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PROBABILITY FUNCTIONS FOR RANDOM RESPONSES: PREDICTION O F  

PEAKS, FATIGUE DAMAGE, AND CATASTROPHIC FAILURES 

1 3  PPC' 1. INTRODUCTION 

This report reviews a number of theoretical matters in random 

process theory which can be applied to physical problems such a s  pre- 

dicting peaks, structural fatigue damage, and catastrophic structural 

failures. The presentation emphasizes the basic assumptions which a r e  

involved, and discusses how to properly interpret the theoretical results. 

Various engineering examples a r e  given a s  illustrations. f i  U T ~ / S ~  
. .  -7- - -- ^-_ - 

LUG uiatC;J*a? is di-v+d~d i n t ~  s e c t i ~ n s  2s f d l ~ ~ s :  Section 2; 

Zero Crossings and Threshold Crossings, summarizes certain known 

important results which enable one to estimate the expected number of 

threshold crossings at any level per unit time. 

formulas a r e  shown which apply only to Gaussian random processes. 

Section 3, Peak Probability Functions for  Narrow Band Noise, derives 

the familiar result that for narrow band Gaussian noise, the peak 

Simple quantitative 

I 

I probability density function follows a Rayleigh distribution. A more 

general result is derived for arbi t rary non-Gaussian narrow band noise 

i f  the random process and its derivative random process a r e  statistically 

independent. 

Section 4, Expected Number and Spacing of Positive Peaks, discusses 

pertinent formulas for  estimating the expected number of positive peaks 

per unit time which lie above any level, and the average time between 

peaks at any level. 

required to exceed a given peak level. A simple result is shown which 

applies only to Gaussian random processes. The next Section 5, 

Measurement of Peak Probability Functions, contains a new result not 

The latter quantity is equal to the average time 

1 
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appearing elsewhere which enables one to estimate the normalized 

standard e r r o r  (defined here  a s  the ratio of standard deviation of 

the measurement to the expected value of the measurement) in measuring 

a peak probability distribution function as'sociated with a Gaussian 

narrow band random process. 

BT product for a sample record, where T is the record length and 

B is i ts  equivalent noise bandwidth. 

sections where results a r e  stated concisely. 

The result is expressed in te rms  of the 

Sections 2 through 5 a r e  all short 

The next Section 6 ,  Expected Fatigue Damage and its Variance, 

discusses in some detail statistical cri teria for estimating the expected 

value and the variance for the damage associated with typical narrow 

band s t ress  records. 

Structural Fatigue Problems, to single degree-of -freedom engineering 

systems. 

to the response of the system. 

results, and as a reasonable approximation to many physical problems, 

i t  i s  assumed that the damage autocorrelation function is of a damped 

exponential form. 

formulas for estimating the standard e r r o r  in structural fatigue 

measurements. 

These results a r e  then applied in Section 7 ,  

It is assumed here that s t ress  records a r e  directly proportional 

For convenience in obtaining quantitative 

These assumptions lead to new useful practical 

The remaining three sections of the report take up special topics 

which a re  related to the previous material  but which have important 

distinctions. Section 8, Peak Probability Functions for Wideband 

Gaussian Noise, reviews some important not widely known formulas, 

which extend the familiar narrow band Rayleigh result. It i s  shown 

that the peak probability density function for determining the proba- 

bility that a positive peak will be found among the population of all 

positive peaks, i s  in general neither Rayleigh nor Gaussian but a 

mixture of them both. A criteria for  establishing the precise nature 
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of the peak probability density function is the ratio of the expected 

number of zero crossings per unit time to the expected number of 

maxima per unit time. Section 9,  Envelope Probability Density 

Functions, discusses briefly the topic of envelope probability density 

functions where the probability in question represents the probability 

per unit time that the envelope will fall inside different envelope 

levels. It is shown that envelope probability density functions a r e  

equivalent to peak probability density functions for narrow band 

Gaussian processes. 

The final Section 10, Probability of Catastrophic Failures, 

explains how to formulate these questions mathematically, and derives 

basic probability relations. 

of the expected number of threshold crossings per unit time, the topic 

discussed in  Section 2. 

also and interpreted a s  the reliability of the structure to perform 

properly for a specified length of time. Its reciprocal yields the 

mean time failure for catastropic events. 

Results are  shown to depend upon knowledge 

The probability of nonfailure is calculated 

3 



2. ZERO CROSSINGS AND THRESHOLD CROSSINGS 

Let x(t) be a random record from a stationary random process 

b(t)} whose instantaneous amplitude probability density function is 

defined by p(x). No assumption is made that p(x) is necessarily 

Gaussian. However, for simplicity, i t  will be assumed that the 

mean value i s  zero. 

At an arbitrary threshold level x = a, the expected number of 

crossings per unit time through the interval (a, a + d a ) ,  where da is 

arbitrary small, will be denoted by N . The expected number of 

crossings per unit time through the interval (a, a + da) with positive 

slope will  be denoted by N . Since, on the average, there should 

be an equal number of crossings with positive and negative slope, 

N = (1 /2)N . See Figures 1 and 2 .  

a 

t 
CY 

t 
a CY 

Denote the time derivative of x(t) by v(t) = (dx/dt). Let p(a, (3) 

represent the joint probability density function of x(t) and v(t). By 

definition 

p ( a ,  (3) da d(3 2 Probability [ a  <x(t)  I at da and (3 S v(t) (3+d(3] (1) 
all t 

For unit total time, Eq. ( 1 )  gives the amount of time per unit time 

that x(t) lies in the interval (a, a t da) when its  velocity v(t) x (3 

since d(3 is a negligibly small quantity. 

The expected number of crossings per unit time through the 

interval (a, a t da) for velocity (3 i s  estimated by dividing the amount 

of time per unit time spent inside this interval by the time required to 

c ross  this interval. If T is the crossing time for a particular 

velocity (3, then T = da/ I (31 where the absolute value of (3 is used 

since crossing time must be a positive quantity. Hence, the 
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Figure 1. Threshold Crossing Analysis. Measure the number of times 
per unit time that x(t) crosses the levels a o ’  a l ,  Q2’  - 0 .  

- 
I 4 b 

@(N-1) level * 
, 

counter discriminator ~ 

couhter 
iscriminator H 
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I 1 

.a level 
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6 Readout 

Figure 2. Block Diagram of Threshold Crossing Analyzer. 
(The counters register one count each time the level 
of a particular discriminator is exceeded. Division 
of each count by the zero level count yields the peak 
probability distribution function P (a). ) 

P 

5 



expected number of crossings per unit time through the level x(t) = a 

for velocity f3 i s  

Then, the total expected number of crossings per unit time through the 

level x(t) = a for all possible yelocities P i s  

The expected number of zero crossings per unit time i s  given by the 

expected number of crossings of the level x(t) = 0, namely, 

00 r 

The quantity 
00 

Equation (5), in general, may be difficult to evaluate. However, 

if x and v a r e  statistically independent, then p(x, v) = p(x) q(v) where 

q(v) is  used instead of p(v) to avoid confusion with p(x). Now, 

00 

Suppose also that q(P) is an even function of P, that is, q(P)= S(-P)  

fo r  all P. Then 
00 
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To illustrate Eq. (7), suppose that the velocity v is normally 
2 distributed with mean zero and variance u so that 

V 

2 2  
1 V 

-v /2u 
q(v) = e 

u e  V 

Then 

2 If ,  now, x is normally distributed with mean zero and variance u so 

that 
X 

' 2  
-x-/ 2ux 

e 
1 

u +  
P(X) = 

X 

Then 

2 2  
X t X 

-a / 2 u  
2 2  

-a l2u 
= N o  e 

From Eq. (5), one notes that for arbi t rary p(a, p), 

If x and v a r e  statistically independent with p(x,v) = p(x)q(v), 

Eq. (12) reduces to 

regardless of the distributions of p(x) and q(v). 
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From Eq. (1 l ) ,  which applies only to a Gaussian process, 

- - -  
Ni - ;a (I:) 

For a stationary random process x(t) with a realizable power 

spectral density function G (f)  defined for f 1 0,  the quantities - 
1 )  

X 

= R (0) cr2=l X G X ( f )df  X 

-00 
I I  a 2  = j g ( L n f )  2 G (f)  df = -R (0)  

V X X 

where R (7) is the stationary autocorrelation function defined by 
X 

R (T) = Gx(f) COS 2afT df 
0 X 

Thus, 1/2 

Applications of these results which were derived f i r s t  by Rice are 

given in Reference 
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Example 

Consider a bandwidth limited white noise where the power 

spectrum G (f) = constant for f 5 f S , and zero elsewhere. 

