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Exact closed form solutions of the boundary layer equations can be
derived for the Nusselt number Nu(x) at the leading edge x = 0 and, in
the limits Pr » 0 and Pr —» », on the surface x > 0 of arbitrary bodies
in planar uniform flow. Published results of exact and of approximate
solutions for Nu(x)/Nu(0) in the range 0 < Pr < o are compared to the
results of the Pr - 0 and the Pr — c methods. The Pr — 0 method yields
an upper limit for Nu(x)/Nu(0). The presented examples show that the
Pr — » method yields a lower limit for Nu(x)/Nu(0) in case of slender
bodies. Both methods yield the exact solution for Nu(x)/Nu(x*) in the
cases for which similarity solutions exist. The Pr — 0 and the Pr —
methods are applicable to obtain engineering estimates of heat transfer.
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DEFINITION OF SYMBOLS

A = k m?/sec Thermal diffusivity
Pg ¢
P
c = due(O)/dx 1/sec Velocity gradient at stagnation point
ce Wall friction coefficient

cp kcal/kg °K Specific heat

C Constant in the equation (19)
g m/sec? Gravity constant

k  kcal/m °K sec Thermal conductivity

L m Reference length

m and n Exponents in the equation (19)

Lq_ (x)

Nu = 17T, (0)-T, ]

xq (%)

Nusselt number defined in the equation (15)

Nus = ETE;?ETTT;T Nusselt number defined in the equation (20)
ug ¢

Pr = __E—R Prandtl number

p kg /mZ Pressure

Wall heat transfer

R m Radius, Fig. 5
Lo u

Rey = m Reynolds number defined in the equation (13)
xp u (%)

Rep = —_—TI___ Reynolds number defined in the equation (20)

T °K Temperature

T °K Constant temperature at outer edge of boundary

layer




m/sec

m/sec

m/sec

m/sec

m?/sec
m?/sec
kg sec®/m*

kg sec/m2

mZ/sec

DEFINITION OF SYMBOLS (Cont'd)
Wall temperature
Velocity component in x-direction
Velocity at outer edge of boundary layer
Speed of ambient uniform flow .
Velocity component in y-direction
Coordinate measuring parallel to wall
Reference ‘value on x-scale
Coordinate measuring normal to wall
Thickness of thermal boundary layer
Thickness of velocity boundary layer
Angle, Fig. 5
Velocity potential
Stream function
Density
Viscosity
Dummy variable for x

Dummy variable for ¢

vii
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SUMMARY
/5897

Exact closed form solutions of the boundary layer equations can be
derived for the Nusselt number Nu(x) at the leading edge x = 0 and, in
the limits Pr - 0 and Pr —» », on the surface x > 0 of arbitrary bodies
in planar uniform flow. Published results of exact and of approximate
solutions for Nu(x)/Nu(0) in the range 0 < Pr < o are compared to the
results of the Pr - 0 and the Pr — o methods. The Pr — 0 method yields
an upper limit for Nu(x)/Nu(0). The presented examples show that the
Pr — o method yields a lower limit for Nu(x)/Nu(0) in case of slender
bodies. Both methods yield the exact solution for Nu(x)/Nu(x*) in the
cases for which similarity solutions exist. The Pr —- 0 and the Pr —
methods are applicable to obtain engineering estimates of heat transfer.

I. INTRODUCTION

The problem of the stationary heat exchange between the impermeable
wall of an arbitrary body in planar uniform and laminar flow with neg-
ligible frictional heating of an incompressible fluid with constant
material properties is encountered in many engineering applications.
The mathematical treatment of this problem starts from the equations of
continuity, momentum, and energy. The boundary layer versions of the
equations of momentum and energy may be employed when both the Reynolds
number Re = Lp uw/u and the Peclet number Pe = Re Pr are sufficiently
large, where Pr = ug cp/k is the Prandtl number. Exact solutions of
this boundary layer problem are presented in references 2, 5, 8, 10,
13, 16, and 22. TIntegral solutions of the Kdrmdn-Pohlhausen type are
presented in references 4, 17, and 23. The energy equation for the
temperature distribution in the boundary layer is a linear second-
order differential equation, which can be integrated analytically only
in special cases because of the explicit occurrence of the velocity
components u(x,y) and v(x,y) as coefficients in this equation. The
integration becomes generally feasible in the limiting cases Pr — 0
and Pr — .

The process Pr — 0 is compatible with the before-mentioned condi-
tion Pe = Re Pr = (uel)(pg cp/k) >> 1 if it is accomplished by p - 0,




i.e., by the substitution of an ideal flﬁid for the given real fluid.
If & is the thickness of the velocity boundary layer and if &, is the

ol im Oy - ) )
thickness of the temperature boundary layer, v = 0 and }%T}m t =0Q.

Pr— 0 5t E
The velocity distribution throughout the temperature boundary layer,
therefore, may be replaced for Pr — 0 by the velocity distribution ug(x)
at the outer edge of the boundary layer, which is a result of ideal
fluid theory. Also, the velocity distribution throughout the tempera-
ture boundary layer may be replaced by the wall tangent u = ytw(x)/u

for Pr —» », where T, is the wall shear stress.

Lighthill presented in reference 12 an exact analysis for the
approach Pr — ». References 3, 11, and 20 treat approximately valid
extensions of Lighthill's '"High Prandt]l Number Method' by the inclusion
of a quadratic term in the expression for u(x,y). The apparently first
application of the approach Pr — O appeared on pp. 597 - 600 of reference
7. Reference 14 presents the basic equations for the "Low Prandtl Num-
ber Method,”" Pr — 0, and the equations for a first-order correction as
part of a series expansion in terms of powers of Pr. The very involved
correction terms are worked out in reference 14 only for power laws
representing the speed ug(x) at the outer edge of the boundary layer and
the wall temperature Ty(x). The Fig. 1, which is taken from reference
14, shows for constant wall temperature and zero pressure gradient that
the first-order correction improves the results of the approach Pr » 0
only for Pr < O.1.

Since only a few comparative evaluations of the Pr — 0 and the
Pr — o methods and of exact or approximate solutions for 0 < Pr < «
have been published, such a comparison is presented here by employing
all the solutions for 0 < Pr < o which are known to the author.

