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Abstract-Equations of motion appropriate to the conditions existing in the ionosphere are 
discussed with a view to examining the condition for ambipolar diffusion (v, = vi). It is shown 
that for quasi-equilibrium and isothermal conditions the required condition for ambipolar 
diffusion is given by curl v x B = 0. It is further shown that the assumption of 
ambipolar diffusion along the field lines leads to the trivial situation of hydrostatic distribut,ions 
of electron density independent of latitude. 

These results are not in agreement with the generally accepted view that diffusion of the 
plasma along the direction of the magnetic field can account for many geophysical phenomena 
in the ionosphere. This disagreement is attributed to the fact, that the assumption of field- 
aligned plasma diffusion puts a constraint on grad ne which has not been takcn into account by 
the previous workers. It is pointed out in the present paper that the solutions of v, and v i  in 
terms of the particle densities and temperatures are not possible without the knowledge of the 
electric field.' The theoretical determination of the latter- appears to be ext.remely complicated 
and it seems desirable to measure it experimentally. 

INTRODUCTION 
IT is now generally accepted that diffusion plays an important sole in controlling 
the distribution of ionization in the F-region of the ionosphere. The theory of 
diffusion appropriate to the conditions existing in the ionosphere was first proposed 
by FERRARO (1945) who treated the electron-ion gas as a single constituent and 
showed that the coefficient of diffusion of this gas is reduced by the ratio of 1 : sin2 I 
in the presence of the magnetic field, I being the inclination (dip) of the earth's 
magnetic' field. According to Ferraro, the vertical component of the velocity of 
diffusion vz, for an isothermal condition is given by 

where D is the coefficient of diffusion, ne the electron-density, 
H ,  the scale height of electron-ion gas, and z the altitude. 

Based on equation (1) the diffusive equilibrium-distribution a t  places other than 
the magnetic equator is given by 

ne = ne., exp - ( z  - 20)  /HI1 (2) 
where ne, is the electron density a t  height z,,. 

Equation (2) is in general accordance with the experimentally observed distri- 
bution well above the F2-peak both at midlatitudes and above the equator even 
though according to equation ( l ) ,  the vertical diffusion is inhibited a t  the geomagnetic 
equator. 
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Several modifications have been proposed to the original theory of Ferraro to 
take into account the temperature gradient and the effect of horizontal gradients 
but it has always been assumed or implied that the diffusion is essentially ambipolar 
(v, = vi). JOHNSON and HULBURT (1950), who treated the problem of plasma diffusion 
in the ionosphere in great detail showed that the electron-ion gas may diffuse 
together as a single constituent in the absence of the magnetic field, with a coefficient 
of diffusion and scale height twice that of the positive ions. I n  the presence of the 
magnetic field, however, diffusion is not necessarily ambipolar and is affected by 
the force exerted by the magnetic field on the electrical currents. 

In  view of the generally-accepted conclusion that diffusion plays' a significant 
role in controlling the charged particle distribution in the upper ionosphere, it is 
important to examine if the condition for ambipolar diffusion actually exists in the 
ionosphere where the effect of the magnetic field is significant. The purpose of this 
paper is to  investigate this problem in detail and to specify the conditions which must 
be satisfied before the assumption of ambipolar diffusion can justifiably be used in 
the ionosphere. 

EQUATION OF MOTION 
In  a multiple-component gas under the action of external forces, the equation 

of motion obeyed by each constituent may be written in the form proposed by 
JOHNSON (1951) and SCHLUTER (1951) 

where the suffixes s and 1 stand for the type of the particles and the various terms in 
equation (3) may be defined as follows : 

v, = macroscopic velocity of the sth constituent 
ps = density 
p, = pressure tensor; in general its ijth element is given by the following 

equation (LAMB, 1932) 

where q, stands for the coefficient of kinetic viscosity. 

e 

m, 
F, == 2 (E + V, x B) + 2v, x 0 - VQti,jal + g ( 5 )  

where E, B, e,  are, respectively, the electric field, the magnetic field and the charge, 
all expressed in MKS units, Qtidal is the tidal force due to the sun and the moon 
and g is the acceleration due to gravity. The terms 2v, x a, known as the Coriolis 
acceleration appear because of the rotation of the terrestrial coordinate system 
with the angular frequency o. 

The last term in equation (3) represents the drag term. The symbols m, and ml 
are the masses of sth and lth kind of particles and v,: is the collision frequency of 
sth kiiid of particles with lth. The summation with respect to 1 is extended to cover 
all possible collision partners including s = 1. 

. 
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I .  