What is the expected number of zero crossings with positive slope 

per unit time for  the signal? 

X a fb 

From Eqs. (15) and (16), 

(f) df = (fb - f )G 
X a x  

2 
i2Sj G 

2 3 3  X 

X b a  3 

11 

X 
( 2 ~ f )  G (f) df= (f - f ) 

Then, from Eq. (18) 

~ 

As special cases,  it follows that 

t N = 0.577f if f 4 0  (low pass case) 
0 b a 

t 
O b  

if f-f (narrow band case) 
a b  N = f  
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3 .  PEAK PROBABILITY FUNCTIONS FOR NARROW BAND NOISE 

The peak probability density function p ( a )  describes the proba- 
P 

bility of positive peaks occurring within the population of all positive 

peaks. To be specific, 

3 p ( a )  da = Prob a <  positive peak 5 a t d a  
P 

Then, the probability of a positive peak being greater than a is 

given by 

03 

P ( a )  = Prob[positive peak > a 
o! P 

and 

It should be noted that quantity [l - Pp(a)] , which defines the probability 

that a peak amplitude i s  less  than a,  is often called the distribution 

function for peaks. 

Of course, since p ( a )  i s  a probability density over (0 ,  a), 
P 

The quantity N gives an indication of the "apparent frequency" 
0 

of the noise record. For example, i f  x(t) were a sine wave of 

frequency f o  cps, then N 

6 0  cps sine wave has 120 zeros per second). 

No = (1/2)N0 estimates the expected number of cycles per unit time. 

For  example, if x(t) were a sine wave of frequency fo  cps, then 

N = f cps. If  each cycle leads to a single positive peak, a s  occurs 

for  extremely narrow band noise processes,  then N estimates the 

would be 2f zeros per second (e. g. , a 
0 0 

The quantity 
t 

t 
0 0  

t 
a 

10 



expected number of cycles per unit time with peaks above the level 

x(t) = a. 

fraction of cycles having peaks greater than x(t) = a 

Thus, for narrow band noise processes, an estimate of the 

is given by 

A generalization of this result for arbitrary Gaussian noise processes 

which a r e  not necessarily narrow band is given in Section 8. I 

Comparing the results in Eqs. (13) and (23), the following 

simple result is obtained for  the peak probability for narrow band 

noise, 
I 

p(cr) 
P(0) 

P (a) = Prob positive peak > a]= 
P 

By taking the derivative of Eq. (24) with respect to the amplitude level 

x(t) = a, the following result is obtained for the peak probability density 

function for  narrow band noise, using Eq. 

I 

(21), i 
Prob [ 1y < positive peak 5 a + da] -d [ p(a)]/da 

(25) - - 

da P(0) 
P (a) = 

P 

Note that Eqs. (24) and (25) a r e  general for all p(x), at  least to the 

extent that no direct assumption is made concerning the form of p(x). 

Of course, these relationships do involve the assumption from Eq. (13) 

that x(t) and v(t) = %(t) a r e  independent, which might be questioned if 

p(x) is not Gaussian. 

Eqs. (24) and (25) produce acceptable results for most practical 

applications even when p(x) 

However, past experience indicates that 

is not Gaussian. 
-3 
L 

X I If p(x) is Gaussian with a mean zero and a variance of u , 



then 

1 
P(X) = 

u f i  X 

2 2  
-x / 2 U X  

e 

Now, from Eqs. (24) and (26), the peak probability for narrow band 

Gaussian noise is 
2 2  

-CY /2ux  
P (CY) = Prob positive peak > CY] = e (27) 

P 

From Eqs. (25) and (26) ,  the corresponding peak probability density 

function for narrow band Gaussian noise is 

2 2  
-CY 12u 

X 

X 

Thus, for the special case of narrow band noise where the probability 

density function for the instantaneous amplitudes, p(x), is the Gaussian 

function given in Eq. (26) ,  the resulting probability density function 

for the peak amplitudes, 

Eq. (28) .  

pP(.), will be the Rayleigh function shown in 

Example 

Consider a narrow 

u = 1 volt. Assuming 

of a peak occurring with 
X 

From Eq. (27)  

band random signal with an rms amplitude of 

the signal is Gaussian, what is the probability 

an amplitude greater than CY = 4 volts? 

-8 
P (4) = Prob[positive peak > 4 ]  = e = 0.00033 

P 

Hence, there is about one chance in 3000 that any given peak will 

have an amplitude greater than CY = 4 volts. 

12 



4 .  EXPECTED NUMBER AND SPACING OF POSITIVE PEAKS 

Let M denote the total expected number of positive peaks of 

x(t) per unit time, and M 

peaks per unit time which lie above x(t) = a. 

denote the expected number of positive 
a 

Then 

M = M P  ( D )  
a P 

where P (a) is the probability that a positive peak exceeds x(t) = a ,  

a s  defined in Eq. (20).  Hence, if T is the total time during which 

x(t) is observed, the expected number of positive peaks which exceed 

the level a in time T is given by 

P 

M T =  M P  (a )T  
a P 

Clearly, the average time between positive peaks above the 

level a will be equal to the reciprocal of the expected number of 

peaks above that level per unit time. That is ,  

where T is the average time between positive peaks above the level a. 
(Y 

Consider now the special case where x(t) is a narrow band 

random signal. For  this case, each peak above the level x(t) = a will 

be associated with a crossing of the level a. Then, the average time 

between crossings (with positive slope) of the level a is T as given 

in Eq. (31), where P (a) is as given by Eq. (23).  
a 

P 
Again for narrow band noise, the expected number of positive 

peaks of x(t) per unit time, denoted by M, is equal to one-half of the 

expected number of zeros of v(t) = >(t) per unit time; that i s ,  the 

n m b e r  of crossings by v(t) of the level v(t) = 0. The factor one-half 

13 



stems from the observation that half of the zeros of v(t), on the 

average, represent negative peaks. By analogy with Eq. ( l l ) ,  

if a(t) = $(t) = g(t) , and if [ x(t) , v(t)] and [ v(t) , a(t) a r e  pairwise 

independent, have zero means , and follow normal distributions, then 
I 

2 
a where m i s  the variance associated with a(t). 

