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! Introduction - Many characteristics of the artificial satellite

orbits useful to geodesy are similar to those of the planetary and

natural satellite orbits which have long been the object of attention

of celestial mechanics: slowly varying Keplerian ellipses of mooerate

_ eccentricity.. Hence many of the classical methods can be applied.
J

Characteristics peculiar to close satellites, and hence requiring

special attention, aye the capability of a wide variety of inclinations;

the dominant perturbation by the earth's ©blatene_s; the many other

" "small perturbations by variations of the earth's gravitational field

0 s_which are the chief reason why satellites are of geodetic interest_ the
.=8

_< _importance of atmospheric drag; and the irregular distribution of obser-
0 g
g U

X_ _vations around the orbit. These characteristics, together with the

availability of large high-speed computers, create some interesting new

problems for satellite geodesy, despite the basle similarlty to ciassi=ai

i_ % problems.

Celestial Mechanics - For purely gravitational effects on the orblt

of a particle, the differential equations can be written:

"r = vv(#O (1)

when _# is the position vector, V is a scalar potential, and V denotes the

gradient. The three second order equations (_) can easily be converted

to six first order equations by taking as variables in addition to the

three position components YA_the three velocity components _. Then given a

I
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law for V and position and velocity at a particular time, _ and _, the

equations of motion can be readily solved by numerical integration.
g

However. other developments may be more conducive to insight or more

economical of computer time. In the first approximation for the earth,

v = kX/r : (2)

where k is the gravitational constant, M is the earth's mass, and r is

the radius vector. Use of (2) in (I) and conversion of (1) to spherical

coordinates obtains as a first integral

r_f = h, ())

where f is the rate of angular motion about the origin in the plane defined

by the position and velocity vectors of the satellite, and h is a constant,

(3} is known as the integral of areas• Replacement of r by its inverse and

use of (3) to eliminate dt in favor of df results in an equation which can be

integrated to obtain llr in terms of f:

1 = 1 + e cos f

r a(l-e z) (/+} ,s

s

the equation for the radius vector of an ellipse with a semi-major axis a,

an eccentricity e, the origin at a focus, and f, called the true anomaly.

measured from the point of closest approach to the focus. We also get

h = [kXa(t-e2)] (5)

I
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To completely specify the position of the particle, in addition to a,e,

and f three more variables are required to express the orientation cf the

. ellipse in the plane of motion: ¢_, the argument of perigee; and to express

the orientation of the plane with respect to an inertial reference: £, th_

inclination, and _, the longitude of the node. See Figure I for the definition

U

To integrate (3) to obtain the position in terms of time, we replace

the true anomaly f by the eccentric anomaly E as follows: define the major

axis as the abscissa; take a circle tangent to the ellipse at the ends of the

major axis; and define the eccentric anomaly E as the angle subtended at the

center of the circle by the point on the circle whose abscissa is the same as

the point on the ellipse of true anomaly f. Then

= a(t - e cos E) (6)

Differentiating (A) and (6) and equating the two expressions for dr, df

can be eliminated for dE and a form of (3) is obtained which can be integrated

to :

E - e sin _ = _ a"312 (t - t )• 0

= _(t- t) . M (7)
0

where t is the time of passing the point of closest approach to the origin0

called perigee_k/A (7) is called Kepler's equation,
t\
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For cases where the potential V in (I) does not have the central form

(2), but is instead:

v __ k__! + R, _)
r

where R is known as the disturbin B function, the Keplerian ellipse and its

orientation can still be regarded as a coordinate system: at any instant the

situation of a satellite in inertially fixed geocentric coordinates can be

the six numbers (a,e,i;M,w,_ instead of the six numbersexpressed by

_x,y,z,_,_,_ . By using the partial derivatives of_,_with respect to

the Keplerian elements the six differential equations in terms of _,_ can be

converted, after considerable algebra, into:

da 2 _R
dt - na _4

de 1 - e2 _R - (I - eZ)_._R
dt - naive" m haze

l

dt - _(l-e) _ sin i _i -----nae-Ze- _e

di cos i . _R _ I . _R

dt - naZ(i-eZ)_ sin t _ na2(l-ez)_ 'sin i

dn l t • __-_

dM I - e2 _R 2 . _R

dt Na-_e _ na _s )

Tni_ form of the equations of motion is known as the Lagrangian planetary

equat Ions.