II. THE LOW PRANDTL NUMBER METHOD

The boundary layer problem under consideration is governed by the
three differential equations

du , dv _ . .
Sx + 5; = 0, continuity equation, (1)
2
u gﬁ + v %5 = - % %& + % g;%, momentum equation, and (2)
oT JT k _ o°T

S Sy = oz o oy2’ energy equation, (3)
p

which are taken from p. 136/37 of reference 15. The continuity equation
(1) can be satisfied by a stream function ¥ so that

AW = yyy) ana D - v,y 4)




The von Mises transformation is introduced in order to replace x and y
by x and ¥ (x,y) in the energy equation (3). If the derivative with
respect to X when y is constant is denoted by (3/0x),, with a similar
notation for other derivatives, the following transformation formulae
are now derived, p. 152 of reference 15:

®), 06,0, 06, -

(5)
%), %), &), &)
&).-%).® -G,
The relations (3) and (5) yield the equation
oT k 9 OT
3 " og cp?\b[u v | (6)

As Pr —» 0 through @ —» 0, the energy equation (6) may be replaced by

B x
%Tj = Ekc;g%g , where @(x) =f u, (x) dx )

(o}

because of &:mo u(x,¥) = ug(x). The following initial and boundary

conditions are assumed for the solution of the energy equation (7):

T, ¥) = T, = const. at the leading edge ¢ = x = 0, (8)
T(Z, 0) = T () at the wall ¥ = 0, and 9)
lim T(g, ¥) = T_ = const. at the outer edge of the boundary _
. o (10)
Y— o layer,

where T (%) is a given continuously differentiable function of {.

Equations (7) through (10) determine a problem of the type of

transient one-dimensional heat conduction. The application of pertinent

solution methods in reference 1 yields the equation (A-13) in the
appendix :




Kee o -1, "Mz ()
A dy
qw(X) u, (x) 3 ] (11)
" W(X)-ﬂ

Q'(X 7=0

for the heat transfer rate qu(x) = - kdT(x,0)/dy at the wall y = 0.
Since d@(x)/dx = ug(x) > 0 between the forward stagnation point x = 0
and the rear stagnation point, equation (11) may be replaced by

gc Lpou ue(x) 1 :
q,, (%) -\J ]<u > [TW(O) T] = [ +
® P(x)
u L
' £
(l‘w(é)-To>_ d 1 i‘ .
T (0)-To JET;T:ZT_?
UL

The following definitions of the Reynolds number, Prandtl number, and
Nusselt number are employed:

(12)

LpuOo

Re, = n s (13)
ngce

Pr = k_R , and (14)

L q ()

N S 15

ul(x) k[Tw(O)"TO] ( )
According to p. 70 reference 19,

ue(x) X

u =cT with ¢ = const. (16)

in a small vicinity of the forward stagnation point, i.e.,

u (x)/u ’
lim ————— = V2c and Nu,(0) = \]Rel Pr 2c . (17)
x— 0 "%(x)/umL m

Thus the following relation can be derived:

ue(x) £

Nuj (x) 1 T ue(x) qa /T (E)-T d I

Nu; (0) VE?{: - T g[ a & TW(O)-TO> )~ ] (18)
2(x) = L 2e=pE)
UL u L




III. APPLICATION OF THE LOW PRANDTL NUMBER METHOD
TO CASES FOR WHICH SIMILARITY SOLUTIONS EXIST

Similarity solutions of the boundary layer equations (1) through
(3) exist in case of constant materialnproperties and if

u (x) D % for n £ 0, or
—c<> and T_(x)-T = ‘ (19)

)

where C, D, m, and n are constant numbers and the Prandtl number is
arbitrary. For convenience, the Reynolds number and the Nusselt
number are defined here as follows:

px ue(x) qu(x)
Rex(x) = __—_E_-—_' and Nus(x) = ETE_T;T_E_T 20)

Data for Nug(x)/VReg(x) resulting from exact numerical similarity
solutions of the equations (1) through (3) are derived in references 5
and 10 for several sets of values m, n, and Pr. Reference 12 presents
additional results for n = 0 and Pr = 0.7. The data presented in
reference 10, which pertains to the ranges -0 0904 <m <4, -2.5<n<4,
and 0.7 < Pr < 20 can be correlated with a * 57 margin of error by the
function

Nuz(x)
——— = pe"®™E_(m,n), (21)
VRe o (x) ‘
where
0.3740.06p
By (m,n) = 0.57 (0.205+f3)°'1°" \lmzil<1+a ﬁ) , (22)

0.254 < A(m) < 0.367, and B = 2m/(m+l1).

Since

S UL 7 m+l
g(x) = fue(x)dx =~ <f> s (23)

o]




according to equation (19), equation (11) yields

q, (%) = [T (0)- T] L {Br Rea(x) (24)

for constant wall temperature. The heat transfer parameter then takes
the following form:

Mu2CO <0y (%) - \lpr =L (25)
[Rez(x)’ k[T, (0)-T, lRez (x) :
Equation (11) becomes in case of the power laws (19) for ug(x)
and T, (x)-T,, i.e., in case of yariable wall temperature,
1 Qj( ) n
PrRes(x) u, =)' T (x) T m+1 3 d
%y (X) = K ﬂ X umCL EH () ——
W(X)-n
(26)
The heat transfer parameter then becomes
m+1
Nus(x) V'__' < >m+l<>
u J1(x), (27)
Reg(x m+1l \ u, CL
where
M
1 1
J1(x) = Qf(X) and M = =2 - 2 (28)
1 m+1 27
<1_ 1) 1
=0 ) @
The right-hand side of equation (27) is independent of x because of
the relations (23) and (28); therefore,
NU2(X)
= pr'/2 B, (m,n). (29)

VRez(X)

The function J; can be evaluated analytically in closed form when M
is a positive integer number, and the following values can be obtained
for Bi(m,n) in case of some suitably selected pairs of numbers m and n:




m 0 0.25 1 1 4
n 0.5 1.875 1 3 2.5
B1(m,n) 0.8862 1.4862 1.2533 1.8800 1.9817

IV. THE HIGH PRANDTL NUMBER METHOD

It has been explained before why Lighthill approximates the velocity
profile u(x,y) in the limit Pr — » by the expression

