATE
                                                                                                                                      10280
                          *-2
AXI,4
INTAPE
(IUS)
IOCD.,4
                                                                                                                                       10290
            SKA
                                                                                                                                       10300
            CLA
CALL
AXC
                                                   LOGICAL INPUT TAPE NO.
                                                                                                                                      10320
            XEC+
XEC+
CLA
STD+
ANT
TRA
                          $(RDS)
$(RCH)
TSXTS
                                                              ≖RTDL5

≖RCHL 0,4

SET UP BUFFER TEST
                                                                                                                                      10340
                                                                                                                                      10360
10370
10380
                          $(TES)
**,4
1,4
*+1,4
 AXT
                                                                                                                                      10390
10400
10410
10420
 TSXTS TSX
                                                              EXECUTED FROM (TES)
CLOSE OUT BUFFER
SAY BUFFER IS QUIET
            SXA
CLA
STO*
                          AXT,4
=0076100000000
                                                                                                                                      10420
10430
10440
10450
                          $(TES)
                                                             PRESET REDUNDANCY COUNT
                          5,4
RTT,4
AXT
SWA
TSXIT AKC
XEC*
AXC
XEC*
                         *+1,4
$(TCO)
RTT,4
$(TRC)
                                                                                                                                      10450
10460
10470
10480
                                                             ≖.TCOL 0,4
                                                             =TRCL 0,4
                                                                                                                                      10490
                         $(TRC)
XIT.,4
$(TEF)
AXT
#*,4
SXA.,4,1
14,4
INBUF+14,4
RECORD+2,4
           AKC
           XEC*
TRA
AXT
                                                              =TEFL 0,4 JOB COMPETE
                                                                                                                                      10510
                                                                                                                                      10520
10530
10540
                                                              RETURN
                                                             RETURN
INTERROGATE COUNT
GIVE ANOTHER TRY
CARD SURE BAD
SAVE IMAGE
RTT
           TIX
                                                                                                                                      10550
10560
10570
           CLA
                         *-2,4,1
84,4
                                                                                                                                      10580
10590
10600
                                                  MAKE ERROR ROUTINE LOSE*
IN INPUT BUFFER
           SXD
                         I,4
ERROR,4
           TSX
BGI
SXA
AXC
                                                                                                                                      10610
                         1,0(R)
RTT,4
                                                                                                                                     10620
10630
10640
                                                             SAVE COUNT
           XEC+
XEC+
                                                             TURN OFF EOF IND BACKSPACE.
                                                                                                                                     10650
10660
10670
10680
                         $(BSR)
10CD.,4
$(RDS)
           XEC+
                                                             REREAD
           XEC*
                         $(RCH)
                                                                                                                                     10690
           TRA
                         TSXTT
```

```
INBUF,,14
=0531700000000
INBUF
  LOCD. LORT
                                                                                                          10710
                                                                                                          10720
10730
10740
10750
         CLA
STO
TRA
 XIT.
                                                 FILE FLAG
 REM BUFFERS AND COMMON STORAGE ASSIGNMENT INBUF BCI 7,5E BCI 7,
                     AXT
                                                                                                          10760
                                                                                                          10780
OUTBUF BCI
                   10790
10800
10810
10820
10830
10840
         BCI
10850
ERSW
         COMMON
COMMON
COMMON
                                                                                                           10860
 Q
WORD
                                                                                                           10870
10880
  OPER
         COMMON
                                                                                                          10890
10900
  NEXP
          SYN
COMMON
                                                                                                           10910
                                                                                                          10920
MSHIFT COMMON
ILOC COMMON
TEMP COMMON
                                                                                                          10940
10950
10960
 KNT1
KNT2
KNT3
SIGN
TAG
ALF
          COMMON
                                                                                                           10970
         COMMON
COMMON
COMMON
COMMON
COMMON
                                                                                                           10990
                                                                                                           11010
11020
11030
                                                  SUBSCR CORR TO NAME
  JK
          COMMON
                                                                                                           11040
                                                  CURR SUBSCR OF LEFT SIDE
  JK1
          COMMON
                                                                                                           11060
11070
          COMMON
  ACC
                                                  PSEUDO ACCUMULATOR
          COMMON
 ILOCI COMMON 1
KNT4 COMMON 1
VAR COMMON 153
END
                                                  ILOC FOR LEFT SIDE
NONZERO AFTER EXP SIGN
                                                                                                           11080
                                                                                                           11090
                                                  SPACE FOR NAMES, ETC.
```

COUNT 1
REM ONE WORD SUBROUTINE TO CONTROL BACKSPACE OF INPUT TAPE:
LBL LINK,6
ENTRY (LINK)
(LINK) NOP
END

APPENDIX I

EXAMPLE II: LUNAR ORBITING PROBE

This example of a lunar orbiting probe illustrates the use of the ephemeris tape and the control parameters needed to consider the effects of perturbing bodies, atmospheric forces, oblateness, rotating Earth, and thrust. No effort was made to optimize this trajectory but rather to use plausible values for illustrative purposes. It is suggested that the input instructions contained in appendix G be read prior to the following detailed discussion.

Suppose the probe was launched at Cape Canaveral on December 7, 1961, by a three-stage vehicle with stage parameters as shown in the following table:

Parameters		Stage	
	l	. 2	3
Initial mass, mo, kg	150,000	52,500	23,625
Engine exit area, A _e , m ²	3.0	1.0	. 5
Vacuum specific impulse, I, sec	420	420	420
Propellant flow rate, -m, kg/sec	750	125	56.25
Burning time, tb, sec	117	207.9	370
Aerodynamic reference area, S, m ²	7.5	4. O	2.0

Figure 4 shows the assumed variation of $C_{D,0}$, $C_{D,i}$, and C_{L} with Mach number as well as the angle-of-attack schedule.

The vehicle will be flown as follows: First, there will be a short nondrag vertical flight, after which the desired velocity orientation will be set, and then a turn will be executed determined by gravity and the angle-of-attack schedule until first-stage burnout. The second and third stages follow a continuation of the same turning pattern. The third stage will be powered until the eccentricity of the trajectory equals 1.10. It will then coast until it is at lunar pericenter, at which time the engine will again be turned on (with $\alpha = \pi$) until the orbit about the Moon becomes nearly circular.

The chosen integration mode will be rectangular for the powered flight, but the mode of orbit elements will be used for the coast portions. Other bodies considered besides the Earth and the vehicle are the Sun, the Moon, and Jupiter. Jupiter is included to illustrate the use of ellipse ephemerides. The Sun and Moon will illustrate the use of the tape ephemeris.

The correct firing direction and launch time remain to be determined. This determination can be made by finding approximate values and then adjusting these values after one or more shots are fired. The adjustments could be made by an

iteration scheme programed internally to make a closed system. For this example, however, they were made by hand by firing several shots at various azimuth angles close to an estimate obtained by using reference 12 and an ephemeris. From a plot of the z-direction cosine of the vehicle-Moon distance against vehicle-Earth distance, the azimuth angle that will intersect the Moon orbit can be determined. The correct launch time is found by using the previously determined azimuth angle and various times of day to determine the time of day at which the vehicle intersects the correct position in the Moon orbit (location of the Moon). This type of analysis gives an azimuth angle of about 64.50 and a time of day of about 7.0 E.T. (E.T. is ephemeris time, which is approximately equal to Greenwich mean time.) For the present purpose, these values will be used.