The Earth's Gravitational Field. To use equation (9), the potential

V, Includlng the disturbing function R, must be expressed in terms of K_plerian
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elements. Because of the strong _moothing effects of the extrapolation to

altitude and the integration to obtain satellite posltion, the most convenlent

, representation of the Earth's gravitational field for application to orbits is

in spherical har_onics (see "Use of Spherical Harmonics in Physical Geodesy"

by U. A. Uotila and "The Figure of the Earth" by W. M. Kaula):

n n

v = _[t +z E (a__e)p (siny)(c cosm_+ s sinreX)](_0)
r n=2 m=0 r nm nm nm

where ae is the equatorial radius, _ is the geocentic latltude, P (sln _)nm

is the Legendre Associated Polynomial, k is the longitude and C S are
' n_l " nm

independent coefficients. The interest of geodesy in close satellite orblts

is to use their perturbations to determine these coefficients C _ S .. By anm nm

purely geometrical transformation, treating the Keplerian ellipse as an alter-

native to spherical polar coordinates, there is obtained from (I0) a dlsturbing

function (Kauia, 1361)"

n n

R __ kM (ae) L Fnmp (i) G Ce).xa :- a ,-, n_q

n=2 m=0 p=0 q=-_

n-m even m'(_-8)
_n m n-m odd

rSnma n-m even

+ 'LCnm].sin {(n-2p)_ + (n-2p+q_M+ m(a-e)}] (_l)n-m odd

where O is the Greenwich Sidereal Time, and
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I (2n72t)! n-m-2tFnmp(i ) = tl(n.t) l(n.m.2t)122n.2 t sin i x
t

m

\p-t-c/(l) (12)
s=O C

In (12), k is the integer part of (n-m)/2; t is summed from 0 to the

lesser of p or k, and c is summed over all values making the binomial coef-
|

fici.ents non-zero. Gnpqte ) is always O(e _q ). The general expression _or

G re) is rather complicated. There is, however, a simpler form for the
nrq

more important long period terms for which M is absent from the argument;

i.e., for which q _ (2p-n):

pa-i

1 r- : n-I _2d+-2P'>2 2d+n_2p'Gnp(2p-n)(e) = (l-ea)h'_) _.2d+n-2p'j ; ) (13)
d=O

where pl = p for p_ n/2, and

pl = p for De n/2.

The form of (II) indicates that the elements a.e,i appear in every term

of the d_qturbing function R, but that by an appropriate combination of sub-

_¢-_-ts n,m,p,q the e_ments _,M,_ and the sidereal time 8 may be absent from

certain terms. One such combination is nm_i = 2010, £or which the coefficient

C20 is the dominant coefficient in R, expressing the earth's oblateness. Use

of thl8 term as the disturbing 'Eunction in the equations of motion (9) results

in no perturbation of a,e, or i, but in constant changes in w,_, and M:
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dw 3nC_o

d--t"= A(-_.e2)2 (ae)_ (I-5 cos2i) _ 3.35 (5 cos_i-i.) degrees/daya

b

di_ = )nC2°22(I-e)2 (a-_a)2cos i _. - 6.70 cos i degrees/day >(,4)

J

elm 3nC2o /ae_2
d-t = n 4(-__e2)_A_ aj (3 cos2i - l) _ I4.3V + o00_3 (3 cos2i - I) revs/day

where (12) and (13) have been used to obtain F_e1(i) and G_10(e), and the

numerical examples are based on a C20 of -°O001+_A and typical orbit specifications

of .01 eccentricity and 1.12 ae semi-major axis_

Rates of secular motion of the perigee and nude as specified by (IA) are

the dominant characteristic observed in satellites which are high enough not to

be in a,state of ra_: decay due to atmospheric drag. This characteristic is so

dominant that for the effect of other terms in the earth's field, as given by

(Ii), the integration can be performed assuming that a,e, and i are conQ_ont and

_}, and M have a constant rate of change on the right hand side of (_. For

example, the perturbation of the node by a term of subscripts n,m,p_ _

n

_ kMae( _Fnmn, Oi.)Gnnq,) .__
__nmpq n+3,_T-eZ)_ sin i [[ni2p) _ * (n ._p_q_ + m(_-_)]n_

,- n-m eve_.

I[Cnm } sin {(n-2p)_ + (n-2p_q) H + m(_.-8)}
' L •Snm n-m odd

_Snm n-m even I.  Cnm] cos {(n,-2p),,)+ (n-2p,q)M+ }a (15)n-m odd
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A particular term which has been the object of considerable orbit analysis

is A_221o, the seml-daily perturbation of the node by the equatorial ellipti-

city:

[C2 sin 2(n-e) cos2(n-o)]

t

}kMa_ cos i [c22 sin 2(c_-e)- s22 cos 2(a-o)] (16)
=

The appearance of the rate [(n-2p)w . (n-2p4q)M + m(_-_)) in the denomina-

tor of (15) and the rates given by (IA) indicate that the largest perturbations

should be those for which (n-2p_q) and m both vanish: i.e., long perioa oL

secular effects of the zonal harmonics Cno, and that the largest effect of a

tesseral harmonic Cnm, Snm (for which m#0) will normally be one for which

(n-2p_q) vanishes.