T (x) ZTW(x)
uy=u

u(x,y) = V\lf(x,y), (30)
where VY(x,y) =k/xu(x,y)dx = yzrw(x)/Zu. The substitution of the relation

o
(30) into equation (6) yields

IT(x,¥) |k \I 2’ ) a Tgx,n
ox - pec, v (31)

Lighthill has solved this partial differential equation by use of
Heaviside's operational method in reference 12 and has obtained the
relation

1/3 T, (x)

v R

TW(O)-T°

x 1/3
/ -rw”z(gmg)

E=x

dT (§)

. T

For a vicinity of the stagnation point, an exact solution of the Navier=-
Stokes differential equations yields

vfw(x)' - 1.2326 372 Wx (33)

1/3 (32)
(z)d%)



according to p. 70-73 of reference 19, where ¢ = dug(0)/dx has been
defined in equation (16). 1If the relations (13) through (15) and the

usual definition
TW(X)F
cf(x) = 53;575 (34)

of the wall friction coefficient are employed, the following equations
can be derived:

0.660 pri/3 Re,l/2 EL and (35)

‘ . Nuj (%) o qﬁ_j{ v f(x)Re1172I
‘ — 0.
Nuy (0) 1/3
<f\]c (é)Re?I/Z 5‘)

Nu; (0)

It

(36)

E=x
, 1 (£)-T
: 1/2° d W
| + »Cf(X)Rel f B é_ Tw(o) TO> 1/3].
£=0 T Jf v (z)Re%_/2 )

V. APPLICATION OF THE HIGH PRANDTL NUMBER METHOD TO CASES
FOR WHICH SIMILARITY SOLUTIONS EXIST

If the velocity distribution (19) is stipulated, the wall shear
stress becomes

3/2 3m-1

v () = (u% CORERICCS (37)
L .

Numerical results for the function fjj(m) have been derived in references
5, 9, and 12 and are represented in figure 2 by disregarding a few

inconsistent numbers from reference 9. For constant wall temp., equation
(32) then becomes

1/3
q, () = 0.538 £ [1_(0)-1,1pr' /3R 1/2(x)[4 (m+1) f”(m)} (38)




and the heat transfer parameter, which is defined in the relations (20),
takes the form

Nuo(x)

qRez(X)

1/3
= 0.538 pri/3 [:% (m+1) f";(m)] . (39)

Equation (32) becomes in case of the power laws (19) for ug(x)
and Ty, (x)-Ty, i.e., in case of variable wall temperature,

1/3 m+1
q,(®) = 0.538 £ [1,(0-T,] prl/3rel/2(x) [% (m+1) f;(m)] ™ T 500x),
(40)
where
£ _
n- mhl X - n=-1 :-% (m+1)_‘_‘/3
Jo(x) = x 4 (i) ll-’(}() J dz (41)

The heat transfer parameter, which is defined in the equations (20),
then takes the form

m+1

Nuz(x) 1/3 -n+ ——
z = 0.538 [% (m+1) f;(m)] pri/3nx 4 Jox) = Prt3Bo@m,n),
\Reo @ (42)

where Bz(m,n) is independent of x. The function J- can be evaluated
analytically in closed form for special pairs of values of m and n; e.g.,
by use of the function £j(m) in Fig. 2, B2(3,3) = 1.316.

Both the low and the high Prandtl number methods and the exact
solution for any Prandtl number yield expressions for Nup(x)/YRez(x)!
which are independent of x as the comparison of equations (21), (25),
(29), (39), and (42) shows. The functions Nus(x)/YReo(x) are repre-
sented in Fig. 3 versus m for n = 0 and Pr = 0.7. The three methods,
therefore, yield identical results for Nus(x)/Nus(x*), where x* is
any reference value.

VI. THE FUNCTIONS ue (x) AND cg(x) FOR THE INVESTIGATED CASES

Incompressible potential theory yields the velocity distribution

ue(w) = 2u_sin @ A (43)
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at the surface of the circular cylinder presented in Fig. 5. 1In the
vicinity of the stagnation point of this cylinder, ug(xg) = 4usxy/L,
where the coordinate xg measures along the circumference of the circu-
lar cross section, which possesses the diameter L = 2R. The velocity
gradient ¢ = due(0)/dx, then has the value c = 4. Also, according to
reference 8, the velocity distribution

u, (%)

e
u
0

3 5
= 3.6314 ¥ - 2.1709 (%) - 1.5144 <§> + ... withc = 3.6314
(44)
follows from the measured pressure distribution around a circular |
cylinder in an airstream with the Reynolds number 19,000.

The functions

a
£, = a; cos ¢ and n; = b; 8in ¢ with a; = R<1+-§;>, b; = ﬂil- §§>’

(45)

and 0 < a < R represent the conformal mapping of the &; — 7n; plane,
Fig. 6, on the &c - no plane, Fig. 5. The corresponding relation
between the complex stream functions in the &; =« 7; plane and in the
£o = Mo plane is derived, e.g., on p. 121 of reference 18 and yields

ue(Q(X)) = LA where A = Ei

. (46)
Yoo v1+%2ctg2 © a1

In a vicinity of the stagnation point x = ¢ = 0,

u_(9) X X X X1 X

e R 5. P K i =] o _ LA _— 1N - 1A\ _1_-
A PR MR AR - 2\ 3, <1+ 1+x> A3y WD
because of a®/R® = (1-A)/(14\). Equation (47) yields
u_(x1) X1

e 14\ :
" =2 R for x; << 1, (48)
o]

where L = 2a;. The functions (43) and (44) for the circular cross

section and the function (46) for several elliptic cross sections are
presented in Fig. 7. ’

Fig. 8, which represents data taken from reference 4, shows the sur-
face velocity distribution ug(x)/u, in planar incompressible flow for a
single airfoil, t/L = o, and for the same airfoil in a cascade with
t/L = 0.5.

