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I. Introduction

The task of providing an adequate coverage for a space mission of
the extent of the Apollo project {mmediately lays bare the striking defi-
ciences of the existing tracking and ordit prediction programs in use to-
day. The vary nature of the Apollo mission, with its neer earth circular
parking orbit, its highly elliptic translunar trajectory, its lunar capture,
Tendesvous and earth retwn legs, and, finally, its critical re-entry phase,
all require individual sttention. Perhaps the most stringent requirement
in the entire mission is the need for precision predictions of the orbit
over its entire 7.1k day period. This requirement alone is sufficient to
eliminate most programs [resently using the conventional Cowell's i-tegration
grocedure, In addition, the effect of small gﬁanges over large prediction
time arcs calls for a choice of differential correction parameters which do
not 1lose information due to their secular character, Since the information
content of the observation ower different portions of the trajectories will
Yary greatly vith the vehicle position, it also becomes necessary to absord
and utilize information coming from inhomogeneous observations of many
different types, such as range, range rate, azimuth and elevation, optical
and other instrument readings made in mid-course, Furthermore, the necd
for real time decision processes requires the abdbility for rapidly carrying
out iteration procedures vhich converge rapidly. In particular, the con-
ventional least squaro techniques nov in common use may be taxed beyond
their limits of linear assumptions, Thus, the requirements are to develop
a general purpose real time tracking and orbit prediction program with the

following features:
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1. A rapid, dasic precision orbit prediction program with high
numerical accuracy not subject to numerical round off error over long
time periods.

2, The capsbility of hnndling.circulu', elliptical and hyperbolic
orbits with equal flexibility under the action of perturbation forces,
Special treatment will be necessary to handle the extremely rare cases
of exactly rectilirsar and parabolic cases,

3. The ability to absord and utilize inhomogeneous cbservations
from many different sources vith equal facility. In particular, this re-
Quires forming matrices of partial derivatives of the observations wvith
respect to the variational parameters rapidly,

he A t.heom:.culiy sound statistical /fmcess for obtairning in.
formation from observations rapidly wi t requiring lerge stretches of
observations over long time arcs which unduly tex the linear assumption
of the least square techniques.

5, A program combining these features is a necessary prerequisite
for adequate ground conroée of the Apoll.o mission and moreover provides

a ready and exieting tracxing program for almost any existing space mission.



IX. Notation
R Vehicle position vector
Magnitude of position vector, r . (2 4+ ¥y 4 z"').
Perbrrbation scoslersticn vector
B Mass paremster
Yo Velocity of vehicle
4 Ferturbation displacement vector
A"t, <t o tt Present time, initial time, t:lne.ot rocti.ﬁ.eation, respectively
a Seai-major axis
Rouventricity of orbit
Inclination of orbital plane
Right ascension of ascending node /
[ Argment of perigee
P Q Unit vectors in the ordit p.h.ne directed, respectively, toward
perigee and 90° from porigee in the directiom of moticn, as
used in Section ITI. |
Pes By Py ca-pmt- of vector P

qx.q,,q‘ Components of vector Q

,

e > 8

Eccentric ancamly as used in Section ITI
E Elevation angle as used in S8ection VIII
n Mean motion as used in Sectiom III

L ]
d R .
o ° Rc>

£, e % ¢ Mmtoﬁmctimmﬁexeplerwoblm
9.:-:0 Incremental eccentric anomaly

-3



P, P(t)
Y(t)
M, M(t)

K(t)
A‘(t)’ y(t)

x
s Tg2 %

i, m, n

xlll’ ’jll’ zIll

Punctions of ¢ defined by Eq. (15) through (18)

Orbit parameter
Orbit variadble
Observed Quantity

‘Observation errors, uncorrelated witlh position errors

Covariance matrix cf the ¢'s
Covariance matrix of the orbit variables, SBection VI
Covariance matrix of the observations

_Matrix of partial derivatives of the observables vith

respect to the orbit variables
Opt/:lnm linear estimator for the orbit variahles

S/

/Ikvi-tim in the orbit variables and in the observatiams,

respectively.

Right ascension of the observation station meridian
Parameters related to polar cbleteness of earth, SBectiom VIII
8;1@1: of observation station above sea level

Range measured from observation -@t:lon

- Range rate measured from observation station

Geoq.etic latitude

Azimuth angle
Geocentric coordinates of obaervation station

Angalar rate of the earth's rotation

Minitrack direction cosines, Eq. (69)

Topocentric cocrdinates of the vehicle in the local harizem,
local vertical system with x''' positive sguth, y''' positive

east, and z''' positive upwvard along the local vertical.
- ,.‘ -
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Point trensformation mirix of the partial derivatives of tle
state variables with respect to the ardit parameters
State transition matrix of the ordit paremeters

- Matrix of partial derivatives of the cbservations with respect

%0 the axdit paremsters
mmawmum.
Deviations in the carbdit paremeters

Optimm linear estimator for the crbit pareseters
Uit vectors defined by Figure 3

_ Apparent range as defined in Section X

Redial distances to cbserver and vehicle, respectively, as
used in Section X

.M&RM1QM¢wmexofreMimuuudin

Section X

Veouam .M of light
mmiwmwmumm&nimx

Path angle of signal, see Pig. 7

Ground station sight m. Fig. 7

h"oqunq of emitted signal as used in Bection X

Difference in frequency between emit‘ed and received sigzals

Altitude of observer and of vehicle, respectively



Bubscripts
@
i attracting body
refer'ence body as used in Section IIX
Kspler, i.e., quantity odbtained from solution of two-body problem
value at initial time
valus at time of rectification

Superscript



III. Precision xdit Prediction

A thorough analysis camparing the variocus special perturbation
mummth prediction has been carried out *n
Beference 1. The general conclusions drawn in thig study msy be stated
simply as fallowst
| 1. Cowell's method, vhile simple to program, consumes larger
machine computing times and is subject to an unavoidable accumilaticn
of the round off error.

2. The eliminmation of truncation snd round off error can be
accomplished through either the variation of parametsrs or the Encke
method.

J¢ The preference for the Encke method over the variation of para-
asters cames from the simplicity of the equations and a great reduction
in cosputing tims. Thus, it is possible to generate & precision program
using the Encke method which vill produce a salution of the equations
of moticn as precisely as required in shorter computing time than any
other available method.

As is well known, the Encke method solves the best local two body
problen ar? I:tcgrstes the deviation fram this numinal trajectory. Since
the round off error occurs only in the integrated positiom, it is possible
to eliminrte this difficulty fram the answer by periodic orbit rectificatiom.




