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The common junction of three dissimilar general shells of revolution is angyzed. Asisym- 

metric loading may be in the form of surface forees, concentrated forces and moments at the 
junction, and arbitrary thermal gradients. Basic differential equations available for elastic 
shells are extended for application in the elastic-plastic regime. The von Mises-Hencky 
yield criterion, deformation theory of plasticity, and successive approximations are used to 
determine plastic strains. Postyield material behavior is arbitrary. Linearized finite-differ- 
ence equations are solved directly using cnefficient matrices that incorporate conditions of 
equilibrium and compatibility at the junction discontinuity. The solution to a sample pmb- 
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Nomenclature 

C = extensional rigidity, s,, E dr, lb/in. 

D = flemralrigidity, &J+r, lb-in. 
E 
HjN = r d i d  and tangmtial stmnnrwiilkntn; Ih/in. 
h 
M = couple, lb-ii./in. 
p = distributedsurfaceload,pai 
r18,z = radial, meridional, and axial coordinatea to reference 

T = temperature, “F 
u = radialdeflection,in. 

= modulus of elasticity, psi 

= thickness of shell wall, in. 

surface, in. 

V axial st= d t a n t ,  - - rmpv a, l b / i  :Jt 
01 

a0 = reference length, in. 
@ = meridional rotation, rad 
A( ) = increment of ( ) 
e = normalstrain,in./in. 
t 
K 

Y = Poisson’s ratio 
5 = 8 / ( 4  
u = normalstreas,psi 

Subscripts 
a,b,c = junction, shells a, b, and e, respectively 
d = boundary, shell e 
e,t,p = effective, total, and plastic 
H,V = radialandaxial 
i , j  = atationindices 
8,E,r = circumferential, meridional, and transverse 

Superscripts 
e =external 
(A) = referencesurface 

= coefficient of thermal expansion, in./in.-’F 

= transverse coordinate, satisfiws,, Er d r  = 0, in. 
= change in curvature, (in.)+ 

Introduction 
N certain missile and space vehicle structures, sma l l  plastic I strains may be permitted in an effort to use material more 

efficiently. In addition to increasing allowable loads on 
continuous shell regions, a small amount of yielding may have 
the beneficial effect of relieving maximum stresses in regions 

preciation to Harold Renkel for his development of a computer 
program for this investigation. 

\ * Research Engineer, Material and Structures Division. 

of discontinuity. The purpose of this paper is to present a 
shell analysis with which both this reduction in stress con- 
centration and the corresponding increase in strain concen- 
tration may be determined quickly and accurately. 

Many analyses have been presented for elastic shells of 
revolution containing discontinuities. One of the most gen- 
e r s  
In this reference, basic Herential equations derived by 
R e h e r *  are solved by a very direct finitedifference tech- 
nique, which employs coefficient matrices. Continuous shell 
regions are analyzed separately for five independent sets of 
boundary conditions and are then joined at discontinuities 
using the well-known method of simultaneous junction equa- 
tions and superposition. 

Mendelson and Mansons presented a method for analyzhg 
thermal stresses in a uniform cylindrical shell in the elastic- 
plastic regime. This method was later applied to general 
shells of revolution by Stern,‘ using the earlier Reker -  
Meissner differential equations. Both of these reference 
are applicable only to continuous shell regions. In addition, 
the numerical method employed in Ref. 4 r e q h  the simul- 
taneous solution of a set of equations. Because each finite 
Merence station along the shell meridian adds two equations 
to this set, this method is more limited than that of Ref. 1. 

References 1 and 2 were used by Wilson and Spiers to 
develop a solution for the small finite elastic deformations of 
continuous shells of revolution. This problem is similar 
to that of elastic-plastic deformation in that nonlinear terms 
occur in the basic Merent id  equations of each. Also, in 
both Refs. 3 and 5 the equations are linearized by treating 
the nonlinear terms as knowns and correcting their values by 
successive approximations. 