The expression
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s

T_(x) 8
- _ W _ X X X\ _
cf(x)\}nel'=p_u2 \Re: = 9.861 = 3.863<%> +o.413<_12:>
2 00

(49)

for the wall friction coefficient is, according to p. 136 of reference 19,
a result of a series expansion of the solution for the laminar incompressi-
ble boundary layer around a circular cylinder. Fig. 9 presents Cf(X)‘Rel'
versus x/L as following from the equation (37) for a flat plate with m = 0O,
from equation (49) for the circular cylinder, and from results of Kéfméh-
Pohlhausen analyses, presented on p. 217 of reference 19 for the ellipses
with the ratios 1:2 and 1:4 of the minor and major axes.

VII. DISCUSSION OF THE RESULTS

The heat flux equation

a (0 = - k L _ gpe & [ w6y - T, dy (50)

o

of the temperature boundary layer is obtained by integration of the
energy equation (3) across the boundary layer from y = 0 to the outer
edge y £ yo. Since the temperature profile T(x,y)-T, cannot possess

a point of inflection in problems of convective heat transfer with
negligible frictional heating, equation (43) shows that the wall heat
transfer rate qu (x) increases together with the level, in the vicinity
of the wall, of the velocity component u(x,y).

If a heat transfer problem of the type being considered with
0 < Pr < » is treated by use of the low Prandtl number method, Pr —» O,
u(x,y) is replaced by u,(x), where u(x,y) < u,(x). The error of the low
Prandtl number method, therefore, is positive and in gemeral increases
together with the boundary layer thickness, i.e., with x. The error then
should take a minimum value at the forward stagnation point x = 0.

If a heat transfer problem with O < Pr < = is treated by use of the
high Prandtl number method, Pr — », u(x,y) is replaced by its wall tangent
¥Tw(x)/u. The error of the high Prandtl number method, therefore, is
positive between the forward stagnation point x = 0 and a point close to
the point X = xp of minimum pressure; the error is negative in the range
Xy < x < Xg, where xg is the point of separation of the boundary layer,
since u(x,y) as a function of y has a point of inflection for x > xp.

Fig. 4 shows for a flow with zero pressure gradient that the high Prandtl
number method still yields the correct order of magnitude of Nux(x)/fRe (x)
for Pr < 0.03.

The x-independent relationship (15) between Nu; and qw(x) in
case of constant wall temperature T. shows that these conclusions on
the deviations of the low and the high Prandtl number methods from
exact solutions are valid for Nu;(x) as well as for qu (x). Therefore,
the low Prandtl number method overestimates both Nu,(x)/{Rey and
Nuj (x)/Nu; (0) at rates which increase together with x. The high Prandtl
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number method overestimates Nul(x)/VRel'in the range 0 < x < xp and
ynderestimates Nul(x)/f§€1 for x > x,;. The comparison of the two methods
under discussion to exact similarity solutions in Fig. 3 confirms these
conclusions. In particular, the error of the high Prandtl number method
has different signs for m > 0 and for m < O.

If the inevitable small inaccuracies of the quoted and of the calcu-
lated results are taken into account, Figures 10 through 15 confirm for
constant wall temperature that the low Prandtl number method overestimates
Nuji(x)/Nu;(0) at a rate which increases together with x. The presented
examples show that the high Prandtl number method underestimates Nul(x)/Nul(O)
for 0 < x < Xp in case of slender bodies. These conclusions still are
valid between x = 0 and the point x = £ defined by Ty(E) = T, in case of
variable wall temperature T, (x) (Figures 16 - 18).

The presented results, in particular the comparison of Figures 10
and 19 or 13 and 20, show for both the low and the high Prandtl number
methods that the deviations of Nu/VR€ from pertinent exact or approximate
solutions can be represented as the products of large x-independent
contributions, inherent to the methods, and of small x-dependent modifi-
cations, where only the latter part remains in Nu(x)/Nu(0). This explains
why it is advantageous to employ the result Nu(x)/Nu(0) of the low or the
high Prandtl number methods rather than their result Nu(x)/{Re'

If Tw(x) = const. in a small vicinity of the forward stagnation
point x = 0, the evaluation for m = 1 and n = 0 of the exact similarity
solutions, e.g., equation (21), furnishes exact expressions for Nu, (0) /YRe;,
which depend correctly on Pr. The product of the exact factor Nuj(0)/VRei'
and of the results Nuj(x)/Nu;(0) of the low or the high Prandtl number
methods yields satisfactory approximations to the exact solution for
Nu; (x)/{Re7, and this in the total range of Prandtl numbers.

A comparison of equations (18) and (36) shows that the numerical
evaluation of the high Prandtl number method is more involved than the
one of the low Prandtl number method, in particular, if T,(x) is variable.
Also, the input function ue(x) of the low Prandtl number method follows
from ideal fluid flow theory, whereas the high Prandtl number method
depends on the wall friction coefficient cf(x), which is a result of
boundary layer analysis.

VIII, CONCLUSIONS

Both the low and the high Prandtl number methods yield closed form
solutions for the wall heat transfer in the two limiting cases Pr —» O,
achieved through yu — 0, and Pr —» », respectively. The error is investi-
gated which is due to replacing a given heat transfer problem with
0 < Pr < w by the limiting problems. The results for Nuj(x)/Nu;(0) of
the low or the high Prandtl number methods yield significantly closer
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T (X) 3 5

- - X _ X X\ .
cf(x)\]nel'zeua [Re1 = 9.861 = 3.863<£> +o.413<£>
2 Yo 2

2 2 (49)

for the wall friction coefficient is, according to p. 136 of reference 19,
a result of a series expansion of the solution for the laminar incompressi-
ble boundary layer around a circular cylinder. Fig. 9 presents cf(x)‘Rel'
versus x/L as following from the equation (37) for a flat plate withm =0,
from equation (49) for the circular cylinder, and from results of K4rmdn-
Pohlhausen analyses, presented on p. 217 of reference 19 for the ellipses
with the ratios 1:2 and 1:4 of the minor and major axes.