A general expression to determine M which i s  valid for arbi-  

t rary probability density functions is given by 

where  CY, 0 ,  y )  

with x(t) = CY, v(t) = 0, and a(t)  = y .  This result is  discussed in Ref. 

is the third-order probability density function associated 

Example 

Consider a narrow band random signal with an rms amplitude of 

r = 1 volt and a center frequency of f = 100 cps. Assuming the signal 

is Gaussian, what i s  the expected number of positive peaks per second 

with an amplitude greater than CY = 4 volts, and what i s  the average 

time between such peaks? 

x b 

From the example in Section 2 ,  the expected number of positive 
t 
O b  peaks per second i s  M = N = f = 100 cps. From the example in 

Section 3 ,  the peak probability P (CY) for CY = 4 is P (4) = 0 . 0 0 0 3 3 .  

Then, the expected number of positive peaks per second above CY= 4 is 
P P 

M = M P  (4) = 0 . 0 3 3  
(4) P 

Hence, the average time between positive peaks above C Y =  4 i s  

T = 1/M(4)  = 30 seconds 
(4) 

14 



5. MEASUREMENT OF PEAK PROBABILITY FUNCTIONS 

Referring to Eq. (24), the peak probability distribution 

function for narrow band noise is given by 

P (a) = Prob[positive peak> a]- - P(ff) 
P P(0) 

(34) 

Hence, the probability of peaks above any given amplitude level 

x(t) = a may be determined from measurements of the amplitude 

probability density function p(x) at the levels x(t) = a and x(t) = 0. 

The amplitude probability density p(x) at any amplitude level 

x(t) = a is ~ e a s u r e c !  iising the following relationship. 

Here, t (a) is the total time spent by the signal x(t) within a narrow 

amplitude interval between (Y and a t a x ,  and T is the total observa- 

tion time. The hat ( A  ) over $(a) means that this is only an estimate 

of p ( a ) .  

Ax-0 and T+m. 

Ax 

An exact measurement would be obtained in the limit a s  

The expected deviation of $(a )  from pia) may be defined in 

te rms  of a normalized variance, E ( a ) ,  for the measurement as follows. 2 

2 u2[ $4 
E ( a )  = 

The quantity r2[ * ]  represents the variance of the term in the brackets. 

The positive square root of the normalized variance is the normalized 

standard deviation E ( a ) ,  which is often called the normalized standard 

e r r o r  of the measurement. 

15 



For the case where p(x)  is approximately Gaussian, it has 

been shown by previous theoretical and experimental work 

Here, B i s  the noise bandwidth for  the random signal being measured, 

T is the total observation time, and Ax i s  the amplitude interval f o r  

the measurement. What 

i s  the variance associated with a peak probability measurement P ( c y )  
P 

based upon measurements of $(cy) and $(O), a s  shown in Eq. (34)? 

The question that now ar i ses  is a s  follows. 
A 

Let the normalized variance associated with a measurement 

h 
From Eq. ( 3 4 ) ,  the variance in a measurement P ( c y )  i s  

P 

Referring to Eq. (37),  

the variance associated with the measurement of $(O) will be insignifi- 

cant compared to the variance of $(cy). 

to be an exact measurement of p(0) and Eq. (39)  becomes 

for large values of CY where $(cy) << i \p(O), 

Then, $(O) may be considered 

16 



The normalized variance be c ome f 

Using the relationships in Eqs. (34) and (36), the following result 

is obtained. 

2 u2[[.,(4] 2 
= E (CY) 2 E (a) = P 

P (4 

Hence, the normalized variance associated with the peak probability 

measurement P (a) i s  eifectiveiy the same as the normalized variaiize 

for the probability density measurement $(a), a s  given by Eq. (37). 

A 

P 

One should keep in mind that the above result applies only to the 

special case where x(t) is narrow band noise with an approximately 

Gaussian probability density function. 

however, it  is a convenient practical result which can be used to 

( 1) evaluate the accuracy of peak probability measurements previously 

made, and (2) guide the design of future experiments to obtain peak 

probability measurements. 

For this important special case, 

Example 

Consider a narrow band random signal with an r m s  amplitude 

of u = 1 volt and a noise bandwidth of B = 8 cps. It is desired to 

measure the probability of peaks in the signal occurring with an 

amplitude greater than 

long a sample record should be obtained and analyzed to obtain a 

measurement of P (4) with a normalized standard e r ro r  of 

X 

a =  4 volts. The problem is to determine how 

h 

P 
(a) = 0.10 or  10%. €P 

17 



If it is assumed the signal is dpproximately Gaussian,  then the 

measured  probability density of CY = 4 volts will be about $(x) z 0.0001. 

If the probability density analyzer  to be used  has  an  amplitude window 

of A x  = 0.1 volts,  then the requi red  sample r eco rd  length for  a 10% 

accuracy in  the measurement  of P (4) is  
A 

P 

- 0. 04 - 0. 04 
2 (0.  01)(8)(0. 1)(0. 0001) 

T =  
E P (4 B(Ax) $(XI 

50 ,000  seconds 14 hours  

After the measurement  t(4) is  obtained, th i s  value m a y  be used  to 

determine a m o r e  accura te  value for  the actual s tandard e r r o r  E 

fo r  the measurement .  

very long sample r eco rds  a r e  needed to obtain accura te  probabili ty 

measurements  fo r  ex t reme values.  

(4) P 
This example i l lus t ra tes  the important  fact  that  

. 
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6 .  EXPECTED FATIGUE DAMAGE AND ITS VARIANCE 

Consider a stationary s t ress  process {s(t)} with zero mean 

which i s  not necessarily normal. A damage D(T) can be associated 

with a time interval T of s(t) by using the Palmgren-Miner criterion 

[ 4 , 5 ] .  This damage is a random variable taking on different values for 

each sample s t ress  history. Consider a typical s t r e s s  sample function 

s(t)  to be composed of "half-cycles" with varying peak s t ress  ampli- 

tudes IS.1 , i = 1 , 2 , 3 , .  . . , a s  represented by typical narrow band 

noise. See Figure 3. 
1 

I 

I ' T  d 

Figure 3. Narrow Band Stress Time History 

For  a single half-cycle which has a peak s t ress  amplitude I Sil, 

assume the damage is given by 

b 
d. = KI S.1 
1 1 

(43) 

where K and b a r e  positive dimensional constants of the material. 

The factor (1/2) comes from considering the damage d. 

with a half-cycle. 

to be associated 
1 

The absolute value I Sil is used since damage is a 

19 



positive quantity. 

after m half-cycles, the total damage i s  

If the damage accumulates in a linear fashion, then 

m- 1 m -  1 
D = 1 di = 1 K I S . I  b 

2 1  
i= 0 i= 0 

(44) 

Parameters  should be chosen so that fatigue failure occurs when D = 1. 

By the Palmgren-Miner hypothesis, the constant K is  required 

to satisfy the condition 

where N. 

s t ress  amplitude I S. I .  Corresponding values of S and N a r e  

found from an S-N diagram. 

is the number of complete cycles until failure with a peak 

1 i i 

1 

6.1 EXPECTED FATIGUE DAMAGE 

Letting the absolute value for the instantaneous s t ress  I s I = a ,  

the expected values of d. and D a r e  determined by 
1 

= E(D) = mE(di) = - mKI abp ( a )  da 
'D 2 o  P 

(47) 

where p ( a )  is the peak probability density function associated with 
P 

s(t). 