AMditinal Aifficulties of the conventional Encke method, such a3 numerical
inaccurecies for circular oarbits, etc., have been eliminated by using &
saluticn of the Kepler problem in terms of the initial position and velocit

vectors.
A. Equstions of Motion

In a Nevtonian system, the equatians of motion of a particle in the
éravitaticoal field of n attracting bodies and subject to other perturbing
accelsrutions such ag thrust, dreg, oblatensss, radiation Pressure, etc.

are given by
- 2 R
&--Z “1:?’2 Fy v
a1 15 ;
itm /'

=

These equations are put into observadble form by referring them to a
reference body c(= m). The equations of motion of the reference body are

n
R, = -z By ;_:_1_ ' (2)

i=]

itm el

Subtraction of Eq. (2) from Bn. (1) results in tk, equation of motiog
ip the veX!:-2o with respect to the re.urence body o

n
R se(u +u) Re o) 4 5."1_'.3.‘2 *)ﬂ’ (3)
ve v c = 1é1 1 > s .; J

1tm vl ci




B. of tion

If M. (3) is integrated directly by some numerical scheme, there
Tesults, after a mumber of step-by-step integrations, an accumulation of
error which lseds to inaccurate results. To avodd this loss in precisimm, it
is convenient to vrite Eg. (3) in the form

Re=R +¢ __ | (ba)

The velocity and displacament vectors can be written as
%-&#é . (l;b)

Ro=R +¢ / ‘ (4e)

The reference body is chosen 80 as to minimize the perturbatiouns, {.e.,
the ot in vhose sphere of influence the vehicle travels.
lhthilu{thodﬁis taken as '

ik--(;sVQuc)% (5)

»

Ae K| ¥ TR ma]
$mclu, +u) T3 ) uy - +)F
e ["‘-‘ kKl 1. m otal| oy
' itm -

Eq. (5) 18 sclved as described below; Bq. (€) 1s integrated numerically.
-9 .
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C. Solution of the Kepler Problem

l. Classical Solution
The tvo-bqdy orbit which results fror the solution of Eq. (5) with
the initlal conditioms:
R (to) = R,. (to) = R(to)
(7)

;‘k (to) = :&c(to) = 1.‘ (to)

may be represented by many different sets of "elements”, cuch as the sem‘-
major axis, a, the eccentricity, e, the inclination, 1, the right
ascension of ascending node, {, and the argument of perigee, ¥ and a time
variable such as the time of perigee passage or the time o nodal crossing,
to locate the vehicle in is ox.'bit. A difficulty arises with this particular
set .it orbits of zeroc or small inclinution are to be used, in vhich case
the right ascension of the ascending rode i: not defined or poorly defined.
Further, for orbits of zero or small eccentricity the argument of perigee
is 111 dei.'ined. The {’rst of these difficulties is removed by replacing 1,
4 and i. by two unit vectors P and Q in the plane of the motion, P directed
toward purigee and Q ut right angles to it.

The expresgions connecting i, @, and Q with P and Q are determined
by & transformation of the coordinete system of the orbital plane %o a

geocentric coordinate system by means of three successive rutaticns (Bulerian

angles). This results in:

- 10 -
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px-eo.nconw-linﬂunwcosi
py-oinﬂcoaw+cosnsinwcoei
Py "tlnwsini
qz--eunoinu-oinﬂeoowcooi ®
q,n-unnlinmfcuﬂcoom cos 1

.q.-eosooini

nto!-otthornthhowmtionotthetvo-bodyprobmugven
as a function of the eccentric ancamly by

RoxP+yiQ

® [ ) [ ] ’ (9)

Pyt ///
Vhere x5 3o Ky § are given by:

xk-.(coss-e).

yk-ch-ez sin E

rk-a(l-ecoax) Elliptic

ik--{%s- sin B




for the ellipse and -

: xk-a(coch!‘."-e)

Hypexrbolic
Yy = 8 e® - 1 sipn E
T,

k-.(:l.-ecoah!s‘) (9)

ik-- [1"—-—‘— sinh E

x

’ £ .-
i -L‘-Ll———elco.hg

k rk

for the hyperbola.
The eccentric anomaly E is obtained as a function of time from
E-esinE - (Eo - e sin Eo) = n (t - to) Elliptic

(20)
e sinh E - E - (e sinh Ey - Eg) = n (t - tg) Eyperbolic

The elements a, ¢, P, Q are given in/terms of the initial conditions by

(1)

- 12 -




Eliptic (11)

o= hs/a Byperbalic

. C
y.-‘-’-“,:’-‘ﬂ po-ji sin B Ro
—_— — . Elliptic
Jl--’ Q-'—:.E-ﬁ Ro*'-E (cos Eo - ¢) Ro
> ‘
P2l g -}‘—: sinh B Fo
lByperbolic

.Ie‘-l Q= L‘-:-:—-Eﬂ Ro - ;E(emh!o-e)fif

While this formulation of the solution of the tvo-body problea is
attractive from & computatiomal point of view, the scheme will have
a1fficulties with circular and pear circular orbits (since P and Q

.13 -
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are {11 defined), a somevhat paredoxial situation. However, these dif-
ficulties can be campletely removed by reformulating the solution to be
independent of the vectors P and Q and the eccentric anamly E,

2. Development of NASA Two Body Equations

It 18 noticed that Egs. (9) give R and ﬁk as linear combinatiocns
of P and Q and Eqs. (11) give P and Q in turn as linear combinatious of
Ro and }. It is clear, therefore, that R and ﬁk may be expressed as
linear crwbinations of Ro and &\

R=fR+gho
(12)

R =fH+gh

The functions £ and g can be expressed campletely in terms of the incre-
mental eccentric anamaly O = E - Eg and the terms e sin E; and e cos Eo,
vhich can be unambiguously expressed in terms of Ro and Bo The following

expressions for £ and g result:

“
f--i—[—céa9+1]+l
g-’u-‘rosme*%(-cos8+1)-'6—-.—’;1n—e*t°to (13)
f-(l-cosO) +§9cos9*.g__9 sin ©

ua
Elliptic
- - {ua
f=- TTo sin ©
8--§L—c030]+1 i
-l



f--;-;[icc-h.-l)]"l

fF mem et ey

{.-(me-l)+? cma.-ﬁﬂ—.mo (13)
~ia

ts g Simh o

=3 (con0-2+1 Byperbolic

A similar technique applied to Kepler's Egs. (10) results in the foIbu'ing

equation, vhich furnishes @ as a function of the time. /
n{teto) =9 - sin 0 + I8 g1n 8 + 22 (1 - cos 0) Elliptic
a r—“.
(1)
n(t-to) = sinh® - 6-10 g1nn 0 + 90 (cosh 6 - 1) Ryperbolic
-ua