The present analysis is much more general than previous 
work because it is applicable to both continuous and dis- 
continuous shell regions in the elastic-plastic regime. A 
wide range of shell geometries, loadings, and m a t e d  prop- 
erties may be specified. For elastic discontinuity problems, 
multiple solutions and simultaneous junction equations are 
eliminated. In addition, a great measure of the gened ty ,  
directness, and convenience of the shell analysis of Ref. 1 
is preserved in the presence of discontinuities and plastic flow. 

C9ETJe&Et is thi prepese” by psA&eEsg et d.1 

Method 

The common junction of three dissimilar generd shells of 
revolution is used as a general discontinuity model (Fig. 1). 
Wall thicknesses, material properties, distributed losds, and 
temperatures may vary along the several shell meridians. 
In addition, material properties and temperatures m y  
vary arbitrarily through the shell walls. These data m y  
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Fig. 1 Meridional geometry of general shell discontinuity 
structure. 

be specified at discrete points, if desired. An external axi- 
symmetric force and couple are applied a t  the junction for 
further generality. 

The analysis of the three continuous shell regions is con- 
sidered first. Basic differential equations of Ref. 2 are ex- 
tended for application in the elastic-plastic regime in accord- 
ance with Ref. 3. These modified linearized equations are 
then solved by the finite-difference technique of Ref. 1 for 
two quantities, (rH) and p, from which all stresses and strains 
in the shell may be computed. The shell meridians are 
travereed twice: first, to compute coefficient matrices at 
each station using geometrical and load data; and, second, 
to calculate (711) and 0. 

After the continuous regions are analyzed, junction equa- 
tions are derived which express the structural continuity 
that exists at the intersection of the three shells. Since dis- 
continuity forces and couples are not linear with applied 
loads in the elastic-plastic regime, standard methods of 
analysis which use linear edge influence coefficients', are 
not applicable. Instead, the junction equations are satisfied 
by incorporating them directly into the previously mentioned 
coefficient matrices, which preserves the direct character 
of the finite-difference technique. Finally, the numerical 
technique is summarized, and a sample problem is solved for 
both strain-hardening and perfectly-plastic material behavior. 

. . . ' \  
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Fig. 2 

In addition to the usual assumptions of thin shell theory, 
the von Mises-Hencky yield criterion and the deformation 
theory of plasticity are assumed to be valid. Postyield mate- 
rial behavior is arbitrary. 

An a 1 y s i s 

A. Shell Equations 
I .  Basic differential equations 

In accordance with the procedure developed by Reissner,2 
equilibrium, compatibility, stress-strain, and straindisplace- 
ment equations in a thin elastic shell of revolution may be 
combined and reduced to two second-order coupled differen- 
tial equations. The dependent variables are a representative 
deformation /3 and a representative stress function (TH). 
The independent variable is ,$, the meridional coordinate. 
If extended to include plastic as well as elastic and thermal 
deformations, these two basic equations become nonlinear 
and have the following form: 

(TH)" + r (rH) '  + 8 ( r H )  + A@ = X1 + n + rl (la) 

P" + W' + W3 + $(rH) = Xz + 7 2  + r z  Ob) 
Primes denote differentiation with respect to E ,  and the 
coefficients are 

The integrals through the shell walls may be evaluated 
analytically or numerically. 

The left-hand sides of Eqs. (la) and (lb) and the loading 
terms X1 and Xz are identical with those derived in Ref. 2 for 
elastic shells. The thermal terms TI  and TZ are developed in 
Ref. 1. The plasticity terms rl and r z  are derived in a similar 
manner, by using the elastic-plastic stress-strain relations of 
Ref. 3: 

0, = [E/ (1  - v2)1[(a + vet) - 

b). Junction element. 
Stress resultants, couples, and loads. 
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Although these last two terms contain nonlinear plastic 
strains, it is convenient to treat them not as unknown but as 
known quantities that may be determined in an iterative 
manner from previous, less accurate solutions. For example, 
r1 and r2 may be assumed to be equal to zero to obtain an 
elastic solution to Eqs. (1). Values of qp and E o p  may be 
calculated from these elastic results and used to obtain some-' 
what more accurate approximations for ul and r2. This 
procedure is repeated until additional solutions produce 
negligible changes in the plastic strain terms. 