I n  discussing the problem of diffusion in the ionosphere we shall assume only 
three types of particles: electrons, ions and neutral atoms. Further, to simplify 
our discussion we shall ignore the effect of viscosity, Coriolis-and tidal forces and 
consider t'he equation corresponding to quasi-equilibrium conditions. The neglect 
of viscosity removes the off-diagonal terms from the pressure term. Further, p 
may be treated as a scalar given by the equation of state 

Ps = n m ,  (6) 

where k is the Boltzmann constant and T, the kinetic gas temperature. In a collision- 
dominated plasma the assumption of isotropicity of pressure is justified ( SPITZER, 
1962). Finally, we shall neglect the quadratic terms in vs and its derivative, thereby, 
linearising all the equations. The approximation made so far are just the ones usually 
made in the study of the diffusion problem in the ionosphere. The equations of 
motion for neutrals, electrons, ions may now be written in the following form 

nnneaen(Vn - vel + nnniain(Vn - vi) = -VPn + prig 

neniaei(Ve - vi) + nnneaen(Ve - V n )  = -Vpe + peg - en,@ + ve x B) 
(7) 

(8) 

neniaei(vi - v,)  + nnniuin(vi - vn) = -Vpi + pig  + n,e(E + vi x B) (9) 

where 

The suffixes e ,  i, n in equations (7-10) stand for electron, ion and neutral molecule. 
For an isothermal condition, uti, etc. may be treated as constants. 

The electric field E ,  in general, is the sum of external and internal fields. Equations 
(7-9) should be supplemented by Maxwell's equations and equations of continuity. 
We may then write n 

V . E = (n, - ne) 2 
EO 

where is the free space permittivity 

V X E = O  (12) 

V . n,v, = R, (13) 

where R, refers to the net volumetric rate of creation of sth kind of particles. 

useful in the subsequent discussion. 
We may derive from equations (7-9) the following set of equations which will be 

A, + Ai + A, + e(n, - n,)E + e(nivi - neve) x B = 0 (15) 
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where 

AMBIPOLAR DIFFUSION 
In the following we shall investigate the condition under which the electron-ion 

plasma may diffuse together with a common velocity v (usually called ambipolar 
diffusion or plasma diffusion) such that 

v,  = v,  = v (19) 

substituting equation (19) in equation ( l y ) ,  we obtain 

(80) 
OIE?Z e(E + v x B) = u i n  Ae _ -  - 

Uen + uin ne a e n  + Ran na 
It is clear that equation (20) must be satisfied if equation (19) is valid. The required 
condition therefore is given by 

since V x E = O  

It is easy to verify that the R.H.S. of equation (21) is zero for an isothermal condition. 
Thus, the assumption of v, = vi leads to the following condition. 

V x [V x B] = 0 (22) 
This condition is always fulfilled in the absence of a magnetic field or when the 
motion is along the field lines. The last condition is generally assumed to be valid 
in the F-region and in the following we shall examine this case in detail. 

DIFFUSION ALONG FIELD LINES 
From equations (14) and (19) 

-An 
( n e u e n  + niuin)nn 

v - vn  = 

substituting equation (15) and equation (20) in equation (23) and assuming 

m, <m, and 

(23): 

I 
. I  

:I 

:I 

we get 
2kT 

V - V n N  - [: Vn,  - g] nn(Een + sin) n 
(24) 
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In deriving equation (24), it  is assumed that T ,  = T i  = T .  It is evident that 
equation (24) does not explicitly depend on the magnetic field. In the following, we 
assume for simplicity that vn< V. This assumption may not be justifiable in general. 
However, i t  can be easily verified that equation (22) still holds even in this case. 
Equations (22) and (24) thus lead to the following equation 

2kT 
e V x  [vx B] = V x 

Equation (25 )  specifies the condition for ambipolar diffusion and must be solved to 
determine the required distribution. In the case of field-aligned motion, i.e., when 
the plasma is diffusing along the field lines, equation (25)  is clearly satisfied. We 
shall examine this case in the following. 

In  a spherical polar coordinate system coincident with the center of the earth, 

-2kT [1  an, mig] we may write 

nn(a,, + uin) ne ar + 21el~ v, = 

where r is measured positive outward and 8 and tp denote the geomagnetic colatitude 
and longitude. Further we may write. 