If the function f,, f2, f3, ¢ are defined as

Ellipee Ryperbola
fi (8) =0 - gin @ = sinh 0 -0
f2 (8) =1« cos® = cosh 6 -1
ts (9) =sgin® = sinh 8
e (0) =cos ® = cosh ©

-15 -




The solution of the two-body problem for both elliptic and hyperbolic orbits
is given by':

- I8
f= ro f2+1

‘ 1
‘.-3 fx'f(t.to)

Is

-zn.#r +—h—
jal =% * a| s Jilal

' fa./p, 3 lal_
z Ja] rolx"l Ts
. =lsl

g = r f2+1

(16)

p(t-to) = ¢ *Fgl fa + 4 2

(alaT

D. NMumerical Procedures

It wvill be noted that the only distinction betwesn elliptic and
hyperbolic peths is campletely contained in the definitiomns of f;, f2,
fa, f4 (Egs. 15). If these functicns are considered as pover series
expansions in 62 as given in Egs. (17), then the switch fram elliptic
to hyperbolic cases is achieved by replacing -62 by 62, permitting
- campact and efficient programming.

Considering the first 1% terms of a power series expansion for
8in 6, cos @, sinh 6 apd cosh &, the power series expansion for f,

and f> may be expressed as:



‘1

| 82 -62 y =62

hi=0-stnle- 0 {((7mm+VEm*+ Y-+ V33
Elliptic
fao1-con§ e (g + 0 gy + ) oee s VG|
- (17)
o2 02 &
t,-sms-o-ﬁf(((m *1.)55'.-5;"1) "‘*1)3:2]
' Hyperbolic

. 82

fa = comn 0 - 1 = (((gelen + 1 izg ) oo * )

-

The use of Chebyshev polynomials allows the calculation of f, and
fa to the sams accuracy vith fewer terma. They are currently being
‘m—d.

In order to insure & minimum loss of accuracy, the method of
computation of £, , £2, f3, f4 will depend upon the magnitude ot 4,

The following tests are made tc determiz® the method of camputation

of £, f2, L3, Lee

rbalic Case
(a) 1r |9] < ¥,
Then f; ani f2 are computed by Egs. (17)
f3 =0 + 1,
fe =1+ 2>

(v) xr 6] >4,
!beneaputeto-ee
£s = 1/2 (o -%o)

€0 = 1/2 (fo + 1) (18

f; -fa-e
f2 = f4 -1



Elliptic Case
() 1¢ |8] <3
Then f; and f2 are computed by Egs. (17)
f3=0.g '
fe =1 - fg'
() 120> 15'
Then fq is computed by mears of Rand polynomials
faml- 2,
Also if |6 - sin 8] < | sin 6|
(or approximately if 6 < @)
then £, is computed by Egs. (17)
Ly =0 -1
Othervise if |@ - sin 6|>| sin 6| e
(or approximately if @ >4'O_Z°)
then fs is computed by means of Rand polynomials
f, =0 - fs’
A special problem arises in the computation of the terms inwvolved
in Egs. (6). due to the loss of accuracy in subtracting the nearly equal
terms involved. An expression based an the binocmial expansion removes
this difficulty. This method suppliés results more accurate than the
straightforverd computation for terms of the type of:

-5,
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ir ,R_-Bol is small coapared to r and is known more accurately than can
be computed by taking the difference between R and Ro. It should be em-
phasized that this is the case for the Encke term

—3 - ﬂ
Tve Ty

since Ne is camputed from
R = By * §

and § 1s saall and known more accurately than can be camputed from R~ R
Another example will be the sun's and planets' perturbations in
Earth ntemee and the moon's perturbations for a satellite within 3 radii

Yor example
m}%“%

Rve is small and knovn more accurately than can be computed from l\rs'aes'

of the Earth.

Special Computation of Perturbation Terms
R=s & + A

or finally:

-19 -




vhere

coghe i

R Nt I Rt 7L LEr: FEAr: s

The six terms are udequate for |u| < .i. Por larger values of u
straightforvard computation is adequate.




IV. Btatus of Orbit Leterminaticn Jrogram To Date.

The orbit dstermination program, cs it currently exists, ie con-
8idered to be the nucleus of vhat is needed for ground besed lunar missions.
In its final form the progrsa will be a complex, general purpose orbdbit
4. “wrmination program, requiring the use of a large computer of the IBM 7094
varisty. It is, however, conceivable that diminutive versions could be evolved
for special purposes, e¢.g., small computers at individual tracking stations,
sand/or spacecraft on-board cosguters. ,

The current program has been under development for slightly more
than one jear, but is based on experience gained by the personnel involved
since 1958, At that time, the Inurphn’eury tnjcctory Program, based on
& modified Encke method, was initiated. That program has been videly
sccepted and utilized by MSC and many Apollc bidders and contractors.

The Encke method is particularly well suited for computing tra-
Jectories involving the effect of mmall perturbations acting over long time
arcs, Since only the departure from the local two body orbit is integrated,
it is possible to compute small perturbations to the full digit accuracy
of the machine capacity. Moreover, round-off error due to a large number
of integration steps, can be effectively eliminated. The Encke method
divides the desired solution into two parts; the first, and larger, is an
algebraically determined exact solution of the local Kepler orbit; the
second, and smaller portion, is the integration of the deviations from
this Kepler orbit and coutains the accumulation of round-off error, By
suitably rectifying the Kepler orbit vhenever the integrated portion be-

comes oo large, it is possible to control the cound-off error,

- 2 -




In the process of vorking with the Interplanetary Trajectory Program,
the variation of perigee height for the Echo Satellite was computed.
(rig. 1). The cbserved variation, indicated by the circles, is compared
vith the computed variations for s pericd of more than 380 days. This
single computation carried out for 380 days shovws remarkable agreement
for e numerical program over such an extended number of ordbits. This vﬁ
carried out with a fairly crude approximation for the atmospheric model.
In another example, the inclination as a functioa of time (Fig. 2) in
orbit for IMP or Interplanetary Monitoring Probe, camputed by two different
programs is shown. One progrom develuped by Halphen and improved by
Dr. Musen, and the other the Interplanetary Trajectory Program. This satell
is in a highly eccentric orbit und is strongly perturbed by the Bun and the
Moon. Halphen's progrsa .s designed only for the study of the long period
terms of satellites. Again, Lhe interplunetary Program has shown its
ability to retain a rcusunable orbit for extcnded periods of tinme. However,
lhlphen's_ method is not useful in ccmputing rcal orbits, because the short
period terms arc negleclted. These recults indicate that the Interplanetary
Progrum would be quite capable of producing an orbit deterxination program.