General boundary conditions on Eqs. (1) can be expressed 
in terms of the quantities (rH), (rH)', 8, and 8'. Because 
these equations will be solved using the method of finite 
differences, it is more convenient to express these boundary 
conditions directly in difference notation. This is done in the 
following section. 

2. Basic dgerence equations 

The shell reference meridians are divided into equal 
increments (Fig. 1). Using central differences, the derivatives 
in Eqs. (1) may be expressed as 

In matrix form, the basic shell difference equations then be 
come 

( 2 , a -  1 

( c + l , d - 1  
Aiyj+~ + Biyi + Fyyj-1 = g j  j = { a + 21 b - 1 (I) 

Capital letters represent 2 X 2 and lower-case letters 2 X 1 
matrices. 
These are 

. *_ 

1 + (A€/2)F 
A = [ 0 . :,1 + (Af/2)T 0 %  

= -2 + (A€)% (A€)'A bii bu 
( A 8 Y  '-'-2 + (A€)q]  = [bm R1 

Y = ['7] 
Boundary conditions that may involve first derivatives of 

( t H )  and 8 require the use of forward and backward m e r -  
ences. A boundary condition may then be expressed as a 
general linear combination of the unknowns a t  the boundary 
and a t  the adjacent station. 

In matrix notation, the boundary conditions become 

(3) i yi = k - Jy2 
Ya+1 = rn - Ly.+z 
y d  = t - &d-1 

Substituting Eqs. (4b) into (24  gives 

2 , a -  1 
a + 2, b - 1 (AjPi-'qj + Fyqj-1 - gj) = 0 j = ( c + l , d -  1 

j =  [ a + 2 , b -  1 

(-AjPj-' + Bj - FjPj-1)yj + 

This equation is satisfied independently of y,  by setting 

-AjPj-) -4- Bj - FjPj-1 = AjPj-lqj + 
.,* d Fjqj-1 - gj = 0 (4~) 

(W 

Therefore, 

Pi = (Bj - FjPj-I)-'Aj 

2 , a -  1 

c + l , d - 1  

q .  1 -  - P.A.-l(gi 1 1  - Fiqi-d (5b) 

From Eqs. (3) and (4a), 

P i = J  q i = k  P.+1 = L q.+1 = m (54 
Using the last of Eqs. (3) and Eq. (4a) results in 

y d  = (1 - RPd-l)-'(t - Rqd-1) (6) 

in which I equals the 2 X 2 identity matrix. 
Equations for P,, qc, y b ,  and yo  are needed to complete this 

numerical integration. They wil l  be derived in the next 
s$y"cn frcm the j..n&icn Ccn&tiQnE. With ?&= s4&ticE.l 
equations, consecutive calculations of the y matricea may 
be made using Eqs. (6) and (4a), after the P and q matrices 
are calculated by Eqs. (5). For convenience, matrix equa- 
tions (3,4a, 5, and 6) are expanded in Ref. 6. 

B. Junction Equations 

1. Derivation 

Certain conditions of compatibility and equilibrium must 
be fulfilled at  the junction of the three shells to maintain 
structural continuity. These are 1) the junction is hinge- 
less; 2) the reference surfaces of the three shells experience 
equal radial deflections at their junction; and 3) a diiferen- 
tial ring element that includes the junction section is in static 
equilibrium. 

The first condition leads directly to the equations 

8. = 8 b  = B c  (74  

If the superscript (A) is used to denote a reference surface, 
the radial deflection of this surface a t  any station is rH,  1. 
Therefore, the second continuity condition may be expressed 
by the equations 

&,a = d . b  = %.e (7b) 

Referring to Fig. 2, the junction equilibrium conditions are 

(7d 
in which F is the nominal radial coordinate to the junction, and 

(TH). + (~11)) = (rWC - FH' 

3. Numerical integration ( 7 4  

Conditions (7b) and (7d) must be expressed in terms of 
is solved as follows. Set ( rH)  and 8. Following closely the derivation in Ref. 1. 