The program begins by constructing the merged ephemeris tape for the Sun and Moon. This is done by SUBROUTINE TAPE in conjunction with the input shown as follows:

\$DATA=300,\$TABLE,2=TAPE3,17=ELIST,29=[BEGIN,30=TEND/ \$\$ ID. AND TABLE DEFINITION

TAPE3=0 \$\$ NECESSARY TO MAKE TAPE

ELIST=(A3)SUN; (A4)MOON \$\$ LIST OF DESIRED EPHEMERIS BODIES

TBEGIN=2437640.5 \$\$ JULIAN BEGINNING DATE

TEND=1BEGIN+5 \$\$ JULIAN ENDING DATE

After the merged ephemeris tape is constructed, the set of standard data in SUBROUTINE STDATA is loaded, and the input is loaded as shown:

\$DATA=1,\$TABLE, 33=DTOFFJ, 34=TOFFT, 711=TIME, 716=X, 717=Y, 718=Z, 713=VX, 714=VY, 715=VZ, 11.=IMODE, 713=E, 714=OMEGA, 715=NODES, 716=INCL, 717=MA, 718=P, 43=LAT, 44=LONG, 45=AZI, 46=ELEV, 14=ALT, 47=VEL, 16=TFILE, 28=TMIN, 153=BODYCD, 177=ELIPS, 30.=MODOUT, 27=STEPS, 29=DELMAX, 26=STEPMX, 23=EREF, 24=ERLIMT, 4.=NSAVE, 5=RECALL, 3=CLEAR, 18.=LOOKX, 22=XLOOK, 19.=LOOKSW, 20=SWLOOK, 609.=INLOOK, 15=END, 31=ATMN, 32=RATM, 49=ROTATE, 417=COEFN, 163.=ICC, 60=BETA, 50=OBLATN, 73=TB, 93=FLOW, 103=SIMP, 123=AREA, 143=DELT, 83=RMASS, 113=AEXIT, 133.=IDENT, 48.=LSTAGE, 25=TKICK /

```
BODYCD=(A5)EARTH, (A4)MOON, (A6)JUPITE, (A3)SUN $$ BODY NAMES, 1ST IS ORIGIN
ELIPS=(ALF6)JUPITE, (ALF3)SUN, 9547861E-3, 4.81E+10, 5.1913995, $$ ELLIPTIC DATA
.0486288,.1765935,.056971884,.40587194,2433964.,.6664,4333.7153$$ FOR JUPITER
COEFN=0,.4,0,.6,1,1.15306,-.16326,.010204,8,.5,,,100,,10,,, $$ AERO. COEFF.
100,,.025,,,100,,,,,15,-.6,.04,,40,.7,,,117,,,,1E3,180,,,1E8,ICC=24,14,19,1 $$
                                  $$ STAGE MASSES
RMASS=150000,52500,23625
                                  $$ STAGE FLOW RATES
FLUW=750,125,56.25,0,56.25
                                  $$ STAGE SPECIFIC IMPULSES
SIMP=420,420,420,,420
                                  SS STAGE ENGINE EXIT AREAS
AEXIT=3,1,.5
                                   $$ STAGE AERODY. REFERENCE AREAS
AREA=7.5,4,2
                                   $$ STAGE BURNING TIMES
TB=117,207.9,400,1E7,50,3600
                                   $$ STAGE INITIAL INTEGRATION STEP SIZES
DELT=2,2,2,86400,2,600
                                   $$ STAGE INPUT IDENTIFICATION NUMBERS
IDENT=,2,3,4,5,6
DTOFFJ=2437640.5, TOFFT=7/24
                                   $$ TAKE-OFF DATE AND FRACTION OF DAY
LAT=28.280,LONG=-80.571,ELEV=81.7$$ LATITUDE,LONGITUDE,ELEVATION
                                  $$ AZIMUTH, ALTITUDE, INTEGRATION MODE
AZI=64.5, ALT=10, IMODE=4
                                   $$ MODE OF OUTPUT. TIME INTERVALS OF OUTPUT
MODOUT=2, DELMAX=50
                                  $$ MAXIMUM ALLOWED STEP NUMBER, UBLATE BODY
STEPMX=300, OBLATN=(A5)EARTH
                                  $$ TIME OF THE VERTICAL NON-DRAG STEP
TKICK=10
                                  $$ ROTATION RATE OF THE ORIGIN BODY (EARTH)
$$ ATMOSPHERE NAME, RADIUS OF ATMOSPHERE
ROTATE=7.29211585E-5
ATMN=(A5)EARTH,RATM=1E11
                                  $$ REGERENCE ERROR, LIMIT ERROR
EREF=1E-5, ERLIMT=5E-5
```

SUBROUTINE ORDER reorders the list of bodies putting the Sun before Jupiter (i.e., the Sun's position relative to the vehicle must be found before Jupiter's relative position can be computed). The elliptic data for finding Jupiter's position are relocated according to the computed body list. The gravitational constants, μ and $\sqrt{\mu}$, are then calculated. The atmosphere belongs to the body at the origin (Earth) so that the rotation rate and atmospheric radius are set. The final duty of ORDER is to position the merged ephemerides tape at the beginning of the correct ephemeris. In this case, only one merged ephemeris was constructed; nevertheless, it still must be identified and spaced to the beginning of the data.

The main program now calls SUBROUTINE STAGE, which is responsible for controlling the sequencing of the stages for the flight. The data for the first stage are set into their proper locations as in example I. Before calling SUB-ROUTINE NBODY, however, SUBROUTINE TUDES is called (since IMODE = 4) to transform the Earth-centered spherical coordinates into rectangular coordinates. In addition, TUDES computes the closed-form solution for the initial vertical nondrag step. The path is integrated from this point on, where the initial orientation is specified by the spherical coordinates. The small error introduced by this procedure is offset by avoiding the complications associated with integrating the takeoff. One such difficulty is the thrust-direction specification when the velocity is zero, especially if the origin body is rotating.

The SUBROUTINE STAGE then calls upon SUBROUTINE NBODY to perform the integration of the first-stage path. The derivatives are supplied by SUBROUTINE EQUATE which, in turn, calls upon SUBROUTINES EPHMRS, ICAO, AERO, THRUST, and OBLATE. SUBROUTINE EPHMRS computes the perturbations that result from bodies other than the origin body. The positions of the Sun and Moon are determined

through use of the merged ephemeris tape, while the position of Jupiter is determined by SUBROUTINE ELIPSE, which uses the ellipse data loaded on input cards.

SUBROUTINE AERO determines the aerodynamic accelerations through use of quadratic equations for the lift and drag coefficients and SUBROUTINE ICAO, which determines density, pressure, and temperature as functions of altitude. SUB-ROUTINE THRUST computes the thrust magnitude as a function of ambient pressure (eq. (4)) and then determines the thrust orientation relative to the x,y,z axes. Oblateness accelerations are determined in SUBROUTINE OBLATE.

The integration of the first-stage path is terminated by SUBROUTINE STEP when t=117 seconds. Control is then returned to STAGE whereupon the second-stage data are set in place for integration of the second-stage path, which is terminated by STEP when t=324.9 seconds.

It is required that the third-stage engine cease operating when the eccentricity of the path equals 1.10. Let it also be required that the output occur only every 100 seconds instead of every 50 seconds, as during stages one and two. These results may be obtained by placing the following cards after the previous set:

These cards are read into the computer after the third-stage data are set in place (since IDENT (3) = 3), but before integration of the third-stage path begins. The third-stage burning time, 400 seconds, was purposely set high enough to allow sufficient time for the eccentricity to reach the value 1.10.

To illustrate the input facilities, the coasting third stage will be called the fourth stage, the reverse-thrust portion at the Moon a fifth stage, and the final coast portion about the Moon a sixth stage. Under these conditions, it becomes necessary to determine the initial masses of these stages. The initial masses of the fourth and fifth stages may be computed on the following input card, which is placed after the previous cards:

* \$D=30, \$T,712=MASS/ RMASS(4)=MASS, NASS \$\$ COMPUTE MASSES FOR STAGES 4 AND 5.

This card will be read into the computer immediately following the condition of e = 1.10, since INLOOK = 30.