In the time interval T,  the expected number of half-cycles m 

is estimated by 
t 
0 m = 2 N  T 

+ 
0 

where N i s  the expected number of zero crossings with positive slope 

20 



of s(t) per unit time. Thus, Eq. (47) gives for the expected fatigue 

damage 

PD = abpp(n) da (49) 

6.2 VARIANCE I N  DAMAGE ESTIMATE 

Now consider the variance associated with an estimate for the 

By definition, D '  actual damage D based upon the expected damage p 

the variance in a damage estimate is given by 

2 2 2 
D = var(D) = E(D - p ) = E(D ) - p 

2 
uD D 

m- 1 

Assuming the damage process {di] is stationary, the double 

s u m  appearing in Eq. (50) becomes 

m- 1 m-1 

J i=o i, j=O 

m -  1 1 E(d.d.)= 1 E(di t 
i,j=O 

E(didj) 

if j 

m-1 

= m E ( d 2 )  t 1 E(dodj-i) 
i,jo 

0 

if j 

m-  1 
3 r 

= m E ( d i )  t 2 L (m - k) E(dodk) 
k= 1 

where the substitution k = j - i  has been made. 
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From Eq. (47), 

PD = E(D) = mE(d)  (52) 

where the subscript for d may be dropped since the process i s  

stationary and, therefore, E[do]= E[dl]  = . . . = E[d 1 .  m- 1 

One may verify directly that 

m-1 
2 

( m - k ) = m  - m  
k= 1 

Hence the variance in fatigue damage is 

m- 1 
cr 2 = m[E(d 2 ) - E 2 (d)] t 2 1 (m - k) [E(dodk) - E2(do)] 

k= 1 
D 

m- 1 

= mcr2 t 2 (m-k)Rd(k)  
k= 1 

d 

where 

2 2 2 2 
crd = var(d)  = E d - E(d)] = E(d ) - E (d) 

and 

(53) 

(55) 

{di]. The quantity R (k) is the autocovariance function for the damage 
d ?  

L 

d '  
Note that R (0) = cr 

d 
Referring to Eq. (54), the positive square root of the variance 

is the standard deviation for  D. The interpretation of the standard crDy 
deviation i s  as follows. 

for  a particular type of structure under a given set  of vibration conditions 

is p a s  defined in Eq. (49). Now assume that many different 

Assume that the fatigue damage to be expected 

D '  

22 



samples of that type of structure a r e  subjected to those given set of 

vibration conditions. If the damage under those conditions has a 

standard deviation of u as given by Eq. (54), and if it is assumed D 
that the distribution of D is normal, then about 6870 of the sample 

structures would be expected to have accumulated a damage D such that 

Furthermore, about 9570 of the sample structures would be expected to 

have accumulated a damage D such that 

It is convenient to express the standard deviation in terms of a 

dimensionless parameter E , called the normalized standard e r ro r .  

(59) 
uD 

IJ'D 
E = -  

In terms of E ,  the relationship for the 68% case in Eq. (57) becomes 

11-21 < E  

Similarly, the relationship for the 9570 case in Eq. (58) becomes 

There a r e  two possible ways in which the above relationships may 

be applied. The first involves the prediction of actual damage D based 

D' upon a calculated expected damage p 

diction of an expected damage p D 
ment, D = 1. 

The second involves the pre-  

based upon an actual damage measure- 

Note that damage cannot be measured for any value of 

23 



D other than unity since a failure is the only level of damage which is 

ob s e rvable . 
Consider f i rs t  the prediction of D based upon a calculated value 

D’ for p 

the structure a r e  known. For  this case, Eqs. (60) and (61) may be 

used to form a probability interval for  the value of D based upon a 

calculation of p 

D ’  particular type of structure under a given set of conditions is p 

Then, from Eq. (61), the 9570 probability interval for the actual 

damage D which would occur under those conditions is 

where it is assumed that the pertinent material properties for 

For example, assume the expected damage for a D’ 

Consider now the prediction of an estimated value p based upon 

This situation would a r i se  when 
D 

an  actual damage measurement, D= 1. 

one i s  attempting to determine the material properties for a structure 

from empirical data. For this case, Eqs. (60) and (61) may be used 

to form confidence intervals for p based upon the time and conditions D 
required to  produce a failure (D = 1).  For example, assume the actual 

conditions which produced failure in a given structure a r e  used to 

compute a variance r 2  f rom Eq. (54). 

the 95’7’0 confidence interval for the true value for p 

conditions is 

Then, from Eq. (61), 

under those 
D 

D 

1/(1 t 2€) < pD < 1/(1 - 2 € )  (63) 

Technically speaking, the above confidence interval for p is fictitious 

since p can never be greater than unity. However, the interval does 

permit meaningful bounds to be placed upon the value for  the material  

constant needed to produce that value of pD . 

D 

D 
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7. STRUCTURAL FATIGUE PROBLEMS 

Assume a structure can be represented by a simple linear 

lumped parameter system consisting of a mass ,  spring, and dashpot, 

as shown in Figure 4 below. 

k 
f = L - k  
n   IT m 

Figure 4. Simple Linear Structure 

Here, k is the spring constant in lbs/inch, c is the viscous damping 

coefficient in lb-sec/inch, m is the mass in lb-sec /inch, x(t) is a 

time varying foundation motion in inches measured from the mean 

position of the foundation, and y(t) is the response in inches measured 

from the position of equilibrium. The cyclical frequency term f is 

the undamped natural frequency for the structure, and the dimensionless 

damping term 6 is the damping ratio for the structure. 

2 

~ 

n 

Assuming a linear stress-strain relationship, the s t ress  level 

s(t) will  be directly proportional to the strain level z(t) = y(t) - x(t). 

s(t) = Cz(t) (64) 

where C is a positive constant for the particular structure under con- 

sideration. Assume the strain z(t) has a mean square value of z . 
Since x(t) and y(t) a r e  measured from mean positions, the mean 

value for the strain will be zero. 

- 
2 

I 
Hence, the mean square value for the 

2 2 2  
strain will equal the variance u of the strain,  that is z = u . 

Z Z 



I t  follows that the s t r e s s  s(t) will have a mean value of zero (assuming 

no pre-stress) and a mean square value (variance) u where 
2 
S 

2 2 2  
u = c u  

S Z 

Referring back to the model in Figure 4, the differential equation 

of motion for this structure is 

( 6 6 )  
2 q t )  t 4iT5f Z(t) t (2iTf ) z(t) = -.;t(t) 

n n 

Consider the strain (relative displacement) response z(t) produced by 

an  acceleration excitation %(t). A gain factor I H(f) 1 for the structure 

will be given by the ratio of the strain magnitude to the excitation 

magnitude when a sinusoidal acceleration z(t) = Xe i s  applied 

to the foundation. 

* *  j 2rft 

Assume the response strain will be sinusoidal with the general 

Substituting this assumed solution into Eq. . j( 2 1 ~ f t t  +) 
form z(t) = Z e  

(66) and solving for  z(t) yields the following result. 