The current program utilized many of the features of the earlier program

and is known as SPAT-DC fur Space Trajectory Differential Corrections.




SPAT-IC utilizes the following from the earlier programs:

A The modified BEncke method--but incarporating a nev two body
solution vhich elixinates the singularities due to zerd ec-
centricity and zero inclination. '

B. The sixth order backward difference integration (due to Cowell).

C. PFlanetary Ephemerides from the Naval Observatory, including
the 8un, Moon, Jupiter, Mars and Venus. The c’t.ber‘pla.uets can
be readily added.

The cwrrent progrea is described in Reference 2. It coutains a nev set
of differential correcticn paremeters vhich permits the utilizatiun of cbser-
vation data over long time arcs vithout encountering the danger of a singular
differential rrection matrix. Reference 3 shows that as more than coe
paramster depends on the energy, the carrection matrix approaches singdlarity
more repidly. Ry way of illustration, if one uses the components/é the
initial position and velocity vectors, Ro and ﬁo, as orbit difYerential
correctin parameters, the solution would not hold up for more than about
Mtolzccbiﬁ. The baast that cne can hope to do in this regard is to select
& set of variables in vhich cnly ane depends on the energy. Such a set is the
conventional orbit elsments (a, e, i, ©, 0O, t.p). However, these exhibit the
singularities of .ero eccentricity, zero inclination, etc. The present prcgram
eliminates tbese difficulties, but will require special treatment for the
Parabala and the rectilinear oarbit, but with these Lwo excepticns (which are
simply added to the existing prcgram) any orbit ihat aay occur can be handled.

-23.



To generste the correction matrix, the program integrates the
required pumber of separate trajectories simultanecusly. It can
‘accm wp to t\nnty v;n;ble-. A canventional least-squares
tachnique 1s then swployed to obtain.the nev initial Ro and Ro.




V. Variatiooal Parsmsters

To discuss the parameters und'tor variational equations in the .
Differential Correction Progrsm, it is first necessary to review i:rieny
the alge¥ra of rigid vector rotations. The significant parameters in-
volved in rotating vectars are shown in Figurer 3 snd 4. Small rotations
are considered, rormngnndl!, in such a manner as to keep thLe
scalar product equal to a constant,

!ﬁomormmwmuuonvm showva, The side viev is
ﬁorl.nofﬂn'aemngmngmd!uﬂnmle through which
Ry 1s rotated,

A coordinate system is defined such that e; is a unit vector
bormal to R, end in the plune of R, and Ry, e3 1s the unit vector in
the direction of R, and op 1s the Wit vector vhich defines the right
handed coordinate system, It can be shown that the nev vector R'; is
€iven by the equation in Figure 4.

The initial version of the NASA SPAT-DC Progrsm uses seven basic
variational paremsters. See Figure 5. The firit of these, 8q, 15 a
=1ll rotation of the position vector about the velocity wector with
the resultant positiocn axd velocity given by the aquations. This particular
mumhumemctofcmmthemtofpcngeeplm a small
changes in the inclination of the orbit and the right sscension of thé
ascending node.

The second variation, 8ae 1s & ssall rotation of the velocity about
the position with the resulting equations shova, and has the effect of changing
the inclination alore, pius amall changes in the argument of perigee and the

right ascension of the escending node.
- -




The third variational parsseter, §,s is a rotation of the poeition and
the velocity simultanequsly about the angular momentum. Thus, the entire ellipse
is rotated about its focus in its ovn plane. This has tre effect of changing
the argument of perigee, These Cirst three rotations leave the orbit invariant,
anl they only change its orientation in space. These effects are analogous
to changing the inclination, the srgument of perigee and the right ascension
‘of the ascending node, without, however, displaying the .inguhntiu of
these lattar parameters,

The fourth variation 8a¢, is a rotation of the position vector about
the angular acmentym vector,

The fifth yeremeter, §as is the sole parmsster vhich affects the
winth&htmuuchmeinmmimcnofthouni-njoroxis.
'This 1s dooe by also changing R and R 1n such & vay as to keep the eccentricity
equal to a constant,

The sixth variation, 8ag is a change in the magnitude of the position
vectar, As a result, there must be a corresponding change in the magnitude
of the velocity vector to kecp the energy invariant plus a rotation of the
Position vector sbout the angular mowentum vector to keep 4Gy invariant,

The seventh and final variable, 807 is & smell change in the drag co-
efficient. The partials are then obtained by integrating seven different
trajectories each corresponding to a perticular ac and the coordinates of the
computed position subtracted from the coordinates of the reference trajectory
and divided by the variation A2 in & secant spproximation to the derivatives.
These then are the basic constituents of the program.

To reiterate, the main advantages are that the paramsters are chosea
80 that culy cos dspends on ths energy and all singularities have been

eliminated,
.%-




VI. Differential Correction Methods

Since the orbit position and velocity i not directly observable, it is
necejsary to infer these variables from a sequence of observations which are
functions of the trejectory. In the conventional mcthods, a linear relationship
is assumed between the deviations in the observations and the corresponding
deviations in the orbit variables. Thus, an error in the orbit position will
correspond to some predictable error in the cbeervation. A large number of
observations are made, overdetermining the linsar system of equations. A
least square technique is used to obtain the best value of the orbit errors
to fit the known observaticn errors. B8ince the equations of motion are essentially
nonlinear, this linear rcgion becomes more and more constrictive about the
nominal trajectory the longe the time period over which tbe prediction is mcde.
Thus, the least squere )e/chnique often produces a recult, fitting data over a
long time arc, vhich is oﬁt.side f:he linee~ range. This produces problems in
ealvcrgence and consumes machipe time, Reducing the number of observations
to a shorter time arc helpsc aveid this difficulty. The weighted leart squarcs
is often used n this -nn?:-. However, a large number of observations is
alvays needcd in order to properly evauluate the effect of the random instrument
erxrors.

A. Minimum Variance :

The Schmidt-Kalman ‘“eferenceec 4, 5) minimum variance technique

avoids the difficulties mentioned above., This proccdure permits a camplete
optimm estimate of the orbit variables and the observation errors from each
single ocbservation. It has been adequately shown that the two methods converge
to the same answer eventually for the same total set of data (Reference 6).

Moreover, the variance technique alvays converges more rapidly since it requires
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less data at each stage than the least square procedure. At best, the leasst
square technique can.be said to be as good as the minimum variance.