The fourth-stage path is to be integrated in orbit elements with less output than previously required. The following cards are sufficient for these purposes:

*D=4,IMODE=-2, MCDOUT=3, DELMAX=21600 \$\$ INTEGRATE IN ORBIT ELEMENTS FOR STAGE 4 STEPS=10, TMIN=86400 \$\$ OUTPUT EVERY 6 HOURS TILL 1 DAY, THEN EVERY 10 STEPS

About a half day later, the vehicle is close enough to the Moon so that the coordinate-system origin is translated to the Moon. This translation is accompanied by a shift to rectangular integration variables, since the vehicle is approaching the Moon far out on a hyperbolic asymptote. After the origin is translated to the Moon, an input card may be read to cause termination of the fourth stage when the true anomaly about the Moon is zero:

\$D=101,LOOKX=1150, XLOOK=0 \$\$ INTEGRATE UNTIL TRUE ANOMALY IS ZERU

The fifth-stage path is integrated with reverse thrust until e = 0.05. The angle α is computed to be π by using the COEFN array. The termination of stage five is caused by the cards:

\$D=5,LCCKX=1226,XLCCK=.05,INLCCK=5C \$\$ STAGE 5, REVERSE THRUST UNTIL E=.05 IMCDE=-1 \$\$ SWITCH TO RECTANGULAR COORDINATES

The sixth-stage mass is computed by the card:

```
$D=50.RMASS(6)=MASS $$ COMPUTE MASS FOR STAGE 6.
```

In addition, output is desired at 10-minute intervals, which may be accomplished with the card:

```
$D=6,MODCUT=2,DELMAX=600,IMODE=-2 $$ OUTPUT EVERY 10 MINUTES FOR STAGE 6.
```

The last step output is reproduced as follows:

```
STEP= 181. + 18. ECCENTRICITY= 5.00567108E-02 OMEGA=-2.49327761
TIME= 114425.91 SEMILATUS R.= 2127902.28 TRU A=-3.08236283
JDAY= 2437642.1157 MEAN ANOMALY=-3.07620674 NODE=-1.65888368
ALFA= 180.00000 PATH ANGLE=-0.17870317 INCL= 0.77642872
EARTH R= 3.7524622E C8 0.099065 0.940877 0.323939
JUPITE R= 8.4530520E 11 0.579731 -0.742897 -0.334688
```

```
V= 1441.76900 R= 2239823.88 REFER=MOON OR811 1
VX= 859.314598 X= 884837.336 RMASS= 3004.18549
VY= 868.288918 Y=-1786946.89 REVS.= 0.82317527
VZ= 765.735352 Z= 1020144.20 DELT= 462.857422
SUN R= 1.4697769E 11 -0.240123 -0.890528 -0.386394
```

REFERENCES

- l. Vienop, Edna, and Brady, Joseph L.: The Themis Code: An Astronomical Numerical Integration Program for the IBM 704. UCRL 5242, Radiation Lab., Univ. Calif., May 20, 1958.
- 2. Holdridge, D. B.: Space Trajectories Program for the IBM 7090 Computer. TR 32-223, Jet Prop. Lab., C.I.T., Mar. 2, 1962.
- 3. Technical Staff of Radiation, Inc., ed.: Space Trajectories. Academic Press, Inc., 1960.
- 4. Strack, William C., Dobson, Wilbur F., and Huff, Vearl N.: The N-Body Code A General FORTRAN Code for Solution of Problems in Space Mechanics by Numerical Methods. NASA TN D-1455, 1963.
- 5. Wilson, Raymond H., Jr.: A Gravitational Force Function for the Earth Representing All Deviations From a Spherical Geoid. Franklin Inst. Jour., vol. 268, no. 5, Nov. 1959, pp. 378-387.
- 6. Baker, R. M. L., Jr., et al.: Efficient Precision Orbit Computation Techniques. ARS Jour., vol. 30, no. 8, Aug. 1960, pp. 740-747.
- 7. Dobson, Wilbur F., Huff, Vearl N., and Zimmerman, Arthur V.: Elements and Parameters of the Osculating Orbit and Their Derivatives. NASA TN D-1106, 1962.
- 8. Turner, Don N., and Huff, Vearl N.: An Input Routine Using Arithmetic Statements for the IBM 704 Digital Computer. NASA TN D-1092. 1961.
- 9. Clarke, V. C., Jr.: Constants and Related Data Used in Trajectory Calculations at the Jet Propulsion Laboratory. TR 32-273, Jet Prop. Lab., C.I.T., May 1962.
- 10. Dobson, Wilbur F., Mackay, John S., and Huff, Vearl N.: Starting Conditions for Nonoscillatory Low-Thrust Planet-Escape Trajectories. NASA TN D-1410, 1962.
- 11. Kopal, Zdenek: Numerical Analysis. John Wiley & Sons, Inc., 1955.
- 12. Weber, Richard J., Pauson, Werner M., and Burley, Richard R.: Lunar Trajectories. NASA TN D-866, 1961.

TABLE I. - ORBIT ELEMENTS AND OTHER DATA FOR ELLIPSE EPHEMERIDES

[Epoch: Sept. 23, 1960; Julian day, 2437 200.5; mean equinox and equator, 1950.0.]

Name	Refer- ence	Mass, sun mass units	Radius of influence sphere,	Semilatus rectum, AU	Eccentricity	Argument of pericenter, radians	Longitude of ascend- ing node, radians	Inclination, radians	Julian day of perihelion passage	Fractional day of perihelion passage	Period, mean solar days
Mercury	Sun	1/6,120,000	10 ⁸	0.3707315	0.205627	1.1679154	0.1896133	0.49924366	2437 163	0.283386	87.969252
Venus	Sun	1/466,645	6.14×10 ⁸	.72329863	.006792	2.1567353	.13931743	.42703751	2437 132	.682782	224.70087
Mars	Sun	1/3,088,000	5.78×10 ⁸	1.5104078	.0 93369	5.7966845	.058500499	.4310002	2437 081	.09531	686.97964
Jupiter	Sun	1/1047.39	4.81×10 ¹⁰	5.1913995	.0486288	.1765935	.056971884	.40587194	2433 964	.6664	4333.7153
Saturn	Sun	1/3500	5.46×10 ¹⁰	9.5554288	.0509895	1.4938359	.10416467	.39404007	2431 246	.5163	10,829.478
Uranus	Sun	1/22,869	5.17×10 ¹⁰	19.100903	.0457866	2.9848628	.032257032	.41321621	2409 019	.272	30,587.016
Neptune	Sun	1/18,889	8.61×10 ¹⁰	30.197622	.0045616	.3302296	.061416599	.38947933	2404 118	.842	60,612.183
Pluto	Sun	1/400,000	3.81×10 ¹⁰	36.969138	.2502358	3.1999771	.7663 0 286	.41231716	1639 376	.44	904,658.99
Sun	Earth	1.0	1020	.99972025	.016716	4.923277	o	.4092062	2436 937.1	0	365.256

TABLE II. - PROGRAM CONTROL PARAMETERS

Control variables	COMMON location	Possible values	Setting	Description of use
ASYMPT	A(7)	0.0 or 1.0	Internal	Normally equal to 0.0; set equal to 1.0 in SUBROUTINE EQUATE when Kepler's equation fails to converge for e > 1, and then used to control branching in NBODY for IMODE = 3.
ATMN	A(21)	Any ALF coded body name	Input	Contains name of body that is to have an atmosphere. Causes SUBROUTINE AERO to be called in SUBROUTINE EQUATE if object is within that atmosphere.
CLEAR	C(3)	Any value	Input	If CLEAR = 0, SUBROUTINE STDATA is called from MAIN: if CLEAR \neq 0, SUBROUTINE STDATA is bypassed. STDATA clears the A, XPRIM, and XPRIMB arrays.
CONSTU	A(32)	>0, ~10 ⁻⁸ to ~10 ⁻² radian	STDATA: 10-6 input	Controls branching in SUBROUTINE EQUATE, which determines how accurate eccentric anomaly will be computed by Kepler's equation.