Hence, the gain factor for the structure which relates an  acceleration 

excitation to a strain (relative displacement) response is 

n n 

Given a random acceleration excitation s(t) with a power 
2 2  

spectral density function of G..(f) (inches/sec ) / cps ,  the power 
X 
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2 spectral density function for the response strain in inches /cps 

becomes 

G;; (f) 
2 

G z (f) = I H(f)( G..(f) X = (69) 

n 

2 
The mean square value IJ 

a rea  under the power spectral density function G (f) for all positive 

frequencies f.  

for the response strain is given by the 
Z 

z 

Consider the special case where the excitation acceleration has 

a uniform power spectrum; i. e . ,  G..(f) = constant G.. which hypotheti- 

cally exists over all frequencies. Contour integration of Eq. (69) 

yields 

X 

00 G.. 

64a 5f 
X 

w 2 = L  z G ( f ) d f =  z 3 3  
n 

Hence, referring to Eq. (64), the mean square s t ress  level will be 

2 
C G.. 

2 X 

S 64a3 t f 3  n 

u =  

Corresponding to the power spectral density function of Eq. (69) 

when G..(f) = constant, the associated autocorrelation function is 
X 

2 
2; n 

where u is given by Eq. (70), and p = 2af 
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For small c y  ( 5  << l),  R ( 7 )  is approximated closely by 
Z 

-2Tf &T n 
COS 2Tf T 

2 
Z n RZ(7) = u e (73) 

Note that the cosine te rm is of period ( l / f  ). 
n 

Consider Eq. (73) in succeeding half-cycles, k = 0, 1,  2 ,  . . . , 
At these times, R (7) takes on for times T of the form (k/2fn). 

i ts  extrema1 values 
Z 

k 2 -kT& 
R (k) = R (k/2f ) = (-1) u Z e ; k =  0, 1,2,  ... (74) 

Z Z n 

Also, R (7) is  essentially zero when T = (2n-  1)/4fn , n = 1, 2, 3 ,  * .  . 
From Eq. (64) 

has an autocorrelation function given by 

Z 

it follows that the s t ress  function s(k) = s(k/2fn) 

(75) 
2 2 k 2 -kTc 

R (k) = C R (k) = C (-1) u e 
S Z Z 

From Eqs. (43) and (64), the incremental damage d becomes k 

where I S I i s  the peak s t r e s s  in the half-cycle k and I z I is the 

corresponding peak strain. The absolute value of s t r e s s  is used since 

damage is a positive quantity. Equation (76) replaces the previous 

Eq. (43) in succeeding analysis. 

k k 

As a reasonable approximation to many physical problems, and in 

order to obtain convenient closed-form results, it will now be assumed 

f rom analogy with Eqs. (74) and (75) that the incremental damage 
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autocovariance function in Eq. (56) is given by the damped exponential 

function 

where 

2 2 -2krc 
R (k) = E(dO%) - E (d) = e 

d ud 

r 2 = Rd(0) = E(d 2 ) - E 2 (d) 
d 

(77) 

Note that the exponent in Eq. (77) is (-2krc) whereas the exponent in 

Eq. (75) is (-krc). The factor of 2 results from the fact that the damage 

i s  always positive while the s t ress  m a y  be positive or  negative. 

Substitution of Eq. (77) into Eq. (54) then yields a useful variance 

for;llrr?z fe r  the accumulated damage after m half-cycles, 

m- 1 
-2krc 

u 2 = mud 2 t 2ud r - ( m  - k ) e  
k= 1 D (79) 

The remainder of the analysis in this section is devoted to 
2 2 

d d evaluating Eq. (79) for arbitrary u and 5 ,  and to evaluating u 

for the special important case of a narrow band s t ress  process where 

the damage D satisfies the Palmgren-Miner criterion of Eq. (43). 

Results which a r e  obtained agree closely with similar results obtained 

in Refs. [4,5] . 

7.1 EXPECTED VALUE I N  DAMAGE ESTIMATES 

Referring to Eq. (69), the response strain (and stress) for a 

single degree-of -freedom structure to  random excitation will be narrow 

band as long as 

Assuming the excitation has a Gaussian probability density function, 

the peak probability density function w i l l  be approximately as given by 

the Rayleigh probability density function of Eq. (28). 

e<< 1, which is usually true in actual practice. 
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From Eqs.  (28) and (46), and letting l z l  = a, i t  follows that 

=E(d)  = - KCb I abp (a) da 
2 o  'd 

Z 

b 
2 

where I' (1 t - )  is a gamma function which is defined usually as 

00 

n-1 -a 
r (n)  = 1 a e da 

Then from Eqs.  (47)  and (80), the expected value 

b b 
b 

mKC 
= E(D) = mE(d) = - (uz-) r(l t z) (82)  'D 2 

t 
where m = 2N T e 2f T for the response of a lightly damped single 

0 n 
degree-of-freedom structure. Fatigue failure will occur when 

pLD = 1.0. Hence, for a strain response z(t) with a mean value of zero 

and an rms  value (standard deviation) of u 

fatigue failure to occur is given by 

the time required for  a 
Z' 

This formula is considered to be an important result of this investigation. 
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Example 

Consider an aluminum structure which may be approximated by 

a single degree-of-freedom system, as shown in Figure 4, with a 

natural frequency of f = 50 cps and a damping ratio of 5 = 0 . 0 3 .  

Assume the s t ress  on the structure at some point of interest is 

related to strain by the constant C = 10 psi/inch. Further assume 

the material  is such that b =  6 and S = (2)lO psi. Then, f rom 

Eq. (45), K = 1/ ISol = (1.56)lO (psi) . Now suppose the 

structure is subjected to a random excitation at its foundation with a 

relatively uniform acceleration power spectral density function of 

G..(f) = 0.5 g /cps  over the frequency range from f = 0 to 

f >> fn  = 100 cps (g = 386 inch/sec ). 

would be expected in one hour of such vibration? 

expected fatigue life for the structure? 

n 

5 

5 

-6 0 
b -32 

2 

2 X 

Firs t ,  how much fatigue damage 

Second, what is the 

The mean square value for the strain caused by the foundation 

motion is given by Eq. (70) as follows 

2 
= 0.01 inches 0. 5(386)2 

- 3  3 
6 4 1 ~  (0 .03) (50)  

G.. 2 X 

6 4 1 ~  c f  

- u =  
Z 

n 

Then, the r m s  response strain is 

u = 0.1 inches 
2; 

Now, the first question will  be answered by Eq. (82) as follows. 

31 



where 

m =  2 f  t 

f = 50 cps 

n 

n 

t = 3600 seconds 

K = (1.56)lO (psi) 
-32 -6 

u = 0.1 inch 
e 

-32 30 -6 
= (50)(3600)(1.56)10 10 10 (8)(6) = 0. 135 VD 

In words, about 13. 57' of the total fatigue life of the structure is con- 

sumed by one hour of vibration with the noted excitation level. 

The second question will be answered by Eq. (82). Noting 

that the accumulation of damage is assumed to be proportional to the 

time t ,  the total time T required for a fatigue failure to occur 

[pD = 1 . 0  is given by t/pD . For  this problem, I 
T = t / p  = 1/0.135 = 7.42 hours D 
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7 .2  VARIANCE I N  DAMAGE ESTIMATES 

The mean square value for damage is given by 

2 2  
-a /2U - - K2:2b[ @2btl e 

da 
4u 

Y 

- - K2CZb 
4 Y 

Now, from Eqs. (80) and (84) 

2 2 2 
d u = E(do) - E (do) 

I 
In order to simplify Eq. (791, let 

Then one can verify directly that 
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In terms of F ( IT~) ,  Eq. (79) becomes 

u 2 = m u 2  t 2u 2 F(~r5)  = u 2 [m t ~ F ( I T ~ ) ]  
D d d d 

2 
d This is a general result for arbitrary u and 5 .  

The normalized variance in the estimation of the total damage is 

That i s  , 2 2 2 
D '  given by the ratio of u and E (D) = p D 

2 
2 D  U 

From Eqs. (82)  and (88), it follows that 

t 
0 

where m = 2N T and the quantity F ( IT~)  is given by Eq. (87). 

For the narrow band case, f rom Eqs. (80) and (85), 

2 
d From Eq. ( 9 l ) ,  it  is seen that the normalized variance E is a 

function only of the material constant b, and is greater than unity 

for  all values of b greater than two. 