, VII. DISCUSSION OF THE RESULTS

The heat flux equation

q,(x) = -k a—T%;Q' = pgc_ & [ uGLy Ty - T, 1 dy (50)

o

of the temperature boundary layer is obtained by integration of the
energy equation. (3) across the boundary layer from y = O to the outer
edge y £ yo. Since the temperature profile T(x,y)-T, cannot possess

a point of inflection in problems of convective heat transfer with
negligible frictional heating, equation (43) shows that the wall heat
transfer rate qu(x) increases together with the level, in the vicinity
of the wall, of the velocity component u(x,y).

If a heat transfer problem of the type being considered with
0 < Pr < w is treated by use of the low Prandtl number method, Pr » O,
u(x,y) is replaced by u,(x), where u(x,y) < ug(x). The error of the low
Prandtl number method, therefore, is positive and in general increases
together with the boundary layer thickness, i.e., with x. The error then
should take a minimum value at the forward stagnation point x = O.

If a heat transfer problem with 0 < Pr < o is treated by use of the
high Prandtl number method, Pr — o, u(x,y) is replaced by its wall tangent
yTy(x) /1. The error of the high Prandtl number method, therefore, is
positive between the forward stagnation point x = 0 and a point close to
the point X = X; of minimum pressure; the error is negative in the range
Xy < X < Xg, where xg is the point of separation of the boundary layer,
since u(x,y) as a function of y has a point of inflection for x > xp.

Fig. 4 shows for a flow with zero pressure gradient that the high Prandtl
number method still yields the correct order of magnitude of Nus(x)/fRe (x)
for Pr < 0.03.

The x-independent relationship (15) between Nu; and qw(x) in
case of constant wall temperature T _ shows that these conclusions on
the deviations of the low and the high Prandtl number methods from
exact solutions are valid for Nu;(x) as well as for q,(x). Therefore,
the low Prandtl number method overestimates both Nu;(x)/{Rey and
Nuj (x)/Nu; (0) at rates which increase together with x. The high Prandtl
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number method overestimates Nul(x)/VRef in the range 0 < x < xp and
underestimates Nul(x)/fKET for x > x,;. The comparison of the two methods
under discussion to exact similarity solutions in Fig. 3 confirms these
conclusions. In particular, the error of the high Prandtl number method
has different signs for m > 0 and for m < O.

If the inevitable small inaccuracies of the quoted and of the calcu-
lated results are taken into account, Figures 10 through 15 confirm for
constant wall temperature that the low Prandtl number method overestimates
Nuj(x)/Nu;(0) at a rate which increases together with x. The preeented
examples show that the high Prandtl number method underestimates Nul(x)/Nul(O)
for 0 < x <xp in case of slender bodies. These conclusions still are
valid between x = 0 and the point x = § defined by Ty(&) = Ty in case of
variable wall temperature T,(x) (Figures 16 - 18).

The presented results, in particular the comparison of Figures 10
and 19 or 13 and 20, show for both the low and the high Prandtl number
methods that the deviations of Nu/{Re€ from pertinent exact or approximate
solutions can be represented as the products of large x-independent
contributions, inherent to the methods, and of small x-dependent modifi-
cations, where only the latter part remains in Nu(x)/Nu(0). This explains
why it 1s advantageous to employ the result Nu(x)/Nu(0) of the low or the
high Prandtl number methods rather than their result Nu(x)/{Re.

If T,(x) = const. in a small vicinity of the forward stagnation
point x = 0, the evaluation for m = 1 and n = 0 of the exact similarity
solutions, e.g., equation (21), furnishes exact expressions for Nu;(0)/VRe;,
which depend correctly on Pr. The product of the exact factor Nu,(0)/{Rey'
and of the results Nu;(x)/Nu;(0) of the low or the high Prandtl number
methods yields satisfactory approximations to the exact solution for
Nu;(x)/V{Req1, and this in the total range of Prandtl numbers.

A comparison of equations (18) and (36) shows that the numerical
evaluation of the high Prandtl number method is more involved than the
one of the low Prandtl number method, in particular, if T,(x) is variable.
Also, the input function ue(x) of the low Prandtl number method follows
from ideal fluid flow theory, whereas the high Prandtl number method
depends on the wall friction coefficient cg¢(x), which is a result of
boundary layer analysis.

VIII, CONCLUSIONS

Both the low and the high Prandtl number methods yield closed form
solutions for the wall heat transfer in the two limiting cases Pr —-» O,
achieved through u —» 0, and Pr —» «, respectively. The error is investi-
gated which is due to replacing a given heat transfer problem with
0 < Pr < » by the limiting problems. The results for Nuj;(x)/Nu;(0) of
the low or the high Prandtl number methods yield significantly closer
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approximations than their results for Nul(x)/VRel. The expressions
Nup(x) /Nup(x*) as obtained from the low and the high Prandtl number
methods and from exact boundary layer solutions coincide in the simi-
larity case defined by the power laws (19) for ug(x) and T,(x) - T,.

It is shown theoretically and confirmed by the numerical results that

the low Prandtl number method yields an upper limit for both Nu,(x)/VRe;y
and Nuj(x)/Nu;(0). Theoretical conclusions and the presented data yield
the result that the high Prandtl number method overestimates Nu;(x)/{Re?
in the region of accelerated flow and underestimates Nu,(x)/YRey in the
region of decelerated flow. The presented examples show for slender
bodies that the high Prandtl number method furnishes a lower limit for
Nuj (x)/Nuy(0) in the region of accelerated flow. Since exact solutions
for Nuj;(0)/{Re exist at the stagnation point x = 0 for a very wide

range of Prandtl numbers, if the temperature T, = const. in a small
vicinity of the stagnation point, the product of the exact factor

Nu; (0)/VRey' . and of the results Nu;(x)/Nu;(0) of the low or the high
Prandtl number methods, respectively, yields satisfactory approximations
for Nuj(x)/\Rey' in the range 0 < Pr < w. The amount of work involved

in caliculating the input function ue{x) and in evaluating the low Prandtl
number method is significantly smaller than the amount of work involved
in solving the boundary layer equations for the input function cg(x) VRel
and in evaluating the high Prandtl number method.
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APPENDIX
THE SOLUTION OF THE EQUATIONS (7) - (10)