CONSU	A(31)	>0, ~10 ⁻⁸ to ~10 ⁻² radian	STDATA: 10-6 input	Similar to CONSTU except that it is used in SUBROUTINE ELIPSE for perturbing bodies instead of object.
DELMAX	A(19)	Any number of seconds	Input	If MODOUT = 2 or 3, output is given only at intervals of DELMAX.
END	A(5)	Any number	Input	Used when LOOKX \neq 0. After the condition C(LOOKX) = XLOOK is met, control is sent to main program if END < 0, to complete the stage in process if END = 0, or begin integrating the next stage if END > 0.
eref	A(13)	Any number	STDATA: 10-6 input	Desired error value. Error control predicts step size such that E2 ~ EREF. If EREF < 0, it will be treated as +EREF; however, error data will be recorded and printed.
ERLIMT	A(14)	Any plus number	STDATA: 3×10-6 input	Maximum error value that allows step in question to be passed as good step. If E2 > ERLIMT, step is recomputed with smaller step size.
ETOL	A(30)	Positive number of order 0.01	STDATA: 0.01 input	If eccentricity falls in region ltETOL and integration is in orbit elements, integration mode is switched to temporary rectangular until eccentricity falls outside this region.
FILE	B(22)	Any plus integer	Internal	Set equal to 10.0 in SUBROUTINE ORDER if tape data is used to determine positions, velocities, and attractions of perturbing bodies. Then read as file number of tape 3. See TFILE.
ICC(10)	A(153)	Any fixed-point integer	Input internal	Index of independent variable in COEFN array used in FUNCTION QUAD. For each set of coefficients there is an ICC. They are set at input time and are reset each time QUAD is called.
IMODE	A(1)	1,2,3,4,-1,-2,-3,-4 (fixed point)	STDATA: 1 input internal	Indicates integration mode. Must agree with input data (if input data is rectangular IMODE should equal 2 or -2). Values indicate:
				1 = orbit elements -1 = orbit elements, change to rectangular 2 = rectangular variables -2 = rectangular, change to orbit elements 3 = temporary rectangular -4 = Earth spherical change to orbit elements to rectangular
LOOKX	A(8)	Fixed-point integer	Input	The program searches for the value $C(LOOKX) = XLOOK$ if $LOOKX \neq 0$. The search beging when $C(LOOKSW) \geq SWLOOK$. If and when $C(LOOK) = XLOOK$ output occurs and program control is directed by the parameter END.
LOOKSW	A(9)	Fixed-point integer	STDATA: 711 input	The search for $C(LOOKX) = XLOOK$ does not begin until $C(LOOKSW) \ge SWLOOK$. Typically time is the deciding parameter; therefore, STDATA sets LOOKSW = 711.
MODOUT	A(20)	1,2,3,4 (fixed point)	STDATA: 4 input internal	MODOUT = 1 Output every nth step (n = STEPS) until TIME = TMIN, then shift to mode 2 = 2 Output at time intervals of DELMAX until TIME = TMAX. = 3 Output at time intervals of DELMAX until TIME = TMIN, then shift to mode = 4 Output every nth step until TIME = TMAX.
NSAVE	C(4)	0,1,2,,10 (fixed point)	Input	If the initial data (arrays A, XPRIM, and XPRIME) for the nth stage is to be saved, i will occur just prior to the nth stage integration if NSAVE = NSTAGE, the stage index. NSAVE = 0 is ignored (no stage data will be saved).
OBLATN	A(40)	Any ALF coded body name	Input	If oblateness effects are to be considered, loading a body name will cause SUBROUTINE OBLATE to be called from SUBROUTINE EQUATE when OBLATN matches reference body.
RECALL	0(5)	Any value	Input	If RECALL \$\neq\$ 0.0, "starting" data will be restored from D array in MAIN. See NSAVE.
SIGNAL	B(31)	0.0 or 1.0	Internal	If and when C(LOCKX) = XLOCK, SIGNAL is set to 1.0 for use in any of the subroutines EXTRAS, EXTRA, STAGE, and so forth. EXTRA resets SIGNAL = 0.
STEPMX	A(16)	Any plus number	STDATA: 100.0 input	If (STEPGO + STEPNO) ≥ STEPMX, problem terminates.
STEPS	A(17)	Any plus number	STDATA: 1.0 input	Used when MODOUT = 1 or 4. Output will occur at every nth step where n = STEPS.
SWLOOK	A(10)	Any number	Input	Used when LOOKX \neq 0. Value of the parameter C(LOOKSW) to be equaled or exceeded before the search for C(LOOK) = XLOOK begins.
TAPE 3	C(2)	0.0 or 3.0	Input internal	If "working" ephemeris tape is to be made, TAPE 3 must be set equal to zero through input contained in SUBROUTINE TAPE. If no tape is made, or after tape is made, TAPE 3 is set to 3.0.
TFILE	A(6)	Any plus integer	STDATA: 1.0	Selects which file of "working" ephemeris tape is to be used. ORDER positions tape i correct position by matching desired file number (TFILE) with code word (FILE) written at beginning of each file on tape.
TMAX	B(4)	Any number in seconds	Internal	When time = TMAX a stage is terminated.
TMIN	A(18)	Any number in seconds	Input	When time = TMIN output mode is changed. See MODOUT.
TRSFER	B(8)	0.0 or 1.0	Internal	Normally TRSFER = 0.0, but when origin is being translated, TRSFER = 1.0, which caus SUBROUTINES EPHMRS and ELIPSE to compute velocities as well as positions.
TTEST	A(54)	Any number in seconds	Internal	When integration mode is changed to temporary rectangular, TTEST is set as time at which program will begin checking for return to orbit elements. See NBODY part 7D.
XLOOK	A(12)	Any number	Input	The value of C(LOOKX) that is searched for as the trajectory integration proceeds providing LOOKX \neq 0.

TABLE III. - BASIC OUTPUT FORMAT

(a) Sample output

	STEP= 0. + 0. ECCENTRICITY= 1.00000000 OMEGA=-2.64801353 TIME= 0. SEMILATUS R.= 1.93844640E-09 TRU A= 3.14159262 JDAY= 2437640.8350 MEAN ANOMALY= 0. NODE= 2.02516600 ALFA= 0. PATH ANGLE= 89.920976 INCL= 1.57079409 ALT.= 0.1875000 R PATH ANGLE= 89.920976 DRAG= 4.99665982E-03
	SUN R= 1.4728028E 11 -0.261730 -0.885466 -0.383989
1	V= 9.99999976E-02 R= 6373346.50
ļ	VX= 3.86224359E-02 X=-2463371.37 RMASS= 150000.000
	VY= 7.90702742E-02 Y= 5043168.50
١	VZ= 4.74994606E-02 Z= 3019569.50 DELT= 6.00000000
	VR= 9.99999976E-O2 Q= 1.49946962
1	MOON R= 3.9293912E 08 -0.387660 -0.874846 -0.290456
- 1	·

(b) Parameter identification

	(b) Parameter identification
Output format mnemonic	Identification
STEP	Count of total number of successful integration steps to left of plus sign and count of failures on right
TIME	Time since beginning of integration process, t, sec
JDAY	Current Julian date
ECCENTRICITY	Osculating orbit eccentricity, e
SEMILATUS R.	Semilatus rectum of osculating orbit, p, m
MEAN ANOMALY	Mean anomaly of osculating orbit, M
OMEGA	Argument of pericenter, w, radians
TRU A	True anomaly of osculating orbit, v, radians
NODE	Equatorial longitude of ascending node of osculating orbit, Ω , radians
INCL	Orbit inclination referred to mean equator and equinox of 1950.0, i, radians
ALFA	Angle between thrust and velocity, a, deg
PATH ANGLE	Angle between path and local horizontal, deg
V, VX, VY, VZ	Velocity and its x,y,z components, V, m/sec
R, X, Y, Z	Radius and its x,y,z components, r, m
REFER	Name of reference body, followed by integration mode, IMODE
RMASS	Vehicle mass, m, kg
REVS.	Revolutions past x-axis
DELT	Step size for current step, h, sec
ALT.	Altitude above Earth, m
R PATH ANGLE	Relative path angle, relative to Earth, deg
DRAG	Total drag force, D, newtons
VR	Velocity relative to rotating reference body
G	Total Earth g's acting on longitudinal axis of missile
PUSH	Thrust force, newtons
BNAME(1)R	Vehicle to perturbing body distance, r ₁ , plus direction cosines

THE COMMON ARRAY C IS ARRANGED IN SUBARRAYS AS FOLLOWS.