Non-linear Perturbations. Th description of the orbit as a Keplerian

ellipse described by equations (6) and (?) plus secular motions (14) and linear

periodic perturbations such as (15) is inadequate for geodetic purposes. Because

the oblateness Cz0 is about I000 times larger than the other coefficients Cnm_

Snm, there are to be expected non-linear effects of coefficient C_ which are of

comparable magnitude to the linear effects of coefficients Cnm, Snm. As in any

non-linear problem, there are many ways to proceed. Some theories develop (_)

or similar equations to the next higher order by substituting the linear approxt.

mation on the right (e.g,, Kozai, 1959b). The algebra entailed in such a develo p
0

ment is considerable, howew_. An alternative frequently adopted is to transform
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(9) to a simpler form by a change of variables; the most popular such set are

the Delaunnay varlables:

• _ _L = (_a, , _,= M

3_ g = _ (17)
G = [_a(l-e')__,.
H = [t,_(l.-ea)J_tj h = n

l'fwe set

F -_ (IS)
- 2a

known as the force funcclon, then (9) becomes:

dL _F d_: bF
dt- _' dt _L

dG _F dR _F

Tf= _' dt= " _ (19)

d__H__F dh =.
dt- _' dt

Normally a closed solution to (19) with F as in (18) cannot be found. The

solution customarily adopted is to take the known solution for another force

function Ftclose to F and express the solution for F as TayAor series for the

small differences L-L l, G-G a, etc. Contlnuity conditions require that the terms

of these Taylor series all be expressible as derivatives of a single scalar

function, called the determining function. The solution for F # is called the

intermediate orbit. Different theories usually differ in their selection o_ the

intermediate orbit. A theory which has a simple intermediary will have compli-

cations in developing the determining function and its derivatives (e.g., Brouwer,

1959; Kozai, 1962); while a theory which has an intermediary which accounts for

nearly all the motion will entail considerable algebra in expressing polition and
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velocity in the intermediary (e.g., Vinti, I_59, 1961; Izsak, 1960).

Some theories have intermediaries which are not defined by a force

function F I, but rather by geometrical conditions, such as those of Merson

(196l) and Musen (1959, 1961). The theory of Musen (1959) also differs in that

it is designed for solution by numerical iteration, rather than by analytical

series development.

Most standard close sateIlite theories break down for orbits which have

an eccentricity or inclination around zero. The remedy is to use orbital

elements which do not require a distinct perigee or node for their precise

numerical definition.

Another cause of breakdown is that for some combination of subscripts

n,m,p,q the rate appearing in the denominator of the perturbation, such as

(15), approaches zero:

(n-2p) _ _- (n-21_q)l_ + m(_-e) _ O, t20)

so that a resonant situation occurs. The one which has received the most atten-

tion is that of the critical inclination, for which _ is zero (e.g., Izsak, 1_63).

Resonant orbits of more interest to geodesy are those of synchronous communication

satellites, for which (_ - _) is zero. These orbits will resonate with

any term in the gravitational field for which (n-m) is even, since it will have

the near-zero rate for a subscript p of (n-m)/2 and q zero. However, the semi-

major axis of such an orbit is so large--about 6.6 earth radii-- that it probably

would be a se_sltive determiner of only the lowest degree such barmonic_ Cz2, $2_o
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The stable point for the resonance will be the longitude of the minimum for the

equatorial ellipticity, [tan -I ($22/C22) ± _]/2. In the first approximation,

the solution is similar to that for a pendulum, with the longitude of the ,_

satellite expressed by an elliptic integral. If the initial longitude is

sufficiently close to the stability point, the longitude will librate about the

point; if it is outside these limits, the satellite will drift. The rate of

motion will be proportionate to (C_ + $2_) _. See Musen and Bailie (1962) and

Morando (1963).

Other Perturbations. The most important other effect on close satellites

of geodetic interest is atmospheric drag. Because of the much greater density

in vicinity of perigee, the principal effect of drag is a slow decrease in the

eccentricity and the semi-major axis. The rate of this decrease w111 vary with

the rotation of the perigee with respect to the bulge of the a_mosphere toward

the sun, and with the intensity of the solar flux. In addition, there will be

an effect on the rates of motion of the node and perigee due to interaction

between the drag and the earth's oblateness, which must be considered in ana-

lyzing secular changes to determine the even degree zonal harmonics. All these

variations make it impracticable to develop an analytical theory of drag.

Numerical integration or numerical harmonic analysi_ is necessary to apply any

realistic atmospheric model. Furthermor_, there are incalculable irregular

variations with respect to even the beat of atmospheric models; as a consequence

arbitrary polynomials are more frequently used• For geodetic satellites it is

desirable to keep the perigee high enough and area-to-mass ratio low enough, so

that irregular variations whose wave lengths are not long with respect :o the

spacing of observations are negligible_ For perigees above 800 or tO00 kilo-

meter altitude and area-to-mass ratios less than 0.2 cm 2 gm -I , the amplitude of

irregular variations of leas than monthly period are generally less than 5 x tO -_
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FIGURES

I. Geometry o_ a KeplerLan orbit.
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