The differential equation (7) together with the initial and boundary
conditions (8) - (10) can be solved by the expression

n= : '
T(Z,¥) - T = f?[TW(n)-To] %5 F(Z-n,¥) dn, (A-1)
=0 |

according to p. 62 of reference 1, where 7 is a dummy variable for @ in
the limits 0 < < @. The function

0
2 - n® ,
F(Z-1,V) = = e dn with A = (A-2)
& | P8C, ‘
2VA(F-n)
. , , 2 ,
is related to the error integral erf, = = e > df. Both F(g-n,V)
o

and its derivatives are well defined for n < ¢ and their limits exist

as 1 - @ for ¥ > 0; at the point ¥ = 0 and n = &, however, these functions
do not possess unique limits. The equations (A-1) and (A-2) yield the
relation '

'fl=
T(P,¥) - = —— f[T (m)-1,] SERLVBAGD] g0 gy s 0. (a-3)
2 o) Z’A__'ﬂ W (o) (g-n)3/2

1=0

It is immediately seen that the relation (A-3) satisfies the conditions
(8) and (10). Since the derivatives of (A-3) exist for ¥ > 0, it can
be shown for ¥ > O that the relation (A-~3) satisfies the differential
equation (7). It is shown in the following paragraph that the relation
(A-3) satisfies the remaining boundary condition (9).

Equation (A-3) becomes

T(ﬁ:‘l’) "To =

Ely

Rk

f [TW(KZ'WZ/‘FAuz)'To] \e-u du ' (A=4)
u=
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when the coordinate transformation

w o= —v (A-5)
2\a(Z-n)

is introduced, which relates the independent variables n and p and which
exists if # > 0 and ¥ > 0. The integrand in equation (A-4) possesses
the following finite discontinuity at the point defined by u = 0 and

¥ = 0:

(A-6)
‘< Tw(g)-To for p > % and g >0
g - - T, =
“’ Zo T (0)-T =0 < T_(§)-T, for p = ¥ adg>o

The integral in equation (A-4) can be expressed as the cum of the '"main
part" pertaining to the range €

+_\lf_.

l_ <€+ S . 1f the integrand
2{A7 2Yag

in the remainder is replaced by its upper limit T, (@) - T,, according to
the relations (A-6), it is seen for @ > O that the resulting upper limit

of the remainder tends to zero together with € at any value of {y. Because
=]

2
of [e H du = vn:_‘/Z, the main part then tends to the limit Tw(ﬁ)-nTo

of the "remainder'" for the range

when € and ¥ tend to zero independently of one another; i.e., the boundary
condition (9) is satisfied by the relation (A-3).

The integration by parts is valid in the right-hand side of equation
(A-3) since the integrals converge uniformly for ¥ > 0 and 0 < < .
Because of OF/0f = - OF/O¥ and lim F(g-1,V¥) = 0, equation (A-3) then
becomes - g

L a1, ()
T(,@,\!f)-TO = dTI F(Z-q,¥) dn for ¥ > 0 and Tw(O) = To. (A-7)
n=0

Since equation (A-7) may be differentiated if ¥ > O,

j@ AT M) o[ -v2/4A(E-1) ] dn for ¥ >0 and T_(0) = T_.

;/A(Qf -n) (4-8
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The integrand in equation (A-8) possesses a finite discontinuity at the
point defined by 7 = ¢ and ¥ = 0. Because of 0 < exp PW2/4A(¢-H)] <1,
it can be shown by an argument following the one presented above that
the limiting form of the equation as ¥ - 0 is

r 4T, g4
ago . \Z (4-9)

T dn
=0 n \r_‘“

For constant wall temperature T () - Top = Ty, (0) -~ T, = const.,

equation (A-1) becomes because of BFV = - BF/Bn
n=g ) o .

T(ﬁ:W)'TO =-[Tw(0)-TO] F(Z-1,¥%) ’ =“"[Tw(0)'To]Jf et dt (A-10)
=0 T y/2Yag"

except at the point defined by @ = 0 and ¥ = 0. Equation (A-10) satisfies
the initial and boundary conditions (8) - (10) because of

o0
fe'§2 ¢ = g_—"-‘ Also,
(o)

é!é%&il =-— [T,(0)-T,] exp[-V®/4A7] and (A-11)
T“ 2Vag’
pg c 1T (0)-T
§g<¢:0> - -V p W © for ¢ > 0. (A-12)
v nk VBW

Since the velocity distribution ue(x) prevails at the wall in the limit
p — 0 under discussion, equations (A-9) and (A-12) yield the following
expression:

Pacy T 1,-1,  "F® ar ()
_IS§¢91 \l —2 u, (x) L2 4 u/? Zn -ﬂﬂ—1 : (A-13)
Ug(x 1.l=0 W‘ﬂ‘
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Non-dimensional wall temperature gradient ((- NxL/Re, )(OT/BV)WE/(TW - To]}

versus Prandtl number Pr f{for flat plate at constant wall temperature Ty

in uniform flow, data taken from Fig. 1 of Ref. 14.

Curve No. 1: Result of K{frman-Pohlhausen analysis, presented in Ref. 21

Curve No. 2: Low Prandtl number approach

Curve No. 3: Low Prandtl number approach plus correction term taken from
Ref. 14

The points marked by © represent the exact solution in Ref. 16.

0.8 | o | |
— x
u,——— ]
g -
't 0.6
£ —
= -©
} /
&
2 0.4 //
G
|
x /
oz ]
——\
\
\\\@
0 \
0 0.2 0.4 0.6 0.8 1.0
Pr

FIG. 1. NON-DIMENSIONAL WALL TEMPERATURE GRAD IENT
FOR FLAT PLATE

MTP-AERO-62-19
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2.4

0.4

@ 2ndi®
d
Vi
2 f;, (m) = 0.5 c(x) NRe, (x) Nx/L versus m for
velocity distribution (19), ue (x)/u, = C (x/L)™.