C(11) - C(710) = A

((Those parameters whose initial values must be identical on different flights if the trajectories are to be identical)
((Most significant half of the double-precision integration variables)

C(911) - C(1110) = XPRIMB (Least significant half of the double-precision integration variables)

C(1111) - C(1910) = B (Those parameters whose initial values need not be identical on different flights if the trajectories are to be identical)
((Table required by the input routine to locate input data)

C(2111) - C(3210) = D (Array of initial values for A,XPRIM, and XPRIMB if restart facility is being used)

ALLOCATION FOR THE ARRAY A

1 11 21 31 41 51	IMODE XTOL ATMN CONSU STEPGO AK	NEQ XLOCK RATM CONSTU STEPNO	NSTAGE EREF DTOFFJ LAT DEL	ALT ERLIMT TOFFT LONG SPD TTEST	END TKICK RE AZI TTOL AW	TFILE STEPMX GBLATJ ELEV GASFAC	ASYMPT STEPS OBLATD VEL SQRDK1	LOOKX TMIN OBLATH LSTAGE REVS	LOOKSW DELMAX AU ROTATE ALPHA U	SWLOOK MODOUT ETOL OBLATN BETA IND
61	-	_	TB	_	-	_	_	_	-	IND.
71	_		RMASS1	_	-	_	-	_	_	_
81	-	-	FLOW1	-	_	-	_	_	_	-
91	-	-	SIMPI	-	-	_	-	_	_	_
101	-	-	AEXITI	-	-	-	-	-	-	-
111	-	-	AREA1	-		-	_	_	_	-
121	-	-	IDENT	-	- '	-	-	-	-	-
131	-	-	DELTI	-	-	-	-	_	-	_
141	-	-	BODYCD	-	-	-	-	-	-	-
151	_	-	100	-	-	-	-	-	-	-
161 171	-	_	CDI	CL	CD	PUSH	ELIPS	-	-	-
181	_	_	-	-	_	-	-	-	-	-
191	_	-	-	_	_	_	-	-	-	-
201	_	_	_	_	_	_	-	-	-	-
211	-	_	_	_	_	_	_	-	-	-
221	_	_	-	-	_	_	_	_	-	-
231	-	-	-	_	_	-	_	_	_	_
241	-	-	_	-	· <u>-</u>	_	_	_	_	_
251	-	-	-	-	_	-	-	-	-	_
261	-	-	-	-	_	-	-	_	-	_
271	-	-	-	-	-	-	-	-	-	
281	-	-	-	-	-	-	PNAME	-	-	-
291	-	-	-	-	-	-	-	-	-	-
301	-	-	-	-	-	-	-	, -	-	-
311 321	_	-	-	-	-	-	REFER	· -	-	-
331	-	_	_	_	_	-	_	-	-	-
341	_	-	-	-	-	_	AMASS	_	_	
351	-	_	_	_	_	_	- WUW22	_	_	-
361	_	_	_	_	_	-		-	_	_
371	_	_	_	-	-	-	RCRIT	_	_	_
381	_	_	-	-	_	_	-	_	_	_
391	-	-	-	-	-	_	-	-	-	_
401	-	-	-	-	_	-	COEFN	-	-	_
411	-	-	-	- '	-	-	-	-	-	-
421	-	-	-	-	-	-	-	-	-	-
431 441	_	-	-	-	-	-	-	-	-	-
451	_	_	-	-		-	-	_	-	-
461	_	_	_	_	_	_	_	_	-	-
471	_	_	_	_	_	_	-	_	_	_
481	-	_		-	_	-	_	-	_	-
491	-	-	-	-	-	_	_	-		_
501	-	-	-	-	-	-	_	-	_	_
511	-	_	-	-	-	-	-	-	-	-
521	-	-	-	-	-	-	-	-	-	-
531	-	-	-	-	-	-	-	-	-	-
541	-	-	-	-	_	-	-	-	-	-
551	-	-	-	-	-	-	_	-	_	-
561	-	-	-	-	-	-	_	-	-	-
571 581	-	-	-	_	-	_	-	-	-	-
591	_	_	-		-	-	-	-	-	-
601	SWITCH	_	-	-	-	-	_	-	INLUOK	NCASES
611	341100									
621										
631										
641										
651										
661										
671										
681 691										
071										

94

ALLOCATION FOR THE ARRAY 8

1 11	DELT A2	SIMP ACOEF1	AEXIT ACOEF2	TMAX ACCEF3	FLOW H2	AREA SPACES	RESQRD ERLOG	TRSFER Ł2	OLDDEL KSUB	A1 TABLT
21	REVOLV	FILE	RATMOS	NSTART	CHAMP	EPAR	EXMODE	EMONE	DNS11Y DONE	PSI Tru
31 41	SIGNAL NBODYS	MBOCYS	PRESS ZN	TM QMAX	SQRUK RSQRD	GK2M Sinalf	GKM SINBET	VMACH COSALF	COSBET	PMAGN
51	INDERR	SINTRU	COSTRU	SINCL	CINCL	SINV	COSV	RATIO	Q	PAR
61	-		COMPA	Ξ	OBLAT	FORCE	-	- QX	DRAG	-
71 81	RADIAL	XIFT CIRCUM	ZORMAL	P	UBLAI	_	AMC	- UX	-	ĀM
91	AMSCRD	VX	VY	νz	٧	VSQRD	VATM	-	_	VO
101	VÇSÇRD	R	-	-	-	-	-	-	-	XWHOLE
111 121	-	- BNAME	-	-	_	ORBELS	-	-	_	- EFMRS
131	_	- DINAPE	_	_	_	-	BMASS	_	_	-
141	-	-	-	-	RBCRIT	-	-		-	_
151	-	-	BODYL	-	<u>-</u>	_	-	-	-	-
161 171	-	· <u>-</u>	M1 T	· <u>-</u>	_	_	IBODY	-	-	LDET
181	-	_	_	_	NEFMRS	_	-	_	-	_
191	-	-	RB	-	-	-	-	-	-	- "
201 211	-	-	-	-	_	-	XP	-	_	-
221	_	_	-	-	_	_	^r	Ξ	<u> </u>	_
231	-	-	-	_	-	-	-	-	-	-
241	VEFM	_	-	-	-	-	-	-	-	_
251 261	-	· -	_	_	TDATA	-	_	_	-	-
271	-	_	_	_	-	_	_	-	_	_
281	-	-	-	-	-	-	-	-	_	-
291	-	-	-	-	-	-	-	-	-	-
301 311	-	_	-	-	-	_	_	_	-	_
321	-	-	_	_	_	-	_	_	-	_
331	-	_	-	-	-	-	-	**	-	-
341	-	-	-	-	-	-	-	-	-	-
351	-	_	. ~	_	-	_	-	-	-	-
361	_	-	_	_	_	_	_	_	_	_
361 371	-	-	-	-	-	-	-	_	_	-
371 381	-	-	_	- -	-	-	, -	-		- - -
371 381 391	- PUSHO	- - EXITA		- - -	- -	- - -	, <u> </u>	- - PSIR	- - - - - - - - -	- - RETURN
371 381 391 401	PUSHO X	-	- RAMC -	- - - -	- - -	-	, <u> </u>	PSIR		
371 381 391	- PUSHO	EXITA	_	-	-	-		PSIR		- - RETURN - -
371 381 391 401 411 421 431	PUSHO X -	-	- RAMC -	-		-		PSIR		
371 381 391 401 411 421 431 441	PUSHO X - -	-	- RAMC -			-		PSIR		
371 381 391 401 411 421 431 441 451	PUSHO X -	-	- RAMC -			-		PSIR		
371 381 391 401 411 421 431 441 451 461 471	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 391 401 411 421 431 441 451 461 471 481	PUSHO X 	-	- RAMC -			_		PSIR		