Now, for those situations where the t e rm m5 is large, the 

quantity 
m 

2F(~r5) = - 

a s  can be determined by expanding Eq. (87), 

3 4  



andEq.  (90) becomes 

This expression may be replaced by the equivalent value 

since 

‘ D = (  2 1 + ) ‘ ; = ( & ) ‘ d Z  
2acNOT 

( 9 4 )  

t 
0 n m = 2 N T % 2 f T  (95) 

and the bandwidth 

B = a c f  
n i 9 6 j  

is the equivalent noise bandwidth of the system as computed by the 

formula 

Gy(f) df 
B =  

Equation (96) results from applying Eq. (68) to Eq. (97). 

(97) 

In conclusion, the normalized standard e r ro r  E for a damage D 
estimate D is 

Hence, the e r ro r  E for a damage D where E is given by Eq. (91). 

estimate is a function of the BT product (rr5m/2) associated with the 

estimate as well a s  the material constant b. 

E a s  a function of the BT product and material constant b a r e  

presented in  Table 1. 

d 

A tabulation of values for  

D 
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Normalized Standard Error fo r  Damage Estimates in Percent 
as a Function of BT Product for Measurement  

and Constant b for Mater ia l  

10 
20 
30 
50 
70  

100 
200 
300 
500 
700 

1000 
2000 
3 000 
5000 
7000 

10000 
20000 
30000 
50000 
70000 

100000 

Mate r i a l  Constant, b 

b = 2  b = 4  b = 6  b = b  b =  10 

22.470 
15.8 
12.9 
10.0 

8 .4  
7.1 
5.0 
4.1 
3 .2  
2.7 
2.2 
1 .6  
1 .3  
1.0 

50.0% 
34.4 
28.9 
22.4 
18.9 
15.8 
11.2 

9 .1  
7 . 1 .  
6 .0  
5 .0  
3 .4  
2.9 
2.2 
1 .9  
1.6 
1.1 

56.370 
43.6 
36.8 
30.8 
21.8 
17 .8  
13.8 
11.6 
9.7 
6.8 
5 .6  
4 .4  
3 .7  
3 .1  
2.2 
1.8 
1 . 4  
1 .2  

58.7% 
41.5 
33.9 
26.3 
22.2 
18.6 
13.1 
10.7 

8 .3  
7.0 
5.9 
4 .2  
3 .4  
2.6 
2.2 
1 .9  

50.170 
43 .3  
35 .4  
25.0 
20.4 
15.8 
13.4 
11.2 

7 .9  
6 . 5  
5.0 
4.3 
3 . 5  

Table 1. Normalized Standard Errors for Damage Estimates 
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Example 

Consider the aluminum structure in the example for Section 7.1, 

where the natural frequency is f 

6 = 0.03, and the material constant is b = 6. For  the given vibration 

environment, the expected value for the fatigue damage is p = 0.135 

for T = one hour of vibration. What is the normalized standard e r r o r  

for this damage estimate? 

= 50 cps, the damping ratio is n 

D 

From Eq. (96), the noise bandwidth for the structural vibration 

is 

B = n S f  = 4.71 n 

Since T = 3600 seconds, the BT product associated with the prediction 

is 

BT = ~ 5 r n / 2  = 17000 

Referring to Table 1 and noting that b = 6, the normalized standard 

e r r o r  for the damage estimate is  

= 0.025 or  2.570 ED 

. Thus, f rom Eq. (62) the 9570 confidence interval for the actual 

damage D based upon the expected damage p = 0.135 is D 

0.128 < D < 0.142 
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8 .  PEAK PROBABILITY FUNCTIONS FOR WIDEBAND GAUSSIAN NOISE 

Assume that x(t) is a sample member from a stationary Gaussian 
2 

noise process with zero mean value and variance IJ . Let No denote 

the expected number of zero crossings per unit time, both with positive 

and with negative slopes, and let M denote the expected number of 

positive peaks (maxima) per unit time. Then 2M denotes the expected 

number of both positive and negative peaks per unit time. 

X 

As derived in Section 2 of this report, and in Refs. [ 1 ,2 ]  , 

where 
00 

u 2  =/, G X (f)  df 
X 

00 

u 2  V = k  ( 2 ~ r f ) ~ G  X ( f )  df 

00 

u 2  = ( 2 ~ f ) ~ G  (f)  df a X 

The peak probability density function represents the probability 

that a positive peak will be found among the population of all positive 

peaks. 

Section 3 for narrow band noise. 

concept of envelope probability density functions. 

This i s  the familiar usage and is the one considered in 

The next Section 9 takes up a different 

In t e rms  of a standardized variable z with zero mean and unit 
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variance; namely, 

X 2 
z = -  ; 0- = 1  

U z 
X 

the probability density function w( 2;) which defines the probability that 

a positive peak will fall between z and z t dz is expressed by the 
~ 

formula, Ref. 

2 2 2  
-Z  /2kl 

w(z) = - kl +(?) z e  -z 12[1 - P  n (z/k2)] (105) f i e  
where 

I 

k =-\I1 - ( N O / 2 M )  2 
1 

kl k =  
(N0/2M) 

2 
U 

V N - o = -  

and 

e dY 
Pn(Z/k2) = 1 

Note that P (z /k  ) is the probability for  a standard normal distribution 
n 2  

with zero mean and unit variance that the value (z/k2) will be exceeded. 

This integral is readily available in statistical tables. 

The shape of w(z) is determined by the parameter (N /2M).  0 
I t  can be shown from basic considerations that (N /2M) always falls 0 
between zero and unity; namely, 
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If (N /2M) = 0, then w(z) reduces to a standardized normal 0 
(Gaussian) probability density function, 

-z 2 I 2  when (N0/2M)=  0 
e 

1 

lyz;; 
w(z) = 

This case occurs in practice for wideband noise where the expected 

number of maxima and minima per  second, 2M, i s  much larger than 

the expected number of zero crossings per second, 

(N0/2M) approaches zero. 

, so that 
NO 

If (N /2M) = 1, then w(z) becomes a standardized Rayleigh 0 
probability density function, 

2 
-z / 2  

w(z) = z e  when (N0/2M)=  1 

The case occurs in practice for narrow band noise 

(110) 

where the expected 

number of maxima and minima per second, 2M, i s  approximately equal 

to the expected number of zero crossings per second, 

(N0/2M) approaches unity. 

is thus something between a Gaussian and a Rayleigh probability 

density function, and i s  plotted in Figure 5 a s  a function of z for 

three values of the dimensionless parameter (N /2M) equal to 0, 0.5, 

and 1.0. 

, so  that 
N O  

The general form of w(z) from Eq. (105) 

0 

In terms of w(z) the probability P (z) that a positive peak chosen 
P 

a t  random from among all the possible positive peaks will exceed the 

value z is  given by the formula 

using the P of Eq. (107). 
n 
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x ( N 0 / 2 M )  = 1 

Rayleigh 

. 5  

- 
i - 2  -1 0 1 2 3 

Z 
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Figure 6. Graph of P ( z )  = w(z) dz versus z 
Z P 
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A graph of P (2) a s  a function of z is plotted in Figure 6 for 

three fixed values of (N0/2M) equal to 0, 0.5, and 1.0. 
P 

From the above, it should be noted that the actual number of 

positive peaks per second which would exceed the value a = zu, 

denoted by M , may be estimated by the formula 
a 

M = M P  ( a / u )  = MP (z) 
CY P P 

For  large values of CY relative to  u, one may verify 

showing that for large a, the expected number of maxima per second 

lying above the line x= a is equal to the expected number of times per 

second that x(t) crosses the line x = (Y with positive slope. 