It is vorth briefly stating some of the important formulae for the
minimum variance technique, The nominal trajectory may be obtained by
integrating a system of differential equations with certain unknown parameters,

X

1-ri(x:j.a,t.). (20)

S8ince these parameters are in general not observoble, it is
necessary t0 make observations whose predicted value is given as a function
of the trajectory coordinatss

y-y(x,t). ' / (21)

The deviation of a vehicle from its nominal instantaneous positiom,
due to a change in the orbit parameters, may be obtained from the linear term
of the Taylor series

3 x, (t)
8 x, (t) = B_XJ-E)T AxJ (o) . (22)

The matrix of partial derivatives (#) is called the state transition
ratrix and relates the expected deviation from the nominal trajectory at some time

(t) with the deviation at same previous time (t,)

b x (t) = # (¢, t)ax (t) . (23)
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An estimste of the predicted deviation in the observatior
s corresponding to the deviation from the nominal trajectory, including
. observation errors, is given by the linear equation

Ay (t) -Z%Jx:‘%%)ozi (t) +¢ (24)

The covariance matrix of the squares of the expected deviations
of the arbit variables mey dbe derived fram Eq. (23)

P(e) = #(e,e )P (t)e"(t,t) . (25)

This equation mrelicts the change in expected error in the arbit
as time increases. The covariance matrix of the cbservations as derived from
Eq. (24) 1s given by

Y(t) = MP () M + 62

It 1s required to find the optimum estimate of the relationship

(26)

between the orbit errors and the cbservation errors in a form inverse to 3q. (24).
The optimum estimate for the solution of Bq. (2%) from a single

observation is given

ax(t) « X(t)ay (t) . (29)



Estimating A y from its expected value in Eq. (24)
A:':(t)~!£(t)[lltsx-»c.l . (30)
The equivalent covarisnce squality for Eq. (30) is given by

PM = K (MPM 4+ ) (31)

In the above, it is assumed that the observaticn errors are
uncorrclated vith the orbit position errors. Solving the Eq. (31) for the
optimum ectimator K (t) and substituting into Eq. (29)

ax(t) = P(t)Me (t) Y2 (t)ay (t) (%)
/
P
This colution may te used to correct the orbit pocitioms et the
end of each obzerva%ion. Furthermore, the coviriance matrix of the orbit

errors may be rcduccd to a smaller uncertainty following each ocbservation
PP (t) = P" (¢) - P (¢) M* () Y2 (¢) M () P" (¢) . (33)
where P~ (t) is the value of P (t) obtained from Eq. (25)

Using the best prediction of the orbit pqsition, a nev trajectory
moy be imiegruted following each observation. In addition, a pev state
transition matrix and covariance matrix may be camputed to predict the next
observation. In this menner, the complste orbit information is accuxulated

about a nominal trajectory of higher and higher accuracy.




Be Veighted Least 8quares
The method of least squarcs may also be used Lo obtain a solution

of the devistions in the state variables corzesponding to the actual
deviations in the obcervstions. Equation (24) may de rewritten to relate
the davistions in the cbeervations to the devistions in the state variables
st the initial time,

Ay(t)-K(t)o(t,to)Ax(t°)+c . (34)

This equation may be written for an entire sequence of observations in order
to form an overdetermincd systes of linear equetions for the unknown A x (t,)e
The solution of Eq. (34) by the method of least squares is given by

Bx () = (A%, A anay (35)

vhere A = M ()2 (t, t ) and vhere & ¥ is the actual deviation in
the observations. |
In this solution no a priori knowledge of the expected deviations in the
observalion is required or sssumcd known.

The value of the initial parameter obtained from Eq. (35) may ve
used to derive a nev nominal trajectory and ; new set of residuals, to obtain an
improved estimate of the mtui state variables, 4 x (t ). The process may
be repeated until no further improvement is obtainable from the observation
data.

In order to speed up the rate of convergence, it is necessary to
include estimates of the expected deviations in the observetion through the
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use of covariance matrices and the method of weighted least squares. The
solution of the initial state variables by the method of weighted least

squares is given by
8x (t) ;[A'UA+P;:'3]-1A*HA§ (36)
vhere ¥ = (v¥)"%
Py = Covlax ,(t), 8x_;(t)] (37)

The essential differcnce between the method of minimum variance,
least squares and veighted least squarcs is contained in a comparison of
equations (), (), ana (%).

The method of least squarec and weighted leust squarec both relate
the estimate of the initial parameters tu an cntirc sequence of observational
residuals spread over an extended time arc. In contrust, the method of minimum
variance relates the present estimate of thc statc variable deviation to the prese:
actual deviations in the obgcervations. The linear cosumptions requircd for the
updating theory are violated to a much less degree 1n the method of minimum

variance than in the method of veighted least squares,
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Vﬁ. Bvaluation of the Partial Derivatives

Igt 18 soen that doth the least square technique and the minimum
m technique require the ccuputtu.cn Oof the partial derivatives of
the cbeervations with respect to the varietional parameters. As one
approach these may be cbtained by integrating additional trajectories and
forming the differences using the secant method. Bove\(er, the program
recommended 'm this report obtains the matrices of partial derivatives
analytiocally in terms of the instantaneous two body arbital coordinates.
Thus, the complete ordit prediction and partial derivative matrices may
bs obtained in essentially the sams computing time as that of the nominal
trajectory,

'The partial derivatives are cbtained from the product of the M
» discussed in Bection VI, and a state transition matrix. The

method of cbtaining the state transistion matrix is based on a8 generalization
of an Encks method applied to linear prediction theory. It is assumed that
the equatiors of motion may be decomposed into two factors

x = glx,t)+h(x,t) (38)

lel>>]n} . (39)
It is further assumed that a closed form solution of the differential
equations is known for the case vhbere h = O,

s = g(s,t) , (40)
Furthermare, the state transition matrix for the approximating solution
is known in closed form

s (t) = ¢ (t, )8 (t) (CAD)
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Let the drviation Detween the state variable and its approximation
be given by . , '

P (t) =x (t) = s (t) (41)
The perturbation equations of motion m now be written in the
generalized Encke form '

Pegx t) -g(s, t) +h (x, t) . (42)
In order to guarantee that the deviationm, P, 1s never permitted to grow
too large, the process of rectification is introduced. Whenever a pre-
determined value Of p is exoeeded, the integration is terminated at time
t.e A Dev set of initial conditicus are introduced, s2tting p (t.) equal
to sero. menamtmlmmwu
salution. /' '

8ince the devidtion between x and s is never permitted to exceed
the given value, the partial derivatives of the state variables from
their nominal value may also be limited. Thus it is possible to vrite
an aproximate state trqsitim matrix

(t, £ ) =y (t,
’ t) =y (t t) 43)

Moreover, the approximate state transition matrix is known in closed
form fram the knovledge otf ths knovn salution of the nominal trajectory
for Eq. (41). Fallowing each rectification, it is necessary to relste
the state transition matrix at time t to the initial time. This may be
Sccomplished by multiplying the approximate state transition matrix

for times within each rectification interval by its value at the last
rectification. |



bt ) Ty (e, t) =y (8, t’i) N “:1' t) (44)

In this manner, a closed form expression for the state transitiom
matrix may be cbtained without integrating large quantities of differential
equations. Moreover, the error in the computation may be limited by
the proper use of the rectification technique.