Then e =  + [ ( ~ - ~ ~ ( r m ] + ~ + ~ ~ + T t  1 

 ME,^ + Mc.b = M€.c - Me' 

Following the method of Ref. 1, the equation matrix (2a) 

modified slightly by the stress-strain equations (Id), 
Y j  = qi - PiYi+l (4s) 

1 (rH)' t' 

C aa el- 
(4b) = - [ - Y __ + - (tm] + + T 4  + X 4  

Vi-1 = qi-1 - Pi-lyi 

y j + ~  = Pj-l(qj - yj) 
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in which 

The rotationally symmetric external junction loads H" and 
Mt' may arise through the action of an elastic constraint 
such as a reinforcing ring, or they may be independent of the 
shell deformations. Therefore, let 

The coefficients sll to s a  are spring constants, which can be 
determined from the geometry and material properties of the 
elastic constraint. They define the linear dependence of H" 
and ME' on the deformation of shell c; may result from 
nonconcurrence of the three reference meridians. 

When only two shells are involved, Eqs. (7) may be easily 
specialized by deleting the terms with the subscript b. The 
numerical solution of these modified equations will then be 
similar to that of the following section. 

2. Numerical solution 

Before substituting Eqs. (8) into Eqs. (7), an expression 
In central difference notation, relating yi' to yi is derived. 

using (4b), 

or 

Expanding the first of Eqs. (9a) gives 

After Eqs. (7a) and (9) are substituted into Eqs. (8), the 

Substituting ( r H ) .  and (rH)b from Eqs. (loa) and (lob) 
into Eqs. (1Oc) and (10d) yields 

( W  

Eauations (11) will be satisfied indepenk-ntly c 

63,c(2 + 2 + 

Using Eqs. (12), Eqs. (10e) may be solved for the com- 
ponents of the W, and matrices. Finally, Eqs. (sa) may 
be inverted to give 

P.-l = { ( A  + F)-1[2(AE)AW + Bl)8 1 
qC-1 = - { ( A  + F ) - ' [ ~ ( A E ) A X  - gl)a 
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Although no station j = c - 1 actually exists in shell e ,  
i t  is convenient to assume its fictitious presence and then to 
use Eqs. (5) to calculate the elements of PG, gI, and the re- 
maining coefficient matrices in the structure. The terms 
( t H )  and B are then calculated with Eqs. (6) and (4s) for 
shell c, Eqs. (7a, loa, and 4a) for shell a, and Eqs. (7a, lob, 
and 4a) for shell b. Stresses and strains throughout the 
structure may then be calculated from these basic shell 
variables as shown in the following section. Equations (9) 
and (13) are expanded in Ref. 6. 
C. Elastic-Plastic Strain Equations 

Derivation of the following elastic-plastic strain equations 
is given in detail in Ref. 3, in accordance with the von Mises- 
Hencky yield criterion and the deformation theory of plas- 
ticity. After reference surface strains and curvature changes 
have been computed throughout the structure by Eqs. (8), 
strains through the shell walls are calculated by the equations 

Assuming UE = 0 and all volume changes are elastic, 
e = i e + b K e  q = + bKE (14s) 

1 - 2v 
1 - v  1 - v  1 - v  aT-- ( Y P  + eeP) 

l + v  
p = - -  (e + et )  + - Y 

(14b) 
By definition, 

U. 5 u yield) l o  

i U. > u yield 2(1 + v) 6. 
( 1%) 

in which the subscript u indicates the results of a uniaxial 
tensile test. A plot of vs e.: may be easily COnStNCted 
using Eqs. (15a). Finally, from the deformation theory of 
plasticity, 

Plastic strains computed by Eqs. (15) are used to improve 
the level of approximation in the T terms of Eqs. (IC) and 
(8), establishing the iterative nature of this elastic-plastic 
solution. After convergence of these plastic strains, stresses 
are calculated throughout the structure by Eqs. (Id) and 

(16) U. = (ue* - ueut + UE*)"* 
Results 

A. Sixmmaqj of Numerical Analysis procedure 

The method of analysis developed in this report is sum- 
marized in Table 1. This table serves as a convenient flow 
chart for computer programming of the method. The calcu- 
lation procedure is as follows: 

1) Express boundary conditions in finite merence nota- 
tion and determine elements of matrices J ,  L, and R from 
Eqs. (3). 