Curve No. 1: Follows from 7 points presented in

Table 5 of Ref. 12
1 Curve No. 2: Follows from 3 points presented in

/ Table I of Ref. 5
0.25 1.00 1.75 2.50 _ 3.25 4.00

FIG. 2. - NON-DIMENSIONAL FRICTION COEFFICIENT FROM
EXACT SIMILARITY SOLUTIONS

MTP-AERO-62-19
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Nu, (x)/~NRe,(x)

1.0
0.8
0.6
0.4
Nu, (x) /NRe, (x) versus m for Pr=0.7 for constant wall temperature T,
and ue (x)/uw = C(x/L)M. The points marked by ©,@® , and @ represent
exact numerical solutions of the boundary layer equations; the points
marked by © appear in Table II of Ref. 5; the points marked by @ are
0.2 @® | the result of dividing the numbers presented in Tables 1-4 in Ref. 10 by
| N{m+1)/2 ; the points marked by @ follow from a re-evaluation of
| numbers presented in Table 1l in Ref. 12 in order to account for different
| definitions of Nu and Re.
|| Curve No. 1: Evaluation of the correlation (21) of exact solutions
| | Curve No. 2: Low Prandtl number method, Equation (29)
{| Curve No. 3: High Prandtl number method, Equation (42)
|
0 1 l l

0 1 2 3 4
m

FIG. 3. Nuz(x)A/ﬁea(x) FROM EXACT SIMILARITY SOLUTIONS

MIP-AERQ-62-19
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Nu, (x) /NRe, (x)Pr versus Pr for a flat plate with ug(x) = u, at constant wall
temperature Ty .

Curve No.
Curve No.

Curve No.
Curve No.

Curve No.

1: Exact numerical solution derived in Ref. 22

2: Result of Karmdn-Pohlhausen analysis in Ref. 21, yielding
Nu, (x) NRe, (x)Pr = 0.529/(1 + 0.82NPr)

3: Low Prandtl number approach, Equation (12)

4: Low Prandtl number approach plus correction term taken from
Ref. 14, yielding Nu, (x) NRe, (x)Pr = 0.564 - 0.547/Pr

5: High Prandtl number approach, Equation (32)

ey

0.60

Nu, (x) /NRe, (x) Pr

0.50

.010 .020 .030

FIG. 4. Nu,(x)i/Re,(x)Pr FOR FLAT PLATE
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FIG. 5.  CIRCULAR CYLINDER IN UNIFORM PLANAR

FLOW IN THE £ - 7, PLANE
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[G. 6. ELLIPTICAL CYLINDER IN UNIFORM PLANAR

FLOW IN THE €, - 7, PLANE
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ue/u,

1.

Ue (x) /ue for several cylinders in uniform planar flow.
Evaluation of the Equation (43) for the circular cylinder,

Curve No. 1:

Curve No. 2:

Curve No. 3:

’Curve No. 4:

which follows from potential theory

Evaluation of the Equation (44) for the circular cylinder,
which follows. from measurements at Re; = 19,000, see

Ref. 8

Evaluation of the Equation (46) for the elliptic cylinder

with the ratio 1:2 of the axes

Evaluation of the Equation (46) for the elliptic cylinder

with the ratio 1:4 of the axes

FIG. 7.

0.80 1
x/L

0.40 .20

1.60

VELOCITY DISTRIBUTIONS AT SURFACES OF

CIRCULAR AND ELLIPTIC CYLINDERS

MTP-AERO-62-19
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ue/u,

Ug (x)/u, versus x/L for airfoils in uniform planar flow, data taken from
p- 98 of Ref. 4.

Curve No. 1: Single airfoil, t/L =
Curve No. 2: Same airfoil in cascade flow with t/L = 0.5

—
—
—

/ N

®
L
N \

AN

N

0.2 0.4 0.6 0.8 1.0
x/L

FIG. 8  VELOCITY DISTRIBUTIONS AT SURFACE OF AIRFOIL

MTP~AERO-62-19
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cs NRe,

1.5

¢ (x) NRe, versus x/L for laminar incompressible flow.
Curve No. 1: Evaluation of the function c;NRe, = 2fy (0) NL/x,
which follows from Equation (37) for the flat
plate, m =0
Curve No. 2: Evaluation of Equation (49) for the circular cylinder
Curve No. 3: Result of Kérman-Pohlhausen analysis presented on_
B p. 217 of Ref. 19 for elliptical cylinder with ratio
1:4 of axes
Curve No. 4: Result of K&€rmdn-Pohlhausen analysis presented on
p- 217 of Ref. 19 for elliptical cylinder with ratio
1:2 of axes

N
~
~
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\.\
S o NG
\\\
"\‘ \\‘

\ \
\
\
\

0 0.20 0.40 0.60 0.80 1.

x/L

FIG. 9.  FRICTION COEFFICIENT FOR FLAT PLATE, CIRCULAR,
AND ELLIPTIC CYLINDER

MTP-AERO-62-19
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1.

0.

.80

.40

.20

00

60

b, /a; =1/4
—

u, —= + L
—~ !
—— a.‘

L

Nu, (x)/Nu, (0) versus x/L for elliptical cylinder with
ratio 1:4 of axes and constant wall temperature T,,.

Result of Karmah-Pohlhausen analysis

Curve No.

Curve No.

Curve No.

Curve No.

1:

2:

3:

presented on p. 185 of Ref. 6

Result of Karmanh-Pohlhausen analysis

presented in Ref. 4

Low Prandtl number approach,

Equation (18)

Equation (36)

: High Prandtl number approach,

0.20

FIG. 10.
Tw=

CONST.

0.40
x/L

0.60

Nu, (x)/Nu, (0) FOR ELLIPTICAL CYLINDER 1.4,

MTP-AERO-62-19
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1.

0.

Nu, (x) /Nu, (0)

0.

0.

00

.80

60

40

20

Nu, (x) /Nu, (0) versus x/L for elliptical cylinder with

the ratio 1:2 of axes and constant wall temperature

Tw-

Curve No. 1: Result of Karmah-Pohlhausen analysis
presented on p. 185 of Ref. 6

Curve No. 2: Low Prandtl number approach,
Equation (18)

Curve No. 3: High Prandtl number approach,
‘ Equation (36)

1/2

by /ay =
N

\N =
\\u.If—+_ i
N
N

FIG. 11,

0.20 0.40 0.60 ' 0.80
x/L

Nu, )/Nu, (0) FOR ELLIPTICAL CYLINDER 1:2,
T, = CONST.