As has been stated, the use of the conventional state variables,
namely initial position and velocity, lesds to a transition matrix which is
pocrly conditionnd and vhich cantains rapidly varying functions of time
for its elements. Ir the preccdure recommended here, the first six
variational paremeterc described !~ Section V have only one secular temn,
namely that due to a.

In addition they have the characteristic that they campletely
determine the orbit independently .f the crbit orientation or shape and
never break down.

A complate molification of the Sclmidt-Kalmen equations in terms
of these nev ,arsmcters has been derived amd is nov available for
incorporation in the prediction scheme. ‘

The modified Schmidt-Kalman equations are listed below. Deviation
of the orbit veriables interms of the nev parameters are given by

ax (8) o 2 =5 (%, t) aalt)
) salt) w5 (8 t) alt) is)

Yy (t) =M 8 pq (£) =N (2) 0 () .
The nev transition matrix is given bty

s (t)e (5218 wl0) < olt, t) s (@) . (36)




The observation errors in terms of the nev parameters are given by

a&r (t) « H(t) ag (t) +

) (7)
vhere B(t) = M(t) 8 (¢, t) .

The mm. covariance matrices are givem by

Q(t) =nQ (0)

P (¢) . 8Q(¢t) 8 | (u8)

Y () =HQ ()M 4o |
The inverse relationship between the orbit parameters and the
observational errors is given by

&t) =L (¢) ar (¢) . '49)
The optimm estimator L (t) is given by
L(t}=9!’!" . (50)

mwﬁc&amwmm».mumu given by

=Q" - QYT RQ . (51)

Usirg these modified equations, it is now possitile to
use the Scimidt-Kalman scheme for both short and long teri predictions.
Moreover, the computing time need not exceed that necessary for a
single naminal trajectory.

It is sametimes necessary to obtcin an estimate of the
instrument errars from the accumilated experience cf many observaticns.
Let the observed error between the predicted and actual otservetions be
given by (Y). Then, an estimate of the instrument errars, after many

cbservations, may be obtained by

?(t).(x-nn) (Y) (1-8L) . (52)




%o 1llustrate the eimplicity and elegant beauty of these equations,
t~ following matrices of bartial derivatives are ITesentad

& EXR no* R 2
v o —h‘!-xxn-.n -‘T +.h——“—hL-c,a..an
8
2 1L 3 e
: iyt
(531
!__L),:ot '-‘—-Ll'o‘ 0 0 0 0
—L”:ot '-L-‘--}-:"t 0 0 0 0
e
0 0 1 fi“—.ﬂ_& (t
Qise 2:’(1:)"'} to) t&
0 0 o ¢ - Zakm e (tr) HE
0 0 0 ) 1 0
-D & 3 0‘3 Iaf
0 o 0 Y T o) B
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f-'n‘ {g(—tg- ﬁf: '-i;(;h- &%) }

‘h"ror'r {'x"h) [r.(o) +—Q;-,J --L—-s

ro"o

+:f (1-52)::0—&[;*-& s-dq]}

These serve to indicate howv simply all the required metrices
may be computed as functions of the nominal maectory./!n:e quantities
Gq and Gy which appear in the matrix () are definel as

R*R

g-m wdog = 1l-%
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VIXI. ZTypes of Observations
One N2 the advanteges of the Schmidt-Kaiman scheme is the abdility

to determine the optimum observation to be made at each arbit position
in order to have the mat;ct decrease in uncertainty. The method permits
8 predicted estimate of the decrease in uncertainty for each observation
prior to having made it, In this menner, s choice may be made to obtain
more rapid convergence to the proper solution. It is possible to use
range and/or range rate at each position of the orbit in order to obtain
the msaximm information to be gained by using each or both., In addition,
obsarvations mads from the ﬁhich during mid-course, from accelerometers.
optical measurements, etc. may be used m an interspersed manner to optimm
/ advantage. It has been known for some time that the simplicity in design-
ing, constructing and using ¢ v Doppler (Reference 7) range and range rate
instrueentation greatly favors thece types of observations.

The Schmidt-Kalman technique, by proccssirg the data wvithin the
linear range of the prediction theory, and through the use of the recommend-
ed orbit correction parameters, makes it possible to rely on these instru-
mentation techniques over large portions of the tracking complex.

sformetion tions for Tracking Data.

It is sometimes desirable to transform the —omputed data into a
topocentric ~coordinate system. Th- computed data is obtained in a cartesian
coordinate system (x,y,z) defined vith the origin at the center of the Earth,
the x-axis in the direction of the vernal equinox and the x-y plane in the
equatorial plane of the Earth, The series of coordinate transformations

required is as follows:
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A rotation about the 2 axis through angle 6' so tha:. the x' -2z2°

plane i3 in the meridian plane of the stationg

Then:
x' = x cos @' + y 8in @'
y' = -x 8in ¢ + ¥y cos 8' (54)
' =2

vhere

X', ¥', 3' are the rotated coordinates and §' is the right
ascension of the meridian at the time of observation. @' is computed /
by addinc the longitude of the station to the right ascension of Green.~’
wich at time of the observation. The right ascension of Greenwich for
the beginning of the year in question is obtainzd by Newcomb's furmula,
updated to a 1960 origin. The instontaneous hour angle is then obtained
by a linear formula, separating daily and hourly rates.