The expected number of peaks which exceed the value CY in time 

T is given by 1 
M T = M T  P (a /u l )  (114) 

CY1 1 P  

This can be set equal to the expected number of peaks which exceed the 

value CY in time T by introducing a different mean square value 

such that 

2 
r2  2 

1 

I 

M T = M T  P (a/u2) = M T  P ( a / u l )  
a 2  2 P  1 P  

Now, 

2 
1 Suppose the mean square value is such that u occurs for time 

2 2 
T1 followed by r2 What should be the equivalent u 

2' 
fo r  time T = T t T if equivalence is based on having the same 

for time T I 

1 2 
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number of peaks exceeding a? 

exceed the value a in time T and the value a in time T is 

given by 

The expected number of peaks which 

1 2 

M T t M T = M T  P (a/ul)  t MT P ( a / u 2 )  (116) 
a 1  a 2  1 P  2 P  

The above should now be set equal to 

M T = M T P  (a/u) 
cy P 

yielding the relation 

In general, for N distinct mean square values in N time 

periods, one should set 

P (Cu/Ui) 
N 

T = X c i T i  where c = 
i P ( d u )  

i= 1 P 

The general solution for P (a/u) i s  
P 

Thus, knowledge of all quantities on the righthand side of Eq. (120) 

enables one to solve for P (cy/u), and in turn for the parameters 

(a/u) and u. The above relationships a r e  useful for establishing 

equivalent stationary random signals for  eonstationary random signals 

based upon a cri teria of equivalent extreme values. 

P 
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Example 

Consider a narrow band random signal x(t) with an r m s  ampli- 

tude uX which varies over a time interval T a s  follows. 

9 u = 3 volts X 
t = 0 to 0.05T 

t = 0 .05T to 0 . 2 T  , u = 2 volts 

t = 0 . 2 T  to T u = 1 volt 

X 

9 
X 

Assuming the random signal is Gaussian, what is the r m s  amplitude 

for the equivalent stationary random signal y(t) that would produce 
uY 
the same number of peaks in the time T with an amplitude greater 

than Q =  6 volts. 

Referring to Eq. ( 1  20), the probability of a signal with an r m s  

amplitude of u volts having a peak amplitude greater than a = 6 volts 

in a time interval of T seconds is 
Y 

3 
c 

where 

(T / T )  = 0 . 0 5  Y Pp(a /u l )  = P (2) 

P (ah2)  = P (3)  

P (a/u3)  = P ( 6 )  

1 P 

Y 

I 

P P 

P P 

(T2/T)  = 0.15 

(T3 /T)  = 0.80 > 

1 
I 
I 2 
I -z / 2  

I P (2)  = e = 0 . 1 3 5  
I P 

From Eq. (27), for standardized variables, p (2;) = e i P 9 

-2  

-4.5 

-18 -8 

P (3 )  = e = 0.0111 
P 

P 
P (6) = e 1.67 x 10 
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Now, f r o m  Eq. (120), 

P (6/u ) = (0.05)(0.135) t (0.15)(0.0111) t (0.80)(1.67)10-8= 0.00842 
P Y  

Again, from Eq. (27), the following must be true 

2 
- 3 6 1 2 ~  

-4.76 P ( 6 / ~  ) = e = 0.00842 = e 
P Y  

2 
Y 

Hence, the quantity 18/u  = 4.76, and the rms amplitude f o r  the 

equivalent stationary signal is 

u = 1.94 volts 
Y 



9. ENVELOPE PROBABILITY DENSITY FUNCTIONS 

The peak probability density function p (a) describes the 
P 

distribution of positive peaks within the population of positive peaks. 

A different probability density function called the envelope probability 

density function can be defined by assuming that the envelope is a smooth 

curve joining the positive peaks, and by finding the average time spent 

by this envelope curve between the levels a and a t  da. See Figure 7. 

t ,envelope A( t) 

Figure 7. Envelope of Positive Peaks 

For  narrow band noise, the envelope A( t )  can be thought of a s  

the amplitude of a slowly varying sine wave u(t) of center frequency 

f as represented by 
C 

u(t) = A(t) cos [2rrfct t 0(t)] 

The envelope A(t) and the phase angle 0(t) a r e  assumed to vary 

slowly relative to the frequency f . 
C 

In order to determine the probability density function associated 

with A(t) write u(t) as  

u(t) = x(t) cos 2af t - y(t) sin 2 ~ r f  t 
C C 

( 122a) 
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where 
x(t) = A ( t )  cos 0(t) 

y(t) =.A(t )  sin 0(t) 

Now, A(t)  is seen to be the non-negative radial quantity 

( 122b) 

when x(t) and y(t) a r e  regarded as usual x and y coordinates, and 

0(t)  is  seen to be corresponding angular quantity. The probability 

that the envelope A(t) will lie between CY and (Y t dcu is now equivalent 

to the joint probability that combinations of x(t) and y(t) will l ie in 

the shaded area  of the sketch below. 

Y 
4 

X 

Suppose that the joint probability density function p(x, y) is known. 

Then the joint probability density q(A, 0)  must satisfy the relation 

p(x, y) dx dy = p(A cos 0 ,  A sin 0) AdA d0 = q(A, 0)dA d0 (124a) 

where 
q(A, 0) = Ap(A cos 0 ,  A sin 0)  

since the element of a rea  dx dy in the x, y plane corresponds to the 

element of area A dA d0 in the A, 0 plane. Now the probability 

density function q(A) of the envelope A(t) alone i s  obtained by 

48 
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summing over all possible phase angles and is 

Assume now that x(t) and y(t) .are statistically independent 
2 

random variables with zero means, equal variances u , and follow a 

joint Gaussian distribution. 

function has the form 

Then their joint probability density 

From Eq. (124b), i t  follows that 

Then, from Eq. (125), one obtains 

A 2 2  
q(A) = 7 exp[-A /2u ] A >, 0 

Cr 

The probability density function governing the envelope A(t) is the 

Rayleigh probability density function. 

the peak probability density function p (a) discussed earlier,  when A 

is replaced by a. This equality of p (CY) and q(a) depends upon the 

Gaussian assumption for the distribution of the quantities x(t) and y(t). 

In general, for narrow band non-Gaussian quantities, or nonlinear 

systems, p (a) and q(a) would be quite different and should not be 

Note that it has the same form a s  

P 

P 

P 
confused with one another. Reference contains pertinent work on 

these matters. 
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10. PROBABILITY O F  CATASTROPHIC FAILURES 

In contrast with fatigue damage and fatigue failure cri teria 

discussed in Section 6 ,  a catastrophic failure occurs when the s t r e s s  

level exceeds a specified failure s t r e s s  of the structural material. 

Catastrophic failures originate f rom severe and generally unpredictable 

s t resses  due to extreme environmental conditions. 

these matters from Ref. [7] will now be reviewed. These results a r e  

deemed to yield conservative estimates of actual situations. 

Previous work on 

Let s(t) be a sample function representing the s t ress  time 

history in a structure. Let CY be the s t r e s s  level at which failure 

occurs. Then the probability of failure is given by 

when failure occurs due to large excursions in either a positive o r  

negative direction. The notation 

s(t)  => (Y and s(t)  2 -CY. 
Is(t) I 2 CY represents the two cases 

From earlier work in Section 2 on threshold crossings, when the 

input is assumed to be a member of a normally distributed stationary 

random process with zero mean value, the expected number of times 

per unit time (second) that the s t ress  s(t) will c ross  CY with positive 

slope is 

2 2 
where cr is the mean square value of s(t), and IT. is the mean 

square value of ds/dt. 