B = -B(iT sin I + io cos I )  (27) 
where 4 and io are unit vectors along r and 8 directions and I is the magnetic dip 
angle reckoned positive when the north seeking pole of the needle points downward. 
The field aligned plasma diffusion case using equations (26) and (27) yields the 

1 an, 1 1 1 an, 
ne ar 2H ne r a8 

following equation- 

where 

-- + - = - - - t a n 1  

kT H = -  
mig 

Equation (28) is a partial differential equation and we saLall make use of i t  in 
solving the equation of continuity. Equation (13), putting Re = 0,  may be written 

i a  
(newo sin 8 )  + - - (fi9w9) = 0 (29) 

i a  l a  
V . n,v = - - (r%,v,) + - - r2 ar r sin 8 a8 r sin 8 atp 

Again from equations (15) ,  (19)  and (20 )  assuming mi CJ m, and neglecting ne or ni 
as compared to n, we may write 

1 an, mng 
n, ar 
- - N - -  

kT 
- 

n, nn0 exp [ - (r - T O )  /HI 
where nn0 refers to the neutral density a t  height r0. 
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From equations (26), (28)) (29) and (30) we get the following differential equation 

+% +- -+--- = o  (31) ne [( '1 "ye(: Z H ) ]  

In deriving (31), the dipole field approximation, i.e., tan I = 2 cot 8, has been 
assumed. The solution of equation (31) is given by 

ne(r, e)  = Al(8) exp - (r /ZH) + A2(8) exp - (r /ZH) 

x Sf exp - [ 2 r / H ( 4  + tan2 e ) ]  dr (36) 

where A,(O) and A2(B) are two arbitrary functions of 8 but are independent of r 
and must be evaluated to determine equation (32) uniquely. It is seen, however, that  
if equation (32) is substituted in equation (28) the only permissible values of A,(8)  
and A2(8) are when 

Al(8) = const = A ,  

A2(e)  = o 
If we allow any other value of A2(0) ,  the resulting differential equation of A2(8)  
has a solution which is not independent of r .  This, however, is self-contradictory. 
We thus obtain 

ne = A ,  exp (-r/2H) (33) 

A similar result may be obtained if equation (31) is written in terms of variable 
of 0 instead of variable of r .  In  this case we obtain the following differential equation. 

The solution of equation (34) may be written in the form 

1 + 3 cos2 0 r'GH 
ne(r ,  e )  = B,(r) + B2(r)/(7-) sin 8 dO ( 3 5 )  

where B,(r) and B2(r) are arbitrary functions of r and must be evaluated from 
boundary conditions. Again substituting equation (35) in equation (28) we find, 
following the arguments given before, that 

B,(r) = 0 

N ,  = B,(r) = const exp (-r/2H) (36) 

which is equivalent to equation (33). 
Equation (36) corresponds to the hydrostatic distribution of electron density 

with a scale height, tw+e that of the neutral and is also obtained when v = 0. 
As a result of the previous analysis it is clear that the assumption of ambipolar 

diffusion in the ionosphere requires that V x [v x B] = 0. In  studying the effect of' 
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ambipolar diffusion on the charged particle distribution in the ionosphere, this point 
must be taken into account. In  particular, the assumption of plasma diffusion along 
the field lines leads to the condition of hydrostatic distribution implying that v = 0,  
independent of geomagnetic latitude. 

DIS~USSION 
The results obtained in the preceding section are not in agreement with the 

findings of KENDALL (1962), LYON (1963), RISHBETH et al. (1963) and GOLDBERG and 
SCHNERLING ( 1  963) even though all these authors have studied the case of plasma 
diffusion along the field lines. The disagreement arises due to the fact that they 
have not taken into account the additional constraint on V,, given by equation (28) 
which automatically results from the assumption of field aligned plasma diffusion. 
However, in the opinion of this author this point must be taken into account. I n  
view of the great geophysical importance of this problem we shall pursue this point a 
little further and investigate the limitations of solving this problem when v, # v,. 
For the conditions existing in the F-region where the gyro-frequency is much greater 
than the collision frequencies it is shown in the appendix that 

v, e( -y ,  + O,,y,)(E. h)h - ( y e  + b,y,) - V p ,  . h h c, i 
+ (WLeYe + mzaeYz)(g * h)h (35) 

+ (miyi + mediye)(g *h)h (38) 
where h is the unit vector along the field lines and the coefficients y e ,  yi etc. are 
defined by equation (A3) in the appendix. It is evident from equations (37) and (38) 
that both electron and ion velocities are along the magnetic field when their gyro 
frequencies are much greater than their respective collision frequencies. However, 
it is not a t  all evident that the magnitudes of the two velocities are equal. It is not 
possible to  make any further simplification of equations (37) and (38) since the 
mathematical problem leading to the solution for the electric field is extremely 
difficult. In order to avoid this difficulty one generally assumes v, = v i  = v. In  
this case the electric field can be easily eliminated from equations (37)  and (38) 
leading to  the well known expression for the diffusion velocity. 

or in the component from 

where D = 21cTeyeyi/(y, + yi) may be interpreted as diffusion coefficient. 
Equation (40) has been the basis of studying the diffusion problem in the iono- 

sphere. However, in the light of the discussion presented in this paper i t  is evident. 
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that  under the assumption of v, = vi, the correct expression for v is given by equation 
(24) which does not explicitly depend on the magnetic field irrespective of the 
relative magnitude of gyro and collision frequencies. The dependence on the magnetic 
field comes from equation ( 2 2 )  which is the required condition for v, = vi. 