A translation of the x', y', 2' axes from the center of the Earth
to the station in question

x" = x' «(C 4 h) cos o

= y' (55)

Y
t" = 2' -(S 4+ h) sin ¢

wvhere @ is the geodetic latitude and h the height above sea level cf

the station in question. C and S are perameters vhich account for the
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polar ocblateness of the Barth and are given by

C=(1-e* nin‘&'i
B8=(1-e%C (56)

A rotation atout the y" axis through an angle 90° -¢ co that
the 8" axis is in the zenith

x'" = x" 8in ¢ - 2" cos ¢
L (57)

2" = x" cos o+ 2" sin g

This series of transformations wvill transform the geocentric
cooxdinates of a point into the topocentric system. Transformation of
topocentric to geocentric coordinates is achieved by the following set:

x" = x'"" gin o + 2" cos ¢
Y=y (58)

" = -x cos g +2'" 8in o

x' = x" +(C 4 h) cos o
y' =y (59)

2" 4+ (S + h) 8in o
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x = x'"cos ' - y'sin e’
y=x'sin ¢' + y' cos @' (60)

It is clear, that application of these transformations requires
the complete knovwledge of the topocentric displacement vector. The
follovwing parsgraphs describe the treatment of various sets of incomplete
data that may be available,

B. Formulae for observed variables and their Partial Derivatives.

The program vill accept the following types of observational datas,
singly or in combinaticn:
1. Range
2. Range rate
3. Right ascension and declination
4. Azimuth and elevation and Minitrack cbservations
In order to generate the differential corrections dcscribed. in
Section VI, it -13 necessary to compute residuals vhich consist of the
difference betveen computed values of the observables and the observation
data. In addition, it is necessary to compute partial derivatives of the
observables with respect to the orbit parameters. The range, range rate,
right ascension and decliration can be expressed directly ir terms of the
geocentric state variables and the required partial derivatives mgy be
obtained as followvs:
Range: The computed value of the range is given by

ol (x-x)2s(y-y)%4(z-292 11 (61)
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and the matrix of partial derivatives for the range is given by

[ ) 0,0, 0 | (62)

)« [ —2,

Range Bate: The computed renge rate is given by

b -1
(]
° =

[ xox) (Raa v)sly-y) (f-mex.)+(z-2.)i'](6)
i 3

The matrix of partial derivatives of the rsnge rate wvith respect to the
state variables is given by

/ N(t)-f‘*‘.'y‘ -.(x-xg) Y-wg2s  b(y¥s), p(2-24)

) P 2 ’ - 2 ’ o
o o o p p*

(64)

Right Ascension and l?ecumtion: The expressions for the right ascensioa
and the declination may be written as

sin D=

(64-a)

tan RA =Y "~ Ys
X - X
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The mairix of partial derivatives is given for D by

-(zOz ) X - X y-y (Z-z.)z- 92
M(t) - ?60. D p‘ ’ P . ’pTZ-Z.) ! 0, 0, 0 1

and for R A by | (64-1)

1 ¥y = Y 1
Me) =« =g - = ,x_x.,o,o,o,01

Azimith and elevation and the Minitrack observations are most
conveniently expressed in a topocentric, local horizon coordinate system
and to treat them it is useful to introduce the following relation between

the topocentric and geocentric coordinates: /
x*" ) gsin = cos &' sin = sin 2’ - cos of [x-x
b (65)
y'™ oy - sin 2! cos ¢g! 0 Y=Yy
4. z'™ ' l.cos - cog &' cos - sin 2! 8in o 1| %

This relation is used in developing the required partial derivatives
"for these angular observations.

Azimuth and Elevations: The expressions for azimuth and elevation are

(66)

and 1
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et = e e— Y ¢

~ The corresponding matrices of purtial derivatives are

T 0Y J—— r-x"' sin o;-y"' cos 0' sin ¢,

p'-l'.. .
_ (67)

x'" cos 0'-y'"sin @' sin ¢, ¥'" cos ¢ O, O, o]

d for B
. —— "
Mt) ( pa.,.-a){eo- e’ cos o - 5-; (x-x,),

A P

sin o' cos-¢ - -:;— (y-y,), (68)

[
.u ’ - -’i"' (8-8'), 0, 0, 0 1'
s .

Minitrack Observations: The Minitrack system direction cosines are expressed
in terms of the topocentric coordinates as

PR L
0

(69)
A= L'_:
P
n= g'



mmmm“ormnmﬁun-mm¢

x*"(x-x ) x'"(y-y,)
» =8in @ sin ¢

“t)-%[-dnqm "+

x'(s-x)
“.‘——.'—’ 0.0’O]
P

for m
LT "% '.
t) =2 [-ata o2 E o TN
[ 0 "
T
4 ("'),o,o.o]
ot
end for a
2%(x-x_) s'"(y-y.)
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IX. Current Work

The discussion vhich ronon ocutlines same of the work to be dome
over the next 3=k year period.

| I. m current program uses m conventional least squares correction

technique. It works, and has been time tested, btut there are better and
more modern techniques, such as the Kalman-Schmidt which bas shown promise
of being far superior. The major reason for this is that both techniques
are using nnur theory to correct non-linear effects. However, the conventicnal
lsast squares requires an abundantly over-determined solution which in real
14fe means waiting to cbtain a large mmber of cbservations during wvhich
time the non-linear effects build up. ~ Conversely, the Kalman-Schmidt uses
each cbservation as it occurs and ﬂm.é is much closer to the linear range
on vhich both theories are based:. Another is the one currently in use at
JFL, vhich briefly is a weighted least squares technique. Therefore, one
of the first problems is to develop the Kalman-Schmidt, and the weighted
least squares techniques for the prescnt program, to thoroughly test them,
and compere the techniques.

2, During the checkout of the .preacnt program, the problem inherent
in many orbit MMtim progzams to date has also occurred. Neamely,
the probleam of ill-conditioned data. Furthermore, the provlem varies with
the type of orbit involved, e.g., for highly eccentric orbits angle data
alone does not determine the energy very well, but for nearly circular orbits
they do not determine the orbit orientation in space very well. For range
and range-rate data, the converse is true.. As a result, tke problem of
increasing the rate of convergence or pursuing several other possible avenues

to overcame the ill-conditiomed Gata problem requires cxtensive research

and development. »



3. Many time consuming details have not been completely accomplished,
e.g., atmostheric models, ionospheric refraction, mutation, lunar libration,
choice of reference equinox, selection of optimum time standards, adequate
conversion from ephemeris time to the appropriate time standard t0 name just
a fev.

4 . It is recognized that integrating the number of trajectories
correspanding to the mumber of vaoriables is a poor and time consuming wvay
of obtaining the carrection matrix of partial derivatives. It is felt that
here again the Encke techniques will offer great advantages over other orbit
determination teechmiques, if one can make usecf the analytic two body orbit
to determine the derivatives. If this works, we will be back to mtegmtﬁg
only cne trajectory. There are, hovever, problems ~- and research and
develop nt in this ares is required.

5 .« Before the program can approach anything like a real time program,
the entire program must be examined w.r.t. time consumed in each operatiom,
each sequence of operations and each subroutine vithin the confines of the
required or desired accuracy. In addition, the program should autamntically
select its ovn optimum integration interval -- but here, again, is a research
and development study since there is a trade-off on how long it takes to
change integration intervals, and how much is gained by affecting the change.
These selections may also be orbit type sensitive.