2) Calculate geometry terms (rl8,A,T,9, and *), pressure 
load terms (XI  to L), and thermal load terms (rl to 7,) for 
all interior shell stations, using Eqs. (1) and (8). Assume 
convenient values (usually zero) for plasticity terms r1 and 

3) Calculate elements of matrices A, B, and F for all in- 
terior stations using Eqs. (2). Steps 1 to 3 do not have to 
be repeated during iteration that follows. 

4) Compute elements of g matrix at  all interior stations by 

5) Calculate pressure, thermal, and plasticity terms re- 
quired for strain and moment calculations at boundary and 
junction stations, using Eqs. (8). 

6) Determine elements of remaining boundary condition 
matrices k, m, and t by Eqs. (3). 

7) Calculate elements of coefficient matrices P and g for 
shells a and b, using Eqs. (5) ; P matrices for these two shells 
do not change during iteration. 

8) To begin junction calculations, determine elements of 
W and z matrices at the junction stations in shells a and b, 
from Eqs. (9). 

9) Calculate 6 terms for shells a and b using Eqs. (10). 

m. 

Eqs. (2). 
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b) Effective stress and strain concentration factors. 

Fig. 3 Sample problem. 

10) Calculate 6 terms for shell c using Eqs. (12). 
11) Calculate elements of W and z matrices at  junction 

station in shell c by inverting Eqs. (10). 
12) Complete junction calculations by computing elements 

of P and q matrices a t  fictitious stationj = c - 1. 
13) As a continuation of step 7, calculate elements of P 

and q matrices in shell e .  
14) To begin the calculation of (rH) and j3 terms, compute 

their values in shell c, using Eqs. (6) and (4). 
15) Calculate (rH) and a t  the junctioq stations of shells 

a and b by Eqs. (7) and (10). 
16) Continue step 14 in shells a and b. 
17) Calculate plasticity terms ?rs and 7r4 for all shell sta- 

18) Calculate reference surface strains and curvature 

19) Calculate total strains throughout the structure by 

tions using Eqs. (8). 

changes using Eqs. (8). 

Eqs. (14). 
20) Calculate plastic components of strain by Eqs. (15) 

and an equivalent plastic strain vs equivalent -total strain 
diagram. 

21) Compute plasticity terms 7rl and uz for all interior 
stations, using Eqs. (1) and the results of step 20. Repeat 
steps 4 to 19 until the plastic components of strain have 
converged sufficiently or for a fixed number of iterations. 

22) Compute stresses throughout the structure, using Eqs. 
(1) and (16). 

For an elastic shell structure, equate all plasticity terms 
to zero and proceed directly from step 19 to step 22. 

B. Sample Problem 

The geometry and loading of the sample problem structure 
are illustrated in Fig. 3. The structure consists of two 

cylinders and a portion of a sphere joined a t  a common sec- 
tion. Each shell has constant wall thickness and internal 
pressure. The following dimensions, loads, and material 
properties are selected so that yielding is incipient in the 

50.0 in., h. = membrane regions of the structure: P = 
0.0866 in., hb = 0.0500 in., h. = 0.1732 in., E = lo' psi, 
p. = 100 psi, p ,  = 100 psi, p ,  = 200 psi, v = 0.333, and 

Postyield material behavior is assumed to follow the rela- 

801 > c4 

(TFieId = 50,000 psi. 

tionship 

= CI + C2e.r + C 3 ( € 0 1 ) 2  

C.P 

( = 0  e.t I c4 
The sample problem is solved for both a strain-hardening and 
a perfectly plastic mat,erial. For these two cases, the m a t e  
rial coefficients become 1) for strain-hardening, CI = 1.287 X 

C2 = -0.8655, Ca = 129.5, and C4 = 4.445 X lo-*; 
and 2) for perfect plasticity, C1 = -4.445 X CI = 1.00, 
C, = 0, and C4 = 4.445 X 

The shells are subdivided into meridional and transverse 
stations with (As) = 0.25 in., a = 99, 6 = 200, c = 202, 
d = 300,andi- = 7. 