Unfortunately, there is no simple way of solving for v, and vi in terms of the 
particle densities and temperatures. In  order to avoid the mathematical complexities, 
i t  may perhaps be desirable to devise experimental techniques for measuring the 
electric field. This will certainly be an important step in our understanding of 
the very intricate problem of diffusion in the ionosphere. 

Acknowledgement-I am indebted to Dr. S. J. BAUER for giving many valuable 
suggestions throughout the course of this work. I also wish to thank Mr. W. CAHILL, 
Dr. E'. MARIANI and Dr. E. IV~AIER for their critical comments. 

This work was performed while the author held a NASA Post Doctoral Research 
Associateship from the National Academy of Sciences. 

REFERENCES 
CHAPMAN 8. 1956 Nuovo Cimento, Suppl. 4, 1386. 
FERRARO V. C. A. 1945 
GOLDBERG R. A. and SCRMERLING E. R. 1963 
JOHNSOW M. H. and HCLBURT E. C. 1950 Phys. Rev. 79, 802. 
JOHNSON M. H. 1951 Phys. Rev. 84, 566. 
KENDALL P. C. 1962 J .  Atmosph. Terr. Phys. 24, 805. 
LAMB H. 1932 Hydrodynamics, Dover Publications. 
LYON A. J. 1963 J .  Geophys. Res. 68, 2531. 
RISHBETH H., LYON A. J. and 

MARGRET PEART 1963 J .  Geophys. Res. 68, 2559. 
S C H ~ T E R  A. 1951 2. Naturf. 6a, 73. 
SPITZER L. 1962 Physics of Fully Ionized Gases, 2nd ed. 

APPENDIX 
If v, e v e  or vi, we may rewrite equations (8) and (9) in the following form. 

Terr. Mag. and Atmos. Elect. 50, 215. 
J .  Geophys. Res. 68. 1927. 

Interscience, New York. 

v, + lev, x h = y e  

where h is a unit vector along the field lines and the coefficients y e ,  y i  etc. are given by 
the following equations. 

1 
Y e  = nia,, + n,a,, 

y i  = n,aei + nnain 

A, = eBy, 
Ai = -eBy, 

1 
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The coefficients A, and Ai may be interpreted as the ratio of gyrofrequency and the 
effective collision frequencies of electrons and ions respectively. Further, 6, and 
di are the coupling terms between electron and ion motion through collision. Obviously 
6, and di are zero ifv, = vi since the terms containing u,,. are zero. 

Equations (Al) and (A2) may be solvcd for v, and vi. We thus vbtain 

where 

G, - PE + - 
ne 

Ai Gi  = eE + - 
ni 

A similar expression can be written for vi by interchanging the suffixes e and i. 
At this stage i t  is appropriate to  make a numerical estimate of the coefficients 

A,, ye,  etc. in order to get a physical insight of equation (A4). For the conditions 
existing in the F-region, we adopt the following numerical values of the collision 
frequencies as given by CHAPMAN (1956). These frequencies correspond to his 
model h (T = 1480°K). Thus we may write 

vei = 268/sec 
v,, = 37.4/sec 
v i ,  = l/sec 

- 5.2 x 106/sec where B = 0.3 x lop4 Weber Again w e  = - - eB 
me 
eB 
mi 

wi  = - = 1.5 x 102/sec assuming mi = 19 amu 

Substituting these values in equation (39) and neglecting me as compared to mi we 
obtain 

A, e 1.7 x 104 
ai N 2.8 x i o 2  

y i  N 0.6 x sec/kg 
y e  cu 3.5 x lo2’ sec/kg 
6, N 0.88 
dj  N 1.54 x 
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From the above computations it is clear that A, and Ai > 1 ; 6, M 1 and di  < 1. 
With these approximations, equation (A4) can be written in the following form 

A further approximation of equation (A6) results in the following equation: 

v, y,(G, . h)h + 6,y,(G1 . h)h (A7 ) 

vi yi(G1. h)h + d,y,(G, h)h (A8) 

Following the same procedure for vi, we may write 

We may further write, assuming ( l/ne)Vpe N (l/ni) Vpi, and substituting for G, and 
Gi from equation (A5) 

+ (meye + miaeyi)(g *h)h  ('9) 

vi N e ( y i  - Giye)(E . h)h - ( y i  + d,y,) 

+ (miyi + mediye)(g .h)h (A10) 