6 . The final progra:m should also make use of spacecraft on-board
cbservations, optionally, alane or in canjunction with ground observations.
Therefore, the campatibility of the two syetems should be coordinated. In
addition, the cutput fram this program should b useable, when desired, to

up-date the on-board information.

- b7 -



7. There are & myriai of detailed arrangements to staniardize in-
caming observaticnal data to keyed formats as well as cutputs. Suitable
samections to the vast network of stations etc.

8. The progrem shauld be adaptable to the rendervous mission amd it
=y dbe duinhh not to camait to s pre-designed translunar trajectory, but
wwmmwummmmmneuw affcrted.
In fact; in light of the limitless mmber of possible lumar trajectaries, it
my de mm to select the translunar trajectory, even for a single booster
launch, vhile the spacecraft is in the parking orbit.

9. There are positive indications that it may be possible, through the
_Kd-ncsd-mt techniques to design a program capable of differentially correct-
ing from the ground up, i.e., during boost. If this were so, one of the
largest difficulties of all orbit determination programs would be eliminsteqd,
1.e., the error in beginning with a preconceived (nominal) R and V. This
error is largely responsidle for such tracking errors as vrong lobe identification
from tracking stations etc.

10. Finally, and certainly cne of the most important, is the problem
of building in the decision making into the program vherever possible. This
problem is somevhat interdependent vith mumber 9, since the type of decision
vhich must be made depends an how large an error must be accounted for. This
is perticularly true for linear theories such as these becsuse any malfunction
can cause the solutions to be ocutside the linear range. The present program
rejects all vbservations vhich are outside the 35 deviation for each iteration,
but this only scratches the surface of hanlling the >rotlem of bad data. JFL
manryextemindsheutugm. Related to this is a study of
maximizing information returnsd fram various types of tracking dats, e.g.,

vange data, vhich may very well detemine the energy of highly ecceatric
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orbits. It may be possible to neglect other variables and get a first order

approximation of drag coarrection, similarly refraction ccrrections etc.
11. In all this, nsv concepts, variables and Irograms are being intro-
@uced, It should go without saying that a contimious and exhaustive shaxee
down of all cf thesre under all conceivable conﬁiticno should be a constant
part of this total effcrt, e.g., determining the charscteristics of the
differential parameters under all types of orbits, at various positions in
each of these arbits, with ideal cbservaticmal data, noisy generated
cbservational data and wherever Possible, actual satellite or space probe
data.
It also goes vithout saying that all this wvark shall be properly

dm vith progress reports, interim and final reports. Fumerous

Cblems ill also arise during the course of this work for which solutioms
mist be found to the mutual satisfaction of ali.
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X. BRefraction Correction
Ae. Rofraction Correction For Pulse Radar
In the event that the observation signal is an actual measurement

of & time delay in transmitting & radsr pulse, the assumption 1s ucuully made
that the range 1s cbtained by simply multiplying the transit time by the
vacuum speed of light, c, as follows (see figure 6)

§d. . (12)

o = | ras . (72)

The actual path traversed by the signal is given by the rule that the transit
time is a minisum, From the calculus of variations » the solution of the path

is characterized by the fact that

k = constant = n(r) r cosy = n(o) r,cos X . (73)

Referring to fig. 7 the relation between the arc length, ds, and the path
angle, Y, is given by
nrda

as = :/nz - °
Equation(72) may be written

(74)

Qr
- J v m (75)
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Eq. (75) may be intagratcd in ¢lcsed form provided n(r) is a constant.

A I (76)

143 ~ P4
Assuning that n(r) is piecevize constant over several layers in the
a.tnoopbezwe; it 1s possible to obtain the apparent range by summing the successive
sclutions of Bq. (76) until the computed geocentric distance r  is obtained.
Bince the constant, k, i3 given in terms of the initial sight angle,
k = n(v) r(o) cos A » the apparcnt range is seen to be a function of the

geocentris distance, T,s and the grouni station sight angle, lo'

v
Fy ™ 151 (o, - pi-;) / S (4]
P

P. Refraction Corrcntion for Range or Range Rate of CW Doppler Radar

Data. |
When the cigpal observations for range or range rate are obtained

from a CW carrier measuring eithcr phase shift cr frequercy shift, it is
necessary to correct for the additional change in frequency or phase due to the
effect of the refiaction on the phase velocity of the signal. A first order
estimatc of this correction may be obtained by using the concept of the average
index of refraction over the signal path. The Doppler shift ‘s given by

° At
9--‘—{-“: (78)

vhere A £ 15 the difference in frequency between the emitted and returned

signals, and 1 is the value of tbe averagc index of refraction defined as follows



(19)

"ﬁo {19) w de M using the assumption that the index of refractiom
1s piecewise constext

% -« I, (0 h,)
- ‘! ’.’1 ( 80 )

©

The altituds of the vé! cle may be obtained from the assumed nominal computed
position of the sbove the geoid. To npply the refraction correction
for CV phase range and range rate cbservations it is only necessary to replace
the value of the spued of light in vacuum by c/u in the ncrmal equations used
to cbtain range and ‘range rate estimates fram the signal.
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XI., Recommendations

It s réco-mdcd that a general purpose orbit prediction and
tracking prograr be generated incorporating the features outlined in
this report.

It is further recommended that specific attention be paid to
the requirements for the Apollo tpace mission 80 that this program may
be used in the Apollo tracking complex, or as a back-up for vhatever
system is finally decided upon.

It 1s recommended that e detailed comparison between the methods
suggested herein and the least square pmccdure', using other parameters,
s vell as the veighted least square procedure recommended by J.P.L. be
extensively explored so that the best features each may be incorporated
in the final acceptable scheme,
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R'g = R
L % oaco'ha-l»

( . . .
3'0"&;‘#;&2- (1 -cos Ag,)-faocoah,...w'u&;
o

to

(B = o

o R'g‘ (R.o [ fk) . (R' ) R )
Ln'o" - T ; (1 -cos a3p) + Ry cos tae 4+ '—,::i sin Asg
A )

i'o}(jéf) Rfp i'ol).
P'o‘ x Rg_|

R'Oa = Rfo, cos pas 4 sin A0

it G « 30 e (800

lﬂ'o‘ x B'é,gl

sin Ans

(Pigure 5)
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Figure 5 (2)
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The last paramater change 4do0es not affect the initial eonﬂtim but
enters into the acceleration computation.

tor {(%‘.).%’f- 4‘65'//

rgure 5 (3)
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