371 381 391 401 411 421 431 441 451 461 471 481	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 391 401 411 421 431 441 451 461 471 481 501	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 391 401 421 431 451 461 471 481 501 501	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 391 401 421 431 441 451 461 471 481 501 511 521	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 391 401 421 431 441 461 471 481 501 511 521 531	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 391 401 421 431 441 451 461 471 481 501 511 521	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 391 401 421 431 451 461 471 501 521 531 551 571	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 391 411 421 431 451 461 481 501 521 531 561 581	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 401 411 421 441 451 471 481 501 531 541 571 581	PUSHO X 	-	- RAMC -			- -		PSIR		
371 381 401 411 421 441 461 471 481 501 511 531 561 571 581 601	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 401 411 431 441 451 461 471 511 521 551 571 581 601 621	PUSHO X	-	- RAMC -			- -		PSIR		
371 381 401 411 431 441 461 471 491 501 531 551 561 561 611 631	PUSHO X	-	- RAMC -			-		PSIR		
371 381 401 411 431 441 451 461 471 511 521 551 571 581 601 621	PUSHO X	-	- RAMC -			-		PSIR		
371 381 401 411 431 441 451 461 471 481 551 561 561 561 661 661	PUSHO X	-	- RAMC -			-		PSIR		
371 381 401 421 431 451 451 451 501 5521 5581 601 621 631 651	PUSHO X	-	- RAMC -					PSIR		
371 381 401 411 431 441 451 461 471 481 551 561 561 561 661 661	PUSHO X	-	- RAMC -			-		PSIR		

ALLCCATION FOR THE ARRAY C

581	11 21 34 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 3 3 2 3 3 4 5 1 1 2 1 1 2 1 1 2 2 1 1 2 2 2 2 2 3 3 3 3	NCASE IMCCE XTOL ATMA CONSU STEPGO AK	TAPE3 NEQ XLOCK RATP CONSTU STÉPNO	CLEAR NSTAGE EREF DTOFFJ LAT DEL TB RMASS1 FLOW1 SIMP1 AEXIT1 ACEA1 IDENT DELT1 RODYCD ICC CDI	NSAVE ALT ERLIMT TOFFT LONG SPD TIEST	RECALL END TKICK RE AZI ITOL AH	IFILE STEPMX OBLAIJ FLEV GASFAC	ASYMPT STEPS OBLATO VEL SQROK1	LOOKX IMIN OBLATH LSTAGE REVS	LOOKSW DELMAX AU ROTATE ALPHA U	SWLODK MODOUT ETOL DOLAIN BETA IND
591	551 561	-	-	-	-	-	-	-	-	-	-
601 INLOOK NCA: 611 SWITCH 621 631 641 651 661 671 681 691 701	581			-	-	-	-	-	<u>-</u>	-	-
621 631 641 651 661 671 681 691	601		-	-	-			-		- INLOOK	NCASES
	621 631 641 651 661 671 681 691	•	-	-		_	_	_	-	_	-

TABLE IV. - Continued. COMMON ALLOCATION

721	_	_	_		_	_	_	_	_	-
							_		_	_
731	-	-	_	_	-	-	-	_	_	
741	_	-	_	_	_	_	_	-	-	-
751	_	_	_	_	_	_	_	-	_	-
								_	_	_
761	-	-	-	-	-	-	_	_		
771	-	_	_	-	-	-	-	-	-	-
781	-	-	-	_	_	_	_	_	-	-
791	_	_	_	_	-	_	_	_	_	_
	_	-	_	_					_	_
801	-	-	-	-		-	-	-	-	_
811	-	-	-	-	-		-	-	-	-
821	-	_	_	_	_	_	-	-	-	-
831	_	_	_	_	_	_	_	_	_	_
	-	_	_	_						
841	-	_	-	_	-	-	_	-	-	-
851	-	-	_	_	-	_	-	-	-	-
861	_	_	-	_	_	-	_	_	-	-
	_	_	_	_	_	_	_	_	_	_
871	_	_	=	=						
881	-	-	-	-	-	-	-	-	_	_
891	-	-	_	_	_	~	_	_	_	-
901	- .	_	_	_	_	_	-	-	_	-
	XPRIMB		_		_	_	_	_	_	_
911	XPKIMD	-	-	-	-	-				
921	-	-	-	-	-	-	-	-	-	-
931	-	-	-	-	-	-	-	-	-	-
941	_	_	_	-	_	-	-	-	-	-
951	_	_	_	_	_	_	_	_	-	_
	_	_	_	_						
961	-	-	-	-	-	-	-	-	-	-
971	-	_	-	-	-	_	-	-	-	-
981	-	_	-	_	<u>-</u> .	-	-	-	-	-
					_	_	_	_	_	_
991	-	-	_	-	_	_	_	_	_	_
1001	-	-	-	-	-		-	-	-	-
1011	-	-	-	-	-	-	-	_	-	-
1021	_	_	_	_	_	_	-	_	_	-
									_	_
1031	•	-	-	-	-	-	-	-	-	-
1041	-	_	-	-	-	-	-	-	-	-
1051	_	_	-	-	_	_	_	_	-	
1061	_	_	_	_	_	_	_	_	_	_
1071	-	-	-	-	-	-	-	-	-	_
1081	-	-	-	_	-	-	-	-	-	-
1091	-	_	-	-	-	_	_	_	-	-
1101	_	_	_	_	_	_	_	_	_	-
	-	-	ACVIT		E4 011	1001	DECOMB	100000	OLDES	
1111	DELT	SIMP	AEXIT	TMAX	FLOW	AREA	RESURD	IKSFER	OLDUEL	A1
1121	A 2	ACCEF1	ACOEF2	ACCEF3	H2	SPACES	ERLOG	E2	KSU6	TABLI
1131	REVOLV	FILE	RATMOS	NSTART	CHAMP	EPAR	EXMODE	EMONE	DNSITY	PSI
1141	SIGNAL		PRESS	TM	SORDK	GK2M	GKM	VMACH	DONE	TRU
		MODENE			26/00					
1151	NBODYS	MBCCYS	ZN	QMAX	RSQRD	SINALF	SINBET	COSALF	COSBEI	PMAGN
1161	INDERR	SINTRU	COSTRU	SINCL	CINCL	SINV	COSV	RATIO	G .	PAR
1171	-	_	COMPA	_	-	FORCE	-	-	URAG	-
1181	_	XIFT	-	_	OBLAT	-	_	QX		_
				_	ODEAT			₩.^		_
1191	RADIAL	CIRCUM	ZORMAL	ρ_	-		AMC	-	-	AM
1201	AMSGRD	٧x	VY	٧Z	٧	VSQRD	VATM	- .	-	VQ
1211	VCSCRD	R	-	_	-	-	_	-	_	XWHOLE
	-		_	_	_	ORBELS	_	_	_	_
1221	_		-	-	_	UNDELS	_	_	-	-
1231	-	BNAME	-	-	-	-	-	-	-	EFMRS
1241	-	-	-	-	-	-	BMASS	-	-	-
1251	_	_	-	_	RBCRIT	-	_	_	_	_
	_	_	BODYL	_	_	_	_	_	_	_
1261	-	-		-	-	_	_	-	_	
1271	-	-	TIM	-	-	-		-	-	TDEL