By referring to Fig. 2b and the junction detail of Fig. 3a, 
the external junction moment becomes 

a = 0.1116 vb - 0.1299 v. = -45.75 lb-in./in. 

Finally, if membrane deformation is assumed a t  all three 
shell boundaries, the boundary condition matrices are 

J = L = R = k = t = O  

and 

The scd ion  to this problem is presented in Fig. 3b in the 
form of effective stress and strain concentration factors. 
These factors are 

) €6 I 

K(e.r) = (e6!z!:En. = (0.004445 in./in. max 

The variation of these concentration factors with meridional 
distance s, measured from the junction, is given for the three 
cases considered. Referring to Fig. 3a, negative values of s 
represent distances measured downward from the junction, 
in shells a and b. 

In Fig. 3b, the solid lines represent the solution for a per- 
fectly elastic material. Stress and strain concentration 
factors are equal with a maximum value of 1.31 occurring at  
the junction in shell b. Circles indicate the results of a 
standard elastic discontinuity solution that uses edge in- 
fluence coefficients. The dashed lines present results for 
the strain-hardening material. Decreases in stress concen- 
tration are accompanied by corresponding increases in strain 
concentration, which reaches a maximum value of 1.44. 
Finally, the dasheddotted lines show the elastic-perfectly 
plastic solution. This includes the upper limit of strain 
concentration and lower limit of stress concentration for 
various types of postyield behavior. Maximum effective 
strain concentration is 1.89, again occurring a t  the junction 
in the hemispherical bulkhead. 

The elastic solution is clearly verified by the standard 
discontinuity analysis presented in Ref. 7. The two elastic- 
plastic solutions may be evaluated by determining the ex- 
tent to which they satisfy the junction continuity conditiona 
given in Eqs. (7). The quantities that are compared in 
these equations are presented in Table 2. 
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Table 2 Junction deformations and forcee 

Strain-hardening solution Perfectly plastic solution 
Station Station 

Q m t i t v  a b C a b C 

0.01671 0.01671 8, rad 0.01439 0.01439 0.01439 0.01671 
a, in./ii 0.004522 0.004573 O.OO4540 0.004795 0.004819 0.004814 
( t E I ) ,  in.-lb/in. -724.42 536.27 -188.15 -404.45 77.91 - 326.54 
M. lb-in./in. 16.97 -5.09 -34.30 12.22 -0.93 -31.75 

The meridional couples M E  were determined from the 
meridional stresses u~ by numerical integration. With 
these quantities, it can be shown that Eqs. (7) are satisfied 
very closely for both cases. 

For further verification, the present method was applied 
to a continuous shell problem for which an elastic-plsstic 
solution had already been obtained. This problem, which 
was presented in detail in Ref. 3, consisted of the deformation 
of a uniform cylindrical shell by an axid thermal gradient. 
Excellent agreement between the results of the two methods 
was found, which shows that the numerical analysis pre- 
sented in this report is equally applicable to continuous and 
discontinuous shell regions. 

Conclusions 

A numerical method has been presented for solving prob- 
lems involving the axisymmetric elastic-plastic deformation 
of general shells of revolution which may contain discon- 
tinuities in geometry, material properties, or loads. The 
method was used to determine effective stress and strain 
concentration factors at the common junction of three dis- 
similar shells in the elastic-plastic regime. The following 
conclusions were found: 

1) This method produced an elastic solution that agreed 
very well with that obtained by a standard discontinuity 
analysis. 

2) By using successive approximations, the method pro- 
duced a convergent elastic-plastic solution. 

, 

3) In this elastic-plastic solution, conditions of equilibrium 
and compatibility a t  the discontinuity were satisfied. 

4) When applied to the analysis of a continuous shell re- 
gion, close agreement with known elastic-plastic results was 
found. 

5) Elastic-plastic shells with discontinuities may be 
analyzed with almost the same directness and ease as com- 
pletely elastic continuous shells. 
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