G ( f )  associated with s(t) ,  

S S 

In te rms  of the spectral density function 

S 
00 * 

2 
u S = lo Gs(f) df 
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a? = 4 ( 2 l ~ f ) ~ G  (f )  df 
S S 

t Hence, by the above operations, N i s  a function of G (f). 
CY S 

Assume now that s(t) has a probability density function which 

is symmetric about a zero mean value. Hence 

Prob [ I s(t) I 2 c y ]  = 2Prob[  s(t) 2 - C Y ]  (133) 

and the expected number of times per unit time that I s(t) I will exceed 

CY becomes 

Equation (134) is the expected number of failures per unit time. 

The probability that s(t) will cross CY with positive slope in the 

time interval (t, t t At) is given by 

t 
Prob [ s(t) 2 CY] = N At (135) 

cy 

This follows because the expected number of crossings of s(t) = CY 

with positive slope during the arbitrarily small interval A t  is 

precisely the same as the fraction of favorable events [s(t) 2 CY 
c J 

out of all possible events { s(t) > -a}. It is assumed here that a 

favorable event yields one crossing only since At  is an arbitrarily 

small  quantity. I t  is further assumed that the probability of a crossing 

during the small interval At is independent of the time when the 

interval started. 

cy during the time interval (t, t t At)  is 

Similarly, the probability that I s(t) I will exceed 
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Equation (136) gives the probability of failure in the time interval 

( t ,  t t A t ) .  

The probability of nonfailure in a time interval (0,  t)  will now be 

found. Let P (t) represent the probability of nonfailure in the inter- 

Val (0, t), and let P ( t  t At I t) represent the probability of non- 

failure in the interval ( t ,  t t At) if no failure occured up to time t .  

Then 

0 

0 

Po(t  t At) = Po(t t At I t )Po(t)  (137) 

By definition, 

P o ( t t A t l t )  = Prob[ l s ( t ) )  < c y ] =  1 - Prob[ls(t)!  2.1 - (138) 

Substituting Eq. (136) into Eq. (138) yields 

P ( t t A t ( t ) =  1 - N A t  0 cy 

Then substituting Eq. (139) into Eq. (137), 

Po(t  t At) = Po(t)  [ 1 - N At ]  
(Y 

or  
Po(t  t At) - Po(t) 

At  
= -NcyPo(t) 

(139) 

In the limit a s  At-tO, Eq. (141) becomes a differential 

equation 



The solution to Eq. (142) is simply 

where A is a constant of integration and T is the total time interval 

of interest. The initial condition P (0) = 1 requires that A = 1. 

Hence 

0 

0 0 

P (t) = exp [ -N,T] 0 (144) 

Thus, P (t), the probability of nonfailure in the time interval ( o,T), 

may be determined quite easily from N , the expected number of 

failures per unit time, given by Eq. (134). 

0 

ff 

Now, the probability of failure in the interval (0, T) is given by 

Pf(T) = 1 - P 0 (T)=  1 -e-[ -N ff T] (145) 

Let p (t) represent the probability density function for the time to 

failure. Then 
f 

(146) 

From Eqs. (145) and (146), 

Now, the expected time to failure, and the variance in the time to 

failure, from Eq. (147) a r e  

1 
N E(T) Tpf(T)dT = - 

ff 
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These results of Eqs. (147), (148), and (149) may be derived also 

by assuming that the crossings Is(t)l $CY, occur at  a sequence of 

times following a Poisson distribution. 

Returning to Eq. (144), this relationship may be interpreted 

a s  the probability that a structure will perform properly in the time 

interval (0 ,  T) for any given excitation. 

to define a criteria for structural reliability in te rms  of catastrophic 

failure (as opposed to long te rm fatigue failures). 

reliability terminology, the reciprocal of N may be considered a 

m ean - tim e -be tw e en - f ailur e T 

This relationship can be used 

In more common 

CY 

That is, f '  

T = 1 / N  
f cr 

In terms of T Eq. (144) becomes f '  
which agrees with Eq. (148). 

P (T) = exp ( -T /T  ) (151) 0 f 

The proper value for N in the above relationships may be 
CY 

estimated using Eq. (134), where the values for u and u. a r e  

obtained from the power spectrum for a structural response a s  

indicated in Eqs. (131) and (132) .  The response power spectrum 

for  a structure can be predicted from the power spectrum for  the 

excitation a s  illustrated in Section 7.1. Thus, given a structure with 

a gain factor of 1 H(f) I and an excitation of G ( f ) ,  the variance for  the 

s t ress  level and i ts  f i r s t  derivative a r e  

S S 

X 

a3 
2 
S = ."/ \H(f)12 G X (f)  df 

0 

a3 

0.2 S = C2 1 (2rrf)' IH(f)12G X (f)  df 

54 



The values for  r and w. may be used in Eq. (134) to obtain the 

value for N associated with any extreme level of s t ress  s(t) = (Y 

where a failure would occur. 

S S 

(Y 

It should be emphasized that Eqs. (150) and (151) assume that 

the probability of a failure in the interval (0,  T) is independent of the 

starting time for the interval. 

probability of any given peak value is independent of the value for the 

preceding peaks. 

the power spectrum for random signal s(t) is relatively uniform over 

a very wide frequency range. 

invalid when the power spectrum for s(t) has a single sharp peak; 

i. e . ,  when s(t) is narrow band noise. For the case of narrow band 

noise, the autocorrelation function is an exponential cosine function 

as given by Eq. (72) .  It is clear from the relationship in Eq. (72) 

that the correlation between adjacent peaks increases as the noise 

bandwidth B = a c f  decreases. Hence, for the case of narrow band 

random signals, Eqs. (150) and (151) are only approximations 

for the rr-ean-time-between-failure T and probability of no 

failures P (T). Additional studies a re  needed to properly define 

these factors for the narrow band case. 

This assumption implies that the 

This assumption is acceptable for those cases where 

However, the assumption becomes 

n 

f ’  

0 

Examde 

Consider a structure which will fail if  the instantaneous s t ress  

level s(t) exceeds the extreme value CY = (2)lO psi. Assume the 

structure is subjected to an excitation which produces a s t ress  

response with a reasonably uniform power spectrum having a density 

of Gs(f) = 10 

100 cps. Firs t ,  what is the expected mean-time-between-failure, 

and, second, what is the probability of reliable operation (no failures) 

in a period of one hundred hours. 

5 

7 2  psi /cps  over the frequency range from 0 cps to 
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The mean-time-between-failure is given by T in Eq. (150) 

where N is given by Eq. (134). Referring to Eqs. (131) and 

(132), 

f 

CY 

the variances for the s t ress  response and its first derivative 

a r e  
M 100 

7 9 2  
r = -Gs(f) df = 10 df = 10 psi  

0 
S 

100 
r 2  = r ( Z l r f )  2 G (f)  df =/, ( 2 ~ )  2 10 7 2  f df = (13.1)lO 13 (psi/sec) 2 

S 
0 

b 

Then, the expected number of crossings per second of the level 

CY = (2) lO psi is 
5 

(1.14) 10 -8 

N = [ CY 21r 11 e-2o = 14.3 x 10 crossings/seconds 
(3.16)lO 

The mean-time-between-failure is then 

1 6 T = - = ( 7 ) l O  seconds % 2000 hours 
CY 

f N  

and the probability of no failures in one hundred hours is given by 

Eq. (151) as follows. 
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