1281	-	-	-	-	-	-	IBODY	-	-	-
1291	_	_	_	_	NEFMRS	-	-	_	-	-
	_	_	RB	_			_	_	_	_
1301	_	-	K D	-	-	-	-	-	_	-
1211	_	_	-	_	_	_	_	_	_	

TABLE IV. - Continued. COMMON ALLOCATION

1321		_	-	_	_	_	XP	_		
1331	-	_	_	-	-	_	<u> </u>	_	-	_
1341	-	-	-	_	_	_	-	_	_	_
1351	VEFM	-	-	_	_	_	_	_	_	_
1361	-	_	-	-	_	-	-	_	_	_
1371	-	-	-	-	ATAGT	-	-	_	_	_
1381	-	-	-		_	-	_	_	_	_
1391	-	-	-	-	-	_	_	-	_	_
1401	-	-	-	-	· -	-	_	-	-	_
1411	-	-	-	-	-	-	-	-	-	-
1421	-	-	-	-	-	-	-	-	-	-
1431	-	_	-	-	-	-	-	· -	-	-
1441	-	-	-	-	-	-	-	-	-	-
1451 1461	_	_	-	-	-	-	-	-	-	-
1471	_	_		-	-	-	-	-	-	-
1481	_	_	_		-	-	-	-	-	-
1491	_	_	_	_	_	-	-	-	-	-
1501	PUSHO	EXITA	RAMC		_	_	_	0010	-	-
1511	X	-	-	_	_	_		PSTR	OUTPOT	RETURN
1521	-	-	_	_	_	_	_	-	-	-
1531	-	_	_	-	_	_	_	_	_	-
1541	-	-	_	-	_	-	_	-	_ ·	_
1551	-	-	_	-	-	_	_	_	_	-
1561	-	-	→	-	-	_	_	_	_	_
1571	-	-	-	-	_	_	_	-	_	_
1581	-	-	-	-	-	-	-	-	-	-
1591	-	-	-	-	-	-	-	-	-	_
1601	-	-	-	-	_	-	-	-	-	-
1611	TOOX	-	-	-	-	-	-	-	-	-
1621	-	-	-	· -	-	=	-	-		-
1631	-	-	-	-	-	-	-	-	-	-
1641	-	-	-	-	-	-	7	-	-	-
1651 1661	-	-	-	-	-	-	-	-	-	-
1671	_	_	_	_	_	<u>-</u>	-	-	-	-
1681	-	_	_	-	_	_	_	-	-	-
1691	-	_	_	_	_	_	_	_	_	
1701	-	-	_	_	_	_	_	-	-	<u>-</u>
1711	XINC	_	_	-	-	_	_	_	-	
1721	-	-	~	-	-	_	-	_	_	_
1731	-	-	-	-	_	_	_	-	_	-
1741	-	-	-	+	_	-	_	_	_	_
1751	-	-	-	-	_	-	-	-	_	_'
1761	-	-		-		-	-	-	-	-
1771	-	-	-	-	-	-	-	-	-	-
1781	-	-		-	-	-	-	-	-	-
1791	-	-	-	-	-	-	-	-	-	-
1801	-	-	-	-	-	-	-	-	-	-
1811 1821										
1831										
1841										
1851										
1861										
1871										
1881										
1891										
1901										
1911	TABLE	_	_	-	_	-	_	_	_	_

TABLE IV. - Continued. COMMON ALLOCATION

1921 -	_	-	_	-	-	-	-	-	-
1931 -	_	-	-	-	-	-	-	-	-
1941 -	_	-	_	_	_	_	_	-	-
1951 -	-	-	-	-	-	-	-	-	-
1961 -	_	-	-	_	-	_	_	_	-
1971 -		_	-	_	_	_	_	_	- '.
1981 -	_	_	_	_	_	_	***	-	-
1991 -	_	_		_	_		_	_	
2001 -	_				_		_	_	_
2001 -	-				_	_	_	_	_
2011 -	_	-	_	_	_	_	_		
2021 -	-	-	-	_	-	-	-	-	_
2031 -	-	-	-	-	-	-	-	-	_
2041 -	-	-	-	-	-	- '	-	-	-
2051 -	-	-	-	-	-	-	-	-	-
2061 -	-	-	-	-	_	-	-	-	-
2071 -	-	-	-	-	-	_	-	-	-
2081 -	_	-	-	-	· -	-	-	-	-
2091 -	-	-	-	_	-	-	-	-	-
2101 -	_	_	-	-	-	***	_	-	-
2111 D	_	- '	_	-	_	-	_	_	-
2121 -	_	_	_	_	_	-	_	-	-
2131 -	_	_	-	_	_	-	_	_	_
2141 -	_	_	_		_	_	_	_	_
2151 -	_	_	_	_	_	_	_	_	_
2161 -	_			_		_	_	_	_
	-	_			_	_		_	_
2171 -	-	-	-		-	_			_
2181 -	-	-	-	_	-	-	_	-	-
2191 -	-	-	-	-	-	-	-	-	-
2201 -		-		-	-	-	-	-	-
2211 -	-	-	-			-	-	-	-
2221 -	-	-	-	-	-	-	-	-	-
223I - 2241 - 2251 -	-	-	-	-	-	-	-	-	-
2241 -	-	-	-	-	-	-	-	-	-
2251 -	-	-	-	_	_	-	_	-	-
2261 -	-	-	-	_	_	-	_	-	-
2271 -	-	_	_	_	-	-	-	_	_
2271 - 2281 -	_	_	-	-	-	-		-	-
2291 -		-	-	_	_	_	-	_	_
2291 - 2301 -	_	_	_	_	_	_	_	_	-
2311 -	_	_	_	_	_	_	_	_	_
2321 -	· -	_	_		_	_	_	<u> </u>	_
	_		<u> </u>			_	_	_	_
2331 - 2341 -	-	<u>-</u> .	_		_	_	_	_	_
	-	-	-	-	-	_	- -	_	_
2351 -	-	-	-	-	_	-		-	-
2361 -	-	-	- '	-	-	-	-	-	-
2371 -	-	-	-	_	-	-	-	-	-
2381 +	-	-	-	•	-	-	-		- ,
2391	-	-	-	-	-	. -	-	-	-
2401 -	-	-	-	-	-			-	-
2411 -	-	-	-	-	-	-	-	-	-
2421 -	_	-	-	-	-	-	-	-	_
2431	-	-	-	-	-	-	-	-	-
2441 -	-	_	_	_	~	-	_	-	_
2451 -	_	-	_	-	_	-	_	_	- ,
2461 -	_	_	_		-	_	-	_	-
2471 -	_	_	_	_	_	_	_	_	_
2481 -	_	_	_	_	_	_	_	~ -	_
2401 -	_	_	_	_	_	_	_	~	_
2491 ~ 2501 ~	-		-		-	_	_	_	_
2301	-	-	-	-	-	_	-	-	-
2511 -	-	-	-	-	-	-	-	-	-

2521	-	-	-	_	_	_	_	_		
2531	-	_	_	_	-	_	_			
2541 2551	_	_	_	_	_		_			
2341		_	-	-	-	-	-	-		
2551	-	-	-	-	-	-	-	-		
2561	-	-	_	-	_	_	•	_		
2571	-	-	-	_	-	_	_	_	_	
2581	_	-	_	_	_	_	_		-	
2591	_				_	-	_	-		
2371	_	_	-	-	-	-	-	-		
2601		-	-	-	-	-	-	-		
2611 2621	-	-	-	-	-	-	-	-		
2621	-	-	_	_	-	_	_	-		
2631	-	_	_	_	_	_				
2641	_			_		_	-			
2041	-	-	-	-	-	-	-	-		
2651	-	-	-	-	-	-	-	-		
2661	-	-	-	-	-	-	-	-		
2671	-	-	_	_	-	_	_	-		
2681	-	_	_	_	_	_				
2601		_	_		-	_	-	-	-	
2681 2691 2701		-	-	-	-	-	-	-		
2701	-	-		-	-	-	-	-	-	
2711	-	-	-	-	-	-	~	_		
2721	-	-	-	-	-	_	_	_	_	
2731			_	_	_	_				
2741	_	1.2			-	-	-	-		
2741		-	_	-	-	-	-	-		
2751 2761 2771	-	-	-	-	-	-	-	-		
2761	-	_	-	-	-	-	-	-		
2771	-		_	_	-	_	-	_	_	
2781	-	_	_	_	-				-	
2701	_		-	_		-	-	-		
2791		-		-	-	. -	-	-		
2801	-	-	-	-	-	-	-	-		
2811	-	-	-	_	-	_	_	-		
2821	-	_	 .	_		_	_	_	_	
2821 2831	_	_	_	_	-		_	_		
2031	_	_	_	-		-	-	-	-	
2841	-		-	-	-	-	-	-		
2851	-	-	-	-	-	-	-	-		
2861	-	-	-	-	-	-	_	-		
2871	_		-	_	 .	_	_	_		
2881	-	_	_	_			_	_		
2001	_		_	-	-	-	-	-		
2891		-	+	-	-	-	-	-		