Nul (x) /Nul (0) s

.00

.80

.60

.40

.20

Nu, (x) /Nu, (0) versus x/L for elliptical cylinder with ratio 1:1.5 of
axes and constant wall temperature Ty.

Curve No. 1: Interpolation from curves presented on p. 185 of Ref. 6
Curve No. 2: Low Prandtl number approach, Equation (18)

Il i 1

0.20 0.40 0.60 0.80
x/L

FIG. 12 Nu, (x)/Nu, (0) FOR ELLIPTICAL CYLINDER 1:1.5,
Tw =CONST.
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Nu, (x) /Ny, (0)

0.80

0.60

0.40

0.20

temperature

Nu, (x)/Nu, (0) versus x/L for circular cylinder with constant wall
Tw-
Curve No. 1:

Curve No. 2:

_Curve No. 3:

Result of Karmah-Pohlhausen analysis taken from p. 185
of Ref. 6 for Equation (43) representing ue(x)/u,

Follows from series expansion Nu, (x)/NRe; = 0.9449-

- 0.5100 (x/L)2 - 0.5956 (x/L)4 + ..., which is presented
on p. 20 or Ref. 8, for Equation (44) representing ug(x)/ue
Low Prandtl number approach pertaining to Equation (43)
for ug (x)/u,

Curve No. 4: Low Prandtl number approach pertaining to Equation (44)
representing ug (x)/ug _
Curve No. 5: High Prandtl number approach pertaining to Equation (43)
representing ug (x)/u,
0.20 0.40 0.60 0.80
x/L
FIG. 13.  Nu,(x)/Nu,(0) FOR CIRCULAR CYLINDER,

Tw=CONST.
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Nu, (x) /Ny, (0. 1)

0.60

L |

Ny, (x) /Nu, (0. 1) versus x/L for single airfoil in
uniform flow with ue(x)/u, presented in Fig. 8 and
constant wall temperature Ty,.

presented on p. 98 of Ref. 4
\ Curve No. 2: Low Prandtl number approach,

Curve No. 1: Result of K{rmdn-Pohlhausen analysis|

Equation 18

N

0.20 0.40 0.60 0.

x/L

FIG. 14 Nu,(x)/Nu,(0.1) FOR SINGLE AIRFOIL, T,,=CONST.
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Nu, (x) /Ny, (0. 1)

1.

0.

00
—
— P —=
——
S |
—
.80 — t
-
— =
L
60 \
40 \\
RS
> e
.20
Ny, (x) /Ny, (0. 1) versus x/L for airfoil in cascade flow with ue(x)/u,
presented in Fig. 8 and constant wall temperature Ty; t/L = 0.5.
Curve No. 1: Result of K{rmdn-Pohlhausen analysis presented on p. 98
of Ref. 4
Curve No. 2: Low Prandtl number approach, Equation (18)

0.20 0.40 0.60 0.80
x/L

FIG. 15.  Nu, X)/Nu, (0. 1) FOR AIRFOIL IN CASCADE,
Ty =CONST.
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1.0

0.4

Nu, (x) /Nuy, (0)

Nuyy (x) /Nu, (0) versus x/L for elliptic cylinder with

ratio 1:4 of axes and variable wall temperature

Tw(x) - Tg = EI‘W (0) - To] cos (wx/0.899L).

Curve No. 1l: Result of Kdrmdn-Pohlhausen analysis
presented on p. 106 of Ref. 4

Curve No. 2: Low Prandtl number approach,
Equation (18)

Curve No. 3: High Prandtl number approach,
Equation (36)

\\
®
. /

@ L7
S~

@
\\ ___~

0.2 0.4 0.6 0.8 1.
x/L .
FIG. 16.  Nu, x)/Nu, (0) FOR ELLIPTICAL CYLINDER 1:4,

Tw # CONST.
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Nu, (x) /Nu, (0. 2)

7.5

Nu, (x) /Ny, (0.2) versus x/L for flat plate with

variable wall temperature

Tw(x) - To = [Tw(0) - To]cos (wx/L).

Curve No. l: Result of Kfrman-Pohlhausen analysis
presented on p. 104 of Ref. 4 for
Pr =10

Curve No. 2: Result of Kdrmdn-Pohlhausen analysis
presented on p. 104 of Ref. 4 for
Pr=0.7

Curve No. 3: Low Prandtl number approach,
Equation (18)

Curve No. 4: High Prandtl number approach, —_—

Equation (36)

0 ]

— =
N b

' ®
-3.0
0 .20 0.40 0. 60 0.80
x/L
FIG. 17.  Nu, (x)/Nu, (0. 2) FOR FLAT PLATE, T, #CONST.
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Nu; (x)/Nu; (0) versus x/L for flat plate with variable wall temperature

Tw(x)/ Ty =1.25 - 0.83x/L +0.33 (x/L)Z, where Nuj (x) = xqy, (x)/kT,.

Curve No. 1: Result of exact series expansion of solution on p. 561 of
Ref. 2

Curve No. 2: Low Prandtl number approach, Equation (12)

Curve No. 3: High Prandtl number approach, Equation (32)

Nu, (x)/Nu; (0)

-0.

I e —
®
6 <
: \
\\
N
8 & \\\
\_—_
\\_—"
4
0 0.40 0.60 0.80 1.
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00

FIG. 18 Nus(x)/Nus(0) FOR FLAT PLATE, T, #CONST.

MTP-AERO-62-19




34

4,2
—_—
byfa,x1/4
N 1/3y i
e
—
- 3
It L |
3.

Nuy, (x) /'\/R—e1 versus x/L for elliptic cylinder with

ratio 1:4 of axes, constant wall temperature Ty,
and Pr = 0.7; the curves 1, 3, and 4 are explained
in the legend of Fig. 10.
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Nu, (x)/NRe; versus x/L for circular cylinder with constant wall
temperature T,,, and Pr = 0.7; the curves 1, 3, and 5 are explained

in the legend of Fig. 13.
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