2901 2911	-	-	-	-	-	-	-	-		
2911	-	-	-	-	-	-	-	-		
2921	-	_	-	_	-	_	_	_		
2931	-		_				_	_		
2731		_	_	_	-	-	-	-		
2941	-	-	-	-	-	-	-	-		
2951	-	-	-	-	-	-	_	-		
2961 2971 2981	-	_	-	_	-	_	-	_	_	
2971	_	-	-	_		<u> </u>	_	_		
2001	_	_	7 L	_			_		-	
2701		_		_	-	-	-	-		
2991	-	-	-	-	-	-	-	-		
3001	-	-	-	-		-	-	-		
3011	-	-	_	-	-	_	_	_		
3021	-	-	-	-	-	_	_	_	_	
3031	_	_	-	_	-			_	-	
3031 3041		_				-	-			
3041	-	-	-	-	-	-	-	-		
3051	-	-	_	-	-	-	-	-		
3061	-	-	_	-	_	-	-	_		
3071	-		_	_	_	_	_	_	_	
2001	_	_	_		_	_	·	=		
3081		-	_	-		-	-	-		
3091	-	-	-	-	-	-	-	-		
3091 3101 3111 3121	-	-	-	-	-	-	-	-		
3111		-	-	-	-	-	_	_	_	
3121	_	_	_	_	_	_		_	_	
3131	_	_		_	-	-		-		
2121	_	-	-	-	-	-	-	-	- <i>j</i> -	
3141	-	-	-	-	-	-	-	-		
3151	-	-	-	_	-	-	-	_		
3161	-	-	-	_	_	-	_	_	_ ,	
3171 3181 3191	_	_	_	_	_	_	_	_		
3101	_	_	_	-	-	-	-	-		
3101	_	-	-	-	-	-	-	-		
3191	-	~	-	-	-	-	-	-	-	
3201	-	-	-	-	-	_	-	_		

TABLE V. - ELEMENTS OF INTEGRATION VARIABLE ARRAY XPRIM

[XPRIM 9 to 100 are left for expansion.]

Integration variables	XPRIM								
	1	2	3	4	5	6	7	8	
Rectangular variables	Time		x-Component of velocity			x-Component of position		z-Component of position	
Orbit elements	Time	Mass	Eccentricity	_		Orbit in- clination	Mean anomaly	Semilatus rectum	

TABLE VI. - ASSUMED VALUES OF ASTRONOMICAL CONSTANTS

		, · · · · · · · · · · · · · · · · · · ·	
Constant	Assumed value	FORTRAN	COMMON
		name	location
		,	
Astronomical unit, m	1.49599×10 ¹¹	AU	A(29)
Gravitational constant of the Sun, AU3/day2			A(47)
Equatorial Earth radius, m	6378165	RE	A(25)
Earth oblateness coefficient, J	1.62345×10 ⁻³		A(26)
	7.875×10 ⁻⁶		
Earth oblateness coefficient, 9			A(27)
Earth oblateness coefficient, H	-5.75×10 ⁻⁶		A(28)
Earth radii per AU	4*26546512×10 ⁻⁵	ERTOAU	ac(3)
Day, sec	86400	SPD	A(44)
Mass, reciprocal sun mass units:	}		
Sun		AMASS(1)	A(347)
Mercury	6,120,000	AMASS(2)	A(348)
Venus	408,645	AMASS(3)	A(349)
Earth	332951.3	AMASS(4)	A(350)
Mars	3,088,000	AMASS(5)	A(351)
Jupiter	1047.39	AMASS(6)	A(352)
Saturn	3500₄ 0	AMASS(7)	A(353)
Uranus	22,869	AMASS(8)	A(354)
Neptune		AMASS(9)	A(355)
Pluto		AMASS(10)	A(356)
Moon	$AMASS(4) \times 81.375$		A(357)
Earth-Moon	AMASS(4) + AMASS(11)		A(358)
Sphere-of-influence radii, m:			11(0,50)
Sun	1.0×10 ²⁰	ר את את או	A(377)
Mercury		RCRIT(2)	A(378)
Venus	6.14×10 ⁸		A(379)
Earth	0 25/108	TOTATION	A(3/9) A(380)
Mars	9.25×10 ⁸ 5.78×10 ⁸	DODIM(E)	A(381)
Jupiter	4,81×1010	DODITION (C)	
Saturn	5, 46X1010		A(382)
•			A(383)
Uranus	5.17×10 ¹⁰	KCKTT(8)	A(384)
Neptune	8.61×10 ¹⁰		A(385)
Pluto	3.81×10 ¹⁰	RCRIT(10)	A(386)
Moon	1.60×108	RCRIT(11)	A(387)
<u>L_</u>	<u> </u>		

 $^{^{\}rm a}{\rm Location}$ relative to COMMON of SUBROUTINE TAPE (TAPE has a COMMON that is independent of all other subroutines).

TABLE VII. - LEWIS RESEARCH CENTER EPHEMERIS TAPE DATA

[The beginning date of all bodies except Mars is 2437 200.5 or Oct. 23, 1960. The beginning date for Mars is 2437 202.5 or Oct. 25, 1960.]

Body	Source	End date		Number of fits	Average, days/fit	Average, deg/fit	Source checked	Average error	Maximum error
		Gregorian	Julian				against		
Venus	Themis	Oct. 31, 2000	2451 848.5	968	15	24	JPL	1.7	7.3
Earth-Moon barycenter		Oct. 31, 2000	2451 848.5	962	15	15	JPL	1.8	9.5
Sun	¥	Nov. 24, 2000	2 4 51 872 . 5	1821	8	8	JPL Themis	5.0 .06	21.0 3.0
Moon	JPL	Nov. 26, 1970	2440 916.5	1851	2	26	JPL	.14	9.5
Mars	JPL	July 26, 1998	2451 020.5	315	44	23		1.1	7.2
Jupiter	Themis	March 2, 2060	2473 52 0. 5	110	330	27		1.6	9.5
Saturn				44	825	27		1.5	8.6
Uranus				30	1211	14		.95	6.5
Neptune				31	1172	7		.52	3.2
Pluto	🔻	*	*	33	1101	4	Themis	.41	3.2

The error in the x-component of position, with similar equations for the y- and z-components, is given by $e_x = [(x^* - x)/R]10^8$ where $x^* = merged$ ephemeris position component; x = check source position component; $R^2 = x^2 + y^2 + z^2$.

Figure 1. - Block diagram of principal subprograms and program exits. Numbers on the block diagram are the FORTRAN calling statement numbers. A program may call only those programs located at a lower level and connected by a line. Logic decisions are not shown.

Figure 2. - Flow diagram of the main program and SUBROUTINE STAGE.

Figure 3. - Time histories of several trajectory parameters for Example I.

Figure 4. - Angle-of-attack schedule and variation of drag and lift coefficients with